Merge tag 'virtio-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / mips / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/mips/kernel/kprobes.c
4  *
5  *  Copyright 2006 Sony Corp.
6  *  Copyright 2010 Cavium Networks
7  *
8  *  Some portions copied from the powerpc version.
9  *
10  *   Copyright (C) IBM Corporation, 2002, 2004
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; version 2 of the License.
15  *
16  *  This program is distributed in the hope that it will be useful,
17  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  *  GNU General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License
22  *  along with this program; if not, write to the Free Software
23  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
24  */
25
26 #include <linux/kprobes.h>
27 #include <linux/preempt.h>
28 #include <linux/uaccess.h>
29 #include <linux/kdebug.h>
30 #include <linux/slab.h>
31
32 #include <asm/ptrace.h>
33 #include <asm/branch.h>
34 #include <asm/break.h>
35 #include <asm/inst.h>
36
37 static const union mips_instruction breakpoint_insn = {
38         .b_format = {
39                 .opcode = spec_op,
40                 .code = BRK_KPROBE_BP,
41                 .func = break_op
42         }
43 };
44
45 static const union mips_instruction breakpoint2_insn = {
46         .b_format = {
47                 .opcode = spec_op,
48                 .code = BRK_KPROBE_SSTEPBP,
49                 .func = break_op
50         }
51 };
52
53 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
54 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
55
56 static int __kprobes insn_has_delayslot(union mips_instruction insn)
57 {
58         switch (insn.i_format.opcode) {
59
60                 /*
61                  * This group contains:
62                  * jr and jalr are in r_format format.
63                  */
64         case spec_op:
65                 switch (insn.r_format.func) {
66                 case jr_op:
67                 case jalr_op:
68                         break;
69                 default:
70                         goto insn_ok;
71                 }
72
73                 /*
74                  * This group contains:
75                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
76                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77                  */
78         case bcond_op:
79
80                 /*
81                  * These are unconditional and in j_format.
82                  */
83         case jal_op:
84         case j_op:
85
86                 /*
87                  * These are conditional and in i_format.
88                  */
89         case beq_op:
90         case beql_op:
91         case bne_op:
92         case bnel_op:
93         case blez_op:
94         case blezl_op:
95         case bgtz_op:
96         case bgtzl_op:
97
98                 /*
99                  * These are the FPA/cp1 branch instructions.
100                  */
101         case cop1_op:
102
103 #ifdef CONFIG_CPU_CAVIUM_OCTEON
104         case lwc2_op: /* This is bbit0 on Octeon */
105         case ldc2_op: /* This is bbit032 on Octeon */
106         case swc2_op: /* This is bbit1 on Octeon */
107         case sdc2_op: /* This is bbit132 on Octeon */
108 #endif
109                 return 1;
110         default:
111                 break;
112         }
113 insn_ok:
114         return 0;
115 }
116
117 /*
118  * insn_has_ll_or_sc function checks whether instruction is ll or sc
119  * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
120  * so we need to prevent it and refuse kprobes insertion for such
121  * instructions; cannot do much about breakpoint in the middle of
122  * ll/sc pair; it is upto user to avoid those places
123  */
124 static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
125 {
126         int ret = 0;
127
128         switch (insn.i_format.opcode) {
129         case ll_op:
130         case lld_op:
131         case sc_op:
132         case scd_op:
133                 ret = 1;
134                 break;
135         default:
136                 break;
137         }
138         return ret;
139 }
140
141 int __kprobes arch_prepare_kprobe(struct kprobe *p)
142 {
143         union mips_instruction insn;
144         union mips_instruction prev_insn;
145         int ret = 0;
146
147         insn = p->addr[0];
148
149         if (insn_has_ll_or_sc(insn)) {
150                 pr_notice("Kprobes for ll and sc instructions are not"
151                           "supported\n");
152                 ret = -EINVAL;
153                 goto out;
154         }
155
156         if ((probe_kernel_read(&prev_insn, p->addr - 1,
157                                 sizeof(mips_instruction)) == 0) &&
158                                 insn_has_delayslot(prev_insn)) {
159                 pr_notice("Kprobes for branch delayslot are not supported\n");
160                 ret = -EINVAL;
161                 goto out;
162         }
163
164         /* insn: must be on special executable page on mips. */
165         p->ainsn.insn = get_insn_slot();
166         if (!p->ainsn.insn) {
167                 ret = -ENOMEM;
168                 goto out;
169         }
170
171         /*
172          * In the kprobe->ainsn.insn[] array we store the original
173          * instruction at index zero and a break trap instruction at
174          * index one.
175          *
176          * On MIPS arch if the instruction at probed address is a
177          * branch instruction, we need to execute the instruction at
178          * Branch Delayslot (BD) at the time of probe hit. As MIPS also
179          * doesn't have single stepping support, the BD instruction can
180          * not be executed in-line and it would be executed on SSOL slot
181          * using a normal breakpoint instruction in the next slot.
182          * So, read the instruction and save it for later execution.
183          */
184         if (insn_has_delayslot(insn))
185                 memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
186         else
187                 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
188
189         p->ainsn.insn[1] = breakpoint2_insn;
190         p->opcode = *p->addr;
191
192 out:
193         return ret;
194 }
195
196 void __kprobes arch_arm_kprobe(struct kprobe *p)
197 {
198         *p->addr = breakpoint_insn;
199         flush_insn_slot(p);
200 }
201
202 void __kprobes arch_disarm_kprobe(struct kprobe *p)
203 {
204         *p->addr = p->opcode;
205         flush_insn_slot(p);
206 }
207
208 void __kprobes arch_remove_kprobe(struct kprobe *p)
209 {
210         if (p->ainsn.insn) {
211                 free_insn_slot(p->ainsn.insn, 0);
212                 p->ainsn.insn = NULL;
213         }
214 }
215
216 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
217 {
218         kcb->prev_kprobe.kp = kprobe_running();
219         kcb->prev_kprobe.status = kcb->kprobe_status;
220         kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
221         kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
222         kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
223 }
224
225 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
226 {
227         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
228         kcb->kprobe_status = kcb->prev_kprobe.status;
229         kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
230         kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
231         kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
232 }
233
234 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
235                                struct kprobe_ctlblk *kcb)
236 {
237         __this_cpu_write(current_kprobe, p);
238         kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
239         kcb->kprobe_saved_epc = regs->cp0_epc;
240 }
241
242 /**
243  * evaluate_branch_instrucion -
244  *
245  * Evaluate the branch instruction at probed address during probe hit. The
246  * result of evaluation would be the updated epc. The insturction in delayslot
247  * would actually be single stepped using a normal breakpoint) on SSOL slot.
248  *
249  * The result is also saved in the kprobe control block for later use,
250  * in case we need to execute the delayslot instruction. The latter will be
251  * false for NOP instruction in dealyslot and the branch-likely instructions
252  * when the branch is taken. And for those cases we set a flag as
253  * SKIP_DELAYSLOT in the kprobe control block
254  */
255 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
256                                         struct kprobe_ctlblk *kcb)
257 {
258         union mips_instruction insn = p->opcode;
259         long epc;
260         int ret = 0;
261
262         epc = regs->cp0_epc;
263         if (epc & 3)
264                 goto unaligned;
265
266         if (p->ainsn.insn->word == 0)
267                 kcb->flags |= SKIP_DELAYSLOT;
268         else
269                 kcb->flags &= ~SKIP_DELAYSLOT;
270
271         ret = __compute_return_epc_for_insn(regs, insn);
272         if (ret < 0)
273                 return ret;
274
275         if (ret == BRANCH_LIKELY_TAKEN)
276                 kcb->flags |= SKIP_DELAYSLOT;
277
278         kcb->target_epc = regs->cp0_epc;
279
280         return 0;
281
282 unaligned:
283         pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
284         force_sig(SIGBUS, current);
285         return -EFAULT;
286
287 }
288
289 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
290                                                 struct kprobe_ctlblk *kcb)
291 {
292         int ret = 0;
293
294         regs->cp0_status &= ~ST0_IE;
295
296         /* single step inline if the instruction is a break */
297         if (p->opcode.word == breakpoint_insn.word ||
298             p->opcode.word == breakpoint2_insn.word)
299                 regs->cp0_epc = (unsigned long)p->addr;
300         else if (insn_has_delayslot(p->opcode)) {
301                 ret = evaluate_branch_instruction(p, regs, kcb);
302                 if (ret < 0) {
303                         pr_notice("Kprobes: Error in evaluating branch\n");
304                         return;
305                 }
306         }
307         regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
308 }
309
310 /*
311  * Called after single-stepping.  p->addr is the address of the
312  * instruction whose first byte has been replaced by the "break 0"
313  * instruction.  To avoid the SMP problems that can occur when we
314  * temporarily put back the original opcode to single-step, we
315  * single-stepped a copy of the instruction.  The address of this
316  * copy is p->ainsn.insn.
317  *
318  * This function prepares to return from the post-single-step
319  * breakpoint trap. In case of branch instructions, the target
320  * epc to be restored.
321  */
322 static void __kprobes resume_execution(struct kprobe *p,
323                                        struct pt_regs *regs,
324                                        struct kprobe_ctlblk *kcb)
325 {
326         if (insn_has_delayslot(p->opcode))
327                 regs->cp0_epc = kcb->target_epc;
328         else {
329                 unsigned long orig_epc = kcb->kprobe_saved_epc;
330                 regs->cp0_epc = orig_epc + 4;
331         }
332 }
333
334 static int __kprobes kprobe_handler(struct pt_regs *regs)
335 {
336         struct kprobe *p;
337         int ret = 0;
338         kprobe_opcode_t *addr;
339         struct kprobe_ctlblk *kcb;
340
341         addr = (kprobe_opcode_t *) regs->cp0_epc;
342
343         /*
344          * We don't want to be preempted for the entire
345          * duration of kprobe processing
346          */
347         preempt_disable();
348         kcb = get_kprobe_ctlblk();
349
350         /* Check we're not actually recursing */
351         if (kprobe_running()) {
352                 p = get_kprobe(addr);
353                 if (p) {
354                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
355                             p->ainsn.insn->word == breakpoint_insn.word) {
356                                 regs->cp0_status &= ~ST0_IE;
357                                 regs->cp0_status |= kcb->kprobe_saved_SR;
358                                 goto no_kprobe;
359                         }
360                         /*
361                          * We have reentered the kprobe_handler(), since
362                          * another probe was hit while within the handler.
363                          * We here save the original kprobes variables and
364                          * just single step on the instruction of the new probe
365                          * without calling any user handlers.
366                          */
367                         save_previous_kprobe(kcb);
368                         set_current_kprobe(p, regs, kcb);
369                         kprobes_inc_nmissed_count(p);
370                         prepare_singlestep(p, regs, kcb);
371                         kcb->kprobe_status = KPROBE_REENTER;
372                         if (kcb->flags & SKIP_DELAYSLOT) {
373                                 resume_execution(p, regs, kcb);
374                                 restore_previous_kprobe(kcb);
375                                 preempt_enable_no_resched();
376                         }
377                         return 1;
378                 } else {
379                         if (addr->word != breakpoint_insn.word) {
380                                 /*
381                                  * The breakpoint instruction was removed by
382                                  * another cpu right after we hit, no further
383                                  * handling of this interrupt is appropriate
384                                  */
385                                 ret = 1;
386                                 goto no_kprobe;
387                         }
388                         p = __this_cpu_read(current_kprobe);
389                         if (p->break_handler && p->break_handler(p, regs))
390                                 goto ss_probe;
391                 }
392                 goto no_kprobe;
393         }
394
395         p = get_kprobe(addr);
396         if (!p) {
397                 if (addr->word != breakpoint_insn.word) {
398                         /*
399                          * The breakpoint instruction was removed right
400                          * after we hit it.  Another cpu has removed
401                          * either a probepoint or a debugger breakpoint
402                          * at this address.  In either case, no further
403                          * handling of this interrupt is appropriate.
404                          */
405                         ret = 1;
406                 }
407                 /* Not one of ours: let kernel handle it */
408                 goto no_kprobe;
409         }
410
411         set_current_kprobe(p, regs, kcb);
412         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
413
414         if (p->pre_handler && p->pre_handler(p, regs)) {
415                 /* handler has already set things up, so skip ss setup */
416                 return 1;
417         }
418
419 ss_probe:
420         prepare_singlestep(p, regs, kcb);
421         if (kcb->flags & SKIP_DELAYSLOT) {
422                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
423                 if (p->post_handler)
424                         p->post_handler(p, regs, 0);
425                 resume_execution(p, regs, kcb);
426                 preempt_enable_no_resched();
427         } else
428                 kcb->kprobe_status = KPROBE_HIT_SS;
429
430         return 1;
431
432 no_kprobe:
433         preempt_enable_no_resched();
434         return ret;
435
436 }
437
438 static inline int post_kprobe_handler(struct pt_regs *regs)
439 {
440         struct kprobe *cur = kprobe_running();
441         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
442
443         if (!cur)
444                 return 0;
445
446         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
447                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
448                 cur->post_handler(cur, regs, 0);
449         }
450
451         resume_execution(cur, regs, kcb);
452
453         regs->cp0_status |= kcb->kprobe_saved_SR;
454
455         /* Restore back the original saved kprobes variables and continue. */
456         if (kcb->kprobe_status == KPROBE_REENTER) {
457                 restore_previous_kprobe(kcb);
458                 goto out;
459         }
460         reset_current_kprobe();
461 out:
462         preempt_enable_no_resched();
463
464         return 1;
465 }
466
467 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
468 {
469         struct kprobe *cur = kprobe_running();
470         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
471
472         if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
473                 return 1;
474
475         if (kcb->kprobe_status & KPROBE_HIT_SS) {
476                 resume_execution(cur, regs, kcb);
477                 regs->cp0_status |= kcb->kprobe_old_SR;
478
479                 reset_current_kprobe();
480                 preempt_enable_no_resched();
481         }
482         return 0;
483 }
484
485 /*
486  * Wrapper routine for handling exceptions.
487  */
488 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
489                                        unsigned long val, void *data)
490 {
491
492         struct die_args *args = (struct die_args *)data;
493         int ret = NOTIFY_DONE;
494
495         switch (val) {
496         case DIE_BREAK:
497                 if (kprobe_handler(args->regs))
498                         ret = NOTIFY_STOP;
499                 break;
500         case DIE_SSTEPBP:
501                 if (post_kprobe_handler(args->regs))
502                         ret = NOTIFY_STOP;
503                 break;
504
505         case DIE_PAGE_FAULT:
506                 /* kprobe_running() needs smp_processor_id() */
507                 preempt_disable();
508
509                 if (kprobe_running()
510                     && kprobe_fault_handler(args->regs, args->trapnr))
511                         ret = NOTIFY_STOP;
512                 preempt_enable();
513                 break;
514         default:
515                 break;
516         }
517         return ret;
518 }
519
520 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
521 {
522         struct jprobe *jp = container_of(p, struct jprobe, kp);
523         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
524
525         kcb->jprobe_saved_regs = *regs;
526         kcb->jprobe_saved_sp = regs->regs[29];
527
528         memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
529                MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
530
531         regs->cp0_epc = (unsigned long)(jp->entry);
532
533         return 1;
534 }
535
536 /* Defined in the inline asm below. */
537 void jprobe_return_end(void);
538
539 void __kprobes jprobe_return(void)
540 {
541         /* Assembler quirk necessitates this '0,code' business.  */
542         asm volatile(
543                 "break 0,%0\n\t"
544                 ".globl jprobe_return_end\n"
545                 "jprobe_return_end:\n"
546                 : : "n" (BRK_KPROBE_BP) : "memory");
547 }
548
549 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
550 {
551         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
552
553         if (regs->cp0_epc >= (unsigned long)jprobe_return &&
554             regs->cp0_epc <= (unsigned long)jprobe_return_end) {
555                 *regs = kcb->jprobe_saved_regs;
556                 memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
557                        MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
558                 preempt_enable_no_resched();
559
560                 return 1;
561         }
562         return 0;
563 }
564
565 /*
566  * Function return probe trampoline:
567  *      - init_kprobes() establishes a probepoint here
568  *      - When the probed function returns, this probe causes the
569  *        handlers to fire
570  */
571 static void __used kretprobe_trampoline_holder(void)
572 {
573         asm volatile(
574                 ".set push\n\t"
575                 /* Keep the assembler from reordering and placing JR here. */
576                 ".set noreorder\n\t"
577                 "nop\n\t"
578                 ".global kretprobe_trampoline\n"
579                 "kretprobe_trampoline:\n\t"
580                 "nop\n\t"
581                 ".set pop"
582                 : : : "memory");
583 }
584
585 void kretprobe_trampoline(void);
586
587 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
588                                       struct pt_regs *regs)
589 {
590         ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
591
592         /* Replace the return addr with trampoline addr */
593         regs->regs[31] = (unsigned long)kretprobe_trampoline;
594 }
595
596 /*
597  * Called when the probe at kretprobe trampoline is hit
598  */
599 static int __kprobes trampoline_probe_handler(struct kprobe *p,
600                                                 struct pt_regs *regs)
601 {
602         struct kretprobe_instance *ri = NULL;
603         struct hlist_head *head, empty_rp;
604         struct hlist_node *tmp;
605         unsigned long flags, orig_ret_address = 0;
606         unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
607
608         INIT_HLIST_HEAD(&empty_rp);
609         kretprobe_hash_lock(current, &head, &flags);
610
611         /*
612          * It is possible to have multiple instances associated with a given
613          * task either because an multiple functions in the call path
614          * have a return probe installed on them, and/or more than one return
615          * return probe was registered for a target function.
616          *
617          * We can handle this because:
618          *     - instances are always inserted at the head of the list
619          *     - when multiple return probes are registered for the same
620          *       function, the first instance's ret_addr will point to the
621          *       real return address, and all the rest will point to
622          *       kretprobe_trampoline
623          */
624         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
625                 if (ri->task != current)
626                         /* another task is sharing our hash bucket */
627                         continue;
628
629                 if (ri->rp && ri->rp->handler)
630                         ri->rp->handler(ri, regs);
631
632                 orig_ret_address = (unsigned long)ri->ret_addr;
633                 recycle_rp_inst(ri, &empty_rp);
634
635                 if (orig_ret_address != trampoline_address)
636                         /*
637                          * This is the real return address. Any other
638                          * instances associated with this task are for
639                          * other calls deeper on the call stack
640                          */
641                         break;
642         }
643
644         kretprobe_assert(ri, orig_ret_address, trampoline_address);
645         instruction_pointer(regs) = orig_ret_address;
646
647         reset_current_kprobe();
648         kretprobe_hash_unlock(current, &flags);
649         preempt_enable_no_resched();
650
651         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
652                 hlist_del(&ri->hlist);
653                 kfree(ri);
654         }
655         /*
656          * By returning a non-zero value, we are telling
657          * kprobe_handler() that we don't want the post_handler
658          * to run (and have re-enabled preemption)
659          */
660         return 1;
661 }
662
663 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
664 {
665         if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
666                 return 1;
667
668         return 0;
669 }
670
671 static struct kprobe trampoline_p = {
672         .addr = (kprobe_opcode_t *)kretprobe_trampoline,
673         .pre_handler = trampoline_probe_handler
674 };
675
676 int __init arch_init_kprobes(void)
677 {
678         return register_kprobe(&trampoline_p);
679 }