Merge branch 'core-iommu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / mips / pci / msi-octeon.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009, 2010 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/msi.h>
11 #include <linux/spinlock.h>
12 #include <linux/interrupt.h>
13
14 #include <asm/octeon/octeon.h>
15 #include <asm/octeon/cvmx-npi-defs.h>
16 #include <asm/octeon/cvmx-pci-defs.h>
17 #include <asm/octeon/cvmx-npei-defs.h>
18 #include <asm/octeon/cvmx-pexp-defs.h>
19 #include <asm/octeon/pci-octeon.h>
20
21 /*
22  * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
23  * in use.
24  */
25 static u64 msi_free_irq_bitmask[4];
26
27 /*
28  * Each bit in msi_multiple_irq_bitmask tells that the device using
29  * this bit in msi_free_irq_bitmask is also using the next bit. This
30  * is used so we can disable all of the MSI interrupts when a device
31  * uses multiple.
32  */
33 static u64 msi_multiple_irq_bitmask[4];
34
35 /*
36  * This lock controls updates to msi_free_irq_bitmask and
37  * msi_multiple_irq_bitmask.
38  */
39 static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
40
41 /*
42  * Number of MSI IRQs used. This variable is set up in
43  * the module init time.
44  */
45 static int msi_irq_size;
46
47 /**
48  * Called when a driver request MSI interrupts instead of the
49  * legacy INT A-D. This routine will allocate multiple interrupts
50  * for MSI devices that support them. A device can override this by
51  * programming the MSI control bits [6:4] before calling
52  * pci_enable_msi().
53  *
54  * @dev:    Device requesting MSI interrupts
55  * @desc:   MSI descriptor
56  *
57  * Returns 0 on success.
58  */
59 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
60 {
61         struct msi_msg msg;
62         u16 control;
63         int configured_private_bits;
64         int request_private_bits;
65         int irq = 0;
66         int irq_step;
67         u64 search_mask;
68         int index;
69
70         /*
71          * Read the MSI config to figure out how many IRQs this device
72          * wants.  Most devices only want 1, which will give
73          * configured_private_bits and request_private_bits equal 0.
74          */
75         pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
76                              &control);
77
78         /*
79          * If the number of private bits has been configured then use
80          * that value instead of the requested number. This gives the
81          * driver the chance to override the number of interrupts
82          * before calling pci_enable_msi().
83          */
84         configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
85         if (configured_private_bits == 0) {
86                 /* Nothing is configured, so use the hardware requested size */
87                 request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
88         } else {
89                 /*
90                  * Use the number of configured bits, assuming the
91                  * driver wanted to override the hardware request
92                  * value.
93                  */
94                 request_private_bits = configured_private_bits;
95         }
96
97         /*
98          * The PCI 2.3 spec mandates that there are at most 32
99          * interrupts. If this device asks for more, only give it one.
100          */
101         if (request_private_bits > 5)
102                 request_private_bits = 0;
103
104 try_only_one:
105         /*
106          * The IRQs have to be aligned on a power of two based on the
107          * number being requested.
108          */
109         irq_step = 1 << request_private_bits;
110
111         /* Mask with one bit for each IRQ */
112         search_mask = (1 << irq_step) - 1;
113
114         /*
115          * We're going to search msi_free_irq_bitmask_lock for zero
116          * bits. This represents an MSI interrupt number that isn't in
117          * use.
118          */
119         spin_lock(&msi_free_irq_bitmask_lock);
120         for (index = 0; index < msi_irq_size/64; index++) {
121                 for (irq = 0; irq < 64; irq += irq_step) {
122                         if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
123                                 msi_free_irq_bitmask[index] |= search_mask << irq;
124                                 msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
125                                 goto msi_irq_allocated;
126                         }
127                 }
128         }
129 msi_irq_allocated:
130         spin_unlock(&msi_free_irq_bitmask_lock);
131
132         /* Make sure the search for available interrupts didn't fail */
133         if (irq >= 64) {
134                 if (request_private_bits) {
135                         pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
136                                1 << request_private_bits);
137                         request_private_bits = 0;
138                         goto try_only_one;
139                 } else
140                         panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
141         }
142
143         /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
144         irq += index*64;
145         irq += OCTEON_IRQ_MSI_BIT0;
146
147         switch (octeon_dma_bar_type) {
148         case OCTEON_DMA_BAR_TYPE_SMALL:
149                 /* When not using big bar, Bar 0 is based at 128MB */
150                 msg.address_lo =
151                         ((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
152                 msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
153         case OCTEON_DMA_BAR_TYPE_BIG:
154                 /* When using big bar, Bar 0 is based at 0 */
155                 msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
156                 msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
157                 break;
158         case OCTEON_DMA_BAR_TYPE_PCIE:
159                 /* When using PCIe, Bar 0 is based at 0 */
160                 /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
161                 msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
162                 msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
163                 break;
164         default:
165                 panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type\n");
166         }
167         msg.data = irq - OCTEON_IRQ_MSI_BIT0;
168
169         /* Update the number of IRQs the device has available to it */
170         control &= ~PCI_MSI_FLAGS_QSIZE;
171         control |= request_private_bits << 4;
172         pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
173                               control);
174
175         set_irq_msi(irq, desc);
176         write_msi_msg(irq, &msg);
177         return 0;
178 }
179
180 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
181 {
182         struct msi_desc *entry;
183         int ret;
184
185         /*
186          * MSI-X is not supported.
187          */
188         if (type == PCI_CAP_ID_MSIX)
189                 return -EINVAL;
190
191         /*
192          * If an architecture wants to support multiple MSI, it needs to
193          * override arch_setup_msi_irqs()
194          */
195         if (type == PCI_CAP_ID_MSI && nvec > 1)
196                 return 1;
197
198         list_for_each_entry(entry, &dev->msi_list, list) {
199                 ret = arch_setup_msi_irq(dev, entry);
200                 if (ret < 0)
201                         return ret;
202                 if (ret > 0)
203                         return -ENOSPC;
204         }
205
206         return 0;
207 }
208
209 /**
210  * Called when a device no longer needs its MSI interrupts. All
211  * MSI interrupts for the device are freed.
212  *
213  * @irq:    The devices first irq number. There may be multple in sequence.
214  */
215 void arch_teardown_msi_irq(unsigned int irq)
216 {
217         int number_irqs;
218         u64 bitmask;
219         int index = 0;
220         int irq0;
221
222         if ((irq < OCTEON_IRQ_MSI_BIT0)
223                 || (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
224                 panic("arch_teardown_msi_irq: Attempted to teardown illegal "
225                       "MSI interrupt (%d)", irq);
226
227         irq -= OCTEON_IRQ_MSI_BIT0;
228         index = irq / 64;
229         irq0 = irq % 64;
230
231         /*
232          * Count the number of IRQs we need to free by looking at the
233          * msi_multiple_irq_bitmask. Each bit set means that the next
234          * IRQ is also owned by this device.
235          */
236         number_irqs = 0;
237         while ((irq0 + number_irqs < 64) &&
238                (msi_multiple_irq_bitmask[index]
239                 & (1ull << (irq0 + number_irqs))))
240                 number_irqs++;
241         number_irqs++;
242         /* Mask with one bit for each IRQ */
243         bitmask = (1 << number_irqs) - 1;
244         /* Shift the mask to the correct bit location */
245         bitmask <<= irq0;
246         if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
247                 panic("arch_teardown_msi_irq: Attempted to teardown MSI "
248                       "interrupt (%d) not in use", irq);
249
250         /* Checks are done, update the in use bitmask */
251         spin_lock(&msi_free_irq_bitmask_lock);
252         msi_free_irq_bitmask[index] &= ~bitmask;
253         msi_multiple_irq_bitmask[index] &= ~bitmask;
254         spin_unlock(&msi_free_irq_bitmask_lock);
255 }
256
257 static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
258
259 static u64 msi_rcv_reg[4];
260 static u64 mis_ena_reg[4];
261
262 static void octeon_irq_msi_enable_pcie(unsigned int irq)
263 {
264         u64 en;
265         unsigned long flags;
266         int msi_number = irq - OCTEON_IRQ_MSI_BIT0;
267         int irq_index = msi_number >> 6;
268         int irq_bit = msi_number & 0x3f;
269
270         raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
271         en = cvmx_read_csr(mis_ena_reg[irq_index]);
272         en |= 1ull << irq_bit;
273         cvmx_write_csr(mis_ena_reg[irq_index], en);
274         cvmx_read_csr(mis_ena_reg[irq_index]);
275         raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
276 }
277
278 static void octeon_irq_msi_disable_pcie(unsigned int irq)
279 {
280         u64 en;
281         unsigned long flags;
282         int msi_number = irq - OCTEON_IRQ_MSI_BIT0;
283         int irq_index = msi_number >> 6;
284         int irq_bit = msi_number & 0x3f;
285
286         raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
287         en = cvmx_read_csr(mis_ena_reg[irq_index]);
288         en &= ~(1ull << irq_bit);
289         cvmx_write_csr(mis_ena_reg[irq_index], en);
290         cvmx_read_csr(mis_ena_reg[irq_index]);
291         raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
292 }
293
294 static struct irq_chip octeon_irq_chip_msi_pcie = {
295         .name = "MSI",
296         .enable = octeon_irq_msi_enable_pcie,
297         .disable = octeon_irq_msi_disable_pcie,
298 };
299
300 static void octeon_irq_msi_enable_pci(unsigned int irq)
301 {
302         /*
303          * Octeon PCI doesn't have the ability to mask/unmask MSI
304          * interrupts individually. Instead of masking/unmasking them
305          * in groups of 16, we simple assume MSI devices are well
306          * behaved. MSI interrupts are always enable and the ACK is
307          * assumed to be enough
308          */
309 }
310
311 static void octeon_irq_msi_disable_pci(unsigned int irq)
312 {
313         /* See comment in enable */
314 }
315
316 static struct irq_chip octeon_irq_chip_msi_pci = {
317         .name = "MSI",
318         .enable = octeon_irq_msi_enable_pci,
319         .disable = octeon_irq_msi_disable_pci,
320 };
321
322 /*
323  * Called by the interrupt handling code when an MSI interrupt
324  * occurs.
