Merge remote-tracking branch 'asoc/topic/intel' into asoc-next
[sfrench/cifs-2.6.git] / arch / mips / kernel / pm-cps.c
1 /*
2  * Copyright (C) 2014 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10
11 #include <linux/cpuhotplug.h>
12 #include <linux/init.h>
13 #include <linux/percpu.h>
14 #include <linux/slab.h>
15
16 #include <asm/asm-offsets.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cacheops.h>
19 #include <asm/idle.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mipsmtregs.h>
23 #include <asm/pm.h>
24 #include <asm/pm-cps.h>
25 #include <asm/smp-cps.h>
26 #include <asm/uasm.h>
27
28 /*
29  * cps_nc_entry_fn - type of a generated non-coherent state entry function
30  * @online: the count of online coupled VPEs
31  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
32  *
33  * The code entering & exiting non-coherent states is generated at runtime
34  * using uasm, in order to ensure that the compiler cannot insert a stray
35  * memory access at an unfortunate time and to allow the generation of optimal
36  * core-specific code particularly for cache routines. If coupled_coherence
37  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
38  * returns the number of VPEs that were in the wait state at the point this
39  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
40  * the entry function for CPS_PM_NC_WAIT.
41  */
42 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
43
44 /*
45  * The entry point of the generated non-coherent idle state entry/exit
46  * functions. Actually per-core rather than per-CPU.
47  */
48 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
49                                   nc_asm_enter);
50
51 /* Bitmap indicating which states are supported by the system */
52 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
53
54 /*
55  * Indicates the number of coupled VPEs ready to operate in a non-coherent
56  * state. Actually per-core rather than per-CPU.
57  */
58 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
59
60 /* Indicates online CPUs coupled with the current CPU */
61 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
62
63 /*
64  * Used to synchronize entry to deep idle states. Actually per-core rather
65  * than per-CPU.
66  */
67 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
68
69 /* Saved CPU state across the CPS_PM_POWER_GATED state */
70 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
71
72 /* A somewhat arbitrary number of labels & relocs for uasm */
73 static struct uasm_label labels[32];
74 static struct uasm_reloc relocs[32];
75
76 enum mips_reg {
77         zero, at, v0, v1, a0, a1, a2, a3,
78         t0, t1, t2, t3, t4, t5, t6, t7,
79         s0, s1, s2, s3, s4, s5, s6, s7,
80         t8, t9, k0, k1, gp, sp, fp, ra,
81 };
82
83 bool cps_pm_support_state(enum cps_pm_state state)
84 {
85         return test_bit(state, state_support);
86 }
87
88 static void coupled_barrier(atomic_t *a, unsigned online)
89 {
90         /*
91          * This function is effectively the same as
92          * cpuidle_coupled_parallel_barrier, which can't be used here since
93          * there's no cpuidle device.
