Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[sfrench/cifs-2.6.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/reboot.h>
21 #include <linux/io.h>
22 #include <linux/compiler.h>
23 #include <linux/linkage.h>
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26
27 #include <asm/time.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/bootinfo.h>
31 #include <asm/pmon.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mipsregs.h>
35 #include <asm/bmips.h>
36 #include <asm/traps.h>
37 #include <asm/barrier.h>
38
39 static int __maybe_unused max_cpus = 1;
40
41 /* these may be configured by the platform code */
42 int bmips_smp_enabled = 1;
43 int bmips_cpu_offset;
44 cpumask_t bmips_booted_mask;
45
46 #ifdef CONFIG_SMP
47
48 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
49 unsigned long bmips_smp_boot_sp;
50 unsigned long bmips_smp_boot_gp;
51
52 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
53 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
54 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
55 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
56
57 /* SW interrupts 0,1 are used for interprocessor signaling */
58 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
59 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
60
61 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
62 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
63 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
64 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
65
66 static void __init bmips_smp_setup(void)
67 {
68         int i, cpu = 1, boot_cpu = 0;
69         int cpu_hw_intr;
70
71         switch (current_cpu_type()) {
72         case CPU_BMIPS4350:
73         case CPU_BMIPS4380:
74                 /* arbitration priority */
75                 clear_c0_brcm_cmt_ctrl(0x30);
76
77                 /* NBK and weak order flags */
78                 set_c0_brcm_config_0(0x30000);
79
80                 /* Find out if we are running on TP0 or TP1 */
81                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
82
83                 /*
84                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
85                  * thread
86                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
87                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
88                  */
89                 if (boot_cpu == 0)
90                         cpu_hw_intr = 0x02;
91                 else
92                         cpu_hw_intr = 0x1d;
93
94                 change_c0_brcm_cmt_intr(0xf8018000,
95                                         (cpu_hw_intr << 27) | (0x03 << 15));
96
97                 /* single core, 2 threads (2 pipelines) */
98                 max_cpus = 2;
99
100                 break;
101         case CPU_BMIPS5000:
102                 /* enable raceless SW interrupts */
103                 set_c0_brcm_config(0x03 << 22);
104
105                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
106                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
107
108                 /* N cores, 2 threads per core */
109                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
110
111                 /* clear any pending SW interrupts */
112                 for (i = 0; i < max_cpus; i++) {
113                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
114                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
115                 }
116
117                 break;
118         default:
119                 max_cpus = 1;
120         }
121
122         if (!bmips_smp_enabled)
123                 max_cpus = 1;
124
125         /* this can be overridden by the BSP */
126         if (!board_ebase_setup)
127                 board_ebase_setup = &bmips_ebase_setup;
128
129         __cpu_number_map[boot_cpu] = 0;
130         __cpu_logical_map[0] = boot_cpu;
131
132         for (i = 0; i < max_cpus; i++) {
133                 if (i != boot_cpu) {
134                         __cpu_number_map[i] = cpu;
135                         __cpu_logical_map[cpu] = i;
136                         cpu++;
137                 }
138                 set_cpu_possible(i, 1);
139                 set_cpu_present(i, 1);
140         }
141 }
142
143 /*
144  * IPI IRQ setup - runs on CPU0
145  */
146 static void bmips_prepare_cpus(unsigned int max_cpus)
147 {
148         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
149
150         switch (current_cpu_type()) {
151         case CPU_BMIPS4350:
152         case CPU_BMIPS4380:
153                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
154                 break;
155         case CPU_BMIPS5000:
156                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
157                 break;
158         default:
159                 return;
160         }
161
162         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
163                         "smp_ipi0", NULL))
164                 panic("Can't request IPI0 interrupt");
165         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
166                         "smp_ipi1", NULL))
167                 panic("Can't request IPI1 interrupt");
168 }
169
170 /*
171  * Tell the hardware to boot CPUx - runs on CPU0
172  */
173 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
174 {
175         bmips_smp_boot_sp = __KSTK_TOS(idle);
176         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
177         mb();
178
179         /*
180          * Initial boot sequence for secondary CPU:
181          *   bmips_reset_nmi_vec @ a000_0000 ->
182          *   bmips_smp_entry ->
183          *   plat_wired_tlb_setup (cached function call; optional) ->
184          *   start_secondary (cached jump)
185          *
186          * Warm restart sequence:
187          *   play_dead WAIT loop ->
188          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
189          *   eret to play_dead ->
190          *   bmips_secondary_reentry ->
191          *   start_secondary
192          */
193
194         pr_info("SMP: Booting CPU%d...\n", cpu);
195
196         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
197                 switch (current_cpu_type()) {
198                 case CPU_BMIPS4350:
199                 case CPU_BMIPS4380:
200                         bmips43xx_send_ipi_single(cpu, 0);
201                         break;
202                 case CPU_BMIPS5000:
