block, bfq: add requeue-request hook
[sfrench/cifs-2.6.git] / arch / mips / kernel / setup.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
31
32 #include <asm/addrspace.h>
33 #include <asm/bootinfo.h>
34 #include <asm/bugs.h>
35 #include <asm/cache.h>
36 #include <asm/cdmm.h>
37 #include <asm/cpu.h>
38 #include <asm/debug.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <asm/smp-ops.h>
42 #include <asm/prom.h>
43
44 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
45 const char __section(.appended_dtb) __appended_dtb[0x100000];
46 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
47
48 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
49
50 EXPORT_SYMBOL(cpu_data);
51
52 #ifdef CONFIG_VT
53 struct screen_info screen_info;
54 #endif
55
56 /*
57  * Setup information
58  *
59  * These are initialized so they are in the .data section
60  */
61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
62
63 EXPORT_SYMBOL(mips_machtype);
64
65 struct boot_mem_map boot_mem_map;
66
67 static char __initdata command_line[COMMAND_LINE_SIZE];
68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
69
70 #ifdef CONFIG_CMDLINE_BOOL
71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
72 #endif
73
74 /*
75  * mips_io_port_base is the begin of the address space to which x86 style
76  * I/O ports are mapped.
77  */
78 const unsigned long mips_io_port_base = -1;
79 EXPORT_SYMBOL(mips_io_port_base);
80
81 static struct resource code_resource = { .name = "Kernel code", };
82 static struct resource data_resource = { .name = "Kernel data", };
83 static struct resource bss_resource = { .name = "Kernel bss", };
84
85 static void *detect_magic __initdata = detect_memory_region;
86
87 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
88 {
89         int x = boot_mem_map.nr_map;
90         int i;
91
92         /*
93          * If the region reaches the top of the physical address space, adjust
94          * the size slightly so that (start + size) doesn't overflow
95          */
96         if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
97                 --size;
98
99         /* Sanity check */
100         if (start + size < start) {
101                 pr_warn("Trying to add an invalid memory region, skipped\n");
102                 return;
103         }
104
105         /*
106          * Try to merge with existing entry, if any.
107          */
108         for (i = 0; i < boot_mem_map.nr_map; i++) {
109                 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
110                 unsigned long top;
111
112                 if (entry->type != type)
113                         continue;
114
115                 if (start + size < entry->addr)
116                         continue;                       /* no overlap */
117
118                 if (entry->addr + entry->size < start)
119                         continue;                       /* no overlap */
120
121                 top = max(entry->addr + entry->size, start + size);
122                 entry->addr = min(entry->addr, start);
123                 entry->size = top - entry->addr;
124
125                 return;
126         }
127
128         if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
129                 pr_err("Ooops! Too many entries in the memory map!\n");
130                 return;
131         }
132
133         boot_mem_map.map[x].addr = start;
134         boot_mem_map.map[x].size = size;
135         boot_mem_map.map[x].type = type;
136         boot_mem_map.nr_map++;
137 }
138
139 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
140 {
141         void *dm = &detect_magic;
142         phys_addr_t size;
143
144         for (size = sz_min; size < sz_max; size <<= 1) {
145                 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
146                         break;
147         }
148
149         pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
150                 ((unsigned long long) size) / SZ_1M,
151                 (unsigned long long) start,
152                 ((unsigned long long) sz_min) / SZ_1M,
153                 ((unsigned long long) sz_max) / SZ_1M);
154
155         add_memory_region(start, size, BOOT_MEM_RAM);
156 }
157
158 bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
159 {
160         int i;
161         bool in_ram = false, free = true;
162
163         for (i = 0; i < boot_mem_map.nr_map; i++) {
164                 phys_addr_t start_, end_;
165
166                 start_ = boot_mem_map.map[i].addr;
167                 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
168
169                 switch (boot_mem_map.map[i].type) {
170                 case BOOT_MEM_RAM:
171                         if (start >= start_ && start + size <= end_)
172                                 in_ram = true;
173                         break;
174                 case BOOT_MEM_RESERVED:
175                         if ((start >= start_ && start < end_) ||
176                             (start < start_ && start + size >= start_))
177                                 free = false;
178                         break;
179                 default:
180                         continue;
181                 }
182         }
183
184         return in_ram && free;
185 }
186
187 static void __init print_memory_map(void)
188 {
189         int i;
190         const int field = 2 * sizeof(unsigned long);
191
192         for (i = 0; i < boot_mem_map.nr_map; i++) {
