Merge branch 'kvm-ppc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus...
[sfrench/cifs-2.6.git] / arch / mips / kernel / smp.c
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/export.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched/mm.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50
51 int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
52 EXPORT_SYMBOL(__cpu_number_map);
53
54 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
55 EXPORT_SYMBOL(__cpu_logical_map);
56
57 /* Number of TCs (or siblings in Intel speak) per CPU core */
58 int smp_num_siblings = 1;
59 EXPORT_SYMBOL(smp_num_siblings);
60
61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
63 EXPORT_SYMBOL(cpu_sibling_map);
64
65 /* representing the core map of multi-core chips of each logical CPU */
66 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
67 EXPORT_SYMBOL(cpu_core_map);
68
69 static DECLARE_COMPLETION(cpu_running);
70
71 /*
72  * A logcal cpu mask containing only one VPE per core to
73  * reduce the number of IPIs on large MT systems.
74  */
75 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83
84 cpumask_t cpu_coherent_mask;
85
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93         int i;
94
95         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96
97         if (smp_num_siblings > 1) {
98                 for_each_cpu(i, &cpu_sibling_setup_map) {
99                         if (cpu_data[cpu].package == cpu_data[i].package &&
100                                     cpu_data[cpu].core == cpu_data[i].core) {
101                                 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102                                 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103                         }
104                 }
105         } else
106                 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108
109 static inline void set_cpu_core_map(int cpu)
110 {
111         int i;
112
113         cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115         for_each_cpu(i, &cpu_core_setup_map) {
116                 if (cpu_data[cpu].package == cpu_data[i].package) {
117                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
118                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
119                 }
120         }
121 }
122
123 /*
124  * Calculate a new cpu_foreign_map mask whenever a
125  * new cpu appears or disappears.
126  */
127 void calculate_cpu_foreign_map(void)
128 {
129         int i, k, core_present;
130         cpumask_t temp_foreign_map;
131
132         /* Re-calculate the mask */
133         cpumask_clear(&temp_foreign_map);
134         for_each_online_cpu(i) {
135                 core_present = 0;
136                 for_each_cpu(k, &temp_foreign_map)
137                         if (cpu_data[i].package == cpu_data[k].package &&
138                             cpu_data[i].core == cpu_data[k].core)
139                                 core_present = 1;
140                 if (!core_present)
141                         cpumask_set_cpu(i, &temp_foreign_map);
142         }
143
144         for_each_online_cpu(i)
145                 cpumask_andnot(&cpu_foreign_map[i],
146                                &temp_foreign_map, &cpu_sibling_map[i]);
147 }
148
149 struct plat_smp_ops *mp_ops;
150 EXPORT_SYMBOL(mp_ops);
151
152 void register_smp_ops(struct plat_smp_ops *ops)
153 {
154         if (mp_ops)
155                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
156
157         mp_ops = ops;
158 }
159
160 #ifdef CONFIG_GENERIC_IRQ_IPI
161 void mips_smp_send_ipi_single(int cpu, unsigned int action)
162 {
163         mips_smp_send_ipi_mask(cpumask_of(cpu), action);
164 }
165
166 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
167 {
168         unsigned long flags;
169         unsigned int core;
170         int cpu;
171
172         local_irq_save(flags);
173
174         switch (action) {
175         case SMP_CALL_FUNCTION:
176                 __ipi_send_mask(call_desc, mask);
177                 break;
178
179         case SMP_RESCHEDULE_YOURSELF:
180                 __ipi_send_mask(sched_desc, mask);
181                 break;
182
183         default:
184                 BUG();
185         }
186
187         if (mips_cpc_present()) {
188                 for_each_cpu(cpu, mask) {
189                         core = cpu_data[cpu].core;
190
191                         if (core == current_cpu_data.core)
192                                 continue;
193
194                         while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
195                                 mips_cm_lock_other(core, 0);
196                                 mips_cpc_lock_other(core);
197                                 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
198                                 mips_cpc_unlock_other();
199                                 mips_cm_unlock_other();
200                         }
201                 }
202         }
203
204         local_irq_restore(flags);
205 }
206
207
208 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
209 {
210         scheduler_ipi();
211
212         return IRQ_HANDLED;
213 }
214
215 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
216 {
217         generic_smp_call_function_interrupt();
218
219         return IRQ_HANDLED;
220 }
221
222 static struct irqaction irq_resched = {
223         .handler        = ipi_resched_interrupt,
224         .flags          = IRQF_PERCPU,
225         .name           = "IPI resched"
226 };
227
228 static struct irqaction irq_call = {
229         .handler        = ipi_call_interrupt,
230         .flags          = IRQF_PERCPU,
231         .name           = "IPI call"
232 };
233
234 static void smp_ipi_init_one(unsigned int virq,
235                                     struct irqaction *action)
236 {
237         int ret;
238
239         irq_set_handler(virq, handle_percpu_irq);
240         ret = setup_irq(virq, action);
241         BUG_ON(ret);
242 }
243
244 static unsigned int call_virq, sched_virq;
245
246 int mips_smp_ipi_allocate(const struct cpumask *mask)
247 {
248         int virq;
249         struct irq_domain *ipidomain;
250         struct device_node *node;
251
252         node = of_irq_find_parent(of_root);
253         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
254
255         /*
256          * Some platforms have half DT setup. So if we found irq node but
257          * didn't find an ipidomain, try to search for one that is not in the
258          * DT.