203                         bmips5000_send_ipi_single(cpu, 0);
204                         break;
205                 }
206         }
207         else {
208                 switch (current_cpu_type()) {
209                 case CPU_BMIPS4350:
210                 case CPU_BMIPS4380:
211                         /* Reset slave TP1 if booting from TP0 */
212                         if (cpu_logical_map(cpu) == 1)
213                                 set_c0_brcm_cmt_ctrl(0x01);
214                         break;
215                 case CPU_BMIPS5000:
216                         if (cpu & 0x01)
217                                 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
218                         else {
219                                 /*
220                                  * core N thread 0 was already booted; just
221                                  * pulse the NMI line
222                                  */
223                                 bmips_write_zscm_reg(0x210, 0xc0000000);
224                                 udelay(10);
225                                 bmips_write_zscm_reg(0x210, 0x00);
226                         }
227                         break;
228                 }
229                 cpumask_set_cpu(cpu, &bmips_booted_mask);
230         }
231 }
232
233 /*
234  * Early setup - runs on secondary CPU after cache probe
235  */
236 static void bmips_init_secondary(void)
237 {
238         /* move NMI vector to kseg0, in case XKS01 is enabled */
239
240         void __iomem *cbr;
241         unsigned long old_vec;
242         unsigned long relo_vector;
243         int boot_cpu;
244
245         switch (current_cpu_type()) {
246         case CPU_BMIPS4350:
247         case CPU_BMIPS4380:
248                 cbr = BMIPS_GET_CBR();
249
250                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
251                 relo_vector = boot_cpu ? BMIPS_RELO_VECTOR_CONTROL_0 :
252                                   BMIPS_RELO_VECTOR_CONTROL_1;
253
254                 old_vec = __raw_readl(cbr + relo_vector);
255                 __raw_writel(old_vec & ~0x20000000, cbr + relo_vector);
256
257                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
258                 break;
259         case CPU_BMIPS5000:
260                 write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
261                         (smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
262
263                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
264                 break;
265         }
266 }
267
268 /*
269  * Late setup - runs on secondary CPU before entering the idle loop
270  */
271 static void bmips_smp_finish(void)
272 {
273         pr_info("SMP: CPU%d is running\n", smp_processor_id());
274
275         /* make sure there won't be a timer interrupt for a little while */
276         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
277
278         irq_enable_hazard();
279         set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
280         irq_enable_hazard();
281 }
282
283 /*
284  * BMIPS5000 raceless IPIs
285  *
286  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
287  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
288  * IPI1 is used for SMP_CALL_FUNCTION
289  */
290
291 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
292 {
293         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
294 }
295
296 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
297 {
298         int action = irq - IPI0_IRQ;
299
300         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
301
302         if (action == 0)
303                 scheduler_ipi();
304         else
305                 smp_call_function_interrupt();
306
307         return IRQ_HANDLED;
308 }
309
310 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
311         unsigned int action)
312 {
313         unsigned int i;
314
315         for_each_cpu(i, mask)
316                 bmips5000_send_ipi_single(i, action);
317 }
318
319 /*
320  * BMIPS43xx racey IPIs
321  *
322  * We use one inbound SW IRQ for each CPU.
323  *
324  * A spinlock must be held in order to keep CPUx from accidentally clearing
325  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
326  * same spinlock is used to protect the action masks.
327  */
328
329 static DEFINE_SPINLOCK(ipi_lock);
330 static DEFINE_PER_CPU(int, ipi_action_mask);
331
332 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
333 {
334         unsigned long flags;
335
336         spin_lock_irqsave(&ipi_lock, flags);
337         set_c0_cause(cpu ? C_SW1 : C_SW0);
338         per_cpu(ipi_action_mask, cpu) |= action;
339         irq_enable_hazard();
340         spin_unlock_irqrestore(&ipi_lock, flags);
341 }
342
343 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
344 {
345         unsigned long flags;
346         int action, cpu = irq - IPI0_IRQ;
347
348         spin_lock_irqsave(&ipi_lock, flags);
349         action = __this_cpu_read(ipi_action_mask);
350         per_cpu(ipi_action_mask, cpu) = 0;
351         clear_c0_cause(cpu ? C_SW1 : C_SW0);
352         spin_unlock_irqrestore(&ipi_lock, flags);
353
354         if (action & SMP_RESCHEDULE_YOURSELF)
355                 scheduler_ipi();
356         if (action & SMP_CALL_FUNCTION)
357                 smp_call_function_interrupt();
358
359         return IRQ_HANDLED;
360 }
361
362 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
363         unsigned int action)
364 {
365         unsigned int i;
366
367         for_each_cpu(i, mask)
368                 bmips43xx_send_ipi_single(i, action);
369 }
370
371 #ifdef CONFIG_HOTPLUG_CPU
372
373 static int bmips_cpu_disable(void)
374 {
375         unsigned int cpu = smp_processor_id();
376
377         if (cpu == 0)
378                 return -EBUSY;
379
380         pr_info("SMP: CPU%d is offline\n", cpu);
381
382         set_cpu_online(cpu, false);
383         cpu_clear(cpu, cpu_callin_map);
384
385         local_flush_tlb_all();
386         local_flush_icache_range(0, ~0);
387
388         return 0;
389 }
390
391 static void bmips_cpu_die(unsigned int cpu)
392 {
393 }
394
395 void __ref play_dead(void)
396 {
397         idle_task_exit();
398
399         /* flush data cache */
400         _dma_cache_wback_inv(0, ~0);
401
402         /*
403          * Wakeup is on SW0 or SW1; disable everything else
404          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
405          * IRQ handlers; this clears ST0_IE and returns immediately.