193                 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
194                        field, (unsigned long long) boot_mem_map.map[i].size,
195                        field, (unsigned long long) boot_mem_map.map[i].addr);
196
197                 switch (boot_mem_map.map[i].type) {
198                 case BOOT_MEM_RAM:
199                         printk(KERN_CONT "(usable)\n");
200                         break;
201                 case BOOT_MEM_INIT_RAM:
202                         printk(KERN_CONT "(usable after init)\n");
203                         break;
204                 case BOOT_MEM_ROM_DATA:
205                         printk(KERN_CONT "(ROM data)\n");
206                         break;
207                 case BOOT_MEM_RESERVED:
208                         printk(KERN_CONT "(reserved)\n");
209                         break;
210                 default:
211                         printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
212                         break;
213                 }
214         }
215 }
216
217 /*
218  * Manage initrd
219  */
220 #ifdef CONFIG_BLK_DEV_INITRD
221
222 static int __init rd_start_early(char *p)
223 {
224         unsigned long start = memparse(p, &p);
225
226 #ifdef CONFIG_64BIT
227         /* Guess if the sign extension was forgotten by bootloader */
228         if (start < XKPHYS)
229                 start = (int)start;
230 #endif
231         initrd_start = start;
232         initrd_end += start;
233         return 0;
234 }
235 early_param("rd_start", rd_start_early);
236
237 static int __init rd_size_early(char *p)
238 {
239         initrd_end += memparse(p, &p);
240         return 0;
241 }
242 early_param("rd_size", rd_size_early);
243
244 /* it returns the next free pfn after initrd */
245 static unsigned long __init init_initrd(void)
246 {
247         unsigned long end;
248
249         /*
250          * Board specific code or command line parser should have
251          * already set up initrd_start and initrd_end. In these cases
252          * perfom sanity checks and use them if all looks good.
253          */
254         if (!initrd_start || initrd_end <= initrd_start)
255                 goto disable;
256
257         if (initrd_start & ~PAGE_MASK) {
258                 pr_err("initrd start must be page aligned\n");
259                 goto disable;
260         }
261         if (initrd_start < PAGE_OFFSET) {
262                 pr_err("initrd start < PAGE_OFFSET\n");
263                 goto disable;
264         }
265
266         /*
267          * Sanitize initrd addresses. For example firmware
268          * can't guess if they need to pass them through
269          * 64-bits values if the kernel has been built in pure
270          * 32-bit. We need also to switch from KSEG0 to XKPHYS
271          * addresses now, so the code can now safely use __pa().
272          */
273         end = __pa(initrd_end);
274         initrd_end = (unsigned long)__va(end);
275         initrd_start = (unsigned long)__va(__pa(initrd_start));
276
277         ROOT_DEV = Root_RAM0;
278         return PFN_UP(end);
279 disable:
280         initrd_start = 0;
281         initrd_end = 0;
282         return 0;
283 }
284
285 /* In some conditions (e.g. big endian bootloader with a little endian
286    kernel), the initrd might appear byte swapped.  Try to detect this and
287    byte swap it if needed.  */
288 static void __init maybe_bswap_initrd(void)
289 {
290 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
291         u64 buf;
292
293         /* Check for CPIO signature */
294         if (!memcmp((void *)initrd_start, "070701", 6))
295                 return;
296
297         /* Check for compressed initrd */
298         if (decompress_method((unsigned char *)initrd_start, 8, NULL))
299                 return;
300
301         /* Try again with a byte swapped header */
302         buf = swab64p((u64 *)initrd_start);
303         if (!memcmp(&buf, "070701", 6) ||
304             decompress_method((unsigned char *)(&buf), 8, NULL)) {
305                 unsigned long i;
306
307                 pr_info("Byteswapped initrd detected\n");
308                 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
309                         swab64s((u64 *)i);
310         }
311 #endif
312 }
313
314 static void __init finalize_initrd(void)
315 {
316         unsigned long size = initrd_end - initrd_start;
317
318         if (size == 0) {
319                 printk(KERN_INFO "Initrd not found or empty");
320                 goto disable;
321         }
322         if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
323                 printk(KERN_ERR "Initrd extends beyond end of memory");
324                 goto disable;
325         }
326
327         maybe_bswap_initrd();
328
329         reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
330         initrd_below_start_ok = 1;
331
332         pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
333                 initrd_start, size);
334         return;
335 disable:
336         printk(KERN_CONT " - disabling initrd\n");
337         initrd_start = 0;
338         initrd_end = 0;
339 }
340
341 #else  /* !CONFIG_BLK_DEV_INITRD */
342
343 static unsigned long __init init_initrd(void)
344 {
345         return 0;
346 }
347
348 #define finalize_initrd()       do {} while (0)
349
350 #endif
351
352 /*
353  * Initialize the bootmem allocator. It also setup initrd related data
354  * if needed.