259          */
260         if (node && !ipidomain)
261                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
262
263         /*
264          * There are systems which use IPI IRQ domains, but only have one
265          * registered when some runtime condition is met. For example a Malta
266          * kernel may include support for GIC & CPU interrupt controller IPI
267          * IRQ domains, but if run on a system with no GIC & no MT ASE then
268          * neither will be supported or registered.
269          *
270          * We only have a problem if we're actually using multiple CPUs so fail
271          * loudly if that is the case. Otherwise simply return, skipping IPI
272          * setup, if we're running with only a single CPU.
273          */
274         if (!ipidomain) {
275                 BUG_ON(num_present_cpus() > 1);
276                 return 0;
277         }
278
279         virq = irq_reserve_ipi(ipidomain, mask);
280         BUG_ON(!virq);
281         if (!call_virq)
282                 call_virq = virq;
283
284         virq = irq_reserve_ipi(ipidomain, mask);
285         BUG_ON(!virq);
286         if (!sched_virq)
287                 sched_virq = virq;
288
289         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
290                 int cpu;
291
292                 for_each_cpu(cpu, mask) {
293                         smp_ipi_init_one(call_virq + cpu, &irq_call);
294                         smp_ipi_init_one(sched_virq + cpu, &irq_resched);
295                 }
296         } else {
297                 smp_ipi_init_one(call_virq, &irq_call);
298                 smp_ipi_init_one(sched_virq, &irq_resched);
299         }
300
301         return 0;
302 }
303
304 int mips_smp_ipi_free(const struct cpumask *mask)
305 {
306         struct irq_domain *ipidomain;
307         struct device_node *node;
308
309         node = of_irq_find_parent(of_root);
310         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
311
312         /*
313          * Some platforms have half DT setup. So if we found irq node but
314          * didn't find an ipidomain, try to search for one that is not in the
315          * DT.
316          */
317         if (node && !ipidomain)
318                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
319
320         BUG_ON(!ipidomain);
321
322         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
323                 int cpu;
324
325                 for_each_cpu(cpu, mask) {
326                         remove_irq(call_virq + cpu, &irq_call);
327                         remove_irq(sched_virq + cpu, &irq_resched);
328                 }
329         }
330         irq_destroy_ipi(call_virq, mask);
331         irq_destroy_ipi(sched_virq, mask);
332         return 0;
333 }
334
335
336 static int __init mips_smp_ipi_init(void)
337 {
338         if (num_possible_cpus() == 1)
339                 return 0;
340
341         mips_smp_ipi_allocate(cpu_possible_mask);
342
343         call_desc = irq_to_desc(call_virq);
344         sched_desc = irq_to_desc(sched_virq);
345
346         return 0;
347 }
348 early_initcall(mips_smp_ipi_init);
349 #endif
350
351 /*
352  * First C code run on the secondary CPUs after being started up by
353  * the master.