406          */
407         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
408         change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
409                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
410         irq_disable_hazard();
411
412         /*
413          * wait for SW interrupt from bmips_boot_secondary(), then jump
414          * back to start_secondary()
415          */
416         __asm__ __volatile__(
417         "       wait\n"
418         "       j       bmips_secondary_reentry\n"
419         : : : "memory");
420 }
421
422 #endif /* CONFIG_HOTPLUG_CPU */
423
424 struct plat_smp_ops bmips43xx_smp_ops = {
425         .smp_setup              = bmips_smp_setup,
426         .prepare_cpus           = bmips_prepare_cpus,
427         .boot_secondary         = bmips_boot_secondary,
428         .smp_finish             = bmips_smp_finish,
429         .init_secondary         = bmips_init_secondary,
430         .send_ipi_single        = bmips43xx_send_ipi_single,
431         .send_ipi_mask          = bmips43xx_send_ipi_mask,
432 #ifdef CONFIG_HOTPLUG_CPU
433         .cpu_disable            = bmips_cpu_disable,
434         .cpu_die                = bmips_cpu_die,
435 #endif
436 };
437
438 struct plat_smp_ops bmips5000_smp_ops = {
439         .smp_setup              = bmips_smp_setup,
440         .prepare_cpus           = bmips_prepare_cpus,
441         .boot_secondary         = bmips_boot_secondary,
442         .smp_finish             = bmips_smp_finish,
443         .init_secondary         = bmips_init_secondary,
444         .send_ipi_single        = bmips5000_send_ipi_single,
445         .send_ipi_mask          = bmips5000_send_ipi_mask,
446 #ifdef CONFIG_HOTPLUG_CPU
447         .cpu_disable            = bmips_cpu_disable,
448         .cpu_die                = bmips_cpu_die,
449 #endif
450 };
451
452 #endif /* CONFIG_SMP */
453
454 /***********************************************************************
455  * BMIPS vector relocation
456  * This is primarily used for SMP boot, but it is applicable to some
457  * UP BMIPS systems as well.
458  ***********************************************************************/
459
460 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
461 {
462         memcpy((void *)dst, start, end - start);
463         dma_cache_wback((unsigned long)start, end - start);
464         local_flush_icache_range(dst, dst + (end - start));
465         instruction_hazard();
466 }
467
468 static inline void bmips_nmi_handler_setup(void)
469 {
470         bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
471                 &bmips_reset_nmi_vec_end);
472         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
473                 &bmips_smp_int_vec_end);
474 }
475
476 void bmips_ebase_setup(void)
477 {
478         unsigned long new_ebase = ebase;
479         void __iomem __maybe_unused *cbr;
480
481         BUG_ON(ebase != CKSEG0);
482
483         switch (current_cpu_type()) {
484         case CPU_BMIPS4350:
485                 /*
486                  * BMIPS4350 cannot relocate the normal vectors, but it
487                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
488                  * the relocated BEV=1, IV=0 general exception vector @
489                  * 0xa000_0380.
490                  *
491                  * set_uncached_handler() is used here because:
492                  *  - CPU1 will run this from uncached space
493                  *  - None of the cacheflush functions are set up yet
494                  */
495                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
496                         &bmips_smp_int_vec, 0x80);
497                 __sync();
498                 return;
499         case CPU_BMIPS4380:
500                 /*
501                  * 0x8000_0000: reset/NMI (initially in kseg1)
502                  * 0x8000_0400: normal vectors
503                  */
504                 new_ebase = 0x80000400;
505                 cbr = BMIPS_GET_CBR();
506                 __raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
507                 __raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
508                 break;
509         case CPU_BMIPS5000:
510                 /*
511                  * 0x8000_0000: reset/NMI (initially in kseg1)
512                  * 0x8000_1000: normal vectors
513                  */
514                 new_ebase = 0x80001000;
515                 write_c0_brcm_bootvec(0xa0088008);
516                 write_c0_ebase(new_ebase);
517                 if (max_cpus > 2)
518                         bmips_write_zscm_reg(0xa0, 0xa008a008);
519                 break;
520         default:
521                 return;
522         }
523
524         board_nmi_handler_setup = &bmips_nmi_handler_setup;
525         ebase = new_ebase;
526 }
527
528 asmlinkage void __weak plat_wired_tlb_setup(void)
529 {
530         /*
531          * Called when starting/restarting a secondary CPU.
532          * Kernel stacks and other important data might only be accessible
533          * once the wired entries are present.
534          */
535 }