355  */
356 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
357
358 static void __init bootmem_init(void)
359 {
360         init_initrd();
361         finalize_initrd();
362 }
363
364 #else  /* !CONFIG_SGI_IP27 */
365
366 static unsigned long __init bootmap_bytes(unsigned long pages)
367 {
368         unsigned long bytes = DIV_ROUND_UP(pages, 8);
369
370         return ALIGN(bytes, sizeof(long));
371 }
372
373 static void __init bootmem_init(void)
374 {
375         unsigned long reserved_end;
376         unsigned long mapstart = ~0UL;
377         unsigned long bootmap_size;
378         bool bootmap_valid = false;
379         int i;
380
381         /*
382          * Sanity check any INITRD first. We don't take it into account
383          * for bootmem setup initially, rely on the end-of-kernel-code
384          * as our memory range starting point. Once bootmem is inited we
385          * will reserve the area used for the initrd.
386          */
387         init_initrd();
388         reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
389
390         /*
391          * max_low_pfn is not a number of pages. The number of pages
392          * of the system is given by 'max_low_pfn - min_low_pfn'.
393          */
394         min_low_pfn = ~0UL;
395         max_low_pfn = 0;
396
397         /*
398          * Find the highest page frame number we have available.
399          */
400         for (i = 0; i < boot_mem_map.nr_map; i++) {
401                 unsigned long start, end;
402
403                 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
404                         continue;
405
406                 start = PFN_UP(boot_mem_map.map[i].addr);
407                 end = PFN_DOWN(boot_mem_map.map[i].addr
408                                 + boot_mem_map.map[i].size);
409
410 #ifndef CONFIG_HIGHMEM
411                 /*
412                  * Skip highmem here so we get an accurate max_low_pfn if low
413                  * memory stops short of high memory.
414                  * If the region overlaps HIGHMEM_START, end is clipped so
415                  * max_pfn excludes the highmem portion.
416                  */
417                 if (start >= PFN_DOWN(HIGHMEM_START))
418                         continue;
419                 if (end > PFN_DOWN(HIGHMEM_START))
420                         end = PFN_DOWN(HIGHMEM_START);
421 #endif
422
423                 if (end > max_low_pfn)
424                         max_low_pfn = end;
425                 if (start < min_low_pfn)
426                         min_low_pfn = start;
427                 if (end <= reserved_end)
428                         continue;
429 #ifdef CONFIG_BLK_DEV_INITRD
430                 /* Skip zones before initrd and initrd itself */
431                 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
432                         continue;
433 #endif
434                 if (start >= mapstart)
435                         continue;
436                 mapstart = max(reserved_end, start);
437         }
438
439         if (min_low_pfn >= max_low_pfn)
440                 panic("Incorrect memory mapping !!!");
441         if (min_low_pfn > ARCH_PFN_OFFSET) {
442                 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
443                         (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
444                         min_low_pfn - ARCH_PFN_OFFSET);
445         } else if (min_low_pfn < ARCH_PFN_OFFSET) {
446                 pr_info("%lu free pages won't be used\n",
447                         ARCH_PFN_OFFSET - min_low_pfn);
448         }
449         min_low_pfn = ARCH_PFN_OFFSET;
450
451         /*
452          * Determine low and high memory ranges
453          */
454         max_pfn = max_low_pfn;
455         if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
456 #ifdef CONFIG_HIGHMEM
457                 highstart_pfn = PFN_DOWN(HIGHMEM_START);
458                 highend_pfn = max_low_pfn;
459 #endif
460                 max_low_pfn = PFN_DOWN(HIGHMEM_START);
461         }
462
463 #ifdef CONFIG_BLK_DEV_INITRD
464         /*
465          * mapstart should be after initrd_end
466          */
467         if (initrd_end)
468                 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
469 #endif
470
471         /*
472          * check that mapstart doesn't overlap with any of
473          * memory regions that have been reserved through eg. DTB
474          */
475         bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
476
477         bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
478                                                 bootmap_size);
479         for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
480                 unsigned long mapstart_addr;
481
482                 switch (boot_mem_map.map[i].type) {
483                 case BOOT_MEM_RESERVED:
484                         mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
485                                                 boot_mem_map.map[i].size);
486                         if (PHYS_PFN(mapstart_addr) < mapstart)
487                                 break;
488
489                         bootmap_valid = memory_region_available(mapstart_addr,
490                                                                 bootmap_size);
491                         if (bootmap_valid)
492                                 mapstart = PHYS_PFN(mapstart_addr);
493                         break;
494                 default:
495                         break;
496                 }
497         }
498
499         if (!bootmap_valid)
500                 panic("No memory area to place a bootmap bitmap");
501
502         /*
503          * Initialize the boot-time allocator with low memory only.