354  */
355 asmlinkage void start_secondary(void)
356 {
357         unsigned int cpu;
358
359         cpu_probe();
360         per_cpu_trap_init(false);
361         mips_clockevent_init();
362         mp_ops->init_secondary();
363         cpu_report();
364         maar_init();
365
366         /*
367          * XXX parity protection should be folded in here when it's converted
368          * to an option instead of something based on .cputype
369          */
370
371         calibrate_delay();
372         preempt_disable();
373         cpu = smp_processor_id();
374         cpu_data[cpu].udelay_val = loops_per_jiffy;
375
376         cpumask_set_cpu(cpu, &cpu_coherent_mask);
377         notify_cpu_starting(cpu);
378
379         set_cpu_online(cpu, true);
380
381         set_cpu_sibling_map(cpu);
382         set_cpu_core_map(cpu);
383
384         calculate_cpu_foreign_map();
385
386         complete(&cpu_running);
387         synchronise_count_slave(cpu);
388
389         /*
390          * irq will be enabled in ->smp_finish(), enabling it too early
391          * is dangerous.
392          */
393         WARN_ON_ONCE(!irqs_disabled());
394         mp_ops->smp_finish();
395
396         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
397 }
398
399 static void stop_this_cpu(void *dummy)
400 {
401         /*
402          * Remove this CPU:
403          */
404
405         set_cpu_online(smp_processor_id(), false);
406         calculate_cpu_foreign_map();
407         local_irq_disable();
408         while (1);
409 }
410
411 void smp_send_stop(void)
412 {
413         smp_call_function(stop_this_cpu, NULL, 0);
414 }
415
416 void __init smp_cpus_done(unsigned int max_cpus)
417 {
418 }
419
420 /* called from main before smp_init() */
421 void __init smp_prepare_cpus(unsigned int max_cpus)
422 {
423         init_new_context(current, &init_mm);
424         current_thread_info()->cpu = 0;
425         mp_ops->prepare_cpus(max_cpus);
426         set_cpu_sibling_map(0);
427         set_cpu_core_map(0);
428         calculate_cpu_foreign_map();
429 #ifndef CONFIG_HOTPLUG_CPU
430         init_cpu_present(cpu_possible_mask);
431 #endif
432         cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
433 }
434
435 /* preload SMP state for boot cpu */
436 void smp_prepare_boot_cpu(void)
437 {
438         set_cpu_possible(0, true);
439         set_cpu_online(0, true);
440 }
441
442 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
443 {
444         mp_ops->boot_secondary(cpu, tidle);
445
446         /*
447          * We must check for timeout here, as the CPU will not be marked
448          * online until the counters are synchronised.
449          */
450         if (!wait_for_completion_timeout(&cpu_running,
451                                          msecs_to_jiffies(1000))) {
452                 pr_crit("CPU%u: failed to start\n", cpu);
453                 return -EIO;
454         }
455
456         synchronise_count_master(cpu);
457         return 0;
458 }
459
460 /* Not really SMP stuff ... */
461 int setup_profiling_timer(unsigned int multiplier)
462 {
463         return 0;
464 }
465
466 static void flush_tlb_all_ipi(void *info)
467 {
468         local_flush_tlb_all();
469 }
470
471 void flush_tlb_all(void)
472 {
473         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
474 }
475
476 static void flush_tlb_mm_ipi(void *mm)
477 {
478         local_flush_tlb_mm((struct mm_struct *)mm);
479 }
480
481 /*
482  * Special Variant of smp_call_function for use by TLB functions:
483  *
484  *  o No return value
485  *  o collapses to normal function call on UP kernels
486  *  o collapses to normal function call on systems with a single shared
487  *    primary cache.
488  */
489 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
490 {
491         smp_call_function(func, info, 1);
492 }
493
494 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
495 {
496         preempt_disable();
497
498         smp_on_other_tlbs(func, info);
499         func(info);
500
501         preempt_enable();
502 }
503
504 /*
505  * The following tlb flush calls are invoked when old translations are
506  * being torn down, or pte attributes are changing. For single threaded
507  * address spaces, a new context is obtained on the current cpu, and tlb
508  * context on other cpus are invalidated to force a new context allocation
509  * at switch_mm time, should the mm ever be used on other cpus. For
510  * multithreaded address spaces, intercpu interrupts have to be sent.
511  * Another case where intercpu interrupts are required is when the target
512  * mm might be active on another cpu (eg debuggers doing the flushes on
513  * behalf of debugees, kswapd stealing pages from another process etc).
514  * Kanoj 07/00.
