Merge branch 'for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[sfrench/cifs-2.6.git] / arch / mips / kvm / emulate.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/memblock.h>
19 #include <linux/random.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cacheops.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #include "trace.h"
36
37 /*
38  * Compute the return address and do emulate branch simulation, if required.
39  * This function should be called only in branch delay slot active.
40  */
41 static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
42                                   unsigned long *out)
43 {
44         unsigned int dspcontrol;
45         union mips_instruction insn;
46         struct kvm_vcpu_arch *arch = &vcpu->arch;
47         long epc = instpc;
48         long nextpc;
49         int err;
50
51         if (epc & 3) {
52                 kvm_err("%s: unaligned epc\n", __func__);
53                 return -EINVAL;
54         }
55
56         /* Read the instruction */
57         err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
58         if (err)
59                 return err;
60
61         switch (insn.i_format.opcode) {
62                 /* jr and jalr are in r_format format. */
63         case spec_op:
64                 switch (insn.r_format.func) {
65                 case jalr_op:
66                         arch->gprs[insn.r_format.rd] = epc + 8;
67                         /* Fall through */
68                 case jr_op:
69                         nextpc = arch->gprs[insn.r_format.rs];
70                         break;
71                 default:
72                         return -EINVAL;
73                 }
74                 break;
75
76                 /*
77                  * This group contains:
78                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
79                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
80                  */
81         case bcond_op:
82                 switch (insn.i_format.rt) {
83                 case bltz_op:
84                 case bltzl_op:
85                         if ((long)arch->gprs[insn.i_format.rs] < 0)
86                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
87                         else
88                                 epc += 8;
89                         nextpc = epc;
90                         break;
91
92                 case bgez_op:
93                 case bgezl_op:
94                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
95                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
96                         else
97                                 epc += 8;
98                         nextpc = epc;
99                         break;
100
101                 case bltzal_op:
102                 case bltzall_op:
103                         arch->gprs[31] = epc + 8;
104                         if ((long)arch->gprs[insn.i_format.rs] < 0)
105                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
106                         else
107                                 epc += 8;
108                         nextpc = epc;
109                         break;
110
111                 case bgezal_op:
112                 case bgezall_op:
113                         arch->gprs[31] = epc + 8;
114                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
115                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
116                         else
117                                 epc += 8;
118                         nextpc = epc;
119                         break;
120                 case bposge32_op:
121                         if (!cpu_has_dsp) {
122                                 kvm_err("%s: DSP branch but not DSP ASE\n",
123                                         __func__);
124                                 return -EINVAL;
125                         }
126
127                         dspcontrol = rddsp(0x01);
128
129                         if (dspcontrol >= 32)
130                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
131                         else
132                                 epc += 8;
133                         nextpc = epc;
134                         break;
135                 default:
136                         return -EINVAL;
137                 }
138                 break;
139
140                 /* These are unconditional and in j_format. */
141         case jal_op:
142                 arch->gprs[31] = instpc + 8;
143         case j_op:
144                 epc += 4;
145                 epc >>= 28;
146                 epc <<= 28;
147                 epc |= (insn.j_format.target << 2);
148                 nextpc = epc;
149                 break;
150
151                 /* These are conditional and in i_format. */
152         case beq_op:
153         case beql_op:
154                 if (arch->gprs[insn.i_format.rs] ==
155                     arch->gprs[insn.i_format.rt])
156                         epc = epc + 4 + (insn.i_format.simmediate << 2);
157                 else
158                         epc += 8;
159                 nextpc = epc;
160                 break;
161
162         case bne_op:
163         case bnel_op:
164                 if (arch->gprs[insn.i_format.rs] !=
165                     arch->gprs[insn.i_format.rt])
166                         epc = epc + 4 + (insn.i_format.simmediate << 2);
167                 else
168                         epc += 8;
169                 nextpc = epc;
170                 break;
171
172         case blez_op:   /* POP06 */
173 #ifndef CONFIG_CPU_MIPSR6
174         case blezl_op:  /* removed in R6 */
175 #endif
176                 if (insn.i_format.rt != 0)
177                         goto compact_branch;
178                 if ((long)arch->gprs[insn.i_format.rs] <= 0)
179                         epc = epc + 4 + (insn.i_format.simmediate << 2);
180                 else
181                         epc += 8;
182                 nextpc = epc;
183                 break;
184
185         case bgtz_op:   /* POP07 */
186 #ifndef CONFIG_CPU_MIPSR6
187         case bgtzl_op:  /* removed in R6 */
188 #endif
189                 if (insn.i_format.rt != 0)
190                         goto compact_branch;
191                 if ((long)arch->gprs[insn.i_format.rs] > 0)
192                         epc = epc + 4 + (insn.i_format.simmediate << 2);
193                 else
194                         epc += 8;
195                 nextpc = epc;
196                 break;
197
198                 /* And now the FPA/cp1 branch instructions. */
199         case cop1_op:
200                 kvm_err("%s: unsupported cop1_op\n", __func__);
201                 return -EINVAL;
202
203 #ifdef CONFIG_CPU_MIPSR6
204         /* R6 added the following compact branches with forbidden slots */
205         case blezl_op:  /* POP26 */
206         case bgtzl_op:  /* POP27 */
207                 /* only rt == 0 isn't compact branch */
208                 if (insn.i_format.rt != 0)
209                         goto compact_branch;
210                 return -EINVAL;
211         case pop10_op:
212         case pop30_op:
213                 /* only rs == rt == 0 is reserved, rest are compact branches */
214                 if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
215                         goto compact_branch;
216                 return -EINVAL;
217         case pop66_op:
218         case pop76_op:
219                 /* only rs == 0 isn't compact branch */
220                 if (insn.i_format.rs != 0)
221                         goto compact_branch;
222                 return -EINVAL;
223 compact_branch:
224                 /*
225                  * If we've hit an exception on the forbidden slot, then
226                  * the branch must not have been taken.
227                  */
228                 epc += 8;
229                 nextpc = epc;
230                 break;
231 #else
232 compact_branch:
233                 /* Fall through - Compact branches not supported before R6 */
234 #endif
235         default:
236                 return -EINVAL;
237         }
238
239         *out = nextpc;
240         return 0;
241 }
242
243 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
244 {
245         int err;
246
247         if (cause & CAUSEF_BD) {
248                 err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
249                                              &vcpu->arch.pc);
250                 if (err)
251                         return EMULATE_FAIL;
252         } else {
253                 vcpu->arch.pc += 4;
254         }
255
256         kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
257
258         return EMULATE_DONE;
259 }
260
261 /**
262  * kvm_get_badinstr() - Get bad instruction encoding.
263  * @opc:        Guest pointer to faulting instruction.
264  * @vcpu:       KVM VCPU information.
265  *
266  * Gets the instruction encoding of the faulting instruction, using the saved
267  * BadInstr register value if it exists, otherwise falling back to reading guest
268  * memory at @opc.
269  *
270  * Returns:     The instruction encoding of the faulting instruction.
271  */
272 int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
273 {
274         if (cpu_has_badinstr) {
275                 *out = vcpu->arch.host_cp0_badinstr;
276                 return 0;
277         } else {
278                 return kvm_get_inst(opc, vcpu, out);
279         }
280 }
281
282 /**
283  * kvm_get_badinstrp() - Get bad prior instruction encoding.
284  * @opc:        Guest pointer to prior faulting instruction.
285  * @vcpu:       KVM VCPU information.
286  *
287  * Gets the instruction encoding of the prior faulting instruction (the branch
288  * containing the delay slot which faulted), using the saved BadInstrP register
289  * value if it exists, otherwise falling back to reading guest memory at @opc.
290  *
291  * Returns:     The instruction encoding of the prior faulting instruction.
292  */
293 int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
294 {
295         if (cpu_has_badinstrp) {
296                 *out = vcpu->arch.host_cp0_badinstrp;
297                 return 0;
298         } else {
299                 return kvm_get_inst(opc, vcpu, out);
300         }
301 }
302
303 /**
304  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
305  * @vcpu:       Virtual CPU.
306  *
307  * Returns:     1 if the CP0_Count timer is disabled by either the guest
308  *              CP0_Cause.DC bit or the count_ctl.DC bit.
309  *              0 otherwise (in which case CP0_Count timer is running).
310  */
311 int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
312 {
313         struct mips_coproc *cop0 = vcpu->arch.cop0;
314
315         return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
316                 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
317 }
318
319 /**
320  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
321  *
322  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
323  *
324  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
325  */
326 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
327 {
328         s64 now_ns, periods;
329         u64 delta;
330
331         now_ns = ktime_to_ns(now);
332         delta = now_ns + vcpu->arch.count_dyn_bias;
333
334         if (delta >= vcpu->arch.count_period) {
335                 /* If delta is out of safe range the bias needs adjusting */
336                 periods = div64_s64(now_ns, vcpu->arch.count_period);
337                 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
338                 /* Recalculate delta with new bias */
339                 delta = now_ns + vcpu->arch.count_dyn_bias;
340         }
341
342         /*
343          * We've ensured that:
344          *   delta < count_period
345          *
346          * Therefore the intermediate delta*count_hz will never overflow since
347          * at the boundary condition:
348          *   delta = count_period
349          *   delta = NSEC_PER_SEC * 2^32 / count_hz
350          *   delta * count_hz = NSEC_PER_SEC * 2^32
351          */
352         return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
353 }
354
355 /**
356  * kvm_mips_count_time() - Get effective current time.
357  * @vcpu:       Virtual CPU.
358  *
359  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
360  * except when the master disable bit is set in count_ctl, in which case it is
361  * count_resume, i.e. the time that the count was disabled.
362  *
363  * Returns:     Effective monotonic ktime for CP0_Count.
364  */
365 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
366 {
367         if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
368                 return vcpu->arch.count_resume;
369
370         return ktime_get();
371 }
372
373 /**
374  * kvm_mips_read_count_running() - Read the current count value as if running.
375  * @vcpu:       Virtual CPU.
376  * @now:        Kernel time to read CP0_Count at.
377  *
378  * Returns the current guest CP0_Count register at time @now and handles if the
379  * timer interrupt is pending and hasn't been handled yet.
380  *
381  * Returns:     The current value of the guest CP0_Count register.
382  */
383 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
384 {
385         struct mips_coproc *cop0 = vcpu->arch.cop0;
386         ktime_t expires, threshold;
387         u32 count, compare;
388         int running;
389
390         /* Calculate the biased and scaled guest CP0_Count */
391         count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
392         compare = kvm_read_c0_guest_compare(cop0);
393
394         /*
395          * Find whether CP0_Count has reached the closest timer interrupt. If
396          * not, we shouldn't inject it.