94          */
95
96         if (!coupled_coherence)
97                 return;
98
99         smp_mb__before_atomic();
100         atomic_inc(a);
101
102         while (atomic_read(a) < online)
103                 cpu_relax();
104
105         if (atomic_inc_return(a) == online * 2) {
106                 atomic_set(a, 0);
107                 return;
108         }
109
110         while (atomic_read(a) > online)
111                 cpu_relax();
112 }
113
114 int cps_pm_enter_state(enum cps_pm_state state)
115 {
116         unsigned cpu = smp_processor_id();
117         unsigned core = current_cpu_data.core;
118         unsigned online, left;
119         cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
120         u32 *core_ready_count, *nc_core_ready_count;
121         void *nc_addr;
122         cps_nc_entry_fn entry;
123         struct core_boot_config *core_cfg;
124         struct vpe_boot_config *vpe_cfg;
125
126         /* Check that there is an entry function for this state */
127         entry = per_cpu(nc_asm_enter, core)[state];
128         if (!entry)
129                 return -EINVAL;
130
131         /* Calculate which coupled CPUs (VPEs) are online */
132 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
133         if (cpu_online(cpu)) {
134                 cpumask_and(coupled_mask, cpu_online_mask,
135                             &cpu_sibling_map[cpu]);
136                 online = cpumask_weight(coupled_mask);
137                 cpumask_clear_cpu(cpu, coupled_mask);
138         } else
139 #endif
140         {
141                 cpumask_clear(coupled_mask);
142                 online = 1;
143         }
144
145         /* Setup the VPE to run mips_cps_pm_restore when started again */
146         if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
147                 /* Power gating relies upon CPS SMP */
148                 if (!mips_cps_smp_in_use())
149                         return -EINVAL;
150
151                 core_cfg = &mips_cps_core_bootcfg[core];
152                 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
153                 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
154                 vpe_cfg->gp = (unsigned long)current_thread_info();
155                 vpe_cfg->sp = 0;
156         }
157
158         /* Indicate that this CPU might not be coherent */
159         cpumask_clear_cpu(cpu, &cpu_coherent_mask);
160         smp_mb__after_atomic();
161
162         /* Create a non-coherent mapping of the core ready_count */
163         core_ready_count = per_cpu(ready_count, core);
164         nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
165                                    (unsigned long)core_ready_count);
166         nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
167         nc_core_ready_count = nc_addr;
168
169         /* Ensure ready_count is zero-initialised before the assembly runs */
170         ACCESS_ONCE(*nc_core_ready_count) = 0;
171         coupled_barrier(&per_cpu(pm_barrier, core), online);
172
173         /* Run the generated entry code */
174         left = entry(online, nc_core_ready_count);
175
176         /* Remove the non-coherent mapping of ready_count */
177         kunmap_noncoherent();
178
179         /* Indicate that this CPU is definitely coherent */
180         cpumask_set_cpu(cpu, &cpu_coherent_mask);
181
182         /*
183          * If this VPE is the first to leave the non-coherent wait state then
184          * it needs to wake up any coupled VPEs still running their wait
185          * instruction so that they return to cpuidle, which can then complete
186          * coordination between the coupled VPEs & provide the governor with
187          * a chance to reflect on the length of time the VPEs were in the
188          * idle state.
189          */
190         if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
191                 arch_send_call_function_ipi_mask(coupled_mask);
192
193         return 0;
194 }
195
196 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
197                                   struct uasm_reloc **pr,
198                                   const struct cache_desc *cache,
199                                   unsigned op, int lbl)
200 {
201         unsigned cache_size = cache->ways << cache->waybit;
202         unsigned i;
203         const unsigned unroll_lines = 32;
204
205         /* If the cache isn't present this function has it easy */
206         if (cache->flags & MIPS_CACHE_NOT_PRESENT)
207                 return;
208
209         /* Load base address */
210         UASM_i_LA(pp, t0, (long)CKSEG0);
211
212         /* Calculate end address */
213         if (cache_size < 0x8000)
214                 uasm_i_addiu(pp, t1, t0, cache_size);
215         else
216                 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
217
218         /* Start of cache op loop */
219         uasm_build_label(pl, *pp, lbl);
220
221         /* Generate the cache ops */
222         for (i = 0; i < unroll_lines; i++) {
223                 if (cpu_has_mips_r6) {
224                         uasm_i_cache(pp, op, 0, t0);
225                         uasm_i_addiu(pp, t0, t0, cache->linesz);
226                 } else {
227                         uasm_i_cache(pp, op, i * cache->linesz, t0);
228                 }
229         }
230
231         if (!cpu_has_mips_r6)
232                 /* Update the base address */
233                 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
234
235         /* Loop if we haven't reached the end address yet */
236         uasm_il_bne(pp, pr, t0, t1, lbl);
237         uasm_i_nop(pp);
238 }
239
240 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
241                              struct uasm_reloc **pr,
242                              const struct cpuinfo_mips *cpu_info,
243                              int lbl)
244 {
245         unsigned i, fsb_size = 8;
246         unsigned num_loads = (fsb_size * 3) / 2;
247         unsigned line_stride = 2;
248         unsigned line_size = cpu_info->dcache.linesz;
249         unsigned perf_counter, perf_event;
250         unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
251
252         /*
253          * Determine whether this CPU requires an FSB flush, and if so which
254          * performance counter/event reflect stalls due to a full FSB.
255          */
256         switch (__get_cpu_type(cpu_info->cputype)) {
257         case CPU_INTERAPTIV:
258                 perf_counter = 1;
259                 perf_event = 51;
260                 break;
261
262         case CPU_PROAPTIV:
263                 /* Newer proAptiv cores don't require this workaround */
264                 if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
265                         return 0;
266
267                 /* On older ones it's unavailable */
268                 return -1;
269
270         default:
271                 /* Assume that the CPU does not need this workaround */
272                 return 0;
273         }
274
275         /*
276          * Ensure that the fill/store buffer (FSB) is not holding the results
277          * of a prefetch, since if it is then the CPC sequencer may become
278          * stuck in the D3 (ClrBus) state whilst entering a low power state.
279          */
280
281         /* Preserve perf counter setup */
282         uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
283         uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
284
285         /* Setup perf counter to count FSB full pipeline stalls */
286         uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
287         uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
288         uasm_i_ehb(pp);
289         uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
290         uasm_i_ehb(pp);
291
292         /* Base address for loads */
293         UASM_i_LA(pp, t0, (long)CKSEG0);
294
295         /* Start of clear loop */
296         uasm_build_label(pl, *pp, lbl);
297
298         /* Perform some loads to fill the FSB */
299         for (i = 0; i < num_loads; i++)
300                 uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
301
302         /*
303          * Invalidate the new D-cache entries so that the cache will need
304          * refilling (via the FSB) if the loop is executed again.
305          */
306         for (i = 0; i < num_loads; i++) {
307                 uasm_i_cache(pp, Hit_Invalidate_D,
308                              i * line_size * line_stride, t0);
309                 uasm_i_cache(pp, Hit_Writeback_Inv_SD,
310                              i * line_size * line_stride, t0);
311         }
312
313         /* Barrier ensuring previous cache invalidates are complete */
314         uasm_i_sync(pp, STYPE_SYNC);
315         uasm_i_ehb(pp);
316
317         /* Check whether the pipeline stalled due to the FSB being full */
318         uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
319
320         /* Loop if it didn't */
321         uasm_il_beqz(pp, pr, t1, lbl);
322         uasm_i_nop(pp);
323
324         /* Restore perf counter 1. The count may well now be wrong... */
325         uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
326         uasm_i_ehb(pp);
327         uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
328         uasm_i_ehb(pp);
329
330         return 0;
331 }
332
333 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
334                                 struct uasm_reloc **pr,
335                                 unsigned r_addr, int lbl)
336 {
337         uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
338         uasm_build_label(pl, *pp, lbl);
339         uasm_i_ll(pp, t1, 0, r_addr);
340         uasm_i_or(pp, t1, t1, t0);
341         uasm_i_sc(pp, t1, 0, r_addr);
342         uasm_il_beqz(pp, pr, t1, lbl);
343         uasm_i_nop(pp);
344 }
345
346 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
347 {
348         struct uasm_label *l = labels;
349         struct uasm_reloc *r = relocs;
350         u32 *buf, *p;
351         const unsigned r_online = a0;
352         const unsigned r_nc_count = a1;
353         const unsigned r_pcohctl = t7;
354         const unsigned max_instrs = 256;
355         unsigned cpc_cmd;
356         int err;
357         enum {
358                 lbl_incready = 1,
359                 lbl_poll_cont,
360                 lbl_secondary_hang,
361                 lbl_disable_coherence,
362                 lbl_flush_fsb,
363                 lbl_invicache,
364                 lbl_flushdcache,
365                 lbl_hang,
366                 lbl_set_cont,
367                 lbl_secondary_cont,
368                 lbl_decready,
369         };
370
371         /* Allocate a buffer to hold the generated code */
372         p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
373         if (!buf)
374                 return NULL;
375
376         /* Clear labels & relocs ready for (re)use */
377         memset(labels, 0, sizeof(labels));
378         memset(relocs, 0, sizeof(relocs));
379
380         if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
381                 /* Power gating relies upon CPS SMP */
382                 if (!mips_cps_smp_in_use())
383                         goto out_err;
384
385                 /*
386                  * Save CPU state. Note the non-standard calling convention
387                  * with the return address placed in v0 to avoid clobbering
388                  * the ra register before it is saved.
389                  */
390                 UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
391                 uasm_i_jalr(&p, v0, t0);
392                 uasm_i_nop(&p);
393         }
394
395         /*
396          * Load addresses of required CM & CPC registers. This is done early
397          * because they're needed in both the enable & disable coherence steps
398          * but in the coupled case the enable step will only run on one VPE.
399          */
400         UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
401
402         if (coupled_coherence) {
403                 /* Increment ready_count */
404                 uasm_i_sync(&p, STYPE_SYNC_MB);
405                 uasm_build_label(&l, p, lbl_incready);
406                 uasm_i_ll(&p, t1, 0, r_nc_count);
407                 uasm_i_addiu(&p, t2, t1, 1);
408                 uasm_i_sc(&p, t2, 0, r_nc_count);
409                 uasm_il_beqz(&p, &r, t2, lbl_incready);
410                 uasm_i_addiu(&p, t1, t1, 1);
411
412                 /* Barrier ensuring all CPUs see the updated r_nc_count value */
413                 uasm_i_sync(&p, STYPE_SYNC_MB);
414
415                 /*
416                  * If this is the last VPE to become ready for non-coherence
417                  * then it should branch below.
418                  */
419                 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
420                 uasm_i_nop(&p);
421
422                 if (state < CPS_PM_POWER_GATED) {
423                         /*
424                          * Otherwise this is not the last VPE to become ready
425                          * for non-coherence. It needs to wait until coherence
426                          * has been disabled before proceeding, which it will do
427                          * by polling for the top bit of ready_count being set.
428                          */
429                         uasm_i_addiu(&p, t1, zero, -1);
430                         uasm_build_label(&l, p, lbl_poll_cont);
431                         uasm_i_lw(&p, t0, 0, r_nc_count);
432                         uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
433                         uasm_i_ehb(&p);
434                         if (cpu_has_mipsmt)
435                                 uasm_i_yield(&p, zero, t1);
436                         uasm_il_b(&p, &r, lbl_poll_cont);
437                         uasm_i_nop(&p);
438                 } else {
439                         /*
440                          * The core will lose power & this VPE will not continue
441                          * so it can simply halt here.
442                          */
443                         if (cpu_has_mipsmt) {
444                                 /* Halt the VPE via C0 tchalt register */
445                                 uasm_i_addiu(&p, t0, zero, TCHALT_H);
446                                 uasm_i_mtc0(&p, t0, 2, 4);
447                         } else if (cpu_has_vp) {
448                                 /* Halt the VP via the CPC VP_STOP register */
449                                 unsigned int vpe_id;
450
451                                 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
452                                 uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
453                                 UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
454                                 uasm_i_sw(&p, t0, 0, t1);
455                         } else {
456                                 BUG();
457                         }
458                         uasm_build_label(&l, p, lbl_secondary_hang);
459                         uasm_il_b(&p, &r, lbl_secondary_hang);
460                         uasm_i_nop(&p);
461                 }
462         }
463
464         /*
465          * This is the point of no return - this VPE will now proceed to
466          * disable coherence. At this point we *must* be sure that no other
467          * VPE within the core will interfere with the L1 dcache.
468          */
469         uasm_build_label(&l, p, lbl_disable_coherence);
470
471         /* Invalidate the L1 icache */
472         cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
473                               Index_Invalidate_I, lbl_invicache);
474
475         /* Writeback & invalidate the L1 dcache */
476         cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
477                               Index_Writeback_Inv_D, lbl_flushdcache);
478
479         /* Barrier ensuring previous cache invalidates are complete */
480         uasm_i_sync(&p, STYPE_SYNC);
481         uasm_i_ehb(&p);
482
483         if (mips_cm_revision() < CM_REV_CM3) {
484                 /*
485                 * Disable all but self interventions. The load from COHCTL is
486                 * defined by the interAptiv & proAptiv SUMs as ensuring that the
487                 *  operation resulting from the preceding store is complete.
488                 */
489                 uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
490                 uasm_i_sw(&p, t0, 0, r_pcohctl);
491                 uasm_i_lw(&p, t0, 0, r_pcohctl);
492
493                 /* Barrier to ensure write to coherence control is complete */
494                 uasm_i_sync(&p, STYPE_SYNC);
495                 uasm_i_ehb(&p);
496         }
497
498         /* Disable coherence */
499         uasm_i_sw(&p, zero, 0, r_pcohctl);
500         uasm_i_lw(&p, t0, 0, r_pcohctl);
501
502         if (state >= CPS_PM_CLOCK_GATED) {
503                 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
504                                         lbl_flush_fsb);
505                 if (err)
506                         goto out_err;
507
508                 /* Determine the CPC command to issue */
509                 switch (state) {
510                 case CPS_PM_CLOCK_GATED:
511                         cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
512                         break;
513                 case CPS_PM_POWER_GATED:
514                         cpc_cmd = CPC_Cx_CMD_PWRDOWN;
515                         break;
516                 default:
517                         BUG();
518                         goto out_err;
519                 }
520
521                 /* Issue the CPC command */
522                 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
523                 uasm_i_addiu(&p, t1, zero, cpc_cmd);
524                 uasm_i_sw(&p, t1, 0, t0);
525
526                 if (state == CPS_PM_POWER_GATED) {
527                         /* If anything goes wrong just hang */
528                         uasm_build_label(&l, p, lbl_hang);
529                         uasm_il_b(&p, &r, lbl_hang);
530                         uasm_i_nop(&p);
531
532                         /*
533                          * There's no point generating more code, the core is
534                          * powered down & if powered back up will run from the
535                          * reset vector not from here.
536                          */
537                         goto gen_done;
538                 }
539
540                 /* Barrier to ensure write to CPC command is complete */
541                 uasm_i_sync(&p, STYPE_SYNC);
542                 uasm_i_ehb(&p);
543         }
544
545         if (state == CPS_PM_NC_WAIT) {
546                 /*
547                  * At this point it is safe for all VPEs to proceed with
548                  * execution. This VPE will set the top bit of ready_count
549                  * to indicate to the other VPEs that they may continue.
550                  */
551                 if (coupled_coherence)
552                         cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
553                                             lbl_set_cont);
554
555                 /*
556                  * VPEs which did not disable coherence will continue
557                  * executing, after coherence has been disabled, from this
558                  * point.
559                  */
560                 uasm_build_label(&l, p, lbl_secondary_cont);
561
562                 /* Now perform our wait */
563                 uasm_i_wait(&p, 0);
564         }
565
566         /*
567          * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
568          * will run this. The first will actually re-enable coherence & the
569          * rest will just be performing a rather unusual nop.
570          */
571         uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
572                                 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK
573                                 : CM3_GCR_Cx_COHERENCE_COHEN_MSK);
574
575         uasm_i_sw(&p, t0, 0, r_pcohctl);
576         uasm_i_lw(&p, t0, 0, r_pcohctl);
577
578         /* Barrier to ensure write to coherence control is complete */
579         uasm_i_sync(&p, STYPE_SYNC);
580         uasm_i_ehb(&p);
581
582         if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
583                 /* Decrement ready_count */
584                 uasm_build_label(&l, p, lbl_decready);
585                 uasm_i_sync(&p, STYPE_SYNC_MB);
586                 uasm_i_ll(&p, t1, 0, r_nc_count);
587                 uasm_i_addiu(&p, t2, t1, -1);
588                 uasm_i_sc(&p, t2, 0, r_nc_count);
589                 uasm_il_beqz(&p, &r, t2, lbl_decready);
590                 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
591
592                 /* Barrier ensuring all CPUs see the updated r_nc_count value */
593                 uasm_i_sync(&p, STYPE_SYNC_MB);
594         }
595
596         if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
597                 /*
598                  * At this point it is safe for all VPEs to proceed with
599                  * execution. This VPE will set the top bit of ready_count
600                  * to indicate to the other VPEs that they may continue.
