Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[sfrench/cifs-2.6.git] / arch / m68k / ifpsp060 / src / fpsp.S
1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
3 M68000 Hi-Performance Microprocessor Division
4 M68060 Software Package
5 Production Release P1.00 -- October 10, 1994
6
7 M68060 Software Package Copyright © 1993, 1994 Motorola Inc.  All rights reserved.
8
9 THE SOFTWARE is provided on an "AS IS" basis and without warranty.
10 To the maximum extent permitted by applicable law,
11 MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
12 INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
13 and any warranty against infringement with regard to the SOFTWARE
14 (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
15
16 To the maximum extent permitted by applicable law,
17 IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
18 (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
19 BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
20 ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
21 Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
22
23 You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
24 so long as this entire notice is retained without alteration in any modified and/or
25 redistributed versions, and that such modified versions are clearly identified as such.
26 No licenses are granted by implication, estoppel or otherwise under any patents
27 or trademarks of Motorola, Inc.
28 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 #
30 # freal.s:
31 #       This file is appended to the top of the 060FPSP package
32 # and contains the entry points into the package. The user, in
33 # effect, branches to one of the branch table entries located
34 # after _060FPSP_TABLE.
35 #       Also, subroutine stubs exist in this file (_fpsp_done for
36 # example) that are referenced by the FPSP package itself in order
37 # to call a given routine. The stub routine actually performs the
38 # callout. The FPSP code does a "bsr" to the stub routine. This
39 # extra layer of hierarchy adds a slight performance penalty but
40 # it makes the FPSP code easier to read and more mainatinable.
41 #
42
43 set     _off_bsun,      0x00
44 set     _off_snan,      0x04
45 set     _off_operr,     0x08
46 set     _off_ovfl,      0x0c
47 set     _off_unfl,      0x10
48 set     _off_dz,        0x14
49 set     _off_inex,      0x18
50 set     _off_fline,     0x1c
51 set     _off_fpu_dis,   0x20
52 set     _off_trap,      0x24
53 set     _off_trace,     0x28
54 set     _off_access,    0x2c
55 set     _off_done,      0x30
56
57 set     _off_imr,       0x40
58 set     _off_dmr,       0x44
59 set     _off_dmw,       0x48
60 set     _off_irw,       0x4c
61 set     _off_irl,       0x50
62 set     _off_drb,       0x54
63 set     _off_drw,       0x58
64 set     _off_drl,       0x5c
65 set     _off_dwb,       0x60
66 set     _off_dww,       0x64
67 set     _off_dwl,       0x68
68
69 _060FPSP_TABLE:
70
71 ###############################################################
72
73 # Here's the table of ENTRY POINTS for those linking the package.
74         bra.l           _fpsp_snan
75         short           0x0000
76         bra.l           _fpsp_operr
77         short           0x0000
78         bra.l           _fpsp_ovfl
79         short           0x0000
80         bra.l           _fpsp_unfl
81         short           0x0000
82         bra.l           _fpsp_dz
83         short           0x0000
84         bra.l           _fpsp_inex
85         short           0x0000
86         bra.l           _fpsp_fline
87         short           0x0000
88         bra.l           _fpsp_unsupp
89         short           0x0000
90         bra.l           _fpsp_effadd
91         short           0x0000
92
93         space           56
94
95 ###############################################################
96         global          _fpsp_done
97 _fpsp_done:
98         mov.l           %d0,-(%sp)
99         mov.l           (_060FPSP_TABLE-0x80+_off_done,%pc),%d0
100         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
101         mov.l           0x4(%sp),%d0
102         rtd             &0x4
103
104         global          _real_ovfl
105 _real_ovfl:
106         mov.l           %d0,-(%sp)
107         mov.l           (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0
108         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
109         mov.l           0x4(%sp),%d0
110         rtd             &0x4
111
112         global          _real_unfl
113 _real_unfl:
114         mov.l           %d0,-(%sp)
115         mov.l           (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0
116         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
117         mov.l           0x4(%sp),%d0
118         rtd             &0x4
119
120         global          _real_inex
121 _real_inex:
122         mov.l           %d0,-(%sp)
123         mov.l           (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0
124         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
125         mov.l           0x4(%sp),%d0
126         rtd             &0x4
127
128         global          _real_bsun
129 _real_bsun:
130         mov.l           %d0,-(%sp)
131         mov.l           (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0
132         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
133         mov.l           0x4(%sp),%d0
134         rtd             &0x4
135
136         global          _real_operr
137 _real_operr:
138         mov.l           %d0,-(%sp)
139         mov.l           (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0
140         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
141         mov.l           0x4(%sp),%d0
142         rtd             &0x4
143
144         global          _real_snan
145 _real_snan:
146         mov.l           %d0,-(%sp)
147         mov.l           (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0
148         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
149         mov.l           0x4(%sp),%d0
150         rtd             &0x4
151
152         global          _real_dz
153 _real_dz:
154         mov.l           %d0,-(%sp)
155         mov.l           (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0
156         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
157         mov.l           0x4(%sp),%d0
158         rtd             &0x4
159
160         global          _real_fline
161 _real_fline:
162         mov.l           %d0,-(%sp)
163         mov.l           (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0
164         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
165         mov.l           0x4(%sp),%d0
166         rtd             &0x4
167
168         global          _real_fpu_disabled
169 _real_fpu_disabled:
170         mov.l           %d0,-(%sp)
171         mov.l           (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0
172         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
173         mov.l           0x4(%sp),%d0
174         rtd             &0x4
175
176         global          _real_trap
177 _real_trap:
178         mov.l           %d0,-(%sp)
179         mov.l           (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0
180         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
181         mov.l           0x4(%sp),%d0
182         rtd             &0x4
183
184         global          _real_trace
185 _real_trace:
186         mov.l           %d0,-(%sp)
187         mov.l           (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0
188         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
189         mov.l           0x4(%sp),%d0
190         rtd             &0x4
191
192         global          _real_access
193 _real_access:
194         mov.l           %d0,-(%sp)
195         mov.l           (_060FPSP_TABLE-0x80+_off_access,%pc),%d0
196         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
197         mov.l           0x4(%sp),%d0
198         rtd             &0x4
199
200 #######################################
201
202         global          _imem_read
203 _imem_read:
204         mov.l           %d0,-(%sp)
205         mov.l           (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0
206         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
207         mov.l           0x4(%sp),%d0
208         rtd             &0x4
209
210         global          _dmem_read
211 _dmem_read:
212         mov.l           %d0,-(%sp)
213         mov.l           (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0
214         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
215         mov.l           0x4(%sp),%d0
216         rtd             &0x4
217
218         global          _dmem_write
219 _dmem_write:
220         mov.l           %d0,-(%sp)
221         mov.l           (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0
222         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
223         mov.l           0x4(%sp),%d0
224         rtd             &0x4
225
226         global          _imem_read_word
227 _imem_read_word:
228         mov.l           %d0,-(%sp)
229         mov.l           (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0
230         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
231         mov.l           0x4(%sp),%d0
232         rtd             &0x4
233
234         global          _imem_read_long
235 _imem_read_long:
236         mov.l           %d0,-(%sp)
237         mov.l           (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0
238         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
239         mov.l           0x4(%sp),%d0
240         rtd             &0x4
241
242         global          _dmem_read_byte
243 _dmem_read_byte:
244         mov.l           %d0,-(%sp)
245         mov.l           (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0
246         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
247         mov.l           0x4(%sp),%d0
248         rtd             &0x4
249
250         global          _dmem_read_word
251 _dmem_read_word:
252         mov.l           %d0,-(%sp)
253         mov.l           (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0
254         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
255         mov.l           0x4(%sp),%d0
256         rtd             &0x4
257
258         global          _dmem_read_long
259 _dmem_read_long:
260         mov.l           %d0,-(%sp)
261         mov.l           (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0
262         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
263         mov.l           0x4(%sp),%d0
264         rtd             &0x4
265
266         global          _dmem_write_byte
267 _dmem_write_byte:
268         mov.l           %d0,-(%sp)
269         mov.l           (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0
270         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
271         mov.l           0x4(%sp),%d0
272         rtd             &0x4
273
274         global          _dmem_write_word
275 _dmem_write_word:
276         mov.l           %d0,-(%sp)
277         mov.l           (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0
278         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
279         mov.l           0x4(%sp),%d0
280         rtd             &0x4
281
282         global          _dmem_write_long
283 _dmem_write_long:
284         mov.l           %d0,-(%sp)
285         mov.l           (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0
286         pea.l           (_060FPSP_TABLE-0x80,%pc,%d0)
287         mov.l           0x4(%sp),%d0
288         rtd             &0x4
289
290 #
291 # This file contains a set of define statements for constants
292 # in order to promote readability within the corecode itself.
293 #
294
295 set LOCAL_SIZE,         192                     # stack frame size(bytes)
296 set LV,                 -LOCAL_SIZE             # stack offset
297
298 set EXC_SR,             0x4                     # stack status register
299 set EXC_PC,             0x6                     # stack pc
300 set EXC_VOFF,           0xa                     # stacked vector offset
301 set EXC_EA,             0xc                     # stacked <ea>
302
303 set EXC_FP,             0x0                     # frame pointer
304
305 set EXC_AREGS,          -68                     # offset of all address regs
306 set EXC_DREGS,          -100                    # offset of all data regs
307 set EXC_FPREGS,         -36                     # offset of all fp regs
308
309 set EXC_A7,             EXC_AREGS+(7*4)         # offset of saved a7
310 set OLD_A7,             EXC_AREGS+(6*4)         # extra copy of saved a7
311 set EXC_A6,             EXC_AREGS+(6*4)         # offset of saved a6
312 set EXC_A5,             EXC_AREGS+(5*4)
313 set EXC_A4,             EXC_AREGS+(4*4)
314 set EXC_A3,             EXC_AREGS+(3*4)
315 set EXC_A2,             EXC_AREGS+(2*4)
316 set EXC_A1,             EXC_AREGS+(1*4)
317 set EXC_A0,             EXC_AREGS+(0*4)
318 set EXC_D7,             EXC_DREGS+(7*4)
319 set EXC_D6,             EXC_DREGS+(6*4)
320 set EXC_D5,             EXC_DREGS+(5*4)
321 set EXC_D4,             EXC_DREGS+(4*4)
322 set EXC_D3,             EXC_DREGS+(3*4)
323 set EXC_D2,             EXC_DREGS+(2*4)
324 set EXC_D1,             EXC_DREGS+(1*4)
325 set EXC_D0,             EXC_DREGS+(0*4)
326
327 set EXC_FP0,            EXC_FPREGS+(0*12)       # offset of saved fp0
328 set EXC_FP1,            EXC_FPREGS+(1*12)       # offset of saved fp1
329 set EXC_FP2,            EXC_FPREGS+(2*12)       # offset of saved fp2 (not used)
330
331 set FP_SCR1,            LV+80                   # fp scratch 1
332 set FP_SCR1_EX,         FP_SCR1+0
333 set FP_SCR1_SGN,        FP_SCR1+2
334 set FP_SCR1_HI,         FP_SCR1+4
335 set FP_SCR1_LO,         FP_SCR1+8
336
337 set FP_SCR0,            LV+68                   # fp scratch 0
338 set FP_SCR0_EX,         FP_SCR0+0
339 set FP_SCR0_SGN,        FP_SCR0+2
340 set FP_SCR0_HI,         FP_SCR0+4
341 set FP_SCR0_LO,         FP_SCR0+8
342
343 set FP_DST,             LV+56                   # fp destination operand
344 set FP_DST_EX,          FP_DST+0
345 set FP_DST_SGN,         FP_DST+2
346 set FP_DST_HI,          FP_DST+4
347 set FP_DST_LO,          FP_DST+8
348
349 set FP_SRC,             LV+44                   # fp source operand
350 set FP_SRC_EX,          FP_SRC+0
351 set FP_SRC_SGN,         FP_SRC+2
352 set FP_SRC_HI,          FP_SRC+4
353 set FP_SRC_LO,          FP_SRC+8
354
355 set USER_FPIAR,         LV+40                   # FP instr address register
356
357 set USER_FPSR,          LV+36                   # FP status register
358 set FPSR_CC,            USER_FPSR+0             # FPSR condition codes
359 set FPSR_QBYTE,         USER_FPSR+1             # FPSR qoutient byte
360 set FPSR_EXCEPT,        USER_FPSR+2             # FPSR exception status byte
361 set FPSR_AEXCEPT,       USER_FPSR+3             # FPSR accrued exception byte
362
363 set USER_FPCR,          LV+32                   # FP control register
364 set FPCR_ENABLE,        USER_FPCR+2             # FPCR exception enable
365 set FPCR_MODE,          USER_FPCR+3             # FPCR rounding mode control
366
367 set L_SCR3,             LV+28                   # integer scratch 3
368 set L_SCR2,             LV+24                   # integer scratch 2
369 set L_SCR1,             LV+20                   # integer scratch 1
370
371 set STORE_FLG,          LV+19                   # flag: operand store (ie. not fcmp/ftst)
372
373 set EXC_TEMP2,          LV+24                   # temporary space
374 set EXC_TEMP,           LV+16                   # temporary space
375
376 set DTAG,               LV+15                   # destination operand type
377 set STAG,               LV+14                   # source operand type
378
379 set SPCOND_FLG,         LV+10                   # flag: special case (see below)
380
381 set EXC_CC,             LV+8                    # saved condition codes
382 set EXC_EXTWPTR,        LV+4                    # saved current PC (active)
383 set EXC_EXTWORD,        LV+2                    # saved extension word
384 set EXC_CMDREG,         LV+2                    # saved extension word
385 set EXC_OPWORD,         LV+0                    # saved operation word
386
387 ################################
388
389 # Helpful macros
390
391 set FTEMP,              0                       # offsets within an
392 set FTEMP_EX,           0                       # extended precision
393 set FTEMP_SGN,          2                       # value saved in memory.
394 set FTEMP_HI,           4
395 set FTEMP_LO,           8
396 set FTEMP_GRS,          12
397
398 set LOCAL,              0                       # offsets within an
399 set LOCAL_EX,           0                       # extended precision
400 set LOCAL_SGN,          2                       # value saved in memory.
401 set LOCAL_HI,           4
402 set LOCAL_LO,           8
403 set LOCAL_GRS,          12
404
405 set DST,                0                       # offsets within an
406 set DST_EX,             0                       # extended precision
407 set DST_HI,             4                       # value saved in memory.
408 set DST_LO,             8
409
410 set SRC,                0                       # offsets within an
411 set SRC_EX,             0                       # extended precision
412 set SRC_HI,             4                       # value saved in memory.