397          */
398         if ((s32)(count - compare) < 0)
399                 return count;
400
401         /*
402          * The CP0_Count we're going to return has already reached the closest
403          * timer interrupt. Quickly check if it really is a new interrupt by
404          * looking at whether the interval until the hrtimer expiry time is
405          * less than 1/4 of the timer period.
406          */
407         expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
408         threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
409         if (ktime_before(expires, threshold)) {
410                 /*
411                  * Cancel it while we handle it so there's no chance of
412                  * interference with the timeout handler.
413                  */
414                 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
415
416                 /* Nothing should be waiting on the timeout */
417                 kvm_mips_callbacks->queue_timer_int(vcpu);
418
419                 /*
420                  * Restart the timer if it was running based on the expiry time
421                  * we read, so that we don't push it back 2 periods.
422                  */
423                 if (running) {
424                         expires = ktime_add_ns(expires,
425                                                vcpu->arch.count_period);
426                         hrtimer_start(&vcpu->arch.comparecount_timer, expires,
427                                       HRTIMER_MODE_ABS);
428                 }
429         }
430
431         return count;
432 }
433
434 /**
435  * kvm_mips_read_count() - Read the current count value.
436  * @vcpu:       Virtual CPU.
437  *
438  * Read the current guest CP0_Count value, taking into account whether the timer
439  * is stopped.
440  *
441  * Returns:     The current guest CP0_Count value.
442  */
443 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
444 {
445         struct mips_coproc *cop0 = vcpu->arch.cop0;
446
447         /* If count disabled just read static copy of count */
448         if (kvm_mips_count_disabled(vcpu))
449                 return kvm_read_c0_guest_count(cop0);
450
451         return kvm_mips_read_count_running(vcpu, ktime_get());
452 }
453
454 /**
455  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
456  * @vcpu:       Virtual CPU.
457  * @count:      Output pointer for CP0_Count value at point of freeze.
458  *
459  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
460  * at the point it was frozen. It is guaranteed that any pending interrupts at
461  * the point it was frozen are handled, and none after that point.
462  *
463  * This is useful where the time/CP0_Count is needed in the calculation of the
464  * new parameters.
465  *
466  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
467  *
468  * Returns:     The ktime at the point of freeze.
469  */
470 ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
471 {
472         ktime_t now;
473
474         /* stop hrtimer before finding time */
475         hrtimer_cancel(&vcpu->arch.comparecount_timer);
476         now = ktime_get();
477
478         /* find count at this point and handle pending hrtimer */
479         *count = kvm_mips_read_count_running(vcpu, now);
480
481         return now;
482 }
483
484 /**
485  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
486  * @vcpu:       Virtual CPU.
487  * @now:        ktime at point of resume.
488  * @count:      CP0_Count at point of resume.
489  *
490  * Resumes the timer and updates the timer expiry based on @now and @count.
491  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
492  * parameters need to be changed.
493  *
494  * It is guaranteed that a timer interrupt immediately after resume will be
495  * handled, but not if CP_Compare is exactly at @count. That case is already
496  * handled by kvm_mips_freeze_timer().
497  *
498  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
499  */
500 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
501                                     ktime_t now, u32 count)
502 {
503         struct mips_coproc *cop0 = vcpu->arch.cop0;
504         u32 compare;
505         u64 delta;
506         ktime_t expire;
507
508         /* Calculate timeout (wrap 0 to 2^32) */
509         compare = kvm_read_c0_guest_compare(cop0);
510         delta = (u64)(u32)(compare - count - 1) + 1;
511         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
512         expire = ktime_add_ns(now, delta);
513
514         /* Update hrtimer to use new timeout */
515         hrtimer_cancel(&vcpu->arch.comparecount_timer);
516         hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
517 }
518
519 /**
520  * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
521  * @vcpu:       Virtual CPU.
522  * @before:     Time before Count was saved, lower bound of drift calculation.
523  * @count:      CP0_Count at point of restore.
524  * @min_drift:  Minimum amount of drift permitted before correction.
525  *              Must be <= 0.
526  *
527  * Restores the timer from a particular @count, accounting for drift. This can
528  * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
529  * to be used for a period of time, but the exact ktime corresponding to the
530  * final Count that must be restored is not known.
531  *
532  * It is gauranteed that a timer interrupt immediately after restore will be
533  * handled, but not if CP0_Compare is exactly at @count. That case should
534  * already be handled when the hardware timer state is saved.
535  *
536  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
537  * stopped).
538  *
539  * Returns:     Amount of correction to count_bias due to drift.
540  */
541 int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
542                              u32 count, int min_drift)
543 {
544         ktime_t now, count_time;
545         u32 now_count, before_count;
546         u64 delta;
547         int drift, ret = 0;
548
549         /* Calculate expected count at before */
550         before_count = vcpu->arch.count_bias +
551                         kvm_mips_ktime_to_count(vcpu, before);
552
553         /*
554          * Detect significantly negative drift, where count is lower than
555          * expected. Some negative drift is expected when hardware counter is
556          * set after kvm_mips_freeze_timer(), and it is harmless to allow the
557          * time to jump forwards a little, within reason. If the drift is too
558          * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
559          */
560         drift = count - before_count;
561         if (drift < min_drift) {
562                 count_time = before;
563                 vcpu->arch.count_bias += drift;
564                 ret = drift;
565                 goto resume;
566         }
567
568         /* Calculate expected count right now */
569         now = ktime_get();
570         now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
571
572         /*
573          * Detect positive drift, where count is higher than expected, and
574          * adjust the bias to avoid guest time going backwards.
575          */
576         drift = count - now_count;
577         if (drift > 0) {
578                 count_time = now;
579                 vcpu->arch.count_bias += drift;
580                 ret = drift;
581                 goto resume;
582         }
583
584         /* Subtract nanosecond delta to find ktime when count was read */
585         delta = (u64)(u32)(now_count - count);
586         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
587         count_time = ktime_sub_ns(now, delta);
588
589 resume:
590         /* Resume using the calculated ktime */
591         kvm_mips_resume_hrtimer(vcpu, count_time, count);
592         return ret;
593 }
594
595 /**
596  * kvm_mips_write_count() - Modify the count and update timer.
597  * @vcpu:       Virtual CPU.
598  * @count:      Guest CP0_Count value to set.
599  *
600  * Sets the CP0_Count value and updates the timer accordingly.
601  */
602 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
603 {
604         struct mips_coproc *cop0 = vcpu->arch.cop0;
605         ktime_t now;
606
607         /* Calculate bias */
608         now = kvm_mips_count_time(vcpu);
609         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
610
611         if (kvm_mips_count_disabled(vcpu))
612                 /* The timer's disabled, adjust the static count */
613                 kvm_write_c0_guest_count(cop0, count);
614         else
615                 /* Update timeout */
616                 kvm_mips_resume_hrtimer(vcpu, now, count);
617 }
618
619 /**
620  * kvm_mips_init_count() - Initialise timer.
621  * @vcpu:       Virtual CPU.
622  * @count_hz:   Frequency of timer.
623  *
624  * Initialise the timer to the specified frequency, zero it, and set it going if
625  * it's enabled.
626  */
627 void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
628 {
629         vcpu->arch.count_hz = count_hz;
630         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
631         vcpu->arch.count_dyn_bias = 0;
632
633         /* Starting at 0 */
634         kvm_mips_write_count(vcpu, 0);
635 }
636
637 /**
638  * kvm_mips_set_count_hz() - Update the frequency of the timer.
639  * @vcpu:       Virtual CPU.
640  * @count_hz:   Frequency of CP0_Count timer in Hz.
641  *
642  * Change the frequency of the CP0_Count timer. This is done atomically so that
643  * CP0_Count is continuous and no timer interrupt is lost.
644  *
645  * Returns:     -EINVAL if @count_hz is out of range.
646  *              0 on success.
647  */
648 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
649 {
650         struct mips_coproc *cop0 = vcpu->arch.cop0;
651         int dc;
652         ktime_t now;
653         u32 count;
654
655         /* ensure the frequency is in a sensible range... */
656         if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
657                 return -EINVAL;
658         /* ... and has actually changed */
659         if (vcpu->arch.count_hz == count_hz)
660                 return 0;
661
662         /* Safely freeze timer so we can keep it continuous */
663         dc = kvm_mips_count_disabled(vcpu);
664         if (dc) {
665                 now = kvm_mips_count_time(vcpu);
666                 count = kvm_read_c0_guest_count(cop0);
667         } else {
668                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
669         }
670
671         /* Update the frequency */
672         vcpu->arch.count_hz = count_hz;
673         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
674         vcpu->arch.count_dyn_bias = 0;
675
676         /* Calculate adjusted bias so dynamic count is unchanged */
677         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
678
679         /* Update and resume hrtimer */
680         if (!dc)
681                 kvm_mips_resume_hrtimer(vcpu, now, count);
682         return 0;
683 }
684
685 /**
686  * kvm_mips_write_compare() - Modify compare and update timer.
687  * @vcpu:       Virtual CPU.
688  * @compare:    New CP0_Compare value.
689  * @ack:        Whether to acknowledge timer interrupt.
690  *
691  * Update CP0_Compare to a new value and update the timeout.
692  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
693  * any pending timer interrupt is preserved.
694  */
695 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
696 {
697         struct mips_coproc *cop0 = vcpu->arch.cop0;
698         int dc;
699         u32 old_compare = kvm_read_c0_guest_compare(cop0);
700         s32 delta = compare - old_compare;
701         u32 cause;
702         ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
703         u32 count;
704
705         /* if unchanged, must just be an ack */
706         if (old_compare == compare) {
707                 if (!ack)
708                         return;
709                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
710                 kvm_write_c0_guest_compare(cop0, compare);
711                 return;
712         }
713
714         /*
715          * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
716          * too to prevent guest CP0_Count hitting guest CP0_Compare.
717          *
718          * The new GTOffset corresponds to the new value of CP0_Compare, and is
719          * set prior to it being written into the guest context. We disable
720          * preemption until the new value is written to prevent restore of a
721          * GTOffset corresponding to the old CP0_Compare value.
722          */
723         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) {
724                 preempt_disable();
725                 write_c0_gtoffset(compare - read_c0_count());
726                 back_to_back_c0_hazard();
727         }
728
729         /* freeze_hrtimer() takes care of timer interrupts <= count */
730         dc = kvm_mips_count_disabled(vcpu);
731         if (!dc)
732                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
733
734         if (ack)
735                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
736         else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ))
737                 /*
738                  * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
739                  * preserve guest CP0_Cause.TI if we don't want to ack it.
740                  */
741                 cause = kvm_read_c0_guest_cause(cop0);
742
743         kvm_write_c0_guest_compare(cop0, compare);
744
745         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
746                 if (delta > 0)
747                         preempt_enable();
748
749                 back_to_back_c0_hazard();
750
751                 if (!ack && cause & CAUSEF_TI)
752                         kvm_write_c0_guest_cause(cop0, cause);
753         }
754
755         /* resume_hrtimer() takes care of timer interrupts > count */
756         if (!dc)
757                 kvm_mips_resume_hrtimer(vcpu, now, count);
758
759         /*
760          * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
761          * until after the new CP0_Compare is written, otherwise new guest
762          * CP0_Count could hit new guest CP0_Compare.
763          */
764         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0)
765                 write_c0_gtoffset(compare - read_c0_count());
766 }
767
768 /**
769  * kvm_mips_count_disable() - Disable count.
770  * @vcpu:       Virtual CPU.
771  *
772  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
773  * time will be handled but not after.
774  *
775  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
776  * count_ctl.DC has been set (count disabled).
777  *
778  * Returns:     The time that the timer was stopped.
779  */
780 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
781 {
782         struct mips_coproc *cop0 = vcpu->arch.cop0;
783         u32 count;
784         ktime_t now;
785
786         /* Stop hrtimer */
787         hrtimer_cancel(&vcpu->arch.comparecount_timer);
788
789         /* Set the static count from the dynamic count, handling pending TI */
790         now = ktime_get();
791         count = kvm_mips_read_count_running(vcpu, now);
792         kvm_write_c0_guest_count(cop0, count);
793
794         return now;
795 }
796
797 /**
798  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
799  * @vcpu:       Virtual CPU.
800  *
801  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
802  * before the final stop time will be handled if the timer isn't disabled by
803  * count_ctl.DC, but not after.
804  *
805  * Assumes CP0_Cause.DC is clear (count enabled).
806  */
807 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
808 {
809         struct mips_coproc *cop0 = vcpu->arch.cop0;
810
811         kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
812         if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
813                 kvm_mips_count_disable(vcpu);
814 }
815
816 /**
817  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
818  * @vcpu:       Virtual CPU.
819  *
820  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
821  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
822  * potentially before even returning, so the caller should be careful with
823  * ordering of CP0_Cause modifications so as not to lose it.
824  *
825  * Assumes CP0_Cause.DC is set (count disabled).
826  */
827 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
828 {
829         struct mips_coproc *cop0 = vcpu->arch.cop0;
830         u32 count;
831
832         kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
833
834         /*
835          * Set the dynamic count to match the static count.
836          * This starts the hrtimer if count_ctl.DC allows it.
837          * Otherwise it conveniently updates the biases.
838          */
839         count = kvm_read_c0_guest_count(cop0);
840         kvm_mips_write_count(vcpu, count);
841 }
842
843 /**
844  * kvm_mips_set_count_ctl() - Update the count control KVM register.
845  * @vcpu:       Virtual CPU.
846  * @count_ctl:  Count control register new value.
847  *
848  * Set the count control KVM register. The timer is updated accordingly.
849  *
850  * Returns:     -EINVAL if reserved bits are set.
851  *              0 on success.
852  */
853 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
854 {
855         struct mips_coproc *cop0 = vcpu->arch.cop0;
856         s64 changed = count_ctl ^ vcpu->arch.count_ctl;
857         s64 delta;
858         ktime_t expire, now;
859         u32 count, compare;
860
861         /* Only allow defined bits to be changed */
862         if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
863                 return -EINVAL;
864
865         /* Apply new value */
866         vcpu->arch.count_ctl = count_ctl;
867
868         /* Master CP0_Count disable */
869         if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
870                 /* Is CP0_Cause.DC already disabling CP0_Count? */
871                 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
872                         if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
873                                 /* Just record the current time */
874                                 vcpu->arch.count_resume = ktime_get();
875                 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
876                         /* disable timer and record current time */
877                         vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
878                 } else {
879                         /*
880                          * Calculate timeout relative to static count at resume
881                          * time (wrap 0 to 2^32).
882                          */
883                         count = kvm_read_c0_guest_count(cop0);
884                         compare = kvm_read_c0_guest_compare(cop0);
885                         delta = (u64)(u32)(compare - count - 1) + 1;
886                         delta = div_u64(delta * NSEC_PER_SEC,
887                                         vcpu->arch.count_hz);
888                         expire = ktime_add_ns(vcpu->arch.count_resume, delta);
889
890                         /* Handle pending interrupt */
891                         now = ktime_get();
892                         if (ktime_compare(now, expire) >= 0)
893                                 /* Nothing should be waiting on the timeout */
894                                 kvm_mips_callbacks->queue_timer_int(vcpu);
895
896                         /* Resume hrtimer without changing bias */
897                         count = kvm_mips_read_count_running(vcpu, now);
898                         kvm_mips_resume_hrtimer(vcpu, now, count);
899                 }
900         }
901
902         return 0;
903 }
904
905 /**
906  * kvm_mips_set_count_resume() - Update the count resume KVM register.
907  * @vcpu:               Virtual CPU.
908  * @count_resume:       Count resume register new value.
909  *
910  * Set the count resume KVM register.
911  *
912  * Returns:     -EINVAL if out of valid range (0..now).
913  *              0 on success.
914  */
915 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
916 {
917         /*
918          * It doesn't make sense for the resume time to be in the future, as it
919          * would be possible for the next interrupt to be more than a full
920          * period in the future.
921          */
922         if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
923                 return -EINVAL;
924
925         vcpu->arch.count_resume = ns_to_ktime(count_resume);
926         return 0;
927 }
928
929 /**
930  * kvm_mips_count_timeout() - Push timer forward on timeout.
931  * @vcpu:       Virtual CPU.
932  *
933  * Handle an hrtimer event by push the hrtimer forward a period.
934  *
935  * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
936  */
937 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
938 {
939         /* Add the Count period to the current expiry time */
940         hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
941                                vcpu->arch.count_period);
942         return HRTIMER_RESTART;
943 }
944
945 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
946 {
947         struct mips_coproc *cop0 = vcpu->arch.cop0;
948         enum emulation_result er = EMULATE_DONE;
949
950         if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
951                 kvm_clear_c0_guest_status(cop0, ST0_ERL);
952                 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
953         } else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
954                 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
955                           kvm_read_c0_guest_epc(cop0));
956                 kvm_clear_c0_guest_status(cop0, ST0_EXL);
957                 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
958
959         } else {
960                 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
961                         vcpu->arch.pc);
962                 er = EMULATE_FAIL;
963         }
964
965         return er;
966 }
967
968 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
969 {
970         kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
971                   vcpu->arch.pending_exceptions);
972
973         ++vcpu->stat.wait_exits;
974         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
975         if (!vcpu->arch.pending_exceptions) {
976                 kvm_vz_lose_htimer(vcpu);
977                 vcpu->arch.wait = 1;
978                 kvm_vcpu_block(vcpu);
979
980                 /*
981                  * We we are runnable, then definitely go off to user space to
982                  * check if any I/O interrupts are pending.
983                  */
984                 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
985                         kvm_clear_request(KVM_REQ_UNHALT, vcpu);
986                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
987                 }
988         }
989
990         return EMULATE_DONE;
991 }
992
993 static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu,
994                                     unsigned long entryhi)
995 {
996         struct mips_coproc *cop0 = vcpu->arch.cop0;
997         struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
998         int cpu, i;
999         u32 nasid = entryhi & KVM_ENTRYHI_ASID;
1000
1001         if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) {
1002                 trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) &
1003                                       KVM_ENTRYHI_ASID, nasid);
1004
1005                 /*
1006                  * Flush entries from the GVA page tables.
1007                  * Guest user page table will get flushed lazily on re-entry to
1008                  * guest user if the guest ASID actually changes.
1009                  */
1010                 kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN);
1011
1012                 /*
1013                  * Regenerate/invalidate kernel MMU context.
1014                  * The user MMU context will be regenerated lazily on re-entry
1015                  * to guest user if the guest ASID actually changes.
1016                  */
1017                 preempt_disable();
1018                 cpu = smp_processor_id();
1019                 get_new_mmu_context(kern_mm);
1020                 for_each_possible_cpu(i)
1021                         if (i != cpu)
1022                                 set_cpu_context(i, kern_mm, 0);
1023                 preempt_enable();
1024         }
1025         kvm_write_c0_guest_entryhi(cop0, entryhi);
1026 }
1027
1028 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
1029 {
1030         struct mips_coproc *cop0 = vcpu->arch.cop0;
1031         struct kvm_mips_tlb *tlb;
1032         unsigned long pc = vcpu->arch.pc;
1033         int index;
1034
1035         index = kvm_read_c0_guest_index(cop0);
1036         if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1037                 /* UNDEFINED */
1038                 kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index);
1039                 index &= KVM_MIPS_GUEST_TLB_SIZE - 1;
1040         }
1041
1042         tlb = &vcpu->arch.guest_tlb[index];
1043         kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask);
1044         kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]);
1045         kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]);
1046         kvm_mips_change_entryhi(vcpu, tlb->tlb_hi);
1047
1048         return EMULATE_DONE;
1049 }
1050
1051 /**
1052  * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
1053  * @vcpu:       VCPU with changed mappings.
1054  * @tlb:        TLB entry being removed.
1055  *
1056  * This is called to indicate a single change in guest MMU mappings, so that we
1057  * can arrange TLB flushes on this and other CPUs.
1058  */
1059 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
1060                                           struct kvm_mips_tlb *tlb)
1061 {
1062         struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1063         struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
1064         int cpu, i;
1065         bool user;
1066
1067         /* No need to flush for entries which are already invalid */
1068         if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
1069                 return;
1070         /* Don't touch host kernel page tables or TLB mappings */
1071         if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
1072                 return;
1073         /* User address space doesn't need flushing for KSeg2/3 changes */
1074         user = tlb->tlb_hi < KVM_GUEST_KSEG0;
1075
1076         preempt_disable();
1077
1078         /* Invalidate page table entries */
1079         kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
1080
1081         /*
1082          * Probe the shadow host TLB for the entry being overwritten, if one
1083          * matches, invalidate it
1084          */
1085         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
1086
1087         /* Invalidate the whole ASID on other CPUs */
1088         cpu = smp_processor_id();
1089         for_each_possible_cpu(i) {
1090                 if (i == cpu)
1091                         continue;
1092                 if (user)
1093                         set_cpu_context(i, user_mm, 0);
1094                 set_cpu_context(i, kern_mm, 0);
1095         }
1096
1097         preempt_enable();
1098 }
1099
1100 /* Write Guest TLB Entry @ Index */
1101 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
1102 {
1103         struct mips_coproc *cop0 = vcpu->arch.cop0;
1104         int index = kvm_read_c0_guest_index(cop0);
1105         struct kvm_mips_tlb *tlb = NULL;
1106         unsigned long pc = vcpu->arch.pc;
1107
1108         if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1109                 kvm_debug("%s: illegal index: %d\n", __func__, index);
1110                 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1111                           pc, index, kvm_read_c0_guest_entryhi(cop0),
1112                           kvm_read_c0_guest_entrylo0(cop0),
1113                           kvm_read_c0_guest_entrylo1(cop0),
1114                           kvm_read_c0_guest_pagemask(cop0));
1115                 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
1116         }
1117
1118         tlb = &vcpu->arch.guest_tlb[index];
1119
1120         kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1121
1122         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1123         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1124         tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1125         tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1126
1127         kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1128                   pc, index, kvm_read_c0_guest_entryhi(cop0),
1129                   kvm_read_c0_guest_entrylo0(cop0),
1130                   kvm_read_c0_guest_entrylo1(cop0),
1131                   kvm_read_c0_guest_pagemask(cop0));
1132
1133         return EMULATE_DONE;
1134 }
1135
1136 /* Write Guest TLB Entry @ Random Index */
1137 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
1138 {
1139         struct mips_coproc *cop0 = vcpu->arch.cop0;
1140         struct kvm_mips_tlb *tlb = NULL;
1141         unsigned long pc = vcpu->arch.pc;
1142         int index;
1143
1144         get_random_bytes(&index, sizeof(index));
1145         index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
1146
1147         tlb = &vcpu->arch.guest_tlb[index];
1148
1149         kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1150
1151         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1152         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1153         tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1154         tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1155
1156         kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
1157                   pc, index, kvm_read_c0_guest_entryhi(cop0),
1158                   kvm_read_c0_guest_entrylo0(cop0),
1159                   kvm_read_c0_guest_entrylo1(cop0));
1160
1161         return EMULATE_DONE;
1162 }
1163
1164 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
1165 {
1166         struct mips_coproc *cop0 = vcpu->arch.cop0;
1167         long entryhi = kvm_read_c0_guest_entryhi(cop0);
1168         unsigned long pc = vcpu->arch.pc;
1169         int index = -1;
1170
1171         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1172
1173         kvm_write_c0_guest_index(cop0, index);
1174
1175         kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
1176                   index);
1177
1178         return EMULATE_DONE;
1179 }
1180
1181 /**
1182  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1183  * @vcpu:       Virtual CPU.
1184  *
1185  * Finds the mask of bits which are writable in the guest's Config1 CP0
1186  * register, by userland (currently read-only to the guest).
1187  */
1188 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
1189 {
1190         unsigned int mask = 0;
1191
1192         /* Permit FPU to be present if FPU is supported */
1193         if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
1194                 mask |= MIPS_CONF1_FP;
1195
1196         return mask;
1197 }
1198
1199 /**
1200  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1201  * @vcpu:       Virtual CPU.
1202  *
1203  * Finds the mask of bits which are writable in the guest's Config3 CP0
1204  * register, by userland (currently read-only to the guest).
1205  */
1206 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
1207 {
1208         /* Config4 and ULRI are optional */
1209         unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1210
1211         /* Permit MSA to be present if MSA is supported */
1212         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1213                 mask |= MIPS_CONF3_MSA;
1214
1215         return mask;
1216 }
1217
1218 /**
1219  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1220  * @vcpu:       Virtual CPU.
1221  *
1222  * Finds the mask of bits which are writable in the guest's Config4 CP0
1223  * register, by userland (currently read-only to the guest).
1224  */
1225 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1226 {
1227         /* Config5 is optional */
1228         unsigned int mask = MIPS_CONF_M;
1229
1230         /* KScrExist */
1231         mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
1232
1233         return mask;
1234 }
1235
1236 /**
1237  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1238  * @vcpu:       Virtual CPU.
1239  *
1240  * Finds the mask of bits which are writable in the guest's Config5 CP0
1241  * register, by the guest itself.
1242  */
1243 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1244 {
1245         unsigned int mask = 0;
1246
1247         /* Permit MSAEn changes if MSA supported and enabled */
1248         if (kvm_mips_guest_has_msa(&vcpu->arch))
1249                 mask |= MIPS_CONF5_MSAEN;
1250
1251         /*
1252          * Permit guest FPU mode changes if FPU is enabled and the relevant
1253          * feature exists according to FIR register.
1254          */
1255         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1256                 if (cpu_has_fre)
1257                         mask |= MIPS_CONF5_FRE;
1258                 /* We don't support UFR or UFE */
1259         }
1260
1261         return mask;
1262 }
1263
1264 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1265                                            u32 *opc, u32 cause,
1266                                            struct kvm_run *run,
1267                                            struct kvm_vcpu *vcpu)
1268 {
1269         struct mips_coproc *cop0 = vcpu->arch.cop0;
1270         enum emulation_result er = EMULATE_DONE;
1271         u32 rt, rd, sel;
1272         unsigned long curr_pc;
1273
1274         /*
1275          * Update PC and hold onto current PC in case there is
1276          * an error and we want to rollback the PC
1277          */
1278         curr_pc = vcpu->arch.pc;
1279         er = update_pc(vcpu, cause);
1280         if (er == EMULATE_FAIL)
1281                 return er;
1282
1283         if (inst.co_format.co) {
1284                 switch (inst.co_format.func) {
1285                 case tlbr_op:   /*  Read indexed TLB entry  */
1286                         er = kvm_mips_emul_tlbr(vcpu);
1287                         break;
1288                 case tlbwi_op:  /*  Write indexed  */
1289                         er = kvm_mips_emul_tlbwi(vcpu);
1290                         break;
1291                 case tlbwr_op:  /*  Write random  */
1292                         er = kvm_mips_emul_tlbwr(vcpu);
1293                         break;
1294                 case tlbp_op:   /* TLB Probe */
1295                         er = kvm_mips_emul_tlbp(vcpu);
1296                         break;
1297                 case rfe_op:
1298                         kvm_err("!!!COP0_RFE!!!\n");
1299                         break;
1300                 case eret_op:
1301                         er = kvm_mips_emul_eret(vcpu);
1302                         goto dont_update_pc;
1303                 case wait_op:
1304                         er = kvm_mips_emul_wait(vcpu);
1305                         break;
1306                 case hypcall_op:
1307                         er = kvm_mips_emul_hypcall(vcpu, inst);
1308                         break;
1309                 }
1310         } else {
1311                 rt = inst.c0r_format.rt;
1312                 rd = inst.c0r_format.rd;
1313                 sel = inst.c0r_format.sel;
1314
1315                 switch (inst.c0r_format.rs) {
1316                 case mfc_op:
1317 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1318                         cop0->stat[rd][sel]++;
1319 #endif
1320                         /* Get reg */
1321                         if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1322                                 vcpu->arch.gprs[rt] =
1323                                     (s32)kvm_mips_read_count(vcpu);
1324                         } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1325                                 vcpu->arch.gprs[rt] = 0x0;
1326 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1327                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1328 #endif
1329                         } else {
1330                                 vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1331
1332 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1333                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1334 #endif
1335                         }
1336
1337                         trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1338                                       KVM_TRACE_COP0(rd, sel),
1339                                       vcpu->arch.gprs[rt]);
1340                         break;
1341
1342                 case dmfc_op:
1343                         vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1344
1345                         trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1346                                       KVM_TRACE_COP0(rd, sel),
1347                                       vcpu->arch.gprs[rt]);
1348                         break;
1349
1350                 case mtc_op:
1351 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1352                         cop0->stat[rd][sel]++;
1353 #endif
1354                         trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1355                                       KVM_TRACE_COP0(rd, sel),
1356                                       vcpu->arch.gprs[rt]);
1357
1358                         if ((rd == MIPS_CP0_TLB_INDEX)
1359                             && (vcpu->arch.gprs[rt] >=
1360                                 KVM_MIPS_GUEST_TLB_SIZE)) {
1361                                 kvm_err("Invalid TLB Index: %ld",
1362                                         vcpu->arch.gprs[rt]);
1363                                 er = EMULATE_FAIL;
1364                                 break;
1365                         }
1366                         if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1367                                 /*
1368                                  * Preserve core number, and keep the exception
1369                                  * base in guest KSeg0.
1370                                  */
1371                                 kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
1372                                                           vcpu->arch.gprs[rt]);
1373                         } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1374                                 kvm_mips_change_entryhi(vcpu,
1375                                                         vcpu->arch.gprs[rt]);
1376                         }
1377                         /* Are we writing to COUNT */
1378                         else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1379                                 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1380                                 goto done;
1381                         } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1382                                 /* If we are writing to COMPARE */
1383                                 /* Clear pending timer interrupt, if any */
1384                                 kvm_mips_write_compare(vcpu,
1385                                                        vcpu->arch.gprs[rt],
1386                                                        true);
1387                         } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1388                                 unsigned int old_val, val, change;
1389
1390                                 old_val = kvm_read_c0_guest_status(cop0);
1391                                 val = vcpu->arch.gprs[rt];
1392                                 change = val ^ old_val;
1393
1394                                 /* Make sure that the NMI bit is never set */
1395                                 val &= ~ST0_NMI;
1396
1397                                 /*
1398                                  * Don't allow CU1 or FR to be set unless FPU
1399                                  * capability enabled and exists in guest
1400                                  * configuration.
1401                                  */
1402                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1403                                         val &= ~(ST0_CU1 | ST0_FR);
1404
1405                                 /*
1406                                  * Also don't allow FR to be set if host doesn't
1407                                  * support it.
1408                                  */
1409                                 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1410                                         val &= ~ST0_FR;
1411
1412
1413                                 /* Handle changes in FPU mode */
1414                                 preempt_disable();
1415
1416                                 /*
1417                                  * FPU and Vector register state is made
1418                                  * UNPREDICTABLE by a change of FR, so don't
1419                                  * even bother saving it.
1420                                  */
1421                                 if (change & ST0_FR)
1422                                         kvm_drop_fpu(vcpu);
1423
1424                                 /*
1425                                  * If MSA state is already live, it is undefined
1426                                  * how it interacts with FR=0 FPU state, and we
1427                                  * don't want to hit reserved instruction
1428                                  * exceptions trying to save the MSA state later
1429                                  * when CU=1 && FR=1, so play it safe and save
1430                                  * it first.
1431                                  */
1432                                 if (change & ST0_CU1 && !(val & ST0_FR) &&
1433                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1434                                         kvm_lose_fpu(vcpu);
1435
1436                                 /*
1437                                  * Propagate CU1 (FPU enable) changes
1438                                  * immediately if the FPU context is already
1439                                  * loaded. When disabling we leave the context
1440                                  * loaded so it can be quickly enabled again in
1441                                  * the near future.
1442                                  */
1443                                 if (change & ST0_CU1 &&
1444                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1445                                         change_c0_status(ST0_CU1, val);
1446
1447                                 preempt_enable();
1448
1449                                 kvm_write_c0_guest_status(cop0, val);
1450
1451 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1452                                 /*
1453                                  * If FPU present, we need CU1/FR bits to take
1454                                  * effect fairly soon.
1455                                  */
1456                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1457                                         kvm_mips_trans_mtc0(inst, opc, vcpu);
1458 #endif
1459                         } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1460                                 unsigned int old_val, val, change, wrmask;
1461
1462                                 old_val = kvm_read_c0_guest_config5(cop0);
1463                                 val = vcpu->arch.gprs[rt];
1464
1465                                 /* Only a few bits are writable in Config5 */
1466                                 wrmask = kvm_mips_config5_wrmask(vcpu);
1467                                 change = (val ^ old_val) & wrmask;
1468                                 val = old_val ^ change;
1469
1470
1471                                 /* Handle changes in FPU/MSA modes */
1472                                 preempt_disable();
1473
1474                                 /*
1475                                  * Propagate FRE changes immediately if the FPU
1476                                  * context is already loaded.
1477                                  */
1478                                 if (change & MIPS_CONF5_FRE &&
1479                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1480                                         change_c0_config5(MIPS_CONF5_FRE, val);
1481
1482                                 /*
1483                                  * Propagate MSAEn changes immediately if the
1484                                  * MSA context is already loaded. When disabling
1485                                  * we leave the context loaded so it can be
1486                                  * quickly enabled again in the near future.
1487                                  */
1488                                 if (change & MIPS_CONF5_MSAEN &&
1489                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1490                                         change_c0_config5(MIPS_CONF5_MSAEN,
1491                                                           val);
1492
1493                                 preempt_enable();
1494
1495                                 kvm_write_c0_guest_config5(cop0, val);
1496                         } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1497                                 u32 old_cause, new_cause;
1498
1499                                 old_cause = kvm_read_c0_guest_cause(cop0);
1500                                 new_cause = vcpu->arch.gprs[rt];
1501                                 /* Update R/W bits */
1502                                 kvm_change_c0_guest_cause(cop0, 0x08800300,
1503                                                           new_cause);
1504                                 /* DC bit enabling/disabling timer? */
1505                                 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1506                                         if (new_cause & CAUSEF_DC)
1507                                                 kvm_mips_count_disable_cause(vcpu);
1508                                         else
1509                                                 kvm_mips_count_enable_cause(vcpu);
1510                                 }
1511                         } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1512                                 u32 mask = MIPS_HWRENA_CPUNUM |
1513                                            MIPS_HWRENA_SYNCISTEP |
1514                                            MIPS_HWRENA_CC |
1515                                            MIPS_HWRENA_CCRES;
1516
1517                                 if (kvm_read_c0_guest_config3(cop0) &
1518                                     MIPS_CONF3_ULRI)
1519                                         mask |= MIPS_HWRENA_ULR;
1520                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1521                         } else {
1522                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1523 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1524                                 kvm_mips_trans_mtc0(inst, opc, vcpu);
1525 #endif
1526                         }
1527                         break;
1528
1529                 case dmtc_op:
1530                         kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1531                                 vcpu->arch.pc, rt, rd, sel);
1532                         trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1533                                       KVM_TRACE_COP0(rd, sel),
1534                                       vcpu->arch.gprs[rt]);
1535                         er = EMULATE_FAIL;
1536                         break;
1537
1538                 case mfmc0_op:
1539 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1540                         cop0->stat[MIPS_CP0_STATUS][0]++;
1541 #endif
1542                         if (rt != 0)
1543                                 vcpu->arch.gprs[rt] =
1544                                     kvm_read_c0_guest_status(cop0);
1545                         /* EI */
1546                         if (inst.mfmc0_format.sc) {
1547                                 kvm_debug("[%#lx] mfmc0_op: EI\n",
1548                                           vcpu->arch.pc);
1549                                 kvm_set_c0_guest_status(cop0, ST0_IE);
1550                         } else {
1551                                 kvm_debug("[%#lx] mfmc0_op: DI\n",
1552                                           vcpu->arch.pc);
1553                                 kvm_clear_c0_guest_status(cop0, ST0_IE);
1554                         }
1555
1556                         break;
1557
1558                 case wrpgpr_op:
1559                         {
1560                                 u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1561                                 u32 pss =
1562                                     (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1563                                 /*
1564                                  * We don't support any shadow register sets, so
1565                                  * SRSCtl[PSS] == SRSCtl[CSS] = 0
1566                                  */
1567                                 if (css || pss) {
1568                                         er = EMULATE_FAIL;
1569                                         break;
1570                                 }
1571                                 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1572                                           vcpu->arch.gprs[rt]);
1573                                 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1574                         }
1575                         break;
1576                 default:
1577                         kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1578                                 vcpu->arch.pc, inst.c0r_format.rs);
1579                         er = EMULATE_FAIL;
1580                         break;
1581                 }
1582         }
1583
1584 done:
1585         /* Rollback PC only if emulation was unsuccessful */
1586         if (er == EMULATE_FAIL)
1587                 vcpu->arch.pc = curr_pc;
1588
1589 dont_update_pc:
1590         /*
1591          * This is for special instructions whose emulation
1592          * updates the PC, so do not overwrite the PC under
1593          * any circumstances
1594          */
1595
1596         return er;
1597 }
1598
1599 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1600                                              u32 cause,
1601                                              struct kvm_run *run,
1602                                              struct kvm_vcpu *vcpu)
1603 {
1604         enum emulation_result er;
1605         u32 rt;
1606         void *data = run->mmio.data;
1607         unsigned long curr_pc;
1608
1609         /*
1610          * Update PC and hold onto current PC in case there is
1611          * an error and we want to rollback the PC
1612          */
1613         curr_pc = vcpu->arch.pc;
1614         er = update_pc(vcpu, cause);
1615         if (er == EMULATE_FAIL)
1616                 return er;
1617
1618         rt = inst.i_format.rt;
1619
1620         run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1621                                                 vcpu->arch.host_cp0_badvaddr);
1622         if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1623                 goto out_fail;
1624
1625         switch (inst.i_format.opcode) {
1626 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1627         case sd_op:
1628                 run->mmio.len = 8;
1629                 *(u64 *)data = vcpu->arch.gprs[rt];
1630
1631                 kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1632                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1633                           vcpu->arch.gprs[rt], *(u64 *)data);
1634                 break;
1635 #endif
1636
1637         case sw_op:
1638                 run->mmio.len = 4;
1639                 *(u32 *)data = vcpu->arch.gprs[rt];
1640
1641                 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1642                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1643                           vcpu->arch.gprs[rt], *(u32 *)data);
1644                 break;
1645
1646         case sh_op:
1647                 run->mmio.len = 2;
1648                 *(u16 *)data = vcpu->arch.gprs[rt];
1649
1650                 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1651                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1652                           vcpu->arch.gprs[rt], *(u16 *)data);
1653                 break;
1654
1655         case sb_op:
1656                 run->mmio.len = 1;
1657                 *(u8 *)data = vcpu->arch.gprs[rt];
1658
1659                 kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1660                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1661                           vcpu->arch.gprs[rt], *(u8 *)data);
1662                 break;
1663
1664         default:
1665                 kvm_err("Store not yet supported (inst=0x%08x)\n",
1666                         inst.word);
1667                 goto out_fail;
1668         }
1669
1670         run->mmio.is_write = 1;
1671         vcpu->mmio_needed = 1;
1672         vcpu->mmio_is_write = 1;
1673         return EMULATE_DO_MMIO;
1674
1675 out_fail:
1676         /* Rollback PC if emulation was unsuccessful */
1677         vcpu->arch.pc = curr_pc;
1678         return EMULATE_FAIL;
1679 }
1680
1681 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1682                                             u32 cause, struct kvm_run *run,
1683                                             struct kvm_vcpu *vcpu)
1684 {
1685         enum emulation_result er;
1686         unsigned long curr_pc;
1687         u32 op, rt;
1688
1689         rt = inst.i_format.rt;
1690         op = inst.i_format.opcode;
1691
1692         /*
1693          * Find the resume PC now while we have safe and easy access to the
1694          * prior branch instruction, and save it for
1695          * kvm_mips_complete_mmio_load() to restore later.
1696          */
1697         curr_pc = vcpu->arch.pc;
1698         er = update_pc(vcpu, cause);
1699         if (er == EMULATE_FAIL)
1700                 return er;
1701         vcpu->arch.io_pc = vcpu->arch.pc;
1702         vcpu->arch.pc = curr_pc;
1703
1704         vcpu->arch.io_gpr = rt;
1705
1706         run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1707                                                 vcpu->arch.host_cp0_badvaddr);
1708         if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1709                 return EMULATE_FAIL;
1710
1711         vcpu->mmio_needed = 2;  /* signed */
1712         switch (op) {
1713 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1714         case ld_op:
1715                 run->mmio.len = 8;
1716                 break;
1717
1718         case lwu_op:
1719                 vcpu->mmio_needed = 1;  /* unsigned */
1720                 /* fall through */
1721 #endif
1722         case lw_op:
1723                 run->mmio.len = 4;
1724                 break;
1725
1726         case lhu_op:
1727                 vcpu->mmio_needed = 1;  /* unsigned */
1728                 /* fall through */
1729         case lh_op:
1730                 run->mmio.len = 2;
1731                 break;
1732
1733         case lbu_op:
1734                 vcpu->mmio_needed = 1;  /* unsigned */
1735                 /* fall through */
1736         case lb_op:
1737                 run->mmio.len = 1;
1738                 break;
1739
1740         default:
1741                 kvm_err("Load not yet supported (inst=0x%08x)\n",
1742                         inst.word);
1743                 vcpu->mmio_needed = 0;
1744                 return EMULATE_FAIL;
1745         }
1746
1747         run->mmio.is_write = 0;
1748         vcpu->mmio_is_write = 0;
1749         return EMULATE_DO_MMIO;
1750 }
1751
1752 #ifndef CONFIG_KVM_MIPS_VZ
1753 static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
1754                                                      unsigned long curr_pc,
1755                                                      unsigned long addr,
1756                                                      struct kvm_run *run,
1757                                                      struct kvm_vcpu *vcpu,
1758                                                      u32 cause)
1759 {
1760         int err;
1761
1762         for (;;) {
1763                 /* Carefully attempt the cache operation */
1764                 kvm_trap_emul_gva_lockless_begin(vcpu);
1765                 err = fn(addr);
1766                 kvm_trap_emul_gva_lockless_end(vcpu);
1767
1768                 if (likely(!err))
1769                         return EMULATE_DONE;
1770
1771                 /*
1772                  * Try to handle the fault and retry, maybe we just raced with a
1773                  * GVA invalidation.
1774                  */
1775                 switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
1776                 case KVM_MIPS_GVA:
1777                 case KVM_MIPS_GPA:
1778                         /* bad virtual or physical address */
1779                         return EMULATE_FAIL;
1780                 case KVM_MIPS_TLB:
1781                         /* no matching guest TLB */
1782                         vcpu->arch.host_cp0_badvaddr = addr;
1783                         vcpu->arch.pc = curr_pc;
1784                         kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, vcpu);
1785                         return EMULATE_EXCEPT;
1786                 case KVM_MIPS_TLBINV:
1787                         /* invalid matching guest TLB */
1788                         vcpu->arch.host_cp0_badvaddr = addr;
1789                         vcpu->arch.pc = curr_pc;
1790                         kvm_mips_emulate_tlbinv_ld(cause, NULL, run, vcpu);
1791                         return EMULATE_EXCEPT;
1792                 default:
1793                         break;
1794                 };
1795         }
1796 }
1797
1798 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1799                                              u32 *opc, u32 cause,
1800                                              struct kvm_run *run,
1801                                              struct kvm_vcpu *vcpu)
1802 {
1803         enum emulation_result er = EMULATE_DONE;
1804         u32 cache, op_inst, op, base;
1805         s16 offset;
1806         struct kvm_vcpu_arch *arch = &vcpu->arch;
1807         unsigned long va;
1808         unsigned long curr_pc;
1809
1810         /*
1811          * Update PC and hold onto current PC in case there is
1812          * an error and we want to rollback the PC
1813          */
1814         curr_pc = vcpu->arch.pc;
1815         er = update_pc(vcpu, cause);
1816         if (er == EMULATE_FAIL)
1817                 return er;
1818
1819         base = inst.i_format.rs;
1820         op_inst = inst.i_format.rt;
1821         if (cpu_has_mips_r6)
1822                 offset = inst.spec3_format.simmediate;
1823         else
1824                 offset = inst.i_format.simmediate;
1825         cache = op_inst & CacheOp_Cache;
1826         op = op_inst & CacheOp_Op;
1827
1828         va = arch->gprs[base] + offset;
1829
1830         kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1831                   cache, op, base, arch->gprs[base], offset);
1832
1833         /*
1834          * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1835          * invalidate the caches entirely by stepping through all the
1836          * ways/indexes
1837          */
1838         if (op == Index_Writeback_Inv) {
1839                 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1840                           vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1841                           arch->gprs[base], offset);
1842
1843                 if (cache == Cache_D) {
1844 #ifdef CONFIG_CPU_R4K_CACHE_TLB
1845                         r4k_blast_dcache();
1846 #else
1847                         switch (boot_cpu_type()) {
1848                         case CPU_CAVIUM_OCTEON3:
1849                                 /* locally flush icache */
1850                                 local_flush_icache_range(0, 0);
1851                                 break;
1852                         default:
1853                                 __flush_cache_all();
1854                                 break;
1855                         }
1856 #endif
1857                 } else if (cache == Cache_I) {
1858 #ifdef CONFIG_CPU_R4K_CACHE_TLB
1859                         r4k_blast_icache();
1860 #else
1861                         switch (boot_cpu_type()) {
1862                         case CPU_CAVIUM_OCTEON3:
1863                                 /* locally flush icache */
1864                                 local_flush_icache_range(0, 0);
1865                                 break;
1866                         default:
1867                                 flush_icache_all();
1868                                 break;
1869                         }
1870 #endif
1871                 } else {
1872                         kvm_err("%s: unsupported CACHE INDEX operation\n",
1873                                 __func__);
1874                         return EMULATE_FAIL;
1875                 }
1876
1877 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1878                 kvm_mips_trans_cache_index(inst, opc, vcpu);
1879 #endif
1880                 goto done;
1881         }
1882
1883         /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1884         if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1885                 /*
1886                  * Perform the dcache part of icache synchronisation on the
1887                  * guest's behalf.
1888                  */
1889                 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1890                                              curr_pc, va, run, vcpu, cause);
1891                 if (er != EMULATE_DONE)
1892                         goto done;
1893 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1894                 /*
1895                  * Replace the CACHE instruction, with a SYNCI, not the same,
1896                  * but avoids a trap
1897                  */
1898                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1899 #endif
1900         } else if (op_inst == Hit_Invalidate_I) {
1901                 /* Perform the icache synchronisation on the guest's behalf */
1902                 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1903                                              curr_pc, va, run, vcpu, cause);
1904                 if (er != EMULATE_DONE)
1905                         goto done;
1906                 er = kvm_mips_guest_cache_op(protected_flush_icache_line,
1907                                              curr_pc, va, run, vcpu, cause);
1908                 if (er != EMULATE_DONE)
1909                         goto done;
1910
1911 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1912                 /* Replace the CACHE instruction, with a SYNCI */
1913                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1914 #endif
1915         } else {
1916                 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1917                         cache, op, base, arch->gprs[base], offset);
1918                 er = EMULATE_FAIL;
1919         }
1920
1921 done:
1922         /* Rollback PC only if emulation was unsuccessful */
1923         if (er == EMULATE_FAIL)
1924                 vcpu->arch.pc = curr_pc;
1925         /* Guest exception needs guest to resume */
1926         if (er == EMULATE_EXCEPT)
1927                 er = EMULATE_DONE;
1928
1929         return er;
1930 }
1931
1932 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1933                                             struct kvm_run *run,
1934                                             struct kvm_vcpu *vcpu)
1935 {
1936         union mips_instruction inst;
1937         enum emulation_result er = EMULATE_DONE;
1938         int err;
1939
1940         /* Fetch the instruction. */
1941         if (cause & CAUSEF_BD)
1942                 opc += 1;
1943         err = kvm_get_badinstr(opc, vcpu, &inst.word);
1944         if (err)
1945                 return EMULATE_FAIL;
1946
1947         switch (inst.r_format.opcode) {
1948         case cop0_op:
1949                 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1950                 break;
1951
1952 #ifndef CONFIG_CPU_MIPSR6
1953         case cache_op:
1954                 ++vcpu->stat.cache_exits;
1955                 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1956                 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1957                 break;
1958 #else
1959         case spec3_op:
1960                 switch (inst.spec3_format.func) {
1961                 case cache6_op:
1962                         ++vcpu->stat.cache_exits;
1963                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1964                         er = kvm_mips_emulate_cache(inst, opc, cause, run,
1965                                                     vcpu);
1966                         break;
1967                 default:
1968                         goto unknown;
1969                 };
1970                 break;
1971 unknown:
1972 #endif
1973
1974         default:
1975                 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1976                         inst.word);
1977                 kvm_arch_vcpu_dump_regs(vcpu);
1978                 er = EMULATE_FAIL;
1979                 break;
1980         }
1981
1982         return er;
1983 }
1984 #endif /* CONFIG_KVM_MIPS_VZ */
1985
1986 /**
1987  * kvm_mips_guest_exception_base() - Find guest exception vector base address.
1988  *
1989  * Returns:     The base address of the current guest exception vector, taking
1990  *              both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
1991  */
1992 long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
1993 {
1994         struct mips_coproc *cop0 = vcpu->arch.cop0;
1995
1996         if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
1997                 return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
1998         else
1999                 return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
2000 }
2001
2002 enum emulation_result kvm_mips_emulate_syscall(u32 cause,
2003                                                u32 *opc,
2004                                                struct kvm_run *run,
2005                                                struct kvm_vcpu *vcpu)
2006 {
2007         struct mips_coproc *cop0 = vcpu->arch.cop0;
2008         struct kvm_vcpu_arch *arch = &vcpu->arch;
2009         enum emulation_result er = EMULATE_DONE;
2010
2011         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2012                 /* save old pc */
2013                 kvm_write_c0_guest_epc(cop0, arch->pc);
2014                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2015
2016                 if (cause & CAUSEF_BD)
2017                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2018                 else
2019                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2020
2021                 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
2022
2023                 kvm_change_c0_guest_cause(cop0, (0xff),
2024                                           (EXCCODE_SYS << CAUSEB_EXCCODE));
2025
2026                 /* Set PC to the exception entry point */
2027                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2028
2029         } else {
2030                 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
2031                 er = EMULATE_FAIL;
2032         }
2033
2034         return er;
2035 }
2036
2037 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
2038                                                   u32 *opc,
2039                                                   struct kvm_run *run,
2040                                                   struct kvm_vcpu *vcpu)
2041 {
2042         struct mips_coproc *cop0 = vcpu->arch.cop0;
2043         struct kvm_vcpu_arch *arch = &vcpu->arch;
2044         unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
2045                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2046
2047         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2048                 /* save old pc */
2049                 kvm_write_c0_guest_epc(cop0, arch->pc);
2050                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2051
2052                 if (cause & CAUSEF_BD)
2053                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2054                 else
2055                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2056
2057                 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
2058                           arch->pc);
2059
2060                 /* set pc to the exception entry point */
2061                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2062
2063         } else {
2064                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2065                           arch->pc);
2066
2067                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2068         }
2069
2070         kvm_change_c0_guest_cause(cop0, (0xff),
2071                                   (EXCCODE_TLBL << CAUSEB_EXCCODE));
2072
2073         /* setup badvaddr, context and entryhi registers for the guest */
2074         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2075         /* XXXKYMA: is the context register used by linux??? */
2076         kvm_write_c0_guest_entryhi(cop0, entryhi);
2077
2078         return EMULATE_DONE;
2079 }
2080
2081 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
2082                                                  u32 *opc,
2083                                                  struct kvm_run *run,
2084                                                  struct kvm_vcpu *vcpu)
2085 {
2086         struct mips_coproc *cop0 = vcpu->arch.cop0;
2087         struct kvm_vcpu_arch *arch = &vcpu->arch;
2088         unsigned long entryhi =
2089                 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2090                 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2091
2092         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2093                 /* save old pc */
2094                 kvm_write_c0_guest_epc(cop0, arch->pc);
2095                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2096
2097                 if (cause & CAUSEF_BD)
2098                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2099                 else
2100                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2101
2102                 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2103                           arch->pc);
2104         } else {
2105                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2106                           arch->pc);
2107         }
2108
2109         /* set pc to the exception entry point */
2110         arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2111
2112         kvm_change_c0_guest_cause(cop0, (0xff),
2113                                   (EXCCODE_TLBL << CAUSEB_EXCCODE));
2114
2115         /* setup badvaddr, context and entryhi registers for the guest */
2116         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2117         /* XXXKYMA: is the context register used by linux??? */
2118         kvm_write_c0_guest_entryhi(cop0, entryhi);
2119
2120         return EMULATE_DONE;
2121 }
2122
2123 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
2124                                                   u32 *opc,
2125                                                   struct kvm_run *run,
2126                                                   struct kvm_vcpu *vcpu)
2127 {
2128         struct mips_coproc *cop0 = vcpu->arch.cop0;
2129         struct kvm_vcpu_arch *arch = &vcpu->arch;
2130         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2131                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2132
2133         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2134                 /* save old pc */
2135                 kvm_write_c0_guest_epc(cop0, arch->pc);
2136                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2137
2138                 if (cause & CAUSEF_BD)
2139                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2140                 else
2141                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2142
2143                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2144                           arch->pc);
2145
2146                 /* Set PC to the exception entry point */
2147                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2148         } else {
2149                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2150                           arch->pc);
2151                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2152         }
2153
2154         kvm_change_c0_guest_cause(cop0, (0xff),
2155                                   (EXCCODE_TLBS << CAUSEB_EXCCODE));
2156
2157         /* setup badvaddr, context and entryhi registers for the guest */
2158         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2159         /* XXXKYMA: is the context register used by linux??? */
2160         kvm_write_c0_guest_entryhi(cop0, entryhi);
2161
2162         return EMULATE_DONE;
2163 }
2164
2165 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2166                                                  u32 *opc,
2167                                                  struct kvm_run *run,
2168                                                  struct kvm_vcpu *vcpu)
2169 {
2170         struct mips_coproc *cop0 = vcpu->arch.cop0;
2171         struct kvm_vcpu_arch *arch = &vcpu->arch;
2172         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2173                 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2174
2175         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2176                 /* save old pc */
2177                 kvm_write_c0_guest_epc(cop0, arch->pc);
2178                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2179
2180                 if (cause & CAUSEF_BD)
2181                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2182                 else
2183                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2184
2185                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2186                           arch->pc);
2187         } else {
2188                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2189                           arch->pc);
2190         }
2191
2192         /* Set PC to the exception entry point */
2193         arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2194
2195         kvm_change_c0_guest_cause(cop0, (0xff),
2196                                   (EXCCODE_TLBS << CAUSEB_EXCCODE));
2197
2198         /* setup badvaddr, context and entryhi registers for the guest */
2199         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2200         /* XXXKYMA: is the context register used by linux??? */
2201         kvm_write_c0_guest_entryhi(cop0, entryhi);
2202
2203         return EMULATE_DONE;
2204 }
2205
2206 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2207                                               u32 *opc,
2208                                               struct kvm_run *run,
2209                                               struct kvm_vcpu *vcpu)
2210 {
2211         struct mips_coproc *cop0 = vcpu->arch.cop0;
2212         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2213                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2214         struct kvm_vcpu_arch *arch = &vcpu->arch;
2215
2216         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2217                 /* save old pc */
2218                 kvm_write_c0_guest_epc(cop0, arch->pc);
2219                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2220
2221                 if (cause & CAUSEF_BD)
2222                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2223                 else
2224                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2225
2226                 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2227                           arch->pc);
2228         } else {
2229                 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2230                           arch->pc);
2231         }
2232
2233         arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2234
2235         kvm_change_c0_guest_cause(cop0, (0xff),
2236                                   (EXCCODE_MOD << CAUSEB_EXCCODE));
2237
2238         /* setup badvaddr, context and entryhi registers for the guest */
2239         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2240         /* XXXKYMA: is the context register used by linux??? */
2241         kvm_write_c0_guest_entryhi(cop0, entryhi);
2242
2243         return EMULATE_DONE;
2244 }
2245
2246 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2247                                                u32 *opc,
2248                                                struct kvm_run *run,
2249                                                struct kvm_vcpu *vcpu)
2250 {
2251         struct mips_coproc *cop0 = vcpu->arch.cop0;
2252         struct kvm_vcpu_arch *arch = &vcpu->arch;
2253
2254         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2255                 /* save old pc */
2256                 kvm_write_c0_guest_epc(cop0, arch->pc);
2257                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2258
2259                 if (cause & CAUSEF_BD)
2260                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2261                 else
2262                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2263
2264         }
2265
2266         arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2267
2268         kvm_change_c0_guest_cause(cop0, (0xff),
2269                                   (EXCCODE_CPU << CAUSEB_EXCCODE));
2270         kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2271
2272         return EMULATE_DONE;
2273 }
2274
2275 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2276                                               u32 *opc,
2277                                               struct kvm_run *run,
2278                                               struct kvm_vcpu *vcpu)
2279 {
2280         struct mips_coproc *cop0 = vcpu->arch.cop0;
2281         struct kvm_vcpu_arch *arch = &vcpu->arch;
2282         enum emulation_result er = EMULATE_DONE;
2283
2284         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2285                 /* save old pc */
2286                 kvm_write_c0_guest_epc(cop0, arch->pc);
2287                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2288
2289                 if (cause & CAUSEF_BD)
2290                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2291                 else
2292                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2293
2294                 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2295
2296                 kvm_change_c0_guest_cause(cop0, (0xff),
2297                                           (EXCCODE_RI << CAUSEB_EXCCODE));
2298
2299                 /* Set PC to the exception entry point */
2300                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2301
2302         } else {
2303                 kvm_err("Trying to deliver RI when EXL is already set\n");
2304                 er = EMULATE_FAIL;
2305         }
2306
2307         return er;
2308 }
2309
2310 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2311                                               u32 *opc,
2312                                               struct kvm_run *run,
2313                                               struct kvm_vcpu *vcpu)
2314 {
2315         struct mips_coproc *cop0 = vcpu->arch.cop0;
2316         struct kvm_vcpu_arch *arch = &vcpu->arch;
2317         enum emulation_result er = EMULATE_DONE;
2318
2319         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2320                 /* save old pc */
2321                 kvm_write_c0_guest_epc(cop0, arch->pc);
2322                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2323
2324                 if (cause & CAUSEF_BD)
2325                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2326                 else
2327                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2328
2329                 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2330
2331                 kvm_change_c0_guest_cause(cop0, (0xff),
2332                                           (EXCCODE_BP << CAUSEB_EXCCODE));
2333
2334                 /* Set PC to the exception entry point */
2335                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2336
2337         } else {
2338                 kvm_err("Trying to deliver BP when EXL is already set\n");
2339                 er = EMULATE_FAIL;
2340         }
2341
2342         return er;
2343 }
2344
2345 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2346                                                 u32 *opc,
2347                                                 struct kvm_run *run,
2348                                                 struct kvm_vcpu *vcpu)
2349 {
2350         struct mips_coproc *cop0 = vcpu->arch.cop0;
2351         struct kvm_vcpu_arch *arch = &vcpu->arch;
2352         enum emulation_result er = EMULATE_DONE;
2353
2354         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2355                 /* save old pc */
2356                 kvm_write_c0_guest_epc(cop0, arch->pc);
2357                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2358
2359                 if (cause & CAUSEF_BD)
2360                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2361                 else
2362                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2363
2364                 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2365
2366                 kvm_change_c0_guest_cause(cop0, (0xff),
2367                                           (EXCCODE_TR << CAUSEB_EXCCODE));
2368
2369                 /* Set PC to the exception entry point */
2370                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2371
2372         } else {
2373                 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2374                 er = EMULATE_FAIL;
2375         }
2376
2377         return er;
2378 }
2379
2380 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2381                                                   u32 *opc,
2382                                                   struct kvm_run *run,
2383                                                   struct kvm_vcpu *vcpu)
2384 {
2385         struct mips_coproc *cop0 = vcpu->arch.cop0;
2386         struct kvm_vcpu_arch *arch = &vcpu->arch;
2387         enum emulation_result er = EMULATE_DONE;
2388
2389         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2390                 /* save old pc */
2391                 kvm_write_c0_guest_epc(cop0, arch->pc);
2392                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2393
2394                 if (cause & CAUSEF_BD)
2395                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2396                 else
2397                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2398
2399                 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2400
2401                 kvm_change_c0_guest_cause(cop0, (0xff),
2402                                           (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2403
2404                 /* Set PC to the exception entry point */
2405                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2406
2407         } else {
2408                 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2409                 er = EMULATE_FAIL;
2410         }
2411
2412         return er;
2413 }
2414
2415 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2416                                                u32 *opc,
2417                                                struct kvm_run *run,
2418                                                struct kvm_vcpu *vcpu)
2419 {
2420         struct mips_coproc *cop0 = vcpu->arch.cop0;
2421         struct kvm_vcpu_arch *arch = &vcpu->arch;
2422         enum emulation_result er = EMULATE_DONE;
2423
2424         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2425                 /* save old pc */
2426                 kvm_write_c0_guest_epc(cop0, arch->pc);
2427                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2428
2429                 if (cause & CAUSEF_BD)
2430                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2431                 else
2432                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2433
2434                 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2435
2436                 kvm_change_c0_guest_cause(cop0, (0xff),
2437                                           (EXCCODE_FPE << CAUSEB_EXCCODE));
2438
2439                 /* Set PC to the exception entry point */
2440                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2441
2442         } else {
2443                 kvm_err("Trying to deliver FPE when EXL is already set\n");
2444                 er = EMULATE_FAIL;
2445         }
2446
2447         return er;
2448 }
2449
2450 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2451                                                   u32 *opc,
2452                                                   struct kvm_run *run,
2453                                                   struct kvm_vcpu *vcpu)
2454 {
2455         struct mips_coproc *cop0 = vcpu->arch.cop0;
2456         struct kvm_vcpu_arch *arch = &vcpu->arch;
2457         enum emulation_result er = EMULATE_DONE;
2458
2459         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2460                 /* save old pc */
2461                 kvm_write_c0_guest_epc(cop0, arch->pc);
2462                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2463
2464                 if (cause & CAUSEF_BD)
2465                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2466                 else
2467                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2468
2469                 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2470
2471                 kvm_change_c0_guest_cause(cop0, (0xff),
2472                                           (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2473
2474                 /* Set PC to the exception entry point */
2475                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2476
2477         } else {
2478                 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2479                 er = EMULATE_FAIL;
2480         }
2481
2482         return er;
2483 }
2484
2485 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2486                                          struct kvm_run *run,
2487                                          struct kvm_vcpu *vcpu)
2488 {
2489         struct mips_coproc *cop0 = vcpu->arch.cop0;
2490         struct kvm_vcpu_arch *arch = &vcpu->arch;
2491         enum emulation_result er = EMULATE_DONE;
2492         unsigned long curr_pc;
2493         union mips_instruction inst;
2494         int err;
2495
2496         /*
2497          * Update PC and hold onto current PC in case there is
2498          * an error and we want to rollback the PC
2499          */
2500         curr_pc = vcpu->arch.pc;
2501         er = update_pc(vcpu, cause);
2502         if (er == EMULATE_FAIL)
2503                 return er;
2504
2505         /* Fetch the instruction. */
2506         if (cause & CAUSEF_BD)
2507                 opc += 1;
2508         err = kvm_get_badinstr(opc, vcpu, &inst.word);
2509         if (err) {
2510                 kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
2511                 return EMULATE_FAIL;
2512         }
2513
2514         if (inst.r_format.opcode == spec3_op &&
2515             inst.r_format.func == rdhwr_op &&
2516             inst.r_format.rs == 0 &&
2517             (inst.r_format.re >> 3) == 0) {
2518                 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2519                 int rd = inst.r_format.rd;
2520                 int rt = inst.r_format.rt;
2521                 int sel = inst.r_format.re & 0x7;
2522
2523                 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2524                 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2525                         kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2526                                   rd, opc);
2527                         goto emulate_ri;
2528                 }
2529                 switch (rd) {
2530                 case MIPS_HWR_CPUNUM:           /* CPU number */
2531                         arch->gprs[rt] = vcpu->vcpu_id;
2532                         break;
2533                 case MIPS_HWR_SYNCISTEP:        /* SYNCI length */
2534                         arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2535                                              current_cpu_data.icache.linesz);
2536                         break;
2537                 case MIPS_HWR_CC:               /* Read count register */
2538                         arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2539                         break;
2540                 case MIPS_HWR_CCRES:            /* Count register resolution */
2541                         switch (current_cpu_data.cputype) {
2542                         case CPU_20KC:
2543                         case CPU_25KF:
2544                                 arch->gprs[rt] = 1;
2545                                 break;
2546                         default:
2547                                 arch->gprs[rt] = 2;
2548                         }
2549                         break;
2550                 case MIPS_HWR_ULR:              /* Read UserLocal register */
2551                         arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2552                         break;
2553
2554                 default:
2555                         kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2556                         goto emulate_ri;
2557                 }
2558
2559                 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2560                               vcpu->arch.gprs[rt]);
2561         } else {
2562                 kvm_debug("Emulate RI not supported @ %p: %#x\n",
2563                           opc, inst.word);
2564                 goto emulate_ri;
2565         }
2566
2567         return EMULATE_DONE;
2568
2569 emulate_ri:
2570         /*
2571          * Rollback PC (if in branch delay slot then the PC already points to
2572          * branch target), and pass the RI exception to the guest OS.