601                  */
602                 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
603
604                 /*
605                  * This core will be reliant upon another core sending a
606                  * power-up command to the CPC in order to resume operation.
607                  * Thus an arbitrary VPE can't trigger the core leaving the
608                  * idle state and the one that disables coherence might as well
609                  * be the one to re-enable it. The rest will continue from here
610                  * after that has been done.
611                  */
612                 uasm_build_label(&l, p, lbl_secondary_cont);
613
614                 /* Barrier ensuring all CPUs see the updated r_nc_count value */
615                 uasm_i_sync(&p, STYPE_SYNC_MB);
616         }
617
618         /* The core is coherent, time to return to C code */
619         uasm_i_jr(&p, ra);
620         uasm_i_nop(&p);
621
622 gen_done:
623         /* Ensure the code didn't exceed the resources allocated for it */
624         BUG_ON((p - buf) > max_instrs);
625         BUG_ON((l - labels) > ARRAY_SIZE(labels));
626         BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
627
628         /* Patch branch offsets */
629         uasm_resolve_relocs(relocs, labels);
630
631         /* Flush the icache */
632         local_flush_icache_range((unsigned long)buf, (unsigned long)p);
633
634         return buf;
635 out_err:
636         kfree(buf);
637         return NULL;
638 }
639
640 static int cps_pm_online_cpu(unsigned int cpu)
641 {
642         enum cps_pm_state state;
643         unsigned core = cpu_data[cpu].core;
644         void *entry_fn, *core_rc;
645
646         for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
647                 if (per_cpu(nc_asm_enter, core)[state])
648                         continue;
649                 if (!test_bit(state, state_support))
650                         continue;
651
652                 entry_fn = cps_gen_entry_code(cpu, state);
653                 if (!entry_fn) {
654                         pr_err("Failed to generate core %u state %u entry\n",
655                                core, state);
656                         clear_bit(state, state_support);
657                 }
658
659                 per_cpu(nc_asm_enter, core)[state] = entry_fn;
660         }
661
662         if (!per_cpu(ready_count, core)) {
663                 core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
664                 if (!core_rc) {
665                         pr_err("Failed allocate core %u ready_count\n", core);
666                         return -ENOMEM;
667                 }
668                 per_cpu(ready_count, core) = core_rc;
669         }
670
671         return 0;
672 }
673
674 static int __init cps_pm_init(void)
675 {
676         /* A CM is required for all non-coherent states */
677         if (!mips_cm_present()) {
678                 pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
679                 return 0;
680         }
681
682         /*
683          * If interrupts were enabled whilst running a wait instruction on a
684          * non-coherent core then the VPE may end up processing interrupts
685          * whilst non-coherent. That would be bad.
686          */
687         if (cpu_wait == r4k_wait_irqoff)
688                 set_bit(CPS_PM_NC_WAIT, state_support);
689         else
690                 pr_warn("pm-cps: non-coherent wait unavailable\n");
691
692         /* Detect whether a CPC is present */
693         if (mips_cpc_present()) {
694                 /* Detect whether clock gating is implemented */
695                 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
696                         set_bit(CPS_PM_CLOCK_GATED, state_support);
697                 else
698                         pr_warn("pm-cps: CPC does not support clock gating\n");
699
700                 /* Power gating is available with CPS SMP & any CPC */
701                 if (mips_cps_smp_in_use())
702                         set_bit(CPS_PM_POWER_GATED, state_support);
703                 else
704                         pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
705         } else {
706                 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
707         }
708
709         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
710                                  cps_pm_online_cpu, NULL);
711 }
712 arch_initcall(cps_pm_init);