325  */
326 static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
327 {
328         int irq;
329         int bit;
330
331         bit = fls64(msi_bits);
332         if (bit) {
333                 bit--;
334                 /* Acknowledge it first. */
335                 cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
336
337                 irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
338                 do_IRQ(irq);
339                 return IRQ_HANDLED;
340         }
341         return IRQ_NONE;
342 }
343
344 #define OCTEON_MSI_INT_HANDLER_X(x)                                     \
345 static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id)       \
346 {                                                                       \
347         u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]);                 \
348         return __octeon_msi_do_interrupt((x), msi_bits);                \
349 }
350
351 /*
352  * Create octeon_msi_interrupt{0-3} function body
353  */
354 OCTEON_MSI_INT_HANDLER_X(0);
355 OCTEON_MSI_INT_HANDLER_X(1);
356 OCTEON_MSI_INT_HANDLER_X(2);
357 OCTEON_MSI_INT_HANDLER_X(3);
358
359 /*
360  * Initializes the MSI interrupt handling code
361  */
362 int __init octeon_msi_initialize(void)
363 {
364         int irq;
365         struct irq_chip *msi;
366
367         if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
368                 msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
369                 msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
370                 msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
371                 msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
372                 mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
373                 mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
374                 mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
375                 mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
376                 msi = &octeon_irq_chip_msi_pcie;
377         } else {
378                 msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
379 #define INVALID_GENERATE_ADE 0x8700000000000000ULL;
380                 msi_rcv_reg[1] = INVALID_GENERATE_ADE;
381                 msi_rcv_reg[2] = INVALID_GENERATE_ADE;
382                 msi_rcv_reg[3] = INVALID_GENERATE_ADE;
383                 mis_ena_reg[0] = INVALID_GENERATE_ADE;
384                 mis_ena_reg[1] = INVALID_GENERATE_ADE;
385                 mis_ena_reg[2] = INVALID_GENERATE_ADE;
386                 mis_ena_reg[3] = INVALID_GENERATE_ADE;
387                 msi = &octeon_irq_chip_msi_pci;
388         }
389
390         for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
391                 set_irq_chip_and_handler(irq, msi, handle_simple_irq);
392
393         if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
394                 if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
395                                 0, "MSI[0:63]", octeon_msi_interrupt0))
396                         panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
397
398                 if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
399                                 0, "MSI[64:127]", octeon_msi_interrupt1))
400                         panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
401
402                 if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
403                                 0, "MSI[127:191]", octeon_msi_interrupt2))
404                         panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
405
406                 if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
407                                 0, "MSI[192:255]", octeon_msi_interrupt3))
408                         panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
409
410                 msi_irq_size = 256;
411         } else if (octeon_is_pci_host()) {
412                 if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
413                                 0, "MSI[0:15]", octeon_msi_interrupt0))
414                         panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
415
416                 if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
417                                 0, "MSI[16:31]", octeon_msi_interrupt0))
418                         panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
419
420                 if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
421                                 0, "MSI[32:47]", octeon_msi_interrupt0))
422                         panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
423
424                 if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
425                                 0, "MSI[48:63]", octeon_msi_interrupt0))
426                         panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
427                 msi_irq_size = 64;
428         }
429         return 0;
430 }
431 subsys_initcall(octeon_msi_initialize);