504          */
505         if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
506                                          min_low_pfn, max_low_pfn))
507                 panic("Unexpected memory size required for bootmap");
508
509         for (i = 0; i < boot_mem_map.nr_map; i++) {
510                 unsigned long start, end;
511
512                 start = PFN_UP(boot_mem_map.map[i].addr);
513                 end = PFN_DOWN(boot_mem_map.map[i].addr
514                                 + boot_mem_map.map[i].size);
515
516                 if (start <= min_low_pfn)
517                         start = min_low_pfn;
518                 if (start >= end)
519                         continue;
520
521 #ifndef CONFIG_HIGHMEM
522                 if (end > max_low_pfn)
523                         end = max_low_pfn;
524
525                 /*
526                  * ... finally, is the area going away?
527                  */
528                 if (end <= start)
529                         continue;
530 #endif
531
532                 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
533         }
534
535         /*
536          * Register fully available low RAM pages with the bootmem allocator.
537          */
538         for (i = 0; i < boot_mem_map.nr_map; i++) {
539                 unsigned long start, end, size;
540
541                 start = PFN_UP(boot_mem_map.map[i].addr);
542                 end   = PFN_DOWN(boot_mem_map.map[i].addr
543                                     + boot_mem_map.map[i].size);
544
545                 /*
546                  * Reserve usable memory.
547                  */
548                 switch (boot_mem_map.map[i].type) {
549                 case BOOT_MEM_RAM:
550                         break;
551                 case BOOT_MEM_INIT_RAM:
552                         memory_present(0, start, end);
553                         continue;
554                 default:
555                         /* Not usable memory */
556                         if (start > min_low_pfn && end < max_low_pfn)
557                                 reserve_bootmem(boot_mem_map.map[i].addr,
558                                                 boot_mem_map.map[i].size,
559                                                 BOOTMEM_DEFAULT);
560                         continue;
561                 }
562
563                 /*
564                  * We are rounding up the start address of usable memory
565                  * and at the end of the usable range downwards.
566                  */
567                 if (start >= max_low_pfn)
568                         continue;
569                 if (start < reserved_end)
570                         start = reserved_end;
571                 if (end > max_low_pfn)
572                         end = max_low_pfn;
573
574                 /*
575                  * ... finally, is the area going away?
576                  */
577                 if (end <= start)
578                         continue;
579                 size = end - start;
580
581                 /* Register lowmem ranges */
582                 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
583                 memory_present(0, start, end);
584         }
585
586         /*
587          * Reserve the bootmap memory.
588          */
589         reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
590
591 #ifdef CONFIG_RELOCATABLE
592         /*
593          * The kernel reserves all memory below its _end symbol as bootmem,
594          * but the kernel may now be at a much higher address. The memory
595          * between the original and new locations may be returned to the system.
596          */
597         if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
598                 unsigned long offset;
599                 extern void show_kernel_relocation(const char *level);
600
601                 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
602                 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
603
604 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
605                 /*
606                  * This information is necessary when debugging the kernel
607                  * But is a security vulnerability otherwise!
608                  */
609                 show_kernel_relocation(KERN_INFO);
610 #endif
611         }
612 #endif
613
614         /*
615          * Reserve initrd memory if needed.
616          */
617         finalize_initrd();
618 }
619
620 #endif  /* CONFIG_SGI_IP27 */
621
622 /*
623  * arch_mem_init - initialize memory management subsystem
624  *
625  *  o plat_mem_setup() detects the memory configuration and will record detected
626  *    memory areas using add_memory_region.
627  *
628  * At this stage the memory configuration of the system is known to the
629  * kernel but generic memory management system is still entirely uninitialized.
630  *
631  *  o bootmem_init()
632  *  o sparse_init()
633  *  o paging_init()
634  *  o dma_contiguous_reserve()
635  *
636  * At this stage the bootmem allocator is ready to use.
637  *
638  * NOTE: historically plat_mem_setup did the entire platform initialization.
639  *       This was rather impractical because it meant plat_mem_setup had to
640  * get away without any kind of memory allocator.  To keep old code from
641  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
642  * initialization hook for anything else was introduced.
643  */
644
645 static int usermem __initdata;
646
647 static int __init early_parse_mem(char *p)
648 {
649         phys_addr_t start, size;
650
651         /*
652          * If a user specifies memory size, we
653          * blow away any automatically generated
654          * size.
655          */
656         if (usermem == 0) {
657                 boot_mem_map.nr_map = 0;
658                 usermem = 1;
659         }
660         start = 0;
661         size = memparse(p, &p);
662         if (*p == '@')
663                 start = memparse(p + 1, &p);
664
665         add_memory_region(start, size, BOOT_MEM_RAM);
666
667         if (start && start > PHYS_OFFSET)
668                 add_memory_region(PHYS_OFFSET, start - PHYS_OFFSET,
669                                 BOOT_MEM_RESERVED);
670         return 0;
671 }
672 early_param("mem", early_parse_mem);
673
674 static int __init early_parse_memmap(char *p)
675 {
676         char *oldp;
677         u64 start_at, mem_size;
678
679         if (!p)
680                 return -EINVAL;
681
682         if (!strncmp(p, "exactmap", 8)) {
683                 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
684                 return 0;
685         }
686
687         oldp = p;
688         mem_size = memparse(p, &p);
689         if (p == oldp)
690                 return -EINVAL;
691
692         if (*p == '@') {
693                 start_at = memparse(p+1, &p);
694                 add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
695         } else if (*p == '#') {
696                 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
697                 return -EINVAL;
698         } else if (*p == '$') {
699                 start_at = memparse(p+1, &p);
700                 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
701         } else {
702                 pr_err("\"memmap\" invalid format!\n");
703                 return -EINVAL;
704         }
705
706         if (*p == '\0') {
707                 usermem = 1;
708                 return 0;
709         } else
710                 return -EINVAL;
711 }
712 early_param("memmap", early_parse_memmap);
713
714 #ifdef CONFIG_PROC_VMCORE
715 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
716 static int __init early_parse_elfcorehdr(char *p)
717 {
718         int i;
719
720         setup_elfcorehdr = memparse(p, &p);
721
722         for (i = 0; i < boot_mem_map.nr_map; i++) {
723                 unsigned long start = boot_mem_map.map[i].addr;
724                 unsigned long end = (boot_mem_map.map[i].addr +
725                                      boot_mem_map.map[i].size);
726                 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
727                         /*
728                          * Reserve from the elf core header to the end of
729                          * the memory segment, that should all be kdump
730                          * reserved memory.
731                          */
732                         setup_elfcorehdr_size = end - setup_elfcorehdr;
733                         break;
734                 }
735         }
736         /*
737          * If we don't find it in the memory map, then we shouldn't
738          * have to worry about it, as the new kernel won't use it.
739          */
740         return 0;
741 }
742 early_param("elfcorehdr", early_parse_elfcorehdr);
743 #endif
744
745 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
746 {
747         phys_addr_t size;
748         int i;
749
750         size = end - mem;
751         if (!size)
752                 return;
753
754         /* Make sure it is in the boot_mem_map */
755         for (i = 0; i < boot_mem_map.nr_map; i++) {
756                 if (mem >= boot_mem_map.map[i].addr &&
757                     mem < (boot_mem_map.map[i].addr +
758                            boot_mem_map.map[i].size))
759                         return;
760         }
761         add_memory_region(mem, size, type);
762 }
763
764 #ifdef CONFIG_KEXEC
765 static inline unsigned long long get_total_mem(void)
766 {
767         unsigned long long total;
768
769         total = max_pfn - min_low_pfn;
770         return total << PAGE_SHIFT;
771 }
772
773 static void __init mips_parse_crashkernel(void)
774 {
775         unsigned long long total_mem;
776         unsigned long long crash_size, crash_base;
777         int ret;
778
779         total_mem = get_total_mem();
780         ret = parse_crashkernel(boot_command_line, total_mem,
781                                 &crash_size, &crash_base);
782         if (ret != 0 || crash_size <= 0)
783                 return;
784
785         if (!memory_region_available(crash_base, crash_size)) {
786                 pr_warn("Invalid memory region reserved for crash kernel\n");
787                 return;
788         }
789
790         crashk_res.start = crash_base;
791         crashk_res.end   = crash_base + crash_size - 1;
792 }
793
794 static void __init request_crashkernel(struct resource *res)
795 {
796         int ret;
797
798         if (crashk_res.start == crashk_res.end)
799                 return;
800
801         ret = request_resource(res, &crashk_res);
802         if (!ret)
803                 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
804                         (unsigned long)((crashk_res.end -
805                                          crashk_res.start + 1) >> 20),
806                         (unsigned long)(crashk_res.start  >> 20));
807 }
808 #else /* !defined(CONFIG_KEXEC)         */
809 static void __init mips_parse_crashkernel(void)
810 {
811 }
812
813 static void __init request_crashkernel(struct resource *res)
814 {
815 }
816 #endif /* !defined(CONFIG_KEXEC)  */
817
818 #define USE_PROM_CMDLINE        IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
819 #define USE_DTB_CMDLINE         IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
820 #define EXTEND_WITH_PROM        IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
821 #define BUILTIN_EXTEND_WITH_PROM        \
822         IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
823
824 static void __init arch_mem_init(char **cmdline_p)
825 {
826         struct memblock_region *reg;
827         extern void plat_mem_setup(void);
828
829         /* call board setup routine */
830         plat_mem_setup();
831
832         /*
833          * Make sure all kernel memory is in the maps.  The "UP" and
834          * "DOWN" are opposite for initdata since if it crosses over
835          * into another memory section you don't want that to be
836          * freed when the initdata is freed.
837          */
838         arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
839                          PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
840                          BOOT_MEM_RAM);
841         arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
842                          PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
843                          BOOT_MEM_INIT_RAM);
844
845         pr_info("Determined physical RAM map:\n");
846         print_memory_map();
847
848 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
849         strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
850 #else
851         if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
852             (USE_DTB_CMDLINE && !boot_command_line[0]))
853                 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
854
855         if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
856                 if (boot_command_line[0])
857                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
858                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
859         }
860
861 #if defined(CONFIG_CMDLINE_BOOL)
862         if (builtin_cmdline[0]) {
863                 if (boot_command_line[0])
864                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
865                 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
866         }
867
868         if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
869                 if (boot_command_line[0])
870                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
871                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
872         }
873 #endif
874 #endif
875         strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
876
877         *cmdline_p = command_line;
878
879         parse_early_param();
880
881         if (usermem) {
882                 pr_info("User-defined physical RAM map:\n");
883                 print_memory_map();
884         }
885
886         early_init_fdt_reserve_self();