413 set SRC_LO,             8
414
415 set SGL_LO,             0x3f81                  # min sgl prec exponent
416 set SGL_HI,             0x407e                  # max sgl prec exponent
417 set DBL_LO,             0x3c01                  # min dbl prec exponent
418 set DBL_HI,             0x43fe                  # max dbl prec exponent
419 set EXT_LO,             0x0                     # min ext prec exponent
420 set EXT_HI,             0x7ffe                  # max ext prec exponent
421
422 set EXT_BIAS,           0x3fff                  # extended precision bias
423 set SGL_BIAS,           0x007f                  # single precision bias
424 set DBL_BIAS,           0x03ff                  # double precision bias
425
426 set NORM,               0x00                    # operand type for STAG/DTAG
427 set ZERO,               0x01                    # operand type for STAG/DTAG
428 set INF,                0x02                    # operand type for STAG/DTAG
429 set QNAN,               0x03                    # operand type for STAG/DTAG
430 set DENORM,             0x04                    # operand type for STAG/DTAG
431 set SNAN,               0x05                    # operand type for STAG/DTAG
432 set UNNORM,             0x06                    # operand type for STAG/DTAG
433
434 ##################
435 # FPSR/FPCR bits #
436 ##################
437 set neg_bit,            0x3                     # negative result
438 set z_bit,              0x2                     # zero result
439 set inf_bit,            0x1                     # infinite result
440 set nan_bit,            0x0                     # NAN result
441
442 set q_sn_bit,           0x7                     # sign bit of quotient byte
443
444 set bsun_bit,           7                       # branch on unordered
445 set snan_bit,           6                       # signalling NAN
446 set operr_bit,          5                       # operand error
447 set ovfl_bit,           4                       # overflow
448 set unfl_bit,           3                       # underflow
449 set dz_bit,             2                       # divide by zero
450 set inex2_bit,          1                       # inexact result 2
451 set inex1_bit,          0                       # inexact result 1
452
453 set aiop_bit,           7                       # accrued inexact operation bit
454 set aovfl_bit,          6                       # accrued overflow bit
455 set aunfl_bit,          5                       # accrued underflow bit
456 set adz_bit,            4                       # accrued dz bit
457 set ainex_bit,          3                       # accrued inexact bit
458
459 #############################
460 # FPSR individual bit masks #
461 #############################
462 set neg_mask,           0x08000000              # negative bit mask (lw)
463 set inf_mask,           0x02000000              # infinity bit mask (lw)
464 set z_mask,             0x04000000              # zero bit mask (lw)
465 set nan_mask,           0x01000000              # nan bit mask (lw)
466
467 set neg_bmask,          0x08                    # negative bit mask (byte)
468 set inf_bmask,          0x02                    # infinity bit mask (byte)
469 set z_bmask,            0x04                    # zero bit mask (byte)
470 set nan_bmask,          0x01                    # nan bit mask (byte)
471
472 set bsun_mask,          0x00008000              # bsun exception mask
473 set snan_mask,          0x00004000              # snan exception mask
474 set operr_mask,         0x00002000              # operr exception mask
475 set ovfl_mask,          0x00001000              # overflow exception mask
476 set unfl_mask,          0x00000800              # underflow exception mask
477 set dz_mask,            0x00000400              # dz exception mask
478 set inex2_mask,         0x00000200              # inex2 exception mask
479 set inex1_mask,         0x00000100              # inex1 exception mask
480
481 set aiop_mask,          0x00000080              # accrued illegal operation
482 set aovfl_mask,         0x00000040              # accrued overflow
483 set aunfl_mask,         0x00000020              # accrued underflow
484 set adz_mask,           0x00000010              # accrued divide by zero
485 set ainex_mask,         0x00000008              # accrued inexact
486
487 ######################################
488 # FPSR combinations used in the FPSP #
489 ######################################
490 set dzinf_mask,         inf_mask+dz_mask+adz_mask
491 set opnan_mask,         nan_mask+operr_mask+aiop_mask
492 set nzi_mask,           0x01ffffff              #clears N, Z, and I
493 set unfinx_mask,        unfl_mask+inex2_mask+aunfl_mask+ainex_mask
494 set unf2inx_mask,       unfl_mask+inex2_mask+ainex_mask
495 set ovfinx_mask,        ovfl_mask+inex2_mask+aovfl_mask+ainex_mask
496 set inx1a_mask,         inex1_mask+ainex_mask
497 set inx2a_mask,         inex2_mask+ainex_mask
498 set snaniop_mask,       nan_mask+snan_mask+aiop_mask
499 set snaniop2_mask,      snan_mask+aiop_mask
500 set naniop_mask,        nan_mask+aiop_mask
501 set neginf_mask,        neg_mask+inf_mask
502 set infaiop_mask,       inf_mask+aiop_mask
503 set negz_mask,          neg_mask+z_mask
504 set opaop_mask,         operr_mask+aiop_mask
505 set unfl_inx_mask,      unfl_mask+aunfl_mask+ainex_mask
506 set ovfl_inx_mask,      ovfl_mask+aovfl_mask+ainex_mask
507
508 #########
509 # misc. #
510 #########
511 set rnd_stky_bit,       29                      # stky bit pos in longword
512
513 set sign_bit,           0x7                     # sign bit
514 set signan_bit,         0x6                     # signalling nan bit
515
516 set sgl_thresh,         0x3f81                  # minimum sgl exponent
517 set dbl_thresh,         0x3c01                  # minimum dbl exponent
518
519 set x_mode,             0x0                     # extended precision
520 set s_mode,             0x4                     # single precision
521 set d_mode,             0x8                     # double precision
522
523 set rn_mode,            0x0                     # round-to-nearest
524 set rz_mode,            0x1                     # round-to-zero
525 set rm_mode,            0x2                     # round-tp-minus-infinity
526 set rp_mode,            0x3                     # round-to-plus-infinity
527
528 set mantissalen,        64                      # length of mantissa in bits
529
530 set BYTE,               1                       # len(byte) == 1 byte
531 set WORD,               2                       # len(word) == 2 bytes
532 set LONG,               4                       # len(longword) == 2 bytes
533
534 set BSUN_VEC,           0xc0                    # bsun    vector offset
535 set INEX_VEC,           0xc4                    # inexact vector offset
536 set DZ_VEC,             0xc8                    # dz      vector offset
537 set UNFL_VEC,           0xcc                    # unfl    vector offset
538 set OPERR_VEC,          0xd0                    # operr   vector offset
539 set OVFL_VEC,           0xd4                    # ovfl    vector offset
540 set SNAN_VEC,           0xd8                    # snan    vector offset
541
542 ###########################
543 # SPecial CONDition FLaGs #
544 ###########################
545 set ftrapcc_flg,        0x01                    # flag bit: ftrapcc exception
546 set fbsun_flg,          0x02                    # flag bit: bsun exception
547 set mia7_flg,           0x04                    # flag bit: (a7)+ <ea>
548 set mda7_flg,           0x08                    # flag bit: -(a7) <ea>
549 set fmovm_flg,          0x40                    # flag bit: fmovm instruction
550 set immed_flg,          0x80                    # flag bit: &<data> <ea>
551
552 set ftrapcc_bit,        0x0
553 set fbsun_bit,          0x1
554 set mia7_bit,           0x2
555 set mda7_bit,           0x3
556 set immed_bit,          0x7
557
558 ##################################
559 # TRANSCENDENTAL "LAST-OP" FLAGS #
560 ##################################
561 set FMUL_OP,            0x0                     # fmul instr performed last
562 set FDIV_OP,            0x1                     # fdiv performed last
563 set FADD_OP,            0x2                     # fadd performed last
564 set FMOV_OP,            0x3                     # fmov performed last
565
566 #############
567 # CONSTANTS #
568 #############
569 T1:     long            0x40C62D38,0xD3D64634   # 16381 LOG2 LEAD
570 T2:     long            0x3D6F90AE,0xB1E75CC7   # 16381 LOG2 TRAIL
571
572 PI:     long            0x40000000,0xC90FDAA2,0x2168C235,0x00000000
573 PIBY2:  long            0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
574
575 TWOBYPI:
576         long            0x3FE45F30,0x6DC9C883
577
578 #########################################################################
579 # XDEF **************************************************************** #
580 #       _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception.    #
581 #                                                                       #
582 #       This handler should be the first code executed upon taking the  #
583 #       FP Overflow exception in an operating system.                   #
584 #                                                                       #
585 # XREF **************************************************************** #
586 #       _imem_read_long() - read instruction longword                   #
587 #       fix_skewed_ops() - adjust src operand in fsave frame            #
588 #       set_tag_x() - determine optype of src/dst operands              #
589 #       store_fpreg() - store opclass 0 or 2 result to FP regfile       #
590 #       unnorm_fix() - change UNNORM operands to NORM or ZERO           #
591 #       load_fpn2() - load dst operand from FP regfile                  #
592 #       fout() - emulate an opclass 3 instruction                       #
593 #       tbl_unsupp - add of table of emulation routines for opclass 0,2 #
594 #       _fpsp_done() - "callout" for 060FPSP exit (all work done!)      #
595 #       _real_ovfl() - "callout" for Overflow exception enabled code    #
596 #       _real_inex() - "callout" for Inexact exception enabled code     #
597 #       _real_trace() - "callout" for Trace exception code              #
598 #                                                                       #
599 # INPUT *************************************************************** #
600 #       - The system stack contains the FP Ovfl exception stack frame   #
601 #       - The fsave frame contains the source operand                   #
602 #                                                                       #
603 # OUTPUT ************************************************************** #
604 #       Overflow Exception enabled:                                     #
605 #       - The system stack is unchanged                                 #
606 #       - The fsave frame contains the adjusted src op for opclass 0,2  #
607 #       Overflow Exception disabled:                                    #
608 #       - The system stack is unchanged                                 #
609 #       - The "exception present" flag in the fsave frame is cleared    #
610 #                                                                       #
611 # ALGORITHM *********************************************************** #
612 #       On the 060, if an FP overflow is present as the result of any   #
613 # instruction, the 060 will take an overflow exception whether the      #
614 # exception is enabled or disabled in the FPCR. For the disabled case,  #
615 # This handler emulates the instruction to determine what the correct   #
616 # default result should be for the operation. This default result is    #
617 # then stored in either the FP regfile, data regfile, or memory.        #
618 # Finally, the handler exits through the "callout" _fpsp_done()         #
619 # denoting that no exceptional conditions exist within the machine.     #
620 #       If the exception is enabled, then this handler must create the  #
621 # exceptional operand and plave it in the fsave state frame, and store  #
622 # the default result (only if the instruction is opclass 3). For        #
623 # exceptions enabled, this handler must exit through the "callout"      #
624 # _real_ovfl() so that the operating system enabled overflow handler    #
625 # can handle this case.                                                 #
626 #       Two other conditions exist. First, if overflow was disabled     #
627 # but the inexact exception was enabled, this handler must exit         #
628 # through the "callout" _real_inex() regardless of whether the result   #
629 # was inexact.                                                          #
630 #       Also, in the case of an opclass three instruction where         #
631 # overflow was disabled and the trace exception was enabled, this       #
632 # handler must exit through the "callout" _real_trace().                #
633 #                                                                       #
634 #########################################################################
635
636         global          _fpsp_ovfl
637 _fpsp_ovfl:
638
639 #$#     sub.l           &24,%sp                 # make room for src/dst
640
641         link.w          %a6,&-LOCAL_SIZE        # init stack frame
642
643         fsave           FP_SRC(%a6)             # grab the "busy" frame
644
645         movm.l          &0x0303,EXC_DREGS(%a6)  # save d0-d1/a0-a1
646         fmovm.l         %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
647         fmovm.x         &0xc0,EXC_FPREGS(%a6)   # save fp0-fp1 on stack
648
649 # the FPIAR holds the "current PC" of the faulting instruction
650         mov.l           USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
651         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
652         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
653         bsr.l           _imem_read_long         # fetch the instruction words
654         mov.l           %d0,EXC_OPWORD(%a6)
655
656 ##############################################################################
657
658         btst            &0x5,EXC_CMDREG(%a6)    # is instr an fmove out?
659         bne.w           fovfl_out
660
661
662         lea             FP_SRC(%a6),%a0         # pass: ptr to src op
663         bsr.l           fix_skewed_ops          # fix src op
664
665 # since, I believe, only NORMs and DENORMs can come through here,
666 # maybe we can avoid the subroutine call.
667         lea             FP_SRC(%a6),%a0         # pass: ptr to src op
668         bsr.l           set_tag_x               # tag the operand type
669         mov.b           %d0,STAG(%a6)           # maybe NORM,DENORM
670
671 # bit five of the fp extension word separates the monadic and dyadic operations
672 # that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos
673 # will never take this exception.
674         btst            &0x5,1+EXC_CMDREG(%a6)  # is operation monadic or dyadic?
675         beq.b           fovfl_extract           # monadic
676
677         bfextu          EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
678         bsr.l           load_fpn2               # load dst into FP_DST
679
680         lea             FP_DST(%a6),%a0         # pass: ptr to dst op
681         bsr.l           set_tag_x               # tag the operand type
682         cmpi.b          %d0,&UNNORM             # is operand an UNNORM?
683         bne.b           fovfl_op2_done          # no
684         bsr.l           unnorm_fix              # yes; convert to NORM,DENORM,or ZERO
685 fovfl_op2_done:
686         mov.b           %d0,DTAG(%a6)           # save dst optype tag
687
688 fovfl_extract:
689
690 #$#     mov.l           FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
691 #$#     mov.l           FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
692 #$#     mov.l           FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
693 #$#     mov.l           FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6)
694 #$#     mov.l           FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6)
695 #$#     mov.l           FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6)
696
697         clr.l           %d0
698         mov.b           FPCR_MODE(%a6),%d0      # pass rnd prec/mode
699
700         mov.b           1+EXC_CMDREG(%a6),%d1
701         andi.w          &0x007f,%d1             # extract extension
702
703         andi.l          &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field
704
705         fmov.l          &0x0,%fpcr              # zero current control regs
706         fmov.l          &0x0,%fpsr
707
708         lea             FP_SRC(%a6),%a0
709         lea             FP_DST(%a6),%a1
710
711 # maybe we can make these entry points ONLY the OVFL entry points of each routine.
712         mov.l           (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
713         jsr             (tbl_unsupp.l,%pc,%d1.l*1)
714
715 # the operation has been emulated. the result is in fp0.
716 # the EXOP, if an exception occurred, is in fp1.
717 # we must save the default result regardless of whether
718 # traps are enabled or disabled.
719         bfextu          EXC_CMDREG(%a6){&6:&3},%d0
720         bsr.l           store_fpreg
721
722 # the exceptional possibilities we have left ourselves with are ONLY overflow
723 # and inexact. and, the inexact is such that overflow occurred and was disabled
724 # but inexact was enabled.
725         btst            &ovfl_bit,FPCR_ENABLE(%a6)
726         bne.b           fovfl_ovfl_on
727
728         btst            &inex2_bit,FPCR_ENABLE(%a6)
729         bne.b           fovfl_inex_on
730
731         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
732         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
733         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
734
735         unlk            %a6
736 #$#     add.l           &24,%sp
737         bra.l           _fpsp_done
738
739 # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP
740 # in fp1. now, simply jump to _real_ovfl()!
741 fovfl_ovfl_on:
742         fmovm.x         &0x40,FP_SRC(%a6)       # save EXOP (fp1) to stack
743
744         mov.w           &0xe005,2+FP_SRC(%a6)   # save exc status
745
746         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
747         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
748         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
749
750         frestore        FP_SRC(%a6)             # do this after fmovm,other f<op>s!
751
752         unlk            %a6
753
754         bra.l           _real_ovfl
755
756 # overflow occurred but is disabled. meanwhile, inexact is enabled. Therefore,
757 # we must jump to real_inex().
758 fovfl_inex_on:
759
760         fmovm.x         &0x40,FP_SRC(%a6)       # save EXOP (fp1) to stack
761
762         mov.b           &0xc4,1+EXC_VOFF(%a6)   # vector offset = 0xc4
763         mov.w           &0xe001,2+FP_SRC(%a6)   # save exc status
764
765         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
766         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
767         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
768
769         frestore        FP_SRC(%a6)             # do this after fmovm,other f<op>s!
770
771         unlk            %a6
772
773         bra.l           _real_inex
774
775 ########################################################################
776 fovfl_out:
777
778
779 #$#     mov.l           FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
780 #$#     mov.l           FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
781 #$#     mov.l           FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
782
783 # the src operand is definitely a NORM(!), so tag it as such
784         mov.b           &NORM,STAG(%a6)         # set src optype tag
785
786         clr.l           %d0
787         mov.b           FPCR_MODE(%a6),%d0      # pass rnd prec/mode
788
789         and.l           &0xffff00ff,USER_FPSR(%a6) # zero all but accured field
790
791         fmov.l          &0x0,%fpcr              # zero current control regs
792         fmov.l          &0x0,%fpsr
793
794         lea             FP_SRC(%a6),%a0         # pass ptr to src operand
795
796         bsr.l           fout
797
798         btst            &ovfl_bit,FPCR_ENABLE(%a6)
799         bne.w           fovfl_ovfl_on
800
801         btst            &inex2_bit,FPCR_ENABLE(%a6)
802         bne.w           fovfl_inex_on
803
804         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
805         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
806         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
807
808         unlk            %a6
809 #$#     add.l           &24,%sp
810
811         btst            &0x7,(%sp)              # is trace on?
812         beq.l           _fpsp_done              # no
813
814         fmov.l          %fpiar,0x8(%sp)         # "Current PC" is in FPIAR
815         mov.w           &0x2024,0x6(%sp)        # stk fmt = 0x2; voff = 0x024
816         bra.l           _real_trace
817
818 #########################################################################
819 # XDEF **************************************************************** #
820 #       _fpsp_unfl(): 060FPSP entry point for FP Underflow exception.   #
821 #                                                                       #
822 #       This handler should be the first code executed upon taking the  #
823 #       FP Underflow exception in an operating system.                  #
824 #                                                                       #
825 # XREF **************************************************************** #
826 #       _imem_read_long() - read instruction longword                   #
827 #       fix_skewed_ops() - adjust src operand in fsave frame            #
828 #       set_tag_x() - determine optype of src/dst operands              #
829 #       store_fpreg() - store opclass 0 or 2 result to FP regfile       #
830 #       unnorm_fix() - change UNNORM operands to NORM or ZERO           #
831 #       load_fpn2() - load dst operand from FP regfile                  #
832 #       fout() - emulate an opclass 3 instruction                       #
833 #       tbl_unsupp - add of table of emulation routines for opclass 0,2 #
834 #       _fpsp_done() - "callout" for 060FPSP exit (all work done!)      #
835 #       _real_ovfl() - "callout" for Overflow exception enabled code    #
836 #       _real_inex() - "callout" for Inexact exception enabled code     #
837 #       _real_trace() - "callout" for Trace exception code              #
838 #                                                                       #
839 # INPUT *************************************************************** #
840 #       - The system stack contains the FP Unfl exception stack frame   #
841 #       - The fsave frame contains the source operand                   #
842 #                                                                       #
843 # OUTPUT ************************************************************** #
844 #       Underflow Exception enabled:                                    #
845 #       - The system stack is unchanged                                 #
846 #       - The fsave frame contains the adjusted src op for opclass 0,2  #
847 #       Underflow Exception disabled:                                   #
848 #       - The system stack is unchanged                                 #
849 #       - The "exception present" flag in the fsave frame is cleared    #
850 #                                                                       #
851 # ALGORITHM *********************************************************** #
852 #       On the 060, if an FP underflow is present as the result of any  #
853 # instruction, the 060 will take an underflow exception whether the     #
854 # exception is enabled or disabled in the FPCR. For the disabled case,  #
855 # This handler emulates the instruction to determine what the correct   #
856 # default result should be for the operation. This default result is    #
857 # then stored in either the FP regfile, data regfile, or memory.        #
858 # Finally, the handler exits through the "callout" _fpsp_done()         #
859 # denoting that no exceptional conditions exist within the machine.     #
860 #       If the exception is enabled, then this handler must create the  #
861 # exceptional operand and plave it in the fsave state frame, and store  #
862 # the default result (only if the instruction is opclass 3). For        #
863 # exceptions enabled, this handler must exit through the "callout"      #
864 # _real_unfl() so that the operating system enabled overflow handler    #
865 # can handle this case.                                                 #
866 #       Two other conditions exist. First, if underflow was disabled    #
867 # but the inexact exception was enabled and the result was inexact,     #
868 # this handler must exit through the "callout" _real_inex().            #
869 # was inexact.                                                          #
870 #       Also, in the case of an opclass three instruction where         #
871 # underflow was disabled and the trace exception was enabled, this      #
872 # handler must exit through the "callout" _real_trace().                #
873 #                                                                       #
874 #########################################################################
875
876         global          _fpsp_unfl
877 _fpsp_unfl:
878
879 #$#     sub.l           &24,%sp                 # make room for src/dst
880
881         link.w          %a6,&-LOCAL_SIZE        # init stack frame
882
883         fsave           FP_SRC(%a6)             # grab the "busy" frame
884
885         movm.l          &0x0303,EXC_DREGS(%a6)  # save d0-d1/a0-a1
886         fmovm.l         %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
887         fmovm.x         &0xc0,EXC_FPREGS(%a6)   # save fp0-fp1 on stack
888
889 # the FPIAR holds the "current PC" of the faulting instruction
890         mov.l           USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
891         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
892         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
893         bsr.l           _imem_read_long         # fetch the instruction words
894         mov.l           %d0,EXC_OPWORD(%a6)
895
896 ##############################################################################
897
898         btst            &0x5,EXC_CMDREG(%a6)    # is instr an fmove out?
899         bne.w           funfl_out
900
901
902         lea             FP_SRC(%a6),%a0         # pass: ptr to src op
903         bsr.l           fix_skewed_ops          # fix src op
904
905         lea             FP_SRC(%a6),%a0         # pass: ptr to src op
906         bsr.l           set_tag_x               # tag the operand type
907         mov.b           %d0,STAG(%a6)           # maybe NORM,DENORM
908
909 # bit five of the fp ext word separates the monadic and dyadic operations
910 # that can pass through fpsp_unfl(). remember that fcmp, and ftst
911 # will never take this exception.
912         btst            &0x5,1+EXC_CMDREG(%a6)  # is op monadic or dyadic?
913         beq.b           funfl_extract           # monadic
914
915 # now, what's left that's not dyadic is fsincos. we can distinguish it
916 # from all dyadics by the '0110xxx pattern
917         btst            &0x4,1+EXC_CMDREG(%a6)  # is op an fsincos?
918         bne.b           funfl_extract           # yes
919
920         bfextu          EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
921         bsr.l           load_fpn2               # load dst into FP_DST
922
923         lea             FP_DST(%a6),%a0         # pass: ptr to dst op
924         bsr.l           set_tag_x               # tag the operand type
925         cmpi.b          %d0,&UNNORM             # is operand an UNNORM?
926         bne.b           funfl_op2_done          # no
927         bsr.l           unnorm_fix              # yes; convert to NORM,DENORM,or ZERO
928 funfl_op2_done:
929         mov.b           %d0,DTAG(%a6)           # save dst optype tag
930
931 funfl_extract:
932
933 #$#     mov.l           FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
934 #$#     mov.l           FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
935 #$#     mov.l           FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
936 #$#     mov.l           FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6)
937 #$#     mov.l           FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6)
938 #$#     mov.l           FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6)
939
940         clr.l           %d0
941         mov.b           FPCR_MODE(%a6),%d0      # pass rnd prec/mode
942
943         mov.b           1+EXC_CMDREG(%a6),%d1
944         andi.w          &0x007f,%d1             # extract extension
945
946         andi.l          &0x00ff01ff,USER_FPSR(%a6)
947
948         fmov.l          &0x0,%fpcr              # zero current control regs
949         fmov.l          &0x0,%fpsr
950
951         lea             FP_SRC(%a6),%a0
952         lea             FP_DST(%a6),%a1
953
954 # maybe we can make these entry points ONLY the OVFL entry points of each routine.
955         mov.l           (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
956         jsr             (tbl_unsupp.l,%pc,%d1.l*1)
957
958         bfextu          EXC_CMDREG(%a6){&6:&3},%d0
959         bsr.l           store_fpreg
960
961 # The `060 FPU multiplier hardware is such that if the result of a
962 # multiply operation is the smallest possible normalized number
963 # (0x00000000_80000000_00000000), then the machine will take an
964 # underflow exception. Since this is incorrect, we need to check
965 # if our emulation, after re-doing the operation, decided that
966 # no underflow was called for. We do these checks only in
967 # funfl_{unfl,inex}_on() because w/ both exceptions disabled, this
968 # special case will simply exit gracefully with the correct result.
969
970 # the exceptional possibilities we have left ourselves with are ONLY overflow
971 # and inexact. and, the inexact is such that overflow occurred and was disabled
972 # but inexact was enabled.
973         btst            &unfl_bit,FPCR_ENABLE(%a6)
974         bne.b           funfl_unfl_on
975
976 funfl_chkinex:
977         btst            &inex2_bit,FPCR_ENABLE(%a6)
978         bne.b           funfl_inex_on
979
980 funfl_exit:
981         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
982         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
983         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
984
985         unlk            %a6
986 #$#     add.l           &24,%sp
987         bra.l           _fpsp_done
988
989 # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP
990 # in fp1 (don't forget to save fp0). what to do now?
991 # well, we simply have to get to go to _real_unfl()!
992 funfl_unfl_on:
993
994 # The `060 FPU multiplier hardware is such that if the result of a
995 # multiply operation is the smallest possible normalized number
996 # (0x00000000_80000000_00000000), then the machine will take an
997 # underflow exception. Since this is incorrect, we check here to see
998 # if our emulation, after re-doing the operation, decided that
999 # no underflow was called for.
1000         btst            &unfl_bit,FPSR_EXCEPT(%a6)
1001         beq.w           funfl_chkinex
1002
1003 funfl_unfl_on2:
1004         fmovm.x         &0x40,FP_SRC(%a6)       # save EXOP (fp1) to stack
1005
1006         mov.w           &0xe003,2+FP_SRC(%a6)   # save exc status
1007
1008         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
1009         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1010         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1011
1012         frestore        FP_SRC(%a6)             # do this after fmovm,other f<op>s!
1013
1014         unlk            %a6
1015
1016         bra.l           _real_unfl
1017
1018 # underflow occurred but is disabled. meanwhile, inexact is enabled. Therefore,
1019 # we must jump to real_inex().
1020 funfl_inex_on:
1021
1022 # The `060 FPU multiplier hardware is such that if the result of a
1023 # multiply operation is the smallest possible normalized number
1024 # (0x00000000_80000000_00000000), then the machine will take an
1025 # underflow exception.
1026 # But, whether bogus or not, if inexact is enabled AND it occurred,
1027 # then we have to branch to real_inex.
1028
1029         btst            &inex2_bit,FPSR_EXCEPT(%a6)
1030         beq.w           funfl_exit
1031
1032 funfl_inex_on2:
1033
1034         fmovm.x         &0x40,FP_SRC(%a6)       # save EXOP to stack
1035
1036         mov.b           &0xc4,1+EXC_VOFF(%a6)   # vector offset = 0xc4
1037         mov.w           &0xe001,2+FP_SRC(%a6)   # save exc status
1038
1039         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
1040         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1041         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1042
1043         frestore        FP_SRC(%a6)             # do this after fmovm,other f<op>s!
1044
1045         unlk            %a6
1046
1047         bra.l           _real_inex
1048
1049 #######################################################################
1050 funfl_out:
1051
1052
1053 #$#     mov.l           FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
1054 #$#     mov.l           FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
1055 #$#     mov.l           FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
1056
1057 # the src operand is definitely a NORM(!), so tag it as such
1058         mov.b           &NORM,STAG(%a6)         # set src optype tag
1059
1060         clr.l           %d0
1061         mov.b           FPCR_MODE(%a6),%d0      # pass rnd prec/mode
1062
1063         and.l           &0xffff00ff,USER_FPSR(%a6) # zero all but accured field
1064
1065         fmov.l          &0x0,%fpcr              # zero current control regs
1066         fmov.l          &0x0,%fpsr
1067
1068         lea             FP_SRC(%a6),%a0         # pass ptr to src operand
1069
1070         bsr.l           fout
1071
1072         btst            &unfl_bit,FPCR_ENABLE(%a6)
1073         bne.w           funfl_unfl_on2
1074
1075         btst            &inex2_bit,FPCR_ENABLE(%a6)
1076         bne.w           funfl_inex_on2
1077
1078         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
1079         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1080         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1081
1082         unlk            %a6
1083 #$#     add.l           &24,%sp
1084
1085         btst            &0x7,(%sp)              # is trace on?
1086         beq.l           _fpsp_done              # no
1087
1088         fmov.l          %fpiar,0x8(%sp)         # "Current PC" is in FPIAR
1089         mov.w           &0x2024,0x6(%sp)        # stk fmt = 0x2; voff = 0x024
1090         bra.l           _real_trace
1091
1092 #########################################################################
1093 # XDEF **************************************************************** #
1094 #       _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented       #
1095 #                       Data Type" exception.                           #
1096 #                                                                       #
1097 #       This handler should be the first code executed upon taking the  #
1098 #       FP Unimplemented Data Type exception in an operating system.    #
1099 #                                                                       #
1100 # XREF **************************************************************** #
1101 #       _imem_read_{word,long}() - read instruction word/longword       #
1102 #       fix_skewed_ops() - adjust src operand in fsave frame            #
1103 #       set_tag_x() - determine optype of src/dst operands              #
1104 #       store_fpreg() - store opclass 0 or 2 result to FP regfile       #
1105 #       unnorm_fix() - change UNNORM operands to NORM or ZERO           #
1106 #       load_fpn2() - load dst operand from FP regfile                  #
1107 #       load_fpn1() - load src operand from FP regfile                  #
1108 #       fout() - emulate an opclass 3 instruction                       #
1109 #       tbl_unsupp - add of table of emulation routines for opclass 0,2 #
1110 #       _real_inex() - "callout" to operating system inexact handler    #
1111 #       _fpsp_done() - "callout" for exit; work all done                #
1112 #       _real_trace() - "callout" for Trace enabled exception           #
1113 #       funimp_skew() - adjust fsave src ops to "incorrect" value       #
1114 #       _real_snan() - "callout" for SNAN exception                     #
1115 #       _real_operr() - "callout" for OPERR exception                   #
1116 #       _real_ovfl() - "callout" for OVFL exception                     #
1117 #       _real_unfl() - "callout" for UNFL exception                     #
1118 #       get_packed() - fetch packed operand from memory                 #
1119 #                                                                       #
1120 # INPUT *************************************************************** #
1121 #       - The system stack contains the "Unimp Data Type" stk frame     #
1122 #       - The fsave frame contains the ssrc op (for UNNORM/DENORM)      #
1123 #                                                                       #
1124 # OUTPUT ************************************************************** #
1125 #       If Inexact exception (opclass 3):                               #
1126 #       - The system stack is changed to an Inexact exception stk frame #
1127 #       If SNAN exception (opclass 3):                                  #
1128 #       - The system stack is changed to an SNAN exception stk frame    #
1129 #       If OPERR exception (opclass 3):                                 #
1130 #       - The system stack is changed to an OPERR exception stk frame   #
1131 #       If OVFL exception (opclass 3):                                  #
1132 #       - The system stack is changed to an OVFL exception stk frame    #
1133 #       If UNFL exception (opclass 3):                                  #
1134 #       - The system stack is changed to an UNFL exception stack frame  #
1135 #       If Trace exception enabled:                                     #
1136 #       - The system stack is changed to a Trace exception stack frame  #
1137 #       Else: (normal case)                                             #
1138 #       - Correct result has been stored as appropriate                 #
1139 #                                                                       #
1140 # ALGORITHM *********************************************************** #
1141 #       Two main instruction types can enter here: (1) DENORM or UNNORM #
1142 # unimplemented data types. These can be either opclass 0,2 or 3        #
1143 # instructions, and (2) PACKED unimplemented data format instructions   #
1144 # also of opclasses 0,2, or 3.                                          #
1145 #       For UNNORM/DENORM opclass 0 and 2, the handler fetches the src  #
1146 # operand from the fsave state frame and the dst operand (if dyadic)    #
1147 # from the FP register file. The instruction is then emulated by        #
1148 # choosing an emulation routine from a table of routines indexed by     #
1149 # instruction type. Once the instruction has been emulated and result   #
1150 # saved, then we check to see if any enabled exceptions resulted from   #
1151 # instruction emulation. If none, then we exit through the "callout"    #
1152 # _fpsp_done(). If there is an enabled FP exception, then we insert     #
1153 # this exception into the FPU in the fsave state frame and then exit    #
1154 # through _fpsp_done().                                                 #
1155 #       PACKED opclass 0 and 2 is similar in how the instruction is     #
1156 # emulated and exceptions handled. The differences occur in how the     #
1157 # handler loads the packed op (by calling get_packed() routine) and     #
1158 # by the fact that a Trace exception could be pending for PACKED ops.   #
1159 # If a Trace exception is pending, then the current exception stack     #
1160 # frame is changed to a Trace exception stack frame and an exit is      #
1161 # made through _real_trace().                                           #
1162 #       For UNNORM/DENORM opclass 3, the actual move out to memory is   #
1163 # performed by calling the routine fout(). If no exception should occur #
1164 # as the result of emulation, then an exit either occurs through        #
1165 # _fpsp_done() or through _real_trace() if a Trace exception is pending #
1166 # (a Trace stack frame must be created here, too). If an FP exception   #
1167 # should occur, then we must create an exception stack frame of that    #
1168 # type and jump to either _real_snan(), _real_operr(), _real_inex(),    #
1169 # _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3        #
1170 # emulation is performed in a similar manner.                           #
1171 #                                                                       #
1172 #########################################################################
1173
1174 #
1175 # (1) DENORM and UNNORM (unimplemented) data types:
1176 #
1177 #                               post-instruction
1178 #                               *****************
1179 #                               *      EA       *
1180 #        pre-instruction        *               *
1181 #       *****************       *****************
1182 #       * 0x0 *  0x0dc  *       * 0x3 *  0x0dc  *
1183 #       *****************       *****************
1184 #       *     Next      *       *     Next      *
1185 #       *      PC       *       *      PC       *
1186 #       *****************       *****************
1187 #       *      SR       *       *      SR       *
1188 #       *****************       *****************
1189 #
1190 # (2) PACKED format (unsupported) opclasses two and three:
1191 #       *****************
1192 #       *      EA       *
1193 #       *               *
1194 #       *****************
1195 #       * 0x2 *  0x0dc  *
1196 #       *****************
1197 #       *     Next      *
1198 #       *      PC       *
1199 #       *****************
1200 #       *      SR       *
1201 #       *****************
1202 #
1203         global          _fpsp_unsupp
1204 _fpsp_unsupp:
1205
1206         link.w          %a6,&-LOCAL_SIZE        # init stack frame
1207
1208         fsave           FP_SRC(%a6)             # save fp state
1209
1210         movm.l          &0x0303,EXC_DREGS(%a6)  # save d0-d1/a0-a1
1211         fmovm.l         %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
1212         fmovm.x         &0xc0,EXC_FPREGS(%a6)   # save fp0-fp1 on stack
1213
1214         btst            &0x5,EXC_SR(%a6)        # user or supervisor mode?
1215         bne.b           fu_s
1216 fu_u:
1217         mov.l           %usp,%a0                # fetch user stack pointer
1218         mov.l           %a0,EXC_A7(%a6)         # save on stack
1219         bra.b           fu_cont
1220 # if the exception is an opclass zero or two unimplemented data type
1221 # exception, then the a7' calculated here is wrong since it doesn't
1222 # stack an ea. however, we don't need an a7' for this case anyways.
1223 fu_s:
1224         lea             0x4+EXC_EA(%a6),%a0     # load old a7'
1225         mov.l           %a0,EXC_A7(%a6)         # save on stack
1226
1227 fu_cont:
1228
1229 # the FPIAR holds the "current PC" of the faulting instruction
1230 # the FPIAR should be set correctly for ALL exceptions passing through
1231 # this point.
1232         mov.l           USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
1233         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
1234         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
1235         bsr.l           _imem_read_long         # fetch the instruction words
1236         mov.l           %d0,EXC_OPWORD(%a6)     # store OPWORD and EXTWORD
1237
1238 ############################
1239
1240         clr.b           SPCOND_FLG(%a6)         # clear special condition flag
1241
1242 # Separate opclass three (fpn-to-mem) ops since they have a different
1243 # stack frame and protocol.
1244         btst            &0x5,EXC_CMDREG(%a6)    # is it an fmove out?
1245         bne.w           fu_out                  # yes
1246
1247 # Separate packed opclass two instructions.
1248         bfextu          EXC_CMDREG(%a6){&0:&6},%d0
1249         cmpi.b          %d0,&0x13
1250         beq.w           fu_in_pack
1251
1252
1253 # I'm not sure at this point what FPSR bits are valid for this instruction.
1254 # so, since the emulation routines re-create them anyways, zero exception field
1255         andi.l          &0x00ff00ff,USER_FPSR(%a6) # zero exception field
1256
1257         fmov.l          &0x0,%fpcr              # zero current control regs
1258         fmov.l          &0x0,%fpsr
1259
1260 # Opclass two w/ memory-to-fpn operation will have an incorrect extended
1261 # precision format if the src format was single or double and the
1262 # source data type was an INF, NAN, DENORM, or UNNORM
1263         lea             FP_SRC(%a6),%a0         # pass ptr to input
1264         bsr.l           fix_skewed_ops
1265
1266 # we don't know whether the src operand or the dst operand (or both) is the
1267 # UNNORM or DENORM. call the function that tags the operand type. if the
1268 # input is an UNNORM, then convert it to a NORM, DENORM, or ZERO.
1269         lea             FP_SRC(%a6),%a0         # pass: ptr to src op
1270         bsr.l           set_tag_x               # tag the operand type
1271         cmpi.b          %d0,&UNNORM             # is operand an UNNORM?
1272         bne.b           fu_op2                  # no
1273         bsr.l           unnorm_fix              # yes; convert to NORM,DENORM,or ZERO
1274
1275 fu_op2:
1276         mov.b           %d0,STAG(%a6)           # save src optype tag
1277
1278         bfextu          EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
1279
1280 # bit five of the fp extension word separates the monadic and dyadic operations
1281 # at this point
1282         btst            &0x5,1+EXC_CMDREG(%a6)  # is operation monadic or dyadic?
1283         beq.b           fu_extract              # monadic
1284         cmpi.b          1+EXC_CMDREG(%a6),&0x3a # is operation an ftst?
1285         beq.b           fu_extract              # yes, so it's monadic, too
1286
1287         bsr.l           load_fpn2               # load dst into FP_DST
1288
1289         lea             FP_DST(%a6),%a0         # pass: ptr to dst op
1290         bsr.l           set_tag_x               # tag the operand type
1291         cmpi.b          %d0,&UNNORM             # is operand an UNNORM?