515  */
516
517 void flush_tlb_mm(struct mm_struct *mm)
518 {
519         preempt_disable();
520
521         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
522                 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
523         } else {
524                 unsigned int cpu;
525
526                 for_each_online_cpu(cpu) {
527                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
528                                 cpu_context(cpu, mm) = 0;
529                 }
530         }
531         local_flush_tlb_mm(mm);
532
533         preempt_enable();
534 }
535
536 struct flush_tlb_data {
537         struct vm_area_struct *vma;
538         unsigned long addr1;
539         unsigned long addr2;
540 };
541
542 static void flush_tlb_range_ipi(void *info)
543 {
544         struct flush_tlb_data *fd = info;
545
546         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
547 }
548
549 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
550 {
551         struct mm_struct *mm = vma->vm_mm;
552
553         preempt_disable();
554         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
555                 struct flush_tlb_data fd = {
556                         .vma = vma,
557                         .addr1 = start,
558                         .addr2 = end,
559                 };
560
561                 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
562         } else {
563                 unsigned int cpu;
564                 int exec = vma->vm_flags & VM_EXEC;
565
566                 for_each_online_cpu(cpu) {
567                         /*
568                          * flush_cache_range() will only fully flush icache if
569                          * the VMA is executable, otherwise we must invalidate
570                          * ASID without it appearing to has_valid_asid() as if
571                          * mm has been completely unused by that CPU.
572                          */
573                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
574                                 cpu_context(cpu, mm) = !exec;
575                 }
576         }
577         local_flush_tlb_range(vma, start, end);
578         preempt_enable();
579 }
580
581 static void flush_tlb_kernel_range_ipi(void *info)
582 {
583         struct flush_tlb_data *fd = info;
584
585         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
586 }
587
588 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
589 {
590         struct flush_tlb_data fd = {
591                 .addr1 = start,
592                 .addr2 = end,
593         };
594
595         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
596 }
597
598 static void flush_tlb_page_ipi(void *info)
599 {
600         struct flush_tlb_data *fd = info;
601
602         local_flush_tlb_page(fd->vma, fd->addr1);
603 }
604
605 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
606 {
607         preempt_disable();
608         if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
609                 struct flush_tlb_data fd = {
610                         .vma = vma,
611                         .addr1 = page,
612                 };
613
614                 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
615         } else {
616                 unsigned int cpu;
617
618                 for_each_online_cpu(cpu) {
619                         /*
620                          * flush_cache_page() only does partial flushes, so
621                          * invalidate ASID without it appearing to
622                          * has_valid_asid() as if mm has been completely unused
623                          * by that CPU.
624                          */
625                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
626                                 cpu_context(cpu, vma->vm_mm) = 1;
627                 }
628         }
629         local_flush_tlb_page(vma, page);
630         preempt_enable();
631 }
632
633 static void flush_tlb_one_ipi(void *info)
634 {
635         unsigned long vaddr = (unsigned long) info;
636
637         local_flush_tlb_one(vaddr);
638 }
639
640 void flush_tlb_one(unsigned long vaddr)
641 {
642         smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
643 }
644
645 EXPORT_SYMBOL(flush_tlb_page);
646 EXPORT_SYMBOL(flush_tlb_one);
647
648 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
649
650 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
651 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
652
653 void tick_broadcast(const struct cpumask *mask)
654 {
655         atomic_t *count;
656         call_single_data_t *csd;
657         int cpu;
658
659         for_each_cpu(cpu, mask) {
660                 count = &per_cpu(tick_broadcast_count, cpu);
661                 csd = &per_cpu(tick_broadcast_csd, cpu);
662
663                 if (atomic_inc_return(count) == 1)
664                         smp_call_function_single_async(cpu, csd);
665         }
666 }
667
668 static void tick_broadcast_callee(void *info)
669 {
670         int cpu = smp_processor_id();
671         tick_receive_broadcast();
672         atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
673 }
674
675 static int __init tick_broadcast_init(void)
676 {
677         call_single_data_t *csd;
678         int cpu;
679
680         for (cpu = 0; cpu < NR_CPUS; cpu++) {
681                 csd = &per_cpu(tick_broadcast_csd, cpu);
682                 csd->func = tick_broadcast_callee;
683         }
684
685         return 0;
686 }
687 early_initcall(tick_broadcast_init);
688
689 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */