Merge branch 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / mips / cavium-octeon / octeon-irq.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2008 Cavium Networks
7  */
8 #include <linux/irq.h>
9 #include <linux/interrupt.h>
10 #include <linux/hardirq.h>
11
12 #include <asm/octeon/octeon.h>
13
14 DEFINE_RWLOCK(octeon_irq_ciu0_rwlock);
15 DEFINE_RWLOCK(octeon_irq_ciu1_rwlock);
16 DEFINE_SPINLOCK(octeon_irq_msi_lock);
17
18 static void octeon_irq_core_ack(unsigned int irq)
19 {
20         unsigned int bit = irq - OCTEON_IRQ_SW0;
21         /*
22          * We don't need to disable IRQs to make these atomic since
23          * they are already disabled earlier in the low level
24          * interrupt code.
25          */
26         clear_c0_status(0x100 << bit);
27         /* The two user interrupts must be cleared manually. */
28         if (bit < 2)
29                 clear_c0_cause(0x100 << bit);
30 }
31
32 static void octeon_irq_core_eoi(unsigned int irq)
33 {
34         struct irq_desc *desc = irq_desc + irq;
35         unsigned int bit = irq - OCTEON_IRQ_SW0;
36         /*
37          * If an IRQ is being processed while we are disabling it the
38          * handler will attempt to unmask the interrupt after it has
39          * been disabled.
40          */
41         if (desc->status & IRQ_DISABLED)
42                 return;
43
44         /* There is a race here.  We should fix it.  */
45
46         /*
47          * We don't need to disable IRQs to make these atomic since
48          * they are already disabled earlier in the low level
49          * interrupt code.
50          */
51         set_c0_status(0x100 << bit);
52 }
53
54 static void octeon_irq_core_enable(unsigned int irq)
55 {
56         unsigned long flags;
57         unsigned int bit = irq - OCTEON_IRQ_SW0;
58
59         /*
60          * We need to disable interrupts to make sure our updates are
61          * atomic.
62          */
63         local_irq_save(flags);
64         set_c0_status(0x100 << bit);
65         local_irq_restore(flags);
66 }
67
68 static void octeon_irq_core_disable_local(unsigned int irq)
69 {
70         unsigned long flags;
71         unsigned int bit = irq - OCTEON_IRQ_SW0;
72         /*
73          * We need to disable interrupts to make sure our updates are
74          * atomic.
75          */
76         local_irq_save(flags);
77         clear_c0_status(0x100 << bit);
78         local_irq_restore(flags);
79 }
80
81 static void octeon_irq_core_disable(unsigned int irq)
82 {
83 #ifdef CONFIG_SMP
84         on_each_cpu((void (*)(void *)) octeon_irq_core_disable_local,
85                     (void *) (long) irq, 1);
86 #else
87         octeon_irq_core_disable_local(irq);
88 #endif
89 }
90
91 static struct irq_chip octeon_irq_chip_core = {
92         .name = "Core",
93         .enable = octeon_irq_core_enable,
94         .disable = octeon_irq_core_disable,
95         .ack = octeon_irq_core_ack,
96         .eoi = octeon_irq_core_eoi,
97 };
98
99
100 static void octeon_irq_ciu0_ack(unsigned int irq)
101 {
102         /*
103          * In order to avoid any locking accessing the CIU, we
104          * acknowledge CIU interrupts by disabling all of them.  This
105          * way we can use a per core register and avoid any out of
106          * core locking requirements.  This has the side affect that
107          * CIU interrupts can't be processed recursively.
108          *
109          * We don't need to disable IRQs to make these atomic since
110          * they are already disabled earlier in the low level
111          * interrupt code.
112          */
113         clear_c0_status(0x100 << 2);
114 }
115
116 static void octeon_irq_ciu0_eoi(unsigned int irq)
117 {
118         /*
119          * Enable all CIU interrupts again.  We don't need to disable
120          * IRQs to make these atomic since they are already disabled
121          * earlier in the low level interrupt code.
122          */
123         set_c0_status(0x100 << 2);
124 }
125
126 static void octeon_irq_ciu0_enable(unsigned int irq)
127 {
128         int coreid = cvmx_get_core_num();
129         unsigned long flags;
130         uint64_t en0;
131         int bit = irq - OCTEON_IRQ_WORKQ0;      /* Bit 0-63 of EN0 */
132
133         /*
134          * A read lock is used here to make sure only one core is ever
135          * updating the CIU enable bits at a time. During an enable
136          * the cores don't interfere with each other. During a disable
137          * the write lock stops any enables that might cause a
138          * problem.
139          */
140         read_lock_irqsave(&octeon_irq_ciu0_rwlock, flags);
141         en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
142         en0 |= 1ull << bit;
143         cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
144         cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
145         read_unlock_irqrestore(&octeon_irq_ciu0_rwlock, flags);
146 }
147
148 static void octeon_irq_ciu0_disable(unsigned int irq)
149 {
150         int bit = irq - OCTEON_IRQ_WORKQ0;      /* Bit 0-63 of EN0 */
151         unsigned long flags;
152         uint64_t en0;
153 #ifdef CONFIG_SMP
154         int cpu;
155         write_lock_irqsave(&octeon_irq_ciu0_rwlock, flags);
156         for_each_online_cpu(cpu) {
157                 int coreid = cpu_logical_map(cpu);
158                 en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
159                 en0 &= ~(1ull << bit);
160                 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
161         }
162         /*
163          * We need to do a read after the last update to make sure all
164          * of them are done.
165          */
166         cvmx_read_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2));
167         write_unlock_irqrestore(&octeon_irq_ciu0_rwlock, flags);
168 #else
169         int coreid = cvmx_get_core_num();
170         local_irq_save(flags);
171         en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
172         en0 &= ~(1ull << bit);
173         cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
174         cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
175         local_irq_restore(flags);
176 #endif
177 }
178
179 #ifdef CONFIG_SMP
180 static int octeon_irq_ciu0_set_affinity(unsigned int irq, const struct cpumask *dest)
181 {
182         int cpu;
183         int bit = irq - OCTEON_IRQ_WORKQ0;      /* Bit 0-63 of EN0 */
184
185         write_lock(&octeon_irq_ciu0_rwlock);
186         for_each_online_cpu(cpu) {
187                 int coreid = cpu_logical_map(cpu);
188                 uint64_t en0 =
189                         cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
190                 if (cpumask_test_cpu(cpu, dest))
191                         en0 |= 1ull << bit;
192                 else
193                         en0 &= ~(1ull << bit);
194                 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
195         }
196         /*
197          * We need to do a read after the last update to make sure all
198          * of them are done.
199          */
200         cvmx_read_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2));
201         write_unlock(&octeon_irq_ciu0_rwlock);
202
203         return 0;
204 }
205 #endif
206
207 static struct irq_chip octeon_irq_chip_ciu0 = {
208         .name = "CIU0",
209         .enable = octeon_irq_ciu0_enable,
210         .disable = octeon_irq_ciu0_disable,
211         .ack = octeon_irq_ciu0_ack,
212         .eoi = octeon_irq_ciu0_eoi,
213 #ifdef CONFIG_SMP
214         .set_affinity = octeon_irq_ciu0_set_affinity,
215 #endif
216 };
217
218
219 static void octeon_irq_ciu1_ack(unsigned int irq)
220 {
221         /*
222          * In order to avoid any locking accessing the CIU, we
223          * acknowledge CIU interrupts by disabling all of them.  This
224          * way we can use a per core register and avoid any out of
225          * core locking requirements.  This has the side affect that
226          * CIU interrupts can't be processed recursively.  We don't
227          * need to disable IRQs to make these atomic since they are
228          * already disabled earlier in the low level interrupt code.
229          */
230         clear_c0_status(0x100 << 3);
231 }
232
233 static void octeon_irq_ciu1_eoi(unsigned int irq)
234 {
235         /*
236          * Enable all CIU interrupts again.  We don't need to disable
237          * IRQs to make these atomic since they are already disabled
238          * earlier in the low level interrupt code.
239          */
240         set_c0_status(0x100 << 3);
241 }
242
243 static void octeon_irq_ciu1_enable(unsigned int irq)
244 {
245         int coreid = cvmx_get_core_num();
246         unsigned long flags;
247         uint64_t en1;
248         int bit = irq - OCTEON_IRQ_WDOG0;       /* Bit 0-63 of EN1 */
249
250         /*
251          * A read lock is used here to make sure only one core is ever
252          * updating the CIU enable bits at a time.  During an enable
253          * the cores don't interfere with each other.  During a disable
254          * the write lock stops any enables that might cause a
255          * problem.
256          */
257         read_lock_irqsave(&octeon_irq_ciu1_rwlock, flags);
258         en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
259         en1 |= 1ull << bit;
260         cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
261         cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
262         read_unlock_irqrestore(&octeon_irq_ciu1_rwlock, flags);
263 }
264
265 static void octeon_irq_ciu1_disable(unsigned int irq)
266 {
267         int bit = irq - OCTEON_IRQ_WDOG0;       /* Bit 0-63 of EN1 */
268         unsigned long flags;
269         uint64_t en1;
270 #ifdef CONFIG_SMP
271         int cpu;
272         write_lock_irqsave(&octeon_irq_ciu1_rwlock, flags);
273         for_each_online_cpu(cpu) {
274                 int coreid = cpu_logical_map(cpu);
275                 en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
276                 en1 &= ~(1ull << bit);
277                 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
278         }
279         /*
280          * We need to do a read after the last update to make sure all
281          * of them are done.
282          */
283         cvmx_read_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1));
284         write_unlock_irqrestore(&octeon_irq_ciu1_rwlock, flags);
285 #else
286         int coreid = cvmx_get_core_num();
287         local_irq_save(flags);
288         en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
289         en1 &= ~(1ull << bit);
290         cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
291         cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
292         local_irq_restore(flags);
293 #endif
294 }
295
296 #ifdef CONFIG_SMP
297 static int octeon_irq_ciu1_set_affinity(unsigned int irq, const struct cpumask *dest)
298 {
299         int cpu;
300         int bit = irq - OCTEON_IRQ_WDOG0;       /* Bit 0-63 of EN1 */
301
302         write_lock(&octeon_irq_ciu1_rwlock);
303         for_each_online_cpu(cpu) {
304                 int coreid = cpu_logical_map(cpu);
305                 uint64_t en1 =
306                         cvmx_read_csr(CVMX_CIU_INTX_EN1
307                                 (coreid * 2 + 1));
308                 if (cpumask_test_cpu(cpu, dest))
309                         en1 |= 1ull << bit;
310                 else
311                         en1 &= ~(1ull << bit);
312                 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
313         }
314         /*
315          * We need to do a read after the last update to make sure all
316          * of them are done.
317          */
318         cvmx_read_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1));
319         write_unlock(&octeon_irq_ciu1_rwlock);
320
321         return 0;
322 }
323 #endif
324
325 static struct irq_chip octeon_irq_chip_ciu1 = {
326         .name = "CIU1",
327         .enable = octeon_irq_ciu1_enable,
328         .disable = octeon_irq_ciu1_disable,
329         .ack = octeon_irq_ciu1_ack,
330         .eoi = octeon_irq_ciu1_eoi,
331 #ifdef CONFIG_SMP
332         .set_affinity = octeon_irq_ciu1_set_affinity,
333 #endif
334 };
335
336 #ifdef CONFIG_PCI_MSI
337
338 static void octeon_irq_msi_ack(unsigned int irq)
339 {
340         if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) {
341                 /* These chips have PCI */
342                 cvmx_write_csr(CVMX_NPI_NPI_MSI_RCV,
343                                1ull << (irq - OCTEON_IRQ_MSI_BIT0));
344         } else {
345                 /*
346                  * These chips have PCIe. Thankfully the ACK doesn't
347                  * need any locking.
348                  */
349                 cvmx_write_csr(CVMX_PEXP_NPEI_MSI_RCV0,
350                                1ull << (irq - OCTEON_IRQ_MSI_BIT0));
351         }
352 }
353
354 static void octeon_irq_msi_eoi(unsigned int irq)
355 {
356         /* Nothing needed */
357 }
358
359 static void octeon_irq_msi_enable(unsigned int irq)
360 {
361         if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) {
362                 /*
363                  * Octeon PCI doesn't have the ability to mask/unmask
364                  * MSI interrupts individually.  Instead of
365                  * masking/unmasking them in groups of 16, we simple
366                  * assume MSI devices are well behaved.  MSI
367                  * interrupts are always enable and the ACK is assumed
368                  * to be enough.
369                  */
370         } else {
371                 /* These chips have PCIe.  Note that we only support
372                  * the first 64 MSI interrupts.  Unfortunately all the
373                  * MSI enables are in the same register.  We use
374                  * MSI0's lock to control access to them all.
375                  */
376                 uint64_t en;
377                 unsigned long flags;
378                 spin_lock_irqsave(&octeon_irq_msi_lock, flags);
379                 en = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0);
380                 en |= 1ull << (irq - OCTEON_IRQ_MSI_BIT0);
381                 cvmx_write_csr(CVMX_PEXP_NPEI_MSI_ENB0, en);
382                 cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0);
383                 spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
384         }
385 }
386
387 static void octeon_irq_msi_disable(unsigned int irq)
388 {
389         if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) {
390                 /* See comment in enable */
391         } else {
392                 /*
393                  * These chips have PCIe.  Note that we only support
394                  * the first 64 MSI interrupts.  Unfortunately all the
395                  * MSI enables are in the same register.  We use
396                  * MSI0's lock to control access to them all.
397                  */
398                 uint64_t en;
399                 unsigned long flags;
400                 spin_lock_irqsave(&octeon_irq_msi_lock, flags);
401                 en = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0);
402                 en &= ~(1ull << (irq - OCTEON_IRQ_MSI_BIT0));
403                 cvmx_write_csr(CVMX_PEXP_NPEI_MSI_ENB0, en);
404                 cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0);
405                 spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
406         }
407 }
408
409 static struct irq_chip octeon_irq_chip_msi = {
410         .name = "MSI",
411         .enable = octeon_irq_msi_enable,
412         .disable = octeon_irq_msi_disable,
413         .ack = octeon_irq_msi_ack,
414         .eoi = octeon_irq_msi_eoi,
415 };
416 #endif
417
418 void __init arch_init_irq(void)
419 {
420         int irq;
421
422 #ifdef CONFIG_SMP
423         /* Set the default affinity to the boot cpu. */
424         cpumask_clear(irq_default_affinity);
425         cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
426 #endif
427
428         if (NR_IRQS < OCTEON_IRQ_LAST)
429                 pr_err("octeon_irq_init: NR_IRQS is set too low\n");
430
431         /* 0 - 15 reserved for i8259 master and slave controller. */
432
433         /* 17 - 23 Mips internal */
434         for (irq = OCTEON_IRQ_SW0; irq <= OCTEON_IRQ_TIMER; irq++) {
435                 set_irq_chip_and_handler(irq, &octeon_irq_chip_core,
436                                          handle_percpu_irq);
437         }
438
439         /* 24 - 87 CIU_INT_SUM0 */
440         for (irq = OCTEON_IRQ_WORKQ0; irq <= OCTEON_IRQ_BOOTDMA; irq++) {
441                 set_irq_chip_and_handler(irq, &octeon_irq_chip_ciu0,
442                                          handle_percpu_irq);
443         }
444
445         /* 88 - 151 CIU_INT_SUM1 */
446         for (irq = OCTEON_IRQ_WDOG0; irq <= OCTEON_IRQ_RESERVED151; irq++) {
447                 set_irq_chip_and_handler(irq, &octeon_irq_chip_ciu1,
448                                          handle_percpu_irq);
449         }
450
451 #ifdef CONFIG_PCI_MSI
452         /* 152 - 215 PCI/PCIe MSI interrupts */
453         for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_BIT63; irq++) {
454                 set_irq_chip_and_handler(irq, &octeon_irq_chip_msi,
455                                          handle_percpu_irq);
456         }
457 #endif
458         set_c0_status(0x300 << 2);
459 }
460
461 asmlinkage void plat_irq_dispatch(void)
462 {
463         const unsigned long core_id = cvmx_get_core_num();
464         const uint64_t ciu_sum0_address = CVMX_CIU_INTX_SUM0(core_id * 2);
465         const uint64_t ciu_en0_address = CVMX_CIU_INTX_EN0(core_id * 2);
466         const uint64_t ciu_sum1_address = CVMX_CIU_INT_SUM1;
467         const uint64_t ciu_en1_address = CVMX_CIU_INTX_EN1(core_id * 2 + 1);
468         unsigned long cop0_cause;
469         unsigned long cop0_status;
470         uint64_t ciu_en;
471         uint64_t ciu_sum;
472
473         while (1) {
474                 cop0_cause = read_c0_cause();
475                 cop0_status = read_c0_status();
476                 cop0_cause &= cop0_status;
477                 cop0_cause &= ST0_IM;
478
479                 if (unlikely(cop0_cause & STATUSF_IP2)) {
480                         ciu_sum = cvmx_read_csr(ciu_sum0_address);
481                         ciu_en = cvmx_read_csr(ciu_en0_address);
482                         ciu_sum &= ciu_en;
483                         if (likely(ciu_sum))
484                                 do_IRQ(fls64(ciu_sum) + OCTEON_IRQ_WORKQ0 - 1);
485                         else
486                                 spurious_interrupt();
487                 } else if (unlikely(cop0_cause & STATUSF_IP3)) {
488                         ciu_sum = cvmx_read_csr(ciu_sum1_address);
489                         ciu_en = cvmx_read_csr(ciu_en1_address);
490                         ciu_sum &= ciu_en;
491                         if (likely(ciu_sum))
492                                 do_IRQ(fls64(ciu_sum) + OCTEON_IRQ_WDOG0 - 1);
493                         else
494                                 spurious_interrupt();
495                 } else if (likely(cop0_cause)) {
496                         do_IRQ(fls(cop0_cause) - 9 + MIPS_CPU_IRQ_BASE);
497                 } else {
498                         break;
499                 }
500         }
501 }