1292         bne.b           fu_op2_done             # no
1293         bsr.l           unnorm_fix              # yes; convert to NORM,DENORM,or ZERO
1294 fu_op2_done:
1295         mov.b           %d0,DTAG(%a6)           # save dst optype tag
1296
1297 fu_extract:
1298         clr.l           %d0
1299         mov.b           FPCR_MODE(%a6),%d0      # fetch rnd mode/prec
1300
1301         bfextu          1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension
1302
1303         lea             FP_SRC(%a6),%a0
1304         lea             FP_DST(%a6),%a1
1305
1306         mov.l           (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr
1307         jsr             (tbl_unsupp.l,%pc,%d1.l*1)
1308
1309 #
1310 # Exceptions in order of precedence:
1311 #       BSUN    : none
1312 #       SNAN    : all dyadic ops
1313 #       OPERR   : fsqrt(-NORM)
1314 #       OVFL    : all except ftst,fcmp
1315 #       UNFL    : all except ftst,fcmp
1316 #       DZ      : fdiv
1317 #       INEX2   : all except ftst,fcmp
1318 #       INEX1   : none (packed doesn't go through here)
1319 #
1320
1321 # we determine the highest priority exception(if any) set by the
1322 # emulation routine that has also been enabled by the user.
1323         mov.b           FPCR_ENABLE(%a6),%d0    # fetch exceptions set
1324         bne.b           fu_in_ena               # some are enabled
1325
1326 fu_in_cont:
1327 # fcmp and ftst do not store any result.
1328         mov.b           1+EXC_CMDREG(%a6),%d0   # fetch extension
1329         andi.b          &0x38,%d0               # extract bits 3-5
1330         cmpi.b          %d0,&0x38               # is instr fcmp or ftst?
1331         beq.b           fu_in_exit              # yes
1332
1333         bfextu          EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
1334         bsr.l           store_fpreg             # store the result
1335
1336 fu_in_exit:
1337
1338         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1339         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1340         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1341
1342         unlk            %a6
1343
1344         bra.l           _fpsp_done
1345
1346 fu_in_ena:
1347         and.b           FPSR_EXCEPT(%a6),%d0    # keep only ones enabled
1348         bfffo           %d0{&24:&8},%d0         # find highest priority exception
1349         bne.b           fu_in_exc               # there is at least one set
1350
1351 #
1352 # No exceptions occurred that were also enabled. Now:
1353 #
1354 #       if (OVFL && ovfl_disabled && inexact_enabled) {
1355 #           branch to _real_inex() (even if the result was exact!);
1356 #       } else {
1357 #           save the result in the proper fp reg (unless the op is fcmp or ftst);
1358 #           return;
1359 #       }
1360 #
1361         btst            &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
1362         beq.b           fu_in_cont              # no
1363
1364 fu_in_ovflchk:
1365         btst            &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
1366         beq.b           fu_in_cont              # no
1367         bra.w           fu_in_exc_ovfl          # go insert overflow frame
1368
1369 #
1370 # An exception occurred and that exception was enabled:
1371 #
1372 #       shift enabled exception field into lo byte of d0;
1373 #       if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) ||
1374 #           ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) {
1375 #               /*
1376 #                * this is the case where we must call _real_inex() now or else
1377 #                * there will be no other way to pass it the exceptional operand
1378 #                */
1379 #               call _real_inex();
1380 #       } else {
1381 #               restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU;
1382 #       }
1383 #
1384 fu_in_exc:
1385         subi.l          &24,%d0                 # fix offset to be 0-8
1386         cmpi.b          %d0,&0x6                # is exception INEX? (6)
1387         bne.b           fu_in_exc_exit          # no
1388
1389 # the enabled exception was inexact
1390         btst            &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur?
1391         bne.w           fu_in_exc_unfl          # yes
1392         btst            &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur?
1393         bne.w           fu_in_exc_ovfl          # yes
1394
1395 # here, we insert the correct fsave status value into the fsave frame for the
1396 # corresponding exception. the operand in the fsave frame should be the original
1397 # src operand.
1398 fu_in_exc_exit:
1399         mov.l           %d0,-(%sp)              # save d0
1400         bsr.l           funimp_skew             # skew sgl or dbl inputs
1401         mov.l           (%sp)+,%d0              # restore d0
1402
1403         mov.w           (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status
1404
1405         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1406         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1407         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1408
1409         frestore        FP_SRC(%a6)             # restore src op
1410
1411         unlk            %a6
1412
1413         bra.l           _fpsp_done
1414
1415 tbl_except:
1416         short           0xe000,0xe006,0xe004,0xe005
1417         short           0xe003,0xe002,0xe001,0xe001
1418
1419 fu_in_exc_unfl:
1420         mov.w           &0x4,%d0
1421         bra.b           fu_in_exc_exit
1422 fu_in_exc_ovfl:
1423         mov.w           &0x03,%d0
1424         bra.b           fu_in_exc_exit
1425
1426 # If the input operand to this operation was opclass two and a single
1427 # or double precision denorm, inf, or nan, the operand needs to be
1428 # "corrected" in order to have the proper equivalent extended precision
1429 # number.
1430         global          fix_skewed_ops
1431 fix_skewed_ops:
1432         bfextu          EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt
1433         cmpi.b          %d0,&0x11               # is class = 2 & fmt = sgl?
1434         beq.b           fso_sgl                 # yes
1435         cmpi.b          %d0,&0x15               # is class = 2 & fmt = dbl?
1436         beq.b           fso_dbl                 # yes
1437         rts                                     # no
1438
1439 fso_sgl:
1440         mov.w           LOCAL_EX(%a0),%d0       # fetch src exponent
1441         andi.w          &0x7fff,%d0             # strip sign
1442         cmpi.w          %d0,&0x3f80             # is |exp| == $3f80?
1443         beq.b           fso_sgl_dnrm_zero       # yes
1444         cmpi.w          %d0,&0x407f             # no; is |exp| == $407f?
1445         beq.b           fso_infnan              # yes
1446         rts                                     # no
1447
1448 fso_sgl_dnrm_zero:
1449         andi.l          &0x7fffffff,LOCAL_HI(%a0) # clear j-bit
1450         beq.b           fso_zero                # it's a skewed zero
1451 fso_sgl_dnrm:
1452 # here, we count on norm not to alter a0...
1453         bsr.l           norm                    # normalize mantissa
1454         neg.w           %d0                     # -shft amt
1455         addi.w          &0x3f81,%d0             # adjust new exponent
1456         andi.w          &0x8000,LOCAL_EX(%a0)   # clear old exponent
1457         or.w            %d0,LOCAL_EX(%a0)       # insert new exponent
1458         rts
1459
1460 fso_zero:
1461         andi.w          &0x8000,LOCAL_EX(%a0)   # clear bogus exponent
1462         rts
1463
1464 fso_infnan:
1465         andi.b          &0x7f,LOCAL_HI(%a0)     # clear j-bit
1466         ori.w           &0x7fff,LOCAL_EX(%a0)   # make exponent = $7fff
1467         rts
1468
1469 fso_dbl:
1470         mov.w           LOCAL_EX(%a0),%d0       # fetch src exponent
1471         andi.w          &0x7fff,%d0             # strip sign
1472         cmpi.w          %d0,&0x3c00             # is |exp| == $3c00?
1473         beq.b           fso_dbl_dnrm_zero       # yes
1474         cmpi.w          %d0,&0x43ff             # no; is |exp| == $43ff?
1475         beq.b           fso_infnan              # yes
1476         rts                                     # no
1477
1478 fso_dbl_dnrm_zero:
1479         andi.l          &0x7fffffff,LOCAL_HI(%a0) # clear j-bit
1480         bne.b           fso_dbl_dnrm            # it's a skewed denorm
1481         tst.l           LOCAL_LO(%a0)           # is it a zero?
1482         beq.b           fso_zero                # yes
1483 fso_dbl_dnrm:
1484 # here, we count on norm not to alter a0...
1485         bsr.l           norm                    # normalize mantissa
1486         neg.w           %d0                     # -shft amt
1487         addi.w          &0x3c01,%d0             # adjust new exponent
1488         andi.w          &0x8000,LOCAL_EX(%a0)   # clear old exponent
1489         or.w            %d0,LOCAL_EX(%a0)       # insert new exponent
1490         rts
1491
1492 #################################################################
1493
1494 # fmove out took an unimplemented data type exception.
1495 # the src operand is in FP_SRC. Call _fout() to write out the result and
1496 # to determine which exceptions, if any, to take.
1497 fu_out:
1498
1499 # Separate packed move outs from the UNNORM and DENORM move outs.
1500         bfextu          EXC_CMDREG(%a6){&3:&3},%d0
1501         cmpi.b          %d0,&0x3
1502         beq.w           fu_out_pack
1503         cmpi.b          %d0,&0x7
1504         beq.w           fu_out_pack
1505
1506
1507 # I'm not sure at this point what FPSR bits are valid for this instruction.
1508 # so, since the emulation routines re-create them anyways, zero exception field.
1509 # fmove out doesn't affect ccodes.
1510         and.l           &0xffff00ff,USER_FPSR(%a6) # zero exception field
1511
1512         fmov.l          &0x0,%fpcr              # zero current control regs
1513         fmov.l          &0x0,%fpsr
1514
1515 # the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine
1516 # call here. just figure out what it is...
1517         mov.w           FP_SRC_EX(%a6),%d0      # get exponent
1518         andi.w          &0x7fff,%d0             # strip sign
1519         beq.b           fu_out_denorm           # it's a DENORM
1520
1521         lea             FP_SRC(%a6),%a0
1522         bsr.l           unnorm_fix              # yes; fix it
1523
1524         mov.b           %d0,STAG(%a6)
1525
1526         bra.b           fu_out_cont
1527 fu_out_denorm:
1528         mov.b           &DENORM,STAG(%a6)
1529 fu_out_cont:
1530
1531         clr.l           %d0
1532         mov.b           FPCR_MODE(%a6),%d0      # fetch rnd mode/prec
1533
1534         lea             FP_SRC(%a6),%a0         # pass ptr to src operand
1535
1536         mov.l           (%a6),EXC_A6(%a6)       # in case a6 changes
1537         bsr.l           fout                    # call fmove out routine
1538
1539 # Exceptions in order of precedence:
1540 #       BSUN    : none
1541 #       SNAN    : none
1542 #       OPERR   : fmove.{b,w,l} out of large UNNORM
1543 #       OVFL    : fmove.{s,d}
1544 #       UNFL    : fmove.{s,d,x}
1545 #       DZ      : none
1546 #       INEX2   : all
1547 #       INEX1   : none (packed doesn't travel through here)
1548
1549 # determine the highest priority exception(if any) set by the
1550 # emulation routine that has also been enabled by the user.
1551         mov.b           FPCR_ENABLE(%a6),%d0    # fetch exceptions enabled
1552         bne.w           fu_out_ena              # some are enabled
1553
1554 fu_out_done:
1555
1556         mov.l           EXC_A6(%a6),(%a6)       # in case a6 changed
1557
1558 # on extended precision opclass three instructions using pre-decrement or
1559 # post-increment addressing mode, the address register is not updated. is the
1560 # address register was the stack pointer used from user mode, then let's update
1561 # it here. if it was used from supervisor mode, then we have to handle this
1562 # as a special case.
1563         btst            &0x5,EXC_SR(%a6)
1564         bne.b           fu_out_done_s
1565
1566         mov.l           EXC_A7(%a6),%a0         # restore a7
1567         mov.l           %a0,%usp
1568
1569 fu_out_done_cont:
1570         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1571         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1572         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1573
1574         unlk            %a6
1575
1576         btst            &0x7,(%sp)              # is trace on?
1577         bne.b           fu_out_trace            # yes
1578
1579         bra.l           _fpsp_done
1580
1581 # is the ea mode pre-decrement of the stack pointer from supervisor mode?
1582 # ("fmov.x fpm,-(a7)") if so,
1583 fu_out_done_s:
1584         cmpi.b          SPCOND_FLG(%a6),&mda7_flg
1585         bne.b           fu_out_done_cont
1586
1587 # the extended precision result is still in fp0. but, we need to save it
1588 # somewhere on the stack until we can copy it to its final resting place.
1589 # here, we're counting on the top of the stack to be the old place-holders
1590 # for fp0/fp1 which have already been restored. that way, we can write
1591 # over those destinations with the shifted stack frame.
1592         fmovm.x         &0x80,FP_SRC(%a6)       # put answer on stack
1593
1594         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1595         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1596         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1597
1598         mov.l           (%a6),%a6               # restore frame pointer
1599
1600         mov.l           LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
1601         mov.l           LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
1602
1603 # now, copy the result to the proper place on the stack
1604         mov.l           LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
1605         mov.l           LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
1606         mov.l           LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
1607
1608         add.l           &LOCAL_SIZE-0x8,%sp
1609
1610         btst            &0x7,(%sp)
1611         bne.b           fu_out_trace
1612
1613         bra.l           _fpsp_done
1614
1615 fu_out_ena:
1616         and.b           FPSR_EXCEPT(%a6),%d0    # keep only ones enabled
1617         bfffo           %d0{&24:&8},%d0         # find highest priority exception
1618         bne.b           fu_out_exc              # there is at least one set
1619
1620 # no exceptions were set.
1621 # if a disabled overflow occurred and inexact was enabled but the result
1622 # was exact, then a branch to _real_inex() is made.
1623         btst            &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
1624         beq.w           fu_out_done             # no
1625
1626 fu_out_ovflchk:
1627         btst            &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
1628         beq.w           fu_out_done             # no
1629         bra.w           fu_inex                 # yes
1630
1631 #
1632 # The fp move out that took the "Unimplemented Data Type" exception was
1633 # being traced. Since the stack frames are similar, get the "current" PC
1634 # from FPIAR and put it in the trace stack frame then jump to _real_trace().
1635 #
1636 #                 UNSUPP FRAME             TRACE FRAME
1637 #               *****************       *****************
1638 #               *      EA       *       *    Current    *
1639 #               *               *       *      PC       *
1640 #               *****************       *****************
1641 #               * 0x3 *  0x0dc  *       * 0x2 *  0x024  *
1642 #               *****************       *****************
1643 #               *     Next      *       *     Next      *
1644 #               *      PC       *       *      PC       *
1645 #               *****************       *****************
1646 #               *      SR       *       *      SR       *
1647 #               *****************       *****************
1648 #
1649 fu_out_trace:
1650         mov.w           &0x2024,0x6(%sp)
1651         fmov.l          %fpiar,0x8(%sp)
1652         bra.l           _real_trace
1653
1654 # an exception occurred and that exception was enabled.
1655 fu_out_exc:
1656         subi.l          &24,%d0                 # fix offset to be 0-8
1657
1658 # we don't mess with the existing fsave frame. just re-insert it and
1659 # jump to the "_real_{}()" handler...
1660         mov.w           (tbl_fu_out.b,%pc,%d0.w*2),%d0
1661         jmp             (tbl_fu_out.b,%pc,%d0.w*1)
1662
1663         swbeg           &0x8
1664 tbl_fu_out:
1665         short           tbl_fu_out      - tbl_fu_out    # BSUN can't happen
1666         short           tbl_fu_out      - tbl_fu_out    # SNAN can't happen
1667         short           fu_operr        - tbl_fu_out    # OPERR
1668         short           fu_ovfl         - tbl_fu_out    # OVFL
1669         short           fu_unfl         - tbl_fu_out    # UNFL
1670         short           tbl_fu_out      - tbl_fu_out    # DZ can't happen
1671         short           fu_inex         - tbl_fu_out    # INEX2
1672         short           tbl_fu_out      - tbl_fu_out    # INEX1 won't make it here
1673
1674 # for snan,operr,ovfl,unfl, src op is still in FP_SRC so just
1675 # frestore it.
1676 fu_snan:
1677         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1678         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1679         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1680
1681         mov.w           &0x30d8,EXC_VOFF(%a6)   # vector offset = 0xd8
1682         mov.w           &0xe006,2+FP_SRC(%a6)
1683
1684         frestore        FP_SRC(%a6)
1685
1686         unlk            %a6
1687
1688
1689         bra.l           _real_snan
1690
1691 fu_operr:
1692         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1693         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1694         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1695
1696         mov.w           &0x30d0,EXC_VOFF(%a6)   # vector offset = 0xd0
1697         mov.w           &0xe004,2+FP_SRC(%a6)
1698
1699         frestore        FP_SRC(%a6)
1700
1701         unlk            %a6
1702
1703
1704         bra.l           _real_operr
1705
1706 fu_ovfl:
1707         fmovm.x         &0x40,FP_SRC(%a6)       # save EXOP to the stack
1708
1709         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1710         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1711         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1712
1713         mov.w           &0x30d4,EXC_VOFF(%a6)   # vector offset = 0xd4
1714         mov.w           &0xe005,2+FP_SRC(%a6)
1715
1716         frestore        FP_SRC(%a6)             # restore EXOP
1717
1718         unlk            %a6
1719
1720         bra.l           _real_ovfl
1721
1722 # underflow can happen for extended precision. extended precision opclass
1723 # three instruction exceptions don't update the stack pointer. so, if the
1724 # exception occurred from user mode, then simply update a7 and exit normally.
1725 # if the exception occurred from supervisor mode, check if
1726 fu_unfl:
1727         mov.l           EXC_A6(%a6),(%a6)       # restore a6
1728
1729         btst            &0x5,EXC_SR(%a6)
1730         bne.w           fu_unfl_s
1731
1732         mov.l           EXC_A7(%a6),%a0         # restore a7 whether we need
1733         mov.l           %a0,%usp                # to or not...
1734
1735 fu_unfl_cont:
1736         fmovm.x         &0x40,FP_SRC(%a6)       # save EXOP to the stack
1737
1738         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1739         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1740         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1741
1742         mov.w           &0x30cc,EXC_VOFF(%a6)   # vector offset = 0xcc
1743         mov.w           &0xe003,2+FP_SRC(%a6)
1744
1745         frestore        FP_SRC(%a6)             # restore EXOP
1746
1747         unlk            %a6
1748
1749         bra.l           _real_unfl
1750
1751 fu_unfl_s:
1752         cmpi.b          SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)?
1753         bne.b           fu_unfl_cont
1754
1755 # the extended precision result is still in fp0. but, we need to save it
1756 # somewhere on the stack until we can copy it to its final resting place
1757 # (where the exc frame is currently). make sure it's not at the top of the
1758 # frame or it will get overwritten when the exc stack frame is shifted "down".
1759         fmovm.x         &0x80,FP_SRC(%a6)       # put answer on stack
1760         fmovm.x         &0x40,FP_DST(%a6)       # put EXOP on stack
1761
1762         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1763         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1764         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1765
1766         mov.w           &0x30cc,EXC_VOFF(%a6)   # vector offset = 0xcc
1767         mov.w           &0xe003,2+FP_DST(%a6)
1768
1769         frestore        FP_DST(%a6)             # restore EXOP
1770
1771         mov.l           (%a6),%a6               # restore frame pointer
1772
1773         mov.l           LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
1774         mov.l           LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
1775         mov.l           LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
1776
1777 # now, copy the result to the proper place on the stack
1778         mov.l           LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
1779         mov.l           LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
1780         mov.l           LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
1781
1782         add.l           &LOCAL_SIZE-0x8,%sp
1783
1784         bra.l           _real_unfl
1785
1786 # fmove in and out enter here.
1787 fu_inex:
1788         fmovm.x         &0x40,FP_SRC(%a6)       # save EXOP to the stack
1789
1790         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1791         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1792         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1793
1794         mov.w           &0x30c4,EXC_VOFF(%a6)   # vector offset = 0xc4
1795         mov.w           &0xe001,2+FP_SRC(%a6)
1796
1797         frestore        FP_SRC(%a6)             # restore EXOP
1798
1799         unlk            %a6
1800
1801
1802         bra.l           _real_inex
1803
1804 #########################################################################
1805 #########################################################################
1806 fu_in_pack:
1807
1808
1809 # I'm not sure at this point what FPSR bits are valid for this instruction.
1810 # so, since the emulation routines re-create them anyways, zero exception field
1811         andi.l          &0x0ff00ff,USER_FPSR(%a6) # zero exception field
1812
1813         fmov.l          &0x0,%fpcr              # zero current control regs
1814         fmov.l          &0x0,%fpsr
1815
1816         bsr.l           get_packed              # fetch packed src operand
1817
1818         lea             FP_SRC(%a6),%a0         # pass ptr to src
1819         bsr.l           set_tag_x               # set src optype tag
1820
1821         mov.b           %d0,STAG(%a6)           # save src optype tag
1822
1823         bfextu          EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
1824
1825 # bit five of the fp extension word separates the monadic and dyadic operations
1826 # at this point
1827         btst            &0x5,1+EXC_CMDREG(%a6)  # is operation monadic or dyadic?
1828         beq.b           fu_extract_p            # monadic
1829         cmpi.b          1+EXC_CMDREG(%a6),&0x3a # is operation an ftst?
1830         beq.b           fu_extract_p            # yes, so it's monadic, too
1831
1832         bsr.l           load_fpn2               # load dst into FP_DST
1833
1834         lea             FP_DST(%a6),%a0         # pass: ptr to dst op
1835         bsr.l           set_tag_x               # tag the operand type
1836         cmpi.b          %d0,&UNNORM             # is operand an UNNORM?
1837         bne.b           fu_op2_done_p           # no
1838         bsr.l           unnorm_fix              # yes; convert to NORM,DENORM,or ZERO
1839 fu_op2_done_p:
1840         mov.b           %d0,DTAG(%a6)           # save dst optype tag
1841
1842 fu_extract_p:
1843         clr.l           %d0
1844         mov.b           FPCR_MODE(%a6),%d0      # fetch rnd mode/prec
1845
1846         bfextu          1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension
1847
1848         lea             FP_SRC(%a6),%a0
1849         lea             FP_DST(%a6),%a1
1850
1851         mov.l           (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr
1852         jsr             (tbl_unsupp.l,%pc,%d1.l*1)
1853
1854 #
1855 # Exceptions in order of precedence:
1856 #       BSUN    : none
1857 #       SNAN    : all dyadic ops
1858 #       OPERR   : fsqrt(-NORM)
1859 #       OVFL    : all except ftst,fcmp
1860 #       UNFL    : all except ftst,fcmp
1861 #       DZ      : fdiv
1862 #       INEX2   : all except ftst,fcmp
1863 #       INEX1   : all
1864 #
1865
1866 # we determine the highest priority exception(if any) set by the
1867 # emulation routine that has also been enabled by the user.
1868         mov.b           FPCR_ENABLE(%a6),%d0    # fetch exceptions enabled
1869         bne.w           fu_in_ena_p             # some are enabled
1870
1871 fu_in_cont_p:
1872 # fcmp and ftst do not store any result.
1873         mov.b           1+EXC_CMDREG(%a6),%d0   # fetch extension
1874         andi.b          &0x38,%d0               # extract bits 3-5
1875         cmpi.b          %d0,&0x38               # is instr fcmp or ftst?
1876         beq.b           fu_in_exit_p            # yes
1877
1878         bfextu          EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
1879         bsr.l           store_fpreg             # store the result
1880
1881 fu_in_exit_p:
1882
1883         btst            &0x5,EXC_SR(%a6)        # user or supervisor?
1884         bne.w           fu_in_exit_s_p          # supervisor
1885
1886         mov.l           EXC_A7(%a6),%a0         # update user a7
1887         mov.l           %a0,%usp
1888
1889 fu_in_exit_cont_p:
1890         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1891         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1892         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1893
1894         unlk            %a6                     # unravel stack frame
1895
1896         btst            &0x7,(%sp)              # is trace on?
1897         bne.w           fu_trace_p              # yes
1898
1899         bra.l           _fpsp_done              # exit to os
1900
1901 # the exception occurred in supervisor mode. check to see if the
1902 # addressing mode was (a7)+. if so, we'll need to shift the
1903 # stack frame "up".
1904 fu_in_exit_s_p:
1905         btst            &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+
1906         beq.b           fu_in_exit_cont_p       # no
1907
1908         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1909         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1910         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1911
1912         unlk            %a6                     # unravel stack frame
1913
1914 # shift the stack frame "up". we don't really care about the <ea> field.
1915         mov.l           0x4(%sp),0x10(%sp)
1916         mov.l           0x0(%sp),0xc(%sp)
1917         add.l           &0xc,%sp
1918
1919         btst            &0x7,(%sp)              # is trace on?
1920         bne.w           fu_trace_p              # yes
1921
1922         bra.l           _fpsp_done              # exit to os
1923
1924 fu_in_ena_p:
1925         and.b           FPSR_EXCEPT(%a6),%d0    # keep only ones enabled & set
1926         bfffo           %d0{&24:&8},%d0         # find highest priority exception
1927         bne.b           fu_in_exc_p             # at least one was set
1928
1929 #
1930 # No exceptions occurred that were also enabled. Now:
1931 #
1932 #       if (OVFL && ovfl_disabled && inexact_enabled) {
1933 #           branch to _real_inex() (even if the result was exact!);
1934 #       } else {
1935 #           save the result in the proper fp reg (unless the op is fcmp or ftst);
1936 #           return;
1937 #       }
1938 #
1939         btst            &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
1940         beq.w           fu_in_cont_p            # no
1941
1942 fu_in_ovflchk_p:
1943         btst            &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
1944         beq.w           fu_in_cont_p            # no
1945         bra.w           fu_in_exc_ovfl_p        # do _real_inex() now
1946
1947 #
1948 # An exception occurred and that exception was enabled:
1949 #
1950 #       shift enabled exception field into lo byte of d0;
1951 #       if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) ||
1952 #           ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) {
1953 #               /*
1954 #                * this is the case where we must call _real_inex() now or else
1955 #                * there will be no other way to pass it the exceptional operand
1956 #                */
1957 #               call _real_inex();
1958 #       } else {
1959 #               restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU;
1960 #       }
1961 #
1962 fu_in_exc_p:
1963         subi.l          &24,%d0                 # fix offset to be 0-8
1964         cmpi.b          %d0,&0x6                # is exception INEX? (6 or 7)
1965         blt.b           fu_in_exc_exit_p        # no
1966
1967 # the enabled exception was inexact
1968         btst            &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur?
1969         bne.w           fu_in_exc_unfl_p        # yes
1970         btst            &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur?
1971         bne.w           fu_in_exc_ovfl_p        # yes
1972
1973 # here, we insert the correct fsave status value into the fsave frame for the
1974 # corresponding exception. the operand in the fsave frame should be the original
1975 # src operand.
1976 # as a reminder for future predicted pain and agony, we are passing in fsave the
1977 # "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs.
1978 # this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!!
1979 fu_in_exc_exit_p:
1980         btst            &0x5,EXC_SR(%a6)        # user or supervisor?
1981         bne.w           fu_in_exc_exit_s_p      # supervisor
1982
1983         mov.l           EXC_A7(%a6),%a0         # update user a7
1984         mov.l           %a0,%usp
1985
1986 fu_in_exc_exit_cont_p:
1987         mov.w           (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6)
1988
1989         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
1990         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
1991         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
1992
1993         frestore        FP_SRC(%a6)             # restore src op
1994
1995         unlk            %a6
1996
1997         btst            &0x7,(%sp)              # is trace enabled?
1998         bne.w           fu_trace_p              # yes
1999
2000         bra.l           _fpsp_done
2001
2002 tbl_except_p:
2003         short           0xe000,0xe006,0xe004,0xe005
2004         short           0xe003,0xe002,0xe001,0xe001
2005
2006 fu_in_exc_ovfl_p:
2007         mov.w           &0x3,%d0
2008         bra.w           fu_in_exc_exit_p
2009
2010 fu_in_exc_unfl_p:
2011         mov.w           &0x4,%d0
2012         bra.w           fu_in_exc_exit_p
2013
2014 fu_in_exc_exit_s_p:
2015         btst            &mia7_bit,SPCOND_FLG(%a6)
2016         beq.b           fu_in_exc_exit_cont_p
2017
2018         mov.w           (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6)
2019
2020         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
2021         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
2022         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2023
2024         frestore        FP_SRC(%a6)             # restore src op
2025
2026         unlk            %a6                     # unravel stack frame
2027
2028 # shift stack frame "up". who cares about <ea> field.
2029         mov.l           0x4(%sp),0x10(%sp)
2030         mov.l           0x0(%sp),0xc(%sp)
2031         add.l           &0xc,%sp
2032
2033         btst            &0x7,(%sp)              # is trace on?
2034         bne.b           fu_trace_p              # yes
2035
2036         bra.l           _fpsp_done              # exit to os
2037
2038 #
2039 # The opclass two PACKED instruction that took an "Unimplemented Data Type"
2040 # exception was being traced. Make the "current" PC the FPIAR and put it in the
2041 # trace stack frame then jump to _real_trace().
2042 #
2043 #                 UNSUPP FRAME             TRACE FRAME
2044 #               *****************       *****************
2045 #               *      EA       *       *    Current    *
2046 #               *               *       *      PC       *
2047 #               *****************       *****************
2048 #               * 0x2 * 0x0dc   *       * 0x2 *  0x024  *
2049 #               *****************       *****************
2050 #               *     Next      *       *     Next      *
2051 #               *      PC       *       *      PC       *
2052 #               *****************       *****************
2053 #               *      SR       *       *      SR       *
2054 #               *****************       *****************
2055 fu_trace_p:
2056         mov.w           &0x2024,0x6(%sp)
2057         fmov.l          %fpiar,0x8(%sp)
2058
2059         bra.l           _real_trace
2060
2061 #########################################################
2062 #########################################################
2063 fu_out_pack:
2064
2065
2066 # I'm not sure at this point what FPSR bits are valid for this instruction.
2067 # so, since the emulation routines re-create them anyways, zero exception field.
2068 # fmove out doesn't affect ccodes.
2069         and.l           &0xffff00ff,USER_FPSR(%a6) # zero exception field
2070
2071         fmov.l          &0x0,%fpcr              # zero current control regs
2072         fmov.l          &0x0,%fpsr
2073
2074         bfextu          EXC_CMDREG(%a6){&6:&3},%d0
2075         bsr.l           load_fpn1
2076
2077 # unlike other opclass 3, unimplemented data type exceptions, packed must be
2078 # able to detect all operand types.
2079         lea             FP_SRC(%a6),%a0
2080         bsr.l           set_tag_x               # tag the operand type
2081         cmpi.b          %d0,&UNNORM             # is operand an UNNORM?
2082         bne.b           fu_op2_p                # no
2083         bsr.l           unnorm_fix              # yes; convert to NORM,DENORM,or ZERO
2084
2085 fu_op2_p:
2086         mov.b           %d0,STAG(%a6)           # save src optype tag
2087
2088         clr.l           %d0
2089         mov.b           FPCR_MODE(%a6),%d0      # fetch rnd mode/prec
2090
2091         lea             FP_SRC(%a6),%a0         # pass ptr to src operand
2092
2093         mov.l           (%a6),EXC_A6(%a6)       # in case a6 changes
2094         bsr.l           fout                    # call fmove out routine
2095
2096 # Exceptions in order of precedence:
2097 #       BSUN    : no
2098 #       SNAN    : yes
2099 #       OPERR   : if ((k_factor > +17) || (dec. exp exceeds 3 digits))
2100 #       OVFL    : no
2101 #       UNFL    : no
2102 #       DZ      : no
2103 #       INEX2   : yes
2104 #       INEX1   : no
2105
2106 # determine the highest priority exception(if any) set by the
2107 # emulation routine that has also been enabled by the user.
2108         mov.b           FPCR_ENABLE(%a6),%d0    # fetch exceptions enabled
2109         bne.w           fu_out_ena_p            # some are enabled
2110
2111 fu_out_exit_p:
2112         mov.l           EXC_A6(%a6),(%a6)       # restore a6
2113
2114         btst            &0x5,EXC_SR(%a6)        # user or supervisor?
2115         bne.b           fu_out_exit_s_p         # supervisor
2116
2117         mov.l           EXC_A7(%a6),%a0         # update user a7
2118         mov.l           %a0,%usp
2119
2120 fu_out_exit_cont_p:
2121         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
2122         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
2123         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2124
2125         unlk            %a6                     # unravel stack frame
2126
2127         btst            &0x7,(%sp)              # is trace on?
2128         bne.w           fu_trace_p              # yes
2129
2130         bra.l           _fpsp_done              # exit to os
2131
2132 # the exception occurred in supervisor mode. check to see if the
2133 # addressing mode was -(a7). if so, we'll need to shift the
2134 # stack frame "down".
2135 fu_out_exit_s_p:
2136         btst            &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7)
2137         beq.b           fu_out_exit_cont_p      # no
2138
2139         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
2140         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
2141         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2142
2143         mov.l           (%a6),%a6               # restore frame pointer
2144
2145         mov.l           LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
2146         mov.l           LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
2147
2148 # now, copy the result to the proper place on the stack
2149         mov.l           LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
2150         mov.l           LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
2151         mov.l           LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
2152
2153         add.l           &LOCAL_SIZE-0x8,%sp
2154
2155         btst            &0x7,(%sp)
2156         bne.w           fu_trace_p
2157
2158         bra.l           _fpsp_done
2159
2160 fu_out_ena_p:
2161         and.b           FPSR_EXCEPT(%a6),%d0    # keep only ones enabled
2162         bfffo           %d0{&24:&8},%d0         # find highest priority exception
2163         beq.w           fu_out_exit_p
2164
2165         mov.l           EXC_A6(%a6),(%a6)       # restore a6
2166
2167 # an exception occurred and that exception was enabled.
2168 # the only exception possible on packed move out are INEX, OPERR, and SNAN.
2169 fu_out_exc_p:
2170         cmpi.b          %d0,&0x1a
2171         bgt.w           fu_inex_p2
2172         beq.w           fu_operr_p
2173
2174 fu_snan_p:
2175         btst            &0x5,EXC_SR(%a6)
2176         bne.b           fu_snan_s_p
2177
2178         mov.l           EXC_A7(%a6),%a0
2179         mov.l           %a0,%usp
2180         bra.w           fu_snan
2181
2182 fu_snan_s_p:
2183         cmpi.b          SPCOND_FLG(%a6),&mda7_flg
2184         bne.w           fu_snan
2185
2186 # the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
2187 # the strategy is to move the exception frame "down" 12 bytes. then, we
2188 # can store the default result where the exception frame was.
2189         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
2190         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
2191         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2192
2193         mov.w           &0x30d8,EXC_VOFF(%a6)   # vector offset = 0xd0
2194         mov.w           &0xe006,2+FP_SRC(%a6)   # set fsave status
2195
2196         frestore        FP_SRC(%a6)             # restore src operand
2197
2198         mov.l           (%a6),%a6               # restore frame pointer
2199
2200         mov.l           LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
2201         mov.l           LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
2202         mov.l           LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
2203
2204 # now, we copy the default result to its proper location
2205         mov.l           LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
2206         mov.l           LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
2207         mov.l           LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
2208
2209         add.l           &LOCAL_SIZE-0x8,%sp
2210
2211
2212         bra.l           _real_snan
2213
2214 fu_operr_p:
2215         btst            &0x5,EXC_SR(%a6)
2216         bne.w           fu_operr_p_s
2217
2218         mov.l           EXC_A7(%a6),%a0
2219         mov.l           %a0,%usp
2220         bra.w           fu_operr
2221
2222 fu_operr_p_s:
2223         cmpi.b          SPCOND_FLG(%a6),&mda7_flg
2224         bne.w           fu_operr
2225
2226 # the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
2227 # the strategy is to move the exception frame "down" 12 bytes. then, we
2228 # can store the default result where the exception frame was.
2229         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
2230         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
2231         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2232
2233         mov.w           &0x30d0,EXC_VOFF(%a6)   # vector offset = 0xd0
2234         mov.w           &0xe004,2+FP_SRC(%a6)   # set fsave status
2235
2236         frestore        FP_SRC(%a6)             # restore src operand
2237
2238         mov.l           (%a6),%a6               # restore frame pointer
2239
2240         mov.l           LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
2241         mov.l           LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
2242         mov.l           LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
2243
2244 # now, we copy the default result to its proper location
2245         mov.l           LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
2246         mov.l           LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
2247         mov.l           LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
2248
2249         add.l           &LOCAL_SIZE-0x8,%sp
2250
2251
2252         bra.l           _real_operr
2253
2254 fu_inex_p2:
2255         btst            &0x5,EXC_SR(%a6)
2256         bne.w           fu_inex_s_p2
2257
2258         mov.l           EXC_A7(%a6),%a0
2259         mov.l           %a0,%usp
2260         bra.w           fu_inex
2261
2262 fu_inex_s_p2:
2263         cmpi.b          SPCOND_FLG(%a6),&mda7_flg
2264         bne.w           fu_inex
2265
2266 # the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
2267 # the strategy is to move the exception frame "down" 12 bytes. then, we
2268 # can store the default result where the exception frame was.
2269         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0/fp1
2270         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
2271         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2272
2273         mov.w           &0x30c4,EXC_VOFF(%a6)   # vector offset = 0xc4
2274         mov.w           &0xe001,2+FP_SRC(%a6)   # set fsave status
2275
2276         frestore        FP_SRC(%a6)             # restore src operand
2277
2278         mov.l           (%a6),%a6               # restore frame pointer
2279
2280         mov.l           LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
2281         mov.l           LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
2282         mov.l           LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
2283
2284 # now, we copy the default result to its proper location
2285         mov.l           LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
2286         mov.l           LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
2287         mov.l           LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
2288
2289         add.l           &LOCAL_SIZE-0x8,%sp
2290
2291
2292         bra.l           _real_inex
2293
2294 #########################################################################
2295
2296 #
2297 # if we're stuffing a source operand back into an fsave frame then we
2298 # have to make sure that for single or double source operands that the
2299 # format stuffed is as weird as the hardware usually makes it.
2300 #
2301         global          funimp_skew
2302 funimp_skew:
2303         bfextu          EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier
2304         cmpi.b          %d0,&0x1                # was src sgl?
2305         beq.b           funimp_skew_sgl         # yes
2306         cmpi.b          %d0,&0x5                # was src dbl?
2307         beq.b           funimp_skew_dbl         # yes
2308         rts
2309
2310 funimp_skew_sgl:
2311         mov.w           FP_SRC_EX(%a6),%d0      # fetch DENORM exponent
2312         andi.w          &0x7fff,%d0             # strip sign
2313         beq.b           funimp_skew_sgl_not
2314         cmpi.w          %d0,&0x3f80
2315         bgt.b           funimp_skew_sgl_not
2316         neg.w           %d0                     # make exponent negative
2317         addi.w          &0x3f81,%d0             # find amt to shift
2318         mov.l           FP_SRC_HI(%a6),%d1      # fetch DENORM hi(man)
2319         lsr.l           %d0,%d1                 # shift it
2320         bset            &31,%d1                 # set j-bit
2321         mov.l           %d1,FP_SRC_HI(%a6)      # insert new hi(man)
2322         andi.w          &0x8000,FP_SRC_EX(%a6)  # clear old exponent
2323         ori.w           &0x3f80,FP_SRC_EX(%a6)  # insert new "skewed" exponent
2324 funimp_skew_sgl_not:
2325         rts
2326
2327 funimp_skew_dbl:
2328         mov.w           FP_SRC_EX(%a6),%d0      # fetch DENORM exponent
2329         andi.w          &0x7fff,%d0             # strip sign
2330         beq.b           funimp_skew_dbl_not
2331         cmpi.w          %d0,&0x3c00
2332         bgt.b           funimp_skew_dbl_not
2333
2334         tst.b           FP_SRC_EX(%a6)          # make "internal format"
2335         smi.b           0x2+FP_SRC(%a6)
2336         mov.w           %d0,FP_SRC_EX(%a6)      # insert exponent with cleared sign
2337         clr.l           %d0                     # clear g,r,s
2338         lea             FP_SRC(%a6),%a0         # pass ptr to src op
2339         mov.w           &0x3c01,%d1             # pass denorm threshold
2340         bsr.l           dnrm_lp                 # denorm it
2341         mov.w           &0x3c00,%d0             # new exponent
2342         tst.b           0x2+FP_SRC(%a6)         # is sign set?
2343         beq.b           fss_dbl_denorm_done     # no
2344         bset            &15,%d0                 # set sign
2345 fss_dbl_denorm_done:
2346         bset            &0x7,FP_SRC_HI(%a6)     # set j-bit
2347         mov.w           %d0,FP_SRC_EX(%a6)      # insert new exponent
2348 funimp_skew_dbl_not:
2349         rts
2350
2351 #########################################################################
2352         global          _mem_write2
2353 _mem_write2:
2354         btst            &0x5,EXC_SR(%a6)
2355         beq.l           _dmem_write
2356         mov.l           0x0(%a0),FP_DST_EX(%a6)
2357         mov.l           0x4(%a0),FP_DST_HI(%a6)
2358         mov.l           0x8(%a0),FP_DST_LO(%a6)
2359         clr.l           %d1
2360         rts
2361
2362 #########################################################################
2363 # XDEF **************************************************************** #
2364 #       _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented       #
2365 #                       effective address" exception.                   #
2366 #                                                                       #
2367 #       This handler should be the first code executed upon taking the  #
2368 #       FP Unimplemented Effective Address exception in an operating    #
2369 #       system.                                                         #
2370 #                                                                       #
2371 # XREF **************************************************************** #
2372 #       _imem_read_long() - read instruction longword                   #
2373 #       fix_skewed_ops() - adjust src operand in fsave frame            #
2374 #       set_tag_x() - determine optype of src/dst operands              #
2375 #       store_fpreg() - store opclass 0 or 2 result to FP regfile       #
2376 #       unnorm_fix() - change UNNORM operands to NORM or ZERO           #
2377 #       load_fpn2() - load dst operand from FP regfile                  #
2378 #       tbl_unsupp - add of table of emulation routines for opclass 0,2 #
2379 #       decbin() - convert packed data to FP binary data                #
2380 #       _real_fpu_disabled() - "callout" for "FPU disabled" exception   #
2381 #       _real_access() - "callout" for access error exception           #
2382 #       _mem_read() - read extended immediate operand from memory       #
2383 #       _fpsp_done() - "callout" for exit; work all done                #
2384 #       _real_trace() - "callout" for Trace enabled exception           #
2385 #       fmovm_dynamic() - emulate dynamic fmovm instruction             #
2386 #       fmovm_ctrl() - emulate fmovm control instruction                #
2387 #                                                                       #
2388 # INPUT *************************************************************** #
2389 #       - The system stack contains the "Unimplemented <ea>" stk frame  #
2390 #                                                                       #
2391 # OUTPUT ************************************************************** #
2392 #       If access error:                                                #
2393 #       - The system stack is changed to an access error stack frame    #
2394 #       If FPU disabled:                                                #
2395 #       - The system stack is changed to an FPU disabled stack frame    #
2396 #       If Trace exception enabled:                                     #
2397 #       - The system stack is changed to a Trace exception stack frame  #
2398 #       Else: (normal case)                                             #
2399 #       - None (correct result has been stored as appropriate)          #
2400 #                                                                       #
2401 # ALGORITHM *********************************************************** #
2402 #       This exception handles 3 types of operations:                   #
2403 # (1) FP Instructions using extended precision or packed immediate      #
2404 #     addressing mode.                                                  #
2405 # (2) The "fmovm.x" instruction w/ dynamic register specification.      #
2406 # (3) The "fmovm.l" instruction w/ 2 or 3 control registers.            #
2407 #                                                                       #
2408 #       For immediate data operations, the data is read in w/ a         #
2409 # _mem_read() "callout", converted to FP binary (if packed), and used   #
2410 # as the source operand to the instruction specified by the instruction #
2411 # word. If no FP exception should be reported ads a result of the       #
2412 # emulation, then the result is stored to the destination register and  #
2413 # the handler exits through _fpsp_done(). If an enabled exc has been    #
2414 # signalled as a result of emulation, then an fsave state frame         #
2415 # corresponding to the FP exception type must be entered into the 060   #
2416 # FPU before exiting. In either the enabled or disabled cases, we       #
2417 # must also check if a Trace exception is pending, in which case, we    #
2418 # must create a Trace exception stack frame from the current exception  #
2419 # stack frame. If no Trace is pending, we simply exit through           #
2420 # _fpsp_done().                                                         #
2421 #       For "fmovm.x", call the routine fmovm_dynamic() which will      #
2422 # decode and emulate the instruction. No FP exceptions can be pending   #
2423 # as a result of this operation emulation. A Trace exception can be     #
2424 # pending, though, which means the current stack frame must be changed  #
2425 # to a Trace stack frame and an exit made through _real_trace().        #
2426 # For the case of "fmovm.x Dn,-(a7)", where the offending instruction   #
2427 # was executed from supervisor mode, this handler must store the FP     #
2428 # register file values to the system stack by itself since              #
2429 # fmovm_dynamic() can't handle this. A normal exit is made through      #
2430 # fpsp_done().                                                          #
2431 #       For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. #
2432 # Again, a Trace exception may be pending and an exit made through      #
2433 # _real_trace(). Else, a normal exit is made through _fpsp_done().      #
2434 #                                                                       #
2435 #       Before any of the above is attempted, it must be checked to     #
2436 # see if the FPU is disabled. Since the "Unimp <ea>" exception is taken #
2437 # before the "FPU disabled" exception, but the "FPU disabled" exception #
2438 # has higher priority, we check the disabled bit in the PCR. If set,    #
2439 # then we must create an 8 word "FPU disabled" exception stack frame    #
2440 # from the current 4 word exception stack frame. This includes          #
2441 # reproducing the effective address of the instruction to put on the    #
2442 # new stack frame.                                                      #
2443 #                                                                       #
2444 #       In the process of all emulation work, if a _mem_read()          #
2445 # "callout" returns a failing result indicating an access error, then   #
2446 # we must create an access error stack frame from the current stack     #
2447 # frame. This information includes a faulting address and a fault-      #
2448 # status-longword. These are created within this handler.               #
2449 #                                                                       #
2450 #########################################################################
2451
2452         global          _fpsp_effadd
2453 _fpsp_effadd:
2454
2455 # This exception type takes priority over the "Line F Emulator"
2456 # exception. Therefore, the FPU could be disabled when entering here.
2457 # So, we must check to see if it's disabled and handle that case separately.
2458         mov.l           %d0,-(%sp)              # save d0
2459         movc            %pcr,%d0                # load proc cr
2460         btst            &0x1,%d0                # is FPU disabled?
2461         bne.w           iea_disabled            # yes
2462         mov.l           (%sp)+,%d0              # restore d0
2463
2464         link            %a6,&-LOCAL_SIZE        # init stack frame
2465
2466         movm.l          &0x0303,EXC_DREGS(%a6)  # save d0-d1/a0-a1
2467         fmovm.l         %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
2468         fmovm.x         &0xc0,EXC_FPREGS(%a6)   # save fp0-fp1 on stack
2469
2470 # PC of instruction that took the exception is the PC in the frame
2471         mov.l           EXC_PC(%a6),EXC_EXTWPTR(%a6)
2472
2473         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
2474         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
2475         bsr.l           _imem_read_long         # fetch the instruction words
2476         mov.l           %d0,EXC_OPWORD(%a6)     # store OPWORD and EXTWORD
2477
2478 #########################################################################
2479
2480         tst.w           %d0                     # is operation fmovem?
2481         bmi.w           iea_fmovm               # yes
2482
2483 #
2484 # here, we will have:
2485 #       fabs    fdabs   fsabs           facos           fmod
2486 #       fadd    fdadd   fsadd           fasin           frem
2487 #       fcmp                            fatan           fscale
2488 #       fdiv    fddiv   fsdiv           fatanh          fsin
2489 #       fint                            fcos            fsincos
2490 #       fintrz                          fcosh           fsinh
2491 #       fmove   fdmove  fsmove          fetox           ftan
2492 #       fmul    fdmul   fsmul           fetoxm1         ftanh
2493 #       fneg    fdneg   fsneg           fgetexp         ftentox
2494 #       fsgldiv                         fgetman         ftwotox
2495 #       fsglmul                         flog10
2496 #       fsqrt                           flog2
2497 #       fsub    fdsub   fssub           flogn
2498 #       ftst                            flognp1
2499 # which can all use f<op>.{x,p}
2500 # so, now it's immediate data extended precision AND PACKED FORMAT!
2501 #
2502 iea_op:
2503         andi.l          &0x00ff00ff,USER_FPSR(%a6)
2504
2505         btst            &0xa,%d0                # is src fmt x or p?
2506         bne.b           iea_op_pack             # packed
2507
2508
2509         mov.l           EXC_EXTWPTR(%a6),%a0    # pass: ptr to #<data>
2510         lea             FP_SRC(%a6),%a1         # pass: ptr to super addr
2511         mov.l           &0xc,%d0                # pass: 12 bytes
2512         bsr.l           _imem_read              # read extended immediate
2513
2514         tst.l           %d1                     # did ifetch fail?
2515         bne.w           iea_iacc                # yes
2516
2517         bra.b           iea_op_setsrc
2518
2519 iea_op_pack:
2520
2521         mov.l           EXC_EXTWPTR(%a6),%a0    # pass: ptr to #<data>
2522         lea             FP_SRC(%a6),%a1         # pass: ptr to super dst
2523         mov.l           &0xc,%d0                # pass: 12 bytes
2524         bsr.l           _imem_read              # read packed operand
2525
2526         tst.l           %d1                     # did ifetch fail?
2527         bne.w           iea_iacc                # yes
2528
2529 # The packed operand is an INF or a NAN if the exponent field is all ones.
2530         bfextu          FP_SRC(%a6){&1:&15},%d0 # get exp
2531         cmpi.w          %d0,&0x7fff             # INF or NAN?
2532         beq.b           iea_op_setsrc           # operand is an INF or NAN
2533
2534 # The packed operand is a zero if the mantissa is all zero, else it's
2535 # a normal packed op.
2536         mov.b           3+FP_SRC(%a6),%d0       # get byte 4
2537         andi.b          &0x0f,%d0               # clear all but last nybble
2538         bne.b           iea_op_gp_not_spec      # not a zero
2539         tst.l           FP_SRC_HI(%a6)          # is lw 2 zero?
2540         bne.b           iea_op_gp_not_spec      # not a zero
2541         tst.l           FP_SRC_LO(%a6)          # is lw 3 zero?
2542         beq.b           iea_op_setsrc           # operand is a ZERO
2543 iea_op_gp_not_spec:
2544         lea             FP_SRC(%a6),%a0         # pass: ptr to packed op
2545         bsr.l           decbin                  # convert to extended
2546         fmovm.x         &0x80,FP_SRC(%a6)       # make this the srcop
2547
2548 iea_op_setsrc:
2549         addi.l          &0xc,EXC_EXTWPTR(%a6)   # update extension word pointer
2550
2551 # FP_SRC now holds the src operand.
2552         lea             FP_SRC(%a6),%a0         # pass: ptr to src op
2553         bsr.l           set_tag_x               # tag the operand type
2554         mov.b           %d0,STAG(%a6)           # could be ANYTHING!!!
2555         cmpi.b          %d0,&UNNORM             # is operand an UNNORM?
2556         bne.b           iea_op_getdst           # no
2557         bsr.l           unnorm_fix              # yes; convert to NORM/DENORM/ZERO
2558         mov.b           %d0,STAG(%a6)           # set new optype tag
2559 iea_op_getdst:
2560         clr.b           STORE_FLG(%a6)          # clear "store result" boolean
2561
2562         btst            &0x5,1+EXC_CMDREG(%a6)  # is operation monadic or dyadic?
2563         beq.b           iea_op_extract          # monadic
2564         btst            &0x4,1+EXC_CMDREG(%a6)  # is operation fsincos,ftst,fcmp?
2565         bne.b           iea_op_spec             # yes
2566
2567 iea_op_loaddst:
2568         bfextu          EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno
2569         bsr.l           load_fpn2               # load dst operand
2570
2571         lea             FP_DST(%a6),%a0         # pass: ptr to dst op
2572         bsr.l           set_tag_x               # tag the operand type
2573         mov.b           %d0,DTAG(%a6)           # could be ANYTHING!!!
2574         cmpi.b          %d0,&UNNORM             # is operand an UNNORM?
2575         bne.b           iea_op_extract          # no
2576         bsr.l           unnorm_fix              # yes; convert to NORM/DENORM/ZERO
2577         mov.b           %d0,DTAG(%a6)           # set new optype tag
2578         bra.b           iea_op_extract
2579
2580 # the operation is fsincos, ftst, or fcmp. only fcmp is dyadic
2581 iea_op_spec:
2582         btst            &0x3,1+EXC_CMDREG(%a6)  # is operation fsincos?
2583         beq.b           iea_op_extract          # yes
2584 # now, we're left with ftst and fcmp. so, first let's tag them so that they don't
2585 # store a result. then, only fcmp will branch back and pick up a dst operand.
2586         st              STORE_FLG(%a6)          # don't store a final result
2587         btst            &0x1,1+EXC_CMDREG(%a6)  # is operation fcmp?
2588         beq.b           iea_op_loaddst          # yes
2589
2590 iea_op_extract:
2591         clr.l           %d0
2592         mov.b           FPCR_MODE(%a6),%d0      # pass: rnd mode,prec
2593
2594         mov.b           1+EXC_CMDREG(%a6),%d1
2595         andi.w          &0x007f,%d1             # extract extension
2596
2597         fmov.l          &0x0,%fpcr
2598         fmov.l          &0x0,%fpsr
2599
2600         lea             FP_SRC(%a6),%a0
2601         lea             FP_DST(%a6),%a1
2602
2603         mov.l           (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
2604         jsr             (tbl_unsupp.l,%pc,%d1.l*1)
2605
2606 #
2607 # Exceptions in order of precedence:
2608 #       BSUN    : none
2609 #       SNAN    : all operations
2610 #       OPERR   : all reg-reg or mem-reg operations that can normally operr
2611 #       OVFL    : same as OPERR
2612 #       UNFL    : same as OPERR
2613 #       DZ      : same as OPERR
2614 #       INEX2   : same as OPERR
2615 #       INEX1   : all packed immediate operations
2616 #
2617
2618 # we determine the highest priority exception(if any) set by the
2619 # emulation routine that has also been enabled by the user.