2573          */
2574         vcpu->arch.pc = curr_pc;
2575         return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2576 }
2577
2578 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2579                                                   struct kvm_run *run)
2580 {
2581         unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2582         enum emulation_result er = EMULATE_DONE;
2583
2584         if (run->mmio.len > sizeof(*gpr)) {
2585                 kvm_err("Bad MMIO length: %d", run->mmio.len);
2586                 er = EMULATE_FAIL;
2587                 goto done;
2588         }
2589
2590         /* Restore saved resume PC */
2591         vcpu->arch.pc = vcpu->arch.io_pc;
2592
2593         switch (run->mmio.len) {
2594         case 8:
2595                 *gpr = *(s64 *)run->mmio.data;
2596                 break;
2597
2598         case 4:
2599                 if (vcpu->mmio_needed == 2)
2600                         *gpr = *(s32 *)run->mmio.data;
2601                 else
2602                         *gpr = *(u32 *)run->mmio.data;
2603                 break;
2604
2605         case 2:
2606                 if (vcpu->mmio_needed == 2)
2607                         *gpr = *(s16 *) run->mmio.data;
2608                 else
2609                         *gpr = *(u16 *)run->mmio.data;
2610
2611                 break;
2612         case 1:
2613                 if (vcpu->mmio_needed == 2)
2614                         *gpr = *(s8 *) run->mmio.data;
2615                 else
2616                         *gpr = *(u8 *) run->mmio.data;
2617                 break;
2618         }
2619
2620 done:
2621         return er;
2622 }
2623
2624 static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2625                                                   u32 *opc,
2626                                                   struct kvm_run *run,
2627                                                   struct kvm_vcpu *vcpu)
2628 {
2629         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2630         struct mips_coproc *cop0 = vcpu->arch.cop0;
2631         struct kvm_vcpu_arch *arch = &vcpu->arch;
2632         enum emulation_result er = EMULATE_DONE;
2633
2634         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2635                 /* save old pc */
2636                 kvm_write_c0_guest_epc(cop0, arch->pc);
2637                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2638
2639                 if (cause & CAUSEF_BD)
2640                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2641                 else
2642                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2643
2644                 kvm_change_c0_guest_cause(cop0, (0xff),
2645                                           (exccode << CAUSEB_EXCCODE));
2646
2647                 /* Set PC to the exception entry point */
2648                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2649                 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2650
2651                 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2652                           exccode, kvm_read_c0_guest_epc(cop0),
2653                           kvm_read_c0_guest_badvaddr(cop0));
2654         } else {
2655                 kvm_err("Trying to deliver EXC when EXL is already set\n");
2656                 er = EMULATE_FAIL;
2657         }
2658
2659         return er;
2660 }
2661
2662 enum emulation_result kvm_mips_check_privilege(u32 cause,
2663                                                u32 *opc,
2664                                                struct kvm_run *run,
2665                                                struct kvm_vcpu *vcpu)
2666 {
2667         enum emulation_result er = EMULATE_DONE;
2668         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2669         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2670
2671         int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2672
2673         if (usermode) {
2674                 switch (exccode) {
2675                 case EXCCODE_INT:
2676                 case EXCCODE_SYS:
2677                 case EXCCODE_BP:
2678                 case EXCCODE_RI:
2679                 case EXCCODE_TR:
2680                 case EXCCODE_MSAFPE:
2681                 case EXCCODE_FPE:
2682                 case EXCCODE_MSADIS:
2683                         break;
2684
2685                 case EXCCODE_CPU:
2686                         if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2687                                 er = EMULATE_PRIV_FAIL;
2688                         break;
2689
2690                 case EXCCODE_MOD:
2691                         break;
2692
2693                 case EXCCODE_TLBL:
2694                         /*
2695                          * We we are accessing Guest kernel space, then send an
2696                          * address error exception to the guest
2697                          */
2698                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2699                                 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2700                                           badvaddr);
2701                                 cause &= ~0xff;
2702                                 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2703                                 er = EMULATE_PRIV_FAIL;
2704                         }
2705                         break;
2706
2707                 case EXCCODE_TLBS:
2708                         /*
2709                          * We we are accessing Guest kernel space, then send an
2710                          * address error exception to the guest
2711                          */
2712                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2713                                 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2714                                           badvaddr);
2715                                 cause &= ~0xff;
2716                                 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2717                                 er = EMULATE_PRIV_FAIL;
2718                         }
2719                         break;
2720
2721                 case EXCCODE_ADES:
2722                         kvm_debug("%s: address error ST @ %#lx\n", __func__,
2723                                   badvaddr);
2724                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2725                                 cause &= ~0xff;
2726                                 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2727                         }
2728                         er = EMULATE_PRIV_FAIL;
2729                         break;
2730                 case EXCCODE_ADEL:
2731                         kvm_debug("%s: address error LD @ %#lx\n", __func__,
2732                                   badvaddr);
2733                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2734                                 cause &= ~0xff;
2735                                 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2736                         }
2737                         er = EMULATE_PRIV_FAIL;
2738                         break;
2739                 default:
2740                         er = EMULATE_PRIV_FAIL;
2741                         break;
2742                 }
2743         }
2744
2745         if (er == EMULATE_PRIV_FAIL)
2746                 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2747
2748         return er;
2749 }
2750
2751 /*
2752  * User Address (UA) fault, this could happen if
2753  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2754  *     case we pass on the fault to the guest kernel and let it handle it.
2755  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2756  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2757  */
2758 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2759                                               u32 *opc,
2760                                               struct kvm_run *run,
2761                                               struct kvm_vcpu *vcpu,
2762                                               bool write_fault)
2763 {
2764         enum emulation_result er = EMULATE_DONE;
2765         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2766         unsigned long va = vcpu->arch.host_cp0_badvaddr;
2767         int index;
2768
2769         kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2770                   vcpu->arch.host_cp0_badvaddr);
2771
2772         /*
2773          * KVM would not have got the exception if this entry was valid in the
2774          * shadow host TLB. Check the Guest TLB, if the entry is not there then
2775          * send the guest an exception. The guest exc handler should then inject
2776          * an entry into the guest TLB.
2777          */
2778         index = kvm_mips_guest_tlb_lookup(vcpu,
2779                       (va & VPN2_MASK) |
2780                       (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2781                        KVM_ENTRYHI_ASID));
2782         if (index < 0) {
2783                 if (exccode == EXCCODE_TLBL) {
2784                         er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2785                 } else if (exccode == EXCCODE_TLBS) {
2786                         er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2787                 } else {
2788                         kvm_err("%s: invalid exc code: %d\n", __func__,
2789                                 exccode);
2790                         er = EMULATE_FAIL;
2791                 }
2792         } else {
2793                 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2794
2795                 /*
2796                  * Check if the entry is valid, if not then setup a TLB invalid
2797                  * exception to the guest
2798                  */
2799                 if (!TLB_IS_VALID(*tlb, va)) {
2800                         if (exccode == EXCCODE_TLBL) {
2801                                 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2802                                                                 vcpu);
2803                         } else if (exccode == EXCCODE_TLBS) {
2804                                 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2805                                                                 vcpu);
2806                         } else {
2807                                 kvm_err("%s: invalid exc code: %d\n", __func__,
2808                                         exccode);
2809                                 er = EMULATE_FAIL;
2810                         }
2811                 } else {
2812                         kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2813                                   tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2814                         /*
2815                          * OK we have a Guest TLB entry, now inject it into the
2816                          * shadow host TLB
2817                          */
2818                         if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
2819                                                                  write_fault)) {
2820                                 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2821                                         __func__, va, index, vcpu,
2822                                         read_c0_entryhi());
2823                                 er = EMULATE_FAIL;
2824                         }
2825                 }
2826         }
2827
2828         return er;
2829 }