887         early_init_fdt_scan_reserved_mem();
888
889         bootmem_init();
890 #ifdef CONFIG_PROC_VMCORE
891         if (setup_elfcorehdr && setup_elfcorehdr_size) {
892                 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
893                        setup_elfcorehdr, setup_elfcorehdr_size);
894                 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
895                                 BOOTMEM_DEFAULT);
896         }
897 #endif
898
899         mips_parse_crashkernel();
900 #ifdef CONFIG_KEXEC
901         if (crashk_res.start != crashk_res.end)
902                 reserve_bootmem(crashk_res.start,
903                                 crashk_res.end - crashk_res.start + 1,
904                                 BOOTMEM_DEFAULT);
905 #endif
906         device_tree_init();
907         sparse_init();
908         plat_swiotlb_setup();
909
910         dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
911         /* Tell bootmem about cma reserved memblock section */
912         for_each_memblock(reserved, reg)
913                 if (reg->size != 0)
914                         reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
915
916         reserve_bootmem_region(__pa_symbol(&__nosave_begin),
917                         __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
918 }
919
920 static void __init resource_init(void)
921 {
922         int i;
923
924         if (UNCAC_BASE != IO_BASE)
925                 return;
926
927         code_resource.start = __pa_symbol(&_text);
928         code_resource.end = __pa_symbol(&_etext) - 1;
929         data_resource.start = __pa_symbol(&_etext);
930         data_resource.end = __pa_symbol(&_edata) - 1;
931         bss_resource.start = __pa_symbol(&__bss_start);
932         bss_resource.end = __pa_symbol(&__bss_stop) - 1;
933
934         for (i = 0; i < boot_mem_map.nr_map; i++) {
935                 struct resource *res;
936                 unsigned long start, end;
937
938                 start = boot_mem_map.map[i].addr;
939                 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
940                 if (start >= HIGHMEM_START)
941                         continue;
942                 if (end >= HIGHMEM_START)
943                         end = HIGHMEM_START - 1;
944
945                 res = alloc_bootmem(sizeof(struct resource));
946
947                 res->start = start;
948                 res->end = end;
949                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
950
951                 switch (boot_mem_map.map[i].type) {
952                 case BOOT_MEM_RAM:
953                 case BOOT_MEM_INIT_RAM:
954                 case BOOT_MEM_ROM_DATA:
955                         res->name = "System RAM";
956                         res->flags |= IORESOURCE_SYSRAM;
957                         break;
958                 case BOOT_MEM_RESERVED:
959                 default:
960                         res->name = "reserved";
961                 }
962
963                 request_resource(&iomem_resource, res);
964
965                 /*
966                  *  We don't know which RAM region contains kernel data,
967                  *  so we try it repeatedly and let the resource manager
968                  *  test it.
969                  */
970                 request_resource(res, &code_resource);
971                 request_resource(res, &data_resource);
972                 request_resource(res, &bss_resource);
973                 request_crashkernel(res);
974         }
975 }
976
977 #ifdef CONFIG_SMP
978 static void __init prefill_possible_map(void)
979 {
980         int i, possible = num_possible_cpus();
981
982         if (possible > nr_cpu_ids)
983                 possible = nr_cpu_ids;
984
985         for (i = 0; i < possible; i++)
986                 set_cpu_possible(i, true);
987         for (; i < NR_CPUS; i++)
988                 set_cpu_possible(i, false);
989
990         nr_cpu_ids = possible;
991 }
992 #else
993 static inline void prefill_possible_map(void) {}
994 #endif
995
996 void __init setup_arch(char **cmdline_p)
997 {
998         cpu_probe();
999         mips_cm_probe();
1000         prom_init();
1001
1002         setup_early_fdc_console();
1003 #ifdef CONFIG_EARLY_PRINTK
1004         setup_early_printk();
1005 #endif
1006         cpu_report();
1007         check_bugs_early();
1008
1009 #if defined(CONFIG_VT)
1010 #if defined(CONFIG_VGA_CONSOLE)
1011         conswitchp = &vga_con;
1012 #elif defined(CONFIG_DUMMY_CONSOLE)
1013         conswitchp = &dummy_con;
1014 #endif
1015 #endif
1016
1017         arch_mem_init(cmdline_p);
1018
1019         resource_init();
1020         plat_smp_setup();
1021         prefill_possible_map();
1022
1023         cpu_cache_init();
1024         paging_init();
1025 }
1026
1027 unsigned long kernelsp[NR_CPUS];
1028 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1029
1030 #ifdef CONFIG_USE_OF
1031 unsigned long fw_passed_dtb;
1032 #endif
1033
1034 #ifdef CONFIG_DEBUG_FS
1035 struct dentry *mips_debugfs_dir;
1036 static int __init debugfs_mips(void)
1037 {
1038         struct dentry *d;
1039
1040         d = debugfs_create_dir("mips", NULL);
1041         if (!d)
1042                 return -ENOMEM;
1043         mips_debugfs_dir = d;
1044         return 0;
1045 }
1046 arch_initcall(debugfs_mips);
1047 #endif