2620         mov.b           FPCR_ENABLE(%a6),%d0    # fetch exceptions enabled
2621         bne.b           iea_op_ena              # some are enabled
2622
2623 # now, we save the result, unless, of course, the operation was ftst or fcmp.
2624 # these don't save results.
2625 iea_op_save:
2626         tst.b           STORE_FLG(%a6)          # does this op store a result?
2627         bne.b           iea_op_exit1            # exit with no frestore
2628
2629 iea_op_store:
2630         bfextu          EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno
2631         bsr.l           store_fpreg             # store the result
2632
2633 iea_op_exit1:
2634         mov.l           EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC"
2635         mov.l           EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame
2636
2637         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
2638         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
2639         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2640
2641         unlk            %a6                     # unravel the frame
2642
2643         btst            &0x7,(%sp)              # is trace on?
2644         bne.w           iea_op_trace            # yes
2645
2646         bra.l           _fpsp_done              # exit to os
2647
2648 iea_op_ena:
2649         and.b           FPSR_EXCEPT(%a6),%d0    # keep only ones enable and set
2650         bfffo           %d0{&24:&8},%d0         # find highest priority exception
2651         bne.b           iea_op_exc              # at least one was set
2652
2653 # no exception occurred. now, did a disabled, exact overflow occur with inexact
2654 # enabled? if so, then we have to stuff an overflow frame into the FPU.
2655         btst            &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
2656         beq.b           iea_op_save
2657
2658 iea_op_ovfl:
2659         btst            &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled?
2660         beq.b           iea_op_store            # no
2661         bra.b           iea_op_exc_ovfl         # yes
2662
2663 # an enabled exception occurred. we have to insert the exception type back into
2664 # the machine.
2665 iea_op_exc:
2666         subi.l          &24,%d0                 # fix offset to be 0-8
2667         cmpi.b          %d0,&0x6                # is exception INEX?
2668         bne.b           iea_op_exc_force        # no
2669
2670 # the enabled exception was inexact. so, if it occurs with an overflow
2671 # or underflow that was disabled, then we have to force an overflow or
2672 # underflow frame.
2673         btst            &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
2674         bne.b           iea_op_exc_ovfl         # yes
2675         btst            &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur?
2676         bne.b           iea_op_exc_unfl         # yes
2677
2678 iea_op_exc_force:
2679         mov.w           (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6)
2680         bra.b           iea_op_exit2            # exit with frestore
2681
2682 tbl_iea_except:
2683         short           0xe002, 0xe006, 0xe004, 0xe005
2684         short           0xe003, 0xe002, 0xe001, 0xe001
2685
2686 iea_op_exc_ovfl:
2687         mov.w           &0xe005,2+FP_SRC(%a6)
2688         bra.b           iea_op_exit2
2689
2690 iea_op_exc_unfl:
2691         mov.w           &0xe003,2+FP_SRC(%a6)
2692
2693 iea_op_exit2:
2694         mov.l           EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC"
2695         mov.l           EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame
2696
2697         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
2698         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
2699         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2700
2701         frestore        FP_SRC(%a6)             # restore exceptional state
2702
2703         unlk            %a6                     # unravel the frame
2704
2705         btst            &0x7,(%sp)              # is trace on?
2706         bne.b           iea_op_trace            # yes
2707
2708         bra.l           _fpsp_done              # exit to os
2709
2710 #
2711 # The opclass two instruction that took an "Unimplemented Effective Address"
2712 # exception was being traced. Make the "current" PC the FPIAR and put it in
2713 # the trace stack frame then jump to _real_trace().
2714 #
2715 #                UNIMP EA FRAME            TRACE FRAME
2716 #               *****************       *****************
2717 #               * 0x0 *  0x0f0  *       *    Current    *
2718 #               *****************       *      PC       *
2719 #               *    Current    *       *****************
2720 #               *      PC       *       * 0x2 *  0x024  *
2721 #               *****************       *****************
2722 #               *      SR       *       *     Next      *
2723 #               *****************       *      PC       *
2724 #                                       *****************
2725 #                                       *      SR       *
2726 #                                       *****************
2727 iea_op_trace:
2728         mov.l           (%sp),-(%sp)            # shift stack frame "down"
2729         mov.w           0x8(%sp),0x4(%sp)
2730         mov.w           &0x2024,0x6(%sp)        # stk fmt = 0x2; voff = 0x024
2731         fmov.l          %fpiar,0x8(%sp)         # "Current PC" is in FPIAR
2732
2733         bra.l           _real_trace
2734
2735 #########################################################################
2736 iea_fmovm:
2737         btst            &14,%d0                 # ctrl or data reg
2738         beq.w           iea_fmovm_ctrl
2739
2740 iea_fmovm_data:
2741
2742         btst            &0x5,EXC_SR(%a6)        # user or supervisor mode
2743         bne.b           iea_fmovm_data_s
2744
2745 iea_fmovm_data_u:
2746         mov.l           %usp,%a0
2747         mov.l           %a0,EXC_A7(%a6)         # store current a7
2748         bsr.l           fmovm_dynamic           # do dynamic fmovm
2749         mov.l           EXC_A7(%a6),%a0         # load possibly new a7
2750         mov.l           %a0,%usp                # update usp
2751         bra.w           iea_fmovm_exit
2752
2753 iea_fmovm_data_s:
2754         clr.b           SPCOND_FLG(%a6)
2755         lea             0x2+EXC_VOFF(%a6),%a0
2756         mov.l           %a0,EXC_A7(%a6)
2757         bsr.l           fmovm_dynamic           # do dynamic fmovm
2758
2759         cmpi.b          SPCOND_FLG(%a6),&mda7_flg
2760         beq.w           iea_fmovm_data_predec
2761         cmpi.b          SPCOND_FLG(%a6),&mia7_flg
2762         bne.w           iea_fmovm_exit
2763
2764 # right now, d0 = the size.
2765 # the data has been fetched from the supervisor stack, but we have not
2766 # incremented the stack pointer by the appropriate number of bytes.
2767 # do it here.
2768 iea_fmovm_data_postinc:
2769         btst            &0x7,EXC_SR(%a6)
2770         bne.b           iea_fmovm_data_pi_trace
2771
2772         mov.w           EXC_SR(%a6),(EXC_SR,%a6,%d0)
2773         mov.l           EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0)
2774         mov.w           &0x00f0,(EXC_VOFF,%a6,%d0)
2775
2776         lea             (EXC_SR,%a6,%d0),%a0
2777         mov.l           %a0,EXC_SR(%a6)
2778
2779         fmovm.x         EXC_FP0(%a6),&0xc0      # restore fp0-fp1
2780         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
2781         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2782
2783         unlk            %a6
2784         mov.l           (%sp)+,%sp
2785         bra.l           _fpsp_done
2786
2787 iea_fmovm_data_pi_trace:
2788         mov.w           EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0)
2789         mov.l           EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0)
2790         mov.w           &0x2024,(EXC_VOFF-0x4,%a6,%d0)
2791         mov.l           EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0)
2792
2793         lea             (EXC_SR-0x4,%a6,%d0),%a0
2794         mov.l           %a0,EXC_SR(%a6)
2795
2796         fmovm.x         EXC_FP0(%a6),&0xc0      # restore fp0-fp1
2797         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
2798         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2799
2800         unlk            %a6
2801         mov.l           (%sp)+,%sp
2802         bra.l           _real_trace
2803
2804 # right now, d1 = size and d0 = the strg.
2805 iea_fmovm_data_predec:
2806         mov.b           %d1,EXC_VOFF(%a6)       # store strg
2807         mov.b           %d0,0x1+EXC_VOFF(%a6)   # store size
2808
2809         fmovm.x         EXC_FP0(%a6),&0xc0      # restore fp0-fp1
2810         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
2811         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2812
2813         mov.l           (%a6),-(%sp)            # make a copy of a6
2814         mov.l           %d0,-(%sp)              # save d0
2815         mov.l           %d1,-(%sp)              # save d1
2816         mov.l           EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC
2817
2818         clr.l           %d0
2819         mov.b           0x1+EXC_VOFF(%a6),%d0   # fetch size
2820         neg.l           %d0                     # get negative of size
2821
2822         btst            &0x7,EXC_SR(%a6)        # is trace enabled?
2823         beq.b           iea_fmovm_data_p2
2824
2825         mov.w           EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0)
2826         mov.l           EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0)
2827         mov.l           (%sp)+,(EXC_PC-0x4,%a6,%d0)
2828         mov.w           &0x2024,(EXC_VOFF-0x4,%a6,%d0)
2829
2830         pea             (%a6,%d0)               # create final sp
2831         bra.b           iea_fmovm_data_p3
2832
2833 iea_fmovm_data_p2:
2834         mov.w           EXC_SR(%a6),(EXC_SR,%a6,%d0)
2835         mov.l           (%sp)+,(EXC_PC,%a6,%d0)
2836         mov.w           &0x00f0,(EXC_VOFF,%a6,%d0)
2837
2838         pea             (0x4,%a6,%d0)           # create final sp
2839
2840 iea_fmovm_data_p3:
2841         clr.l           %d1
2842         mov.b           EXC_VOFF(%a6),%d1       # fetch strg
2843
2844         tst.b           %d1
2845         bpl.b           fm_1
2846         fmovm.x         &0x80,(0x4+0x8,%a6,%d0)
2847         addi.l          &0xc,%d0
2848 fm_1:
2849         lsl.b           &0x1,%d1
2850         bpl.b           fm_2
2851         fmovm.x         &0x40,(0x4+0x8,%a6,%d0)
2852         addi.l          &0xc,%d0
2853 fm_2:
2854         lsl.b           &0x1,%d1
2855         bpl.b           fm_3
2856         fmovm.x         &0x20,(0x4+0x8,%a6,%d0)
2857         addi.l          &0xc,%d0
2858 fm_3:
2859         lsl.b           &0x1,%d1
2860         bpl.b           fm_4
2861         fmovm.x         &0x10,(0x4+0x8,%a6,%d0)
2862         addi.l          &0xc,%d0
2863 fm_4:
2864         lsl.b           &0x1,%d1
2865         bpl.b           fm_5
2866         fmovm.x         &0x08,(0x4+0x8,%a6,%d0)
2867         addi.l          &0xc,%d0
2868 fm_5:
2869         lsl.b           &0x1,%d1
2870         bpl.b           fm_6
2871         fmovm.x         &0x04,(0x4+0x8,%a6,%d0)
2872         addi.l          &0xc,%d0
2873 fm_6:
2874         lsl.b           &0x1,%d1
2875         bpl.b           fm_7
2876         fmovm.x         &0x02,(0x4+0x8,%a6,%d0)
2877         addi.l          &0xc,%d0
2878 fm_7:
2879         lsl.b           &0x1,%d1
2880         bpl.b           fm_end
2881         fmovm.x         &0x01,(0x4+0x8,%a6,%d0)
2882 fm_end:
2883         mov.l           0x4(%sp),%d1
2884         mov.l           0x8(%sp),%d0
2885         mov.l           0xc(%sp),%a6
2886         mov.l           (%sp)+,%sp
2887
2888         btst            &0x7,(%sp)              # is trace enabled?
2889         beq.l           _fpsp_done
2890         bra.l           _real_trace
2891
2892 #########################################################################
2893 iea_fmovm_ctrl:
2894
2895         bsr.l           fmovm_ctrl              # load ctrl regs
2896
2897 iea_fmovm_exit:
2898         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
2899         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
2900         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2901
2902         btst            &0x7,EXC_SR(%a6)        # is trace on?
2903         bne.b           iea_fmovm_trace         # yes
2904
2905         mov.l           EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC
2906
2907         unlk            %a6                     # unravel the frame
2908
2909         bra.l           _fpsp_done              # exit to os
2910
2911 #
2912 # The control reg instruction that took an "Unimplemented Effective Address"
2913 # exception was being traced. The "Current PC" for the trace frame is the
2914 # PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR.
2915 # After fixing the stack frame, jump to _real_trace().
2916 #
2917 #                UNIMP EA FRAME            TRACE FRAME
2918 #               *****************       *****************
2919 #               * 0x0 *  0x0f0  *       *    Current    *
2920 #               *****************       *      PC       *
2921 #               *    Current    *       *****************
2922 #               *      PC       *       * 0x2 *  0x024  *
2923 #               *****************       *****************
2924 #               *      SR       *       *     Next      *
2925 #               *****************       *      PC       *
2926 #                                       *****************
2927 #                                       *      SR       *
2928 #                                       *****************
2929 # this ain't a pretty solution, but it works:
2930 # -restore a6 (not with unlk)
2931 # -shift stack frame down over where old a6 used to be
2932 # -add LOCAL_SIZE to stack pointer
2933 iea_fmovm_trace:
2934         mov.l           (%a6),%a6               # restore frame pointer
2935         mov.w           EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp)
2936         mov.l           EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp)
2937         mov.l           EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp)
2938         mov.w           &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024
2939         add.l           &LOCAL_SIZE,%sp         # clear stack frame
2940
2941         bra.l           _real_trace
2942
2943 #########################################################################
2944 # The FPU is disabled and so we should really have taken the "Line
2945 # F Emulator" exception. So, here we create an 8-word stack frame
2946 # from our 4-word stack frame. This means we must calculate the length
2947 # the faulting instruction to get the "next PC". This is trivial for
2948 # immediate operands but requires some extra work for fmovm dynamic
2949 # which can use most addressing modes.
2950 iea_disabled:
2951         mov.l           (%sp)+,%d0              # restore d0
2952
2953         link            %a6,&-LOCAL_SIZE        # init stack frame
2954
2955         movm.l          &0x0303,EXC_DREGS(%a6)  # save d0-d1/a0-a1
2956
2957 # PC of instruction that took the exception is the PC in the frame
2958         mov.l           EXC_PC(%a6),EXC_EXTWPTR(%a6)
2959         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
2960         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
2961         bsr.l           _imem_read_long         # fetch the instruction words
2962         mov.l           %d0,EXC_OPWORD(%a6)     # store OPWORD and EXTWORD
2963
2964         tst.w           %d0                     # is instr fmovm?
2965         bmi.b           iea_dis_fmovm           # yes
2966 # instruction is using an extended precision immediate operand. Therefore,
2967 # the total instruction length is 16 bytes.
2968 iea_dis_immed:
2969         mov.l           &0x10,%d0               # 16 bytes of instruction
2970         bra.b           iea_dis_cont
2971 iea_dis_fmovm:
2972         btst            &0xe,%d0                # is instr fmovm ctrl
2973         bne.b           iea_dis_fmovm_data      # no
2974 # the instruction is a fmovm.l with 2 or 3 registers.
2975         bfextu          %d0{&19:&3},%d1
2976         mov.l           &0xc,%d0
2977         cmpi.b          %d1,&0x7                # move all regs?
2978         bne.b           iea_dis_cont
2979         addq.l          &0x4,%d0
2980         bra.b           iea_dis_cont
2981 # the instruction is an fmovm.x dynamic which can use many addressing
2982 # modes and thus can have several different total instruction lengths.
2983 # call fmovm_calc_ea which will go through the ea calc process and,
2984 # as a by-product, will tell us how long the instruction is.
2985 iea_dis_fmovm_data:
2986         clr.l           %d0
2987         bsr.l           fmovm_calc_ea
2988         mov.l           EXC_EXTWPTR(%a6),%d0
2989         sub.l           EXC_PC(%a6),%d0
2990 iea_dis_cont:
2991         mov.w           %d0,EXC_VOFF(%a6)       # store stack shift value
2992
2993         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
2994
2995         unlk            %a6
2996
2997 # here, we actually create the 8-word frame from the 4-word frame,
2998 # with the "next PC" as additional info.
2999 # the <ea> field is let as undefined.
3000         subq.l          &0x8,%sp                # make room for new stack
3001         mov.l           %d0,-(%sp)              # save d0
3002         mov.w           0xc(%sp),0x4(%sp)       # move SR
3003         mov.l           0xe(%sp),0x6(%sp)       # move Current PC
3004         clr.l           %d0
3005         mov.w           0x12(%sp),%d0
3006         mov.l           0x6(%sp),0x10(%sp)      # move Current PC
3007         add.l           %d0,0x6(%sp)            # make Next PC
3008         mov.w           &0x402c,0xa(%sp)        # insert offset,frame format
3009         mov.l           (%sp)+,%d0              # restore d0
3010
3011         bra.l           _real_fpu_disabled
3012
3013 ##########
3014
3015 iea_iacc:
3016         movc            %pcr,%d0
3017         btst            &0x1,%d0
3018         bne.b           iea_iacc_cont
3019         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
3020         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1 on stack
3021 iea_iacc_cont:
3022         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
3023
3024         unlk            %a6
3025
3026         subq.w          &0x8,%sp                # make stack frame bigger
3027         mov.l           0x8(%sp),(%sp)          # store SR,hi(PC)
3028         mov.w           0xc(%sp),0x4(%sp)       # store lo(PC)
3029         mov.w           &0x4008,0x6(%sp)        # store voff
3030         mov.l           0x2(%sp),0x8(%sp)       # store ea
3031         mov.l           &0x09428001,0xc(%sp)    # store fslw
3032
3033 iea_acc_done:
3034         btst            &0x5,(%sp)              # user or supervisor mode?
3035         beq.b           iea_acc_done2           # user
3036         bset            &0x2,0xd(%sp)           # set supervisor TM bit
3037
3038 iea_acc_done2:
3039         bra.l           _real_access
3040
3041 iea_dacc:
3042         lea             -LOCAL_SIZE(%a6),%sp
3043
3044         movc            %pcr,%d1
3045         btst            &0x1,%d1
3046         bne.b           iea_dacc_cont
3047         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1 on stack
3048         fmovm.l         LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs
3049 iea_dacc_cont:
3050         mov.l           (%a6),%a6
3051
3052         mov.l           0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp)
3053         mov.w           0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp)
3054         mov.w           &0x4008,-0x8+0xa+LOCAL_SIZE(%sp)
3055         mov.l           %a0,-0x8+0xc+LOCAL_SIZE(%sp)
3056         mov.w           %d0,-0x8+0x10+LOCAL_SIZE(%sp)
3057         mov.w           &0x0001,-0x8+0x12+LOCAL_SIZE(%sp)
3058
3059         movm.l          LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1
3060         add.w           &LOCAL_SIZE-0x4,%sp
3061
3062         bra.b           iea_acc_done
3063
3064 #########################################################################
3065 # XDEF **************************************************************** #
3066 #       _fpsp_operr(): 060FPSP entry point for FP Operr exception.      #
3067 #                                                                       #
3068 #       This handler should be the first code executed upon taking the  #
3069 #       FP Operand Error exception in an operating system.              #
3070 #                                                                       #
3071 # XREF **************************************************************** #
3072 #       _imem_read_long() - read instruction longword                   #
3073 #       fix_skewed_ops() - adjust src operand in fsave frame            #
3074 #       _real_operr() - "callout" to operating system operr handler     #
3075 #       _dmem_write_{byte,word,long}() - store data to mem (opclass 3)  #
3076 #       store_dreg_{b,w,l}() - store data to data regfile (opclass 3)   #
3077 #       facc_out_{b,w,l}() - store to memory took access error (opcl 3) #
3078 #                                                                       #
3079 # INPUT *************************************************************** #
3080 #       - The system stack contains the FP Operr exception frame        #
3081 #       - The fsave frame contains the source operand                   #
3082 #                                                                       #
3083 # OUTPUT ************************************************************** #
3084 #       No access error:                                                #
3085 #       - The system stack is unchanged                                 #
3086 #       - The fsave frame contains the adjusted src op for opclass 0,2  #
3087 #                                                                       #
3088 # ALGORITHM *********************************************************** #
3089 #       In a system where the FP Operr exception is enabled, the goal   #
3090 # is to get to the handler specified at _real_operr(). But, on the 060, #
3091 # for opclass zero and two instruction taking this exception, the       #
3092 # input operand in the fsave frame may be incorrect for some cases      #
3093 # and needs to be corrected. This handler calls fix_skewed_ops() to     #
3094 # do just this and then exits through _real_operr().                    #
3095 #       For opclass 3 instructions, the 060 doesn't store the default   #
3096 # operr result out to memory or data register file as it should.        #
3097 # This code must emulate the move out before finally exiting through    #
3098 # _real_inex(). The move out, if to memory, is performed using          #
3099 # _mem_write() "callout" routines that may return a failing result.     #
3100 # In this special case, the handler must exit through facc_out()        #
3101 # which creates an access error stack frame from the current operr      #
3102 # stack frame.                                                          #
3103 #                                                                       #
3104 #########################################################################
3105
3106         global          _fpsp_operr
3107 _fpsp_operr:
3108
3109         link.w          %a6,&-LOCAL_SIZE        # init stack frame
3110
3111         fsave           FP_SRC(%a6)             # grab the "busy" frame
3112
3113         movm.l          &0x0303,EXC_DREGS(%a6)  # save d0-d1/a0-a1
3114         fmovm.l         %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
3115         fmovm.x         &0xc0,EXC_FPREGS(%a6)   # save fp0-fp1 on stack
3116
3117 # the FPIAR holds the "current PC" of the faulting instruction
3118         mov.l           USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
3119
3120         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
3121         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
3122         bsr.l           _imem_read_long         # fetch the instruction words
3123         mov.l           %d0,EXC_OPWORD(%a6)
3124
3125 ##############################################################################
3126
3127         btst            &13,%d0                 # is instr an fmove out?
3128         bne.b           foperr_out              # fmove out
3129
3130
3131 # here, we simply see if the operand in the fsave frame needs to be "unskewed".
3132 # this would be the case for opclass two operations with a source infinity or
3133 # denorm operand in the sgl or dbl format. NANs also become skewed, but can't
3134 # cause an operr so we don't need to check for them here.
3135         lea             FP_SRC(%a6),%a0         # pass: ptr to src op
3136         bsr.l           fix_skewed_ops          # fix src op
3137
3138 foperr_exit:
3139         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
3140         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
3141         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
3142
3143         frestore        FP_SRC(%a6)
3144
3145         unlk            %a6
3146         bra.l           _real_operr
3147
3148 ########################################################################
3149
3150 #
3151 # the hardware does not save the default result to memory on enabled
3152 # operand error exceptions. we do this here before passing control to
3153 # the user operand error handler.
3154 #
3155 # byte, word, and long destination format operations can pass
3156 # through here. we simply need to test the sign of the src
3157 # operand and save the appropriate minimum or maximum integer value
3158 # to the effective address as pointed to by the stacked effective address.
3159 #
3160 # although packed opclass three operations can take operand error
3161 # exceptions, they won't pass through here since they are caught
3162 # first by the unsupported data format exception handler. that handler
3163 # sends them directly to _real_operr() if necessary.
3164 #
3165 foperr_out:
3166
3167         mov.w           FP_SRC_EX(%a6),%d1      # fetch exponent
3168         andi.w          &0x7fff,%d1
3169         cmpi.w          %d1,&0x7fff
3170         bne.b           foperr_out_not_qnan
3171 # the operand is either an infinity or a QNAN.
3172         tst.l           FP_SRC_LO(%a6)
3173         bne.b           foperr_out_qnan
3174         mov.l           FP_SRC_HI(%a6),%d1
3175         andi.l          &0x7fffffff,%d1
3176         beq.b           foperr_out_not_qnan
3177 foperr_out_qnan:
3178         mov.l           FP_SRC_HI(%a6),L_SCR1(%a6)
3179         bra.b           foperr_out_jmp
3180
3181 foperr_out_not_qnan:
3182         mov.l           &0x7fffffff,%d1
3183         tst.b           FP_SRC_EX(%a6)
3184         bpl.b           foperr_out_not_qnan2
3185         addq.l          &0x1,%d1
3186 foperr_out_not_qnan2:
3187         mov.l           %d1,L_SCR1(%a6)
3188
3189 foperr_out_jmp:
3190         bfextu          %d0{&19:&3},%d0         # extract dst format field
3191         mov.b           1+EXC_OPWORD(%a6),%d1   # extract <ea> mode,reg
3192         mov.w           (tbl_operr.b,%pc,%d0.w*2),%a0
3193         jmp             (tbl_operr.b,%pc,%a0)
3194
3195 tbl_operr:
3196         short           foperr_out_l - tbl_operr # long word integer
3197         short           tbl_operr    - tbl_operr # sgl prec shouldn't happen
3198         short           tbl_operr    - tbl_operr # ext prec shouldn't happen
3199         short           foperr_exit  - tbl_operr # packed won't enter here
3200         short           foperr_out_w - tbl_operr # word integer
3201         short           tbl_operr    - tbl_operr # dbl prec shouldn't happen
3202         short           foperr_out_b - tbl_operr # byte integer
3203         short           tbl_operr    - tbl_operr # packed won't enter here
3204
3205 foperr_out_b:
3206         mov.b           L_SCR1(%a6),%d0         # load positive default result
3207         cmpi.b          %d1,&0x7                # is <ea> mode a data reg?
3208         ble.b           foperr_out_b_save_dn    # yes
3209         mov.l           EXC_EA(%a6),%a0         # pass: <ea> of default result
3210         bsr.l           _dmem_write_byte        # write the default result
3211
3212         tst.l           %d1                     # did dstore fail?
3213         bne.l           facc_out_b              # yes
3214
3215         bra.w           foperr_exit
3216 foperr_out_b_save_dn:
3217         andi.w          &0x0007,%d1
3218         bsr.l           store_dreg_b            # store result to regfile
3219         bra.w           foperr_exit
3220
3221 foperr_out_w:
3222         mov.w           L_SCR1(%a6),%d0         # load positive default result
3223         cmpi.b          %d1,&0x7                # is <ea> mode a data reg?
3224         ble.b           foperr_out_w_save_dn    # yes
3225         mov.l           EXC_EA(%a6),%a0         # pass: <ea> of default result
3226         bsr.l           _dmem_write_word        # write the default result
3227
3228         tst.l           %d1                     # did dstore fail?
3229         bne.l           facc_out_w              # yes
3230
3231         bra.w           foperr_exit
3232 foperr_out_w_save_dn:
3233         andi.w          &0x0007,%d1
3234         bsr.l           store_dreg_w            # store result to regfile
3235         bra.w           foperr_exit
3236
3237 foperr_out_l:
3238         mov.l           L_SCR1(%a6),%d0         # load positive default result
3239         cmpi.b          %d1,&0x7                # is <ea> mode a data reg?
3240         ble.b           foperr_out_l_save_dn    # yes
3241         mov.l           EXC_EA(%a6),%a0         # pass: <ea> of default result
3242         bsr.l           _dmem_write_long        # write the default result
3243
3244         tst.l           %d1                     # did dstore fail?
3245         bne.l           facc_out_l              # yes
3246
3247         bra.w           foperr_exit
3248 foperr_out_l_save_dn:
3249         andi.w          &0x0007,%d1
3250         bsr.l           store_dreg_l            # store result to regfile
3251         bra.w           foperr_exit
3252
3253 #########################################################################
3254 # XDEF **************************************************************** #
3255 #       _fpsp_snan(): 060FPSP entry point for FP SNAN exception.        #
3256 #                                                                       #
3257 #       This handler should be the first code executed upon taking the  #
3258 #       FP Signalling NAN exception in an operating system.             #
3259 #                                                                       #
3260 # XREF **************************************************************** #
3261 #       _imem_read_long() - read instruction longword                   #
3262 #       fix_skewed_ops() - adjust src operand in fsave frame            #
3263 #       _real_snan() - "callout" to operating system SNAN handler       #
3264 #       _dmem_write_{byte,word,long}() - store data to mem (opclass 3)  #
3265 #       store_dreg_{b,w,l}() - store data to data regfile (opclass 3)   #
3266 #       facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3)   #
3267 #       _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea>   #
3268 #                                                                       #
3269 # INPUT *************************************************************** #
3270 #       - The system stack contains the FP SNAN exception frame         #
3271 #       - The fsave frame contains the source operand                   #
3272 #                                                                       #
3273 # OUTPUT ************************************************************** #
3274 #       No access error:                                                #
3275 #       - The system stack is unchanged                                 #
3276 #       - The fsave frame contains the adjusted src op for opclass 0,2  #
3277 #                                                                       #
3278 # ALGORITHM *********************************************************** #
3279 #       In a system where the FP SNAN exception is enabled, the goal    #
3280 # is to get to the handler specified at _real_snan(). But, on the 060,  #
3281 # for opclass zero and two instructions taking this exception, the      #
3282 # input operand in the fsave frame may be incorrect for some cases      #
3283 # and needs to be corrected. This handler calls fix_skewed_ops() to     #
3284 # do just this and then exits through _real_snan().                     #
3285 #       For opclass 3 instructions, the 060 doesn't store the default   #
3286 # SNAN result out to memory or data register file as it should.         #
3287 # This code must emulate the move out before finally exiting through    #
3288 # _real_snan(). The move out, if to memory, is performed using          #
3289 # _mem_write() "callout" routines that may return a failing result.     #
3290 # In this special case, the handler must exit through facc_out()        #
3291 # which creates an access error stack frame from the current SNAN       #
3292 # stack frame.                                                          #
3293 #       For the case of an extended precision opclass 3 instruction,    #
3294 # if the effective addressing mode was -() or ()+, then the address     #
3295 # register must get updated by calling _calc_ea_fout(). If the <ea>     #
3296 # was -(a7) from supervisor mode, then the exception frame currently    #
3297 # on the system stack must be carefully moved "down" to make room       #
3298 # for the operand being moved.                                          #
3299 #                                                                       #
3300 #########################################################################
3301
3302         global          _fpsp_snan
3303 _fpsp_snan:
3304
3305         link.w          %a6,&-LOCAL_SIZE        # init stack frame
3306
3307         fsave           FP_SRC(%a6)             # grab the "busy" frame
3308
3309         movm.l          &0x0303,EXC_DREGS(%a6)  # save d0-d1/a0-a1
3310         fmovm.l         %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
3311         fmovm.x         &0xc0,EXC_FPREGS(%a6)   # save fp0-fp1 on stack
3312
3313 # the FPIAR holds the "current PC" of the faulting instruction
3314         mov.l           USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
3315
3316         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
3317         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
3318         bsr.l           _imem_read_long         # fetch the instruction words
3319         mov.l           %d0,EXC_OPWORD(%a6)
3320
3321 ##############################################################################
3322
3323         btst            &13,%d0                 # is instr an fmove out?
3324         bne.w           fsnan_out               # fmove out
3325
3326
3327 # here, we simply see if the operand in the fsave frame needs to be "unskewed".
3328 # this would be the case for opclass two operations with a source infinity or
3329 # denorm operand in the sgl or dbl format. NANs also become skewed and must be
3330 # fixed here.
3331         lea             FP_SRC(%a6),%a0         # pass: ptr to src op
3332         bsr.l           fix_skewed_ops          # fix src op
3333
3334 fsnan_exit:
3335         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
3336         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
3337         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
3338
3339         frestore        FP_SRC(%a6)
3340
3341         unlk            %a6
3342         bra.l           _real_snan
3343
3344 ########################################################################
3345
3346 #
3347 # the hardware does not save the default result to memory on enabled
3348 # snan exceptions. we do this here before passing control to
3349 # the user snan handler.
3350 #
3351 # byte, word, long, and packed destination format operations can pass
3352 # through here. since packed format operations already were handled by
3353 # fpsp_unsupp(), then we need to do nothing else for them here.
3354 # for byte, word, and long, we simply need to test the sign of the src
3355 # operand and save the appropriate minimum or maximum integer value
3356 # to the effective address as pointed to by the stacked effective address.
3357 #
3358 fsnan_out:
3359
3360         bfextu          %d0{&19:&3},%d0         # extract dst format field
3361         mov.b           1+EXC_OPWORD(%a6),%d1   # extract <ea> mode,reg
3362         mov.w           (tbl_snan.b,%pc,%d0.w*2),%a0
3363         jmp             (tbl_snan.b,%pc,%a0)
3364
3365 tbl_snan:
3366         short           fsnan_out_l - tbl_snan # long word integer
3367         short           fsnan_out_s - tbl_snan # sgl prec shouldn't happen
3368         short           fsnan_out_x - tbl_snan # ext prec shouldn't happen
3369         short           tbl_snan    - tbl_snan # packed needs no help
3370         short           fsnan_out_w - tbl_snan # word integer
3371         short           fsnan_out_d - tbl_snan # dbl prec shouldn't happen
3372         short           fsnan_out_b - tbl_snan # byte integer
3373         short           tbl_snan    - tbl_snan # packed needs no help
3374
3375 fsnan_out_b:
3376         mov.b           FP_SRC_HI(%a6),%d0      # load upper byte of SNAN
3377         bset            &6,%d0                  # set SNAN bit
3378         cmpi.b          %d1,&0x7                # is <ea> mode a data reg?
3379         ble.b           fsnan_out_b_dn          # yes
3380         mov.l           EXC_EA(%a6),%a0         # pass: <ea> of default result
3381         bsr.l           _dmem_write_byte        # write the default result
3382
3383         tst.l           %d1                     # did dstore fail?
3384         bne.l           facc_out_b              # yes
3385
3386         bra.w           fsnan_exit
3387 fsnan_out_b_dn:
3388         andi.w          &0x0007,%d1
3389         bsr.l           store_dreg_b            # store result to regfile
3390         bra.w           fsnan_exit
3391
3392 fsnan_out_w:
3393         mov.w           FP_SRC_HI(%a6),%d0      # load upper word of SNAN
3394         bset            &14,%d0                 # set SNAN bit
3395         cmpi.b          %d1,&0x7                # is <ea> mode a data reg?
3396         ble.b           fsnan_out_w_dn          # yes
3397         mov.l           EXC_EA(%a6),%a0         # pass: <ea> of default result
3398         bsr.l           _dmem_write_word        # write the default result
3399
3400         tst.l           %d1                     # did dstore fail?
3401         bne.l           facc_out_w              # yes
3402
3403         bra.w           fsnan_exit
3404 fsnan_out_w_dn:
3405         andi.w          &0x0007,%d1
3406         bsr.l           store_dreg_w            # store result to regfile
3407         bra.w           fsnan_exit
3408
3409 fsnan_out_l:
3410         mov.l           FP_SRC_HI(%a6),%d0      # load upper longword of SNAN
3411         bset            &30,%d0                 # set SNAN bit
3412         cmpi.b          %d1,&0x7                # is <ea> mode a data reg?
3413         ble.b           fsnan_out_l_dn          # yes
3414         mov.l           EXC_EA(%a6),%a0         # pass: <ea> of default result
3415         bsr.l           _dmem_write_long        # write the default result
3416
3417         tst.l           %d1                     # did dstore fail?
3418         bne.l           facc_out_l              # yes
3419
3420         bra.w           fsnan_exit
3421 fsnan_out_l_dn:
3422         andi.w          &0x0007,%d1
3423         bsr.l           store_dreg_l            # store result to regfile
3424         bra.w           fsnan_exit
3425
3426 fsnan_out_s:
3427         cmpi.b          %d1,&0x7                # is <ea> mode a data reg?
3428         ble.b           fsnan_out_d_dn          # yes
3429         mov.l           FP_SRC_EX(%a6),%d0      # fetch SNAN sign
3430         andi.l          &0x80000000,%d0         # keep sign
3431         ori.l           &0x7fc00000,%d0         # insert new exponent,SNAN bit
3432         mov.l           FP_SRC_HI(%a6),%d1      # load mantissa
3433         lsr.l           &0x8,%d1                # shift mantissa for sgl
3434         or.l            %d1,%d0                 # create sgl SNAN
3435         mov.l           EXC_EA(%a6),%a0         # pass: <ea> of default result
3436         bsr.l           _dmem_write_long        # write the default result
3437
3438         tst.l           %d1                     # did dstore fail?
3439         bne.l           facc_out_l              # yes
3440
3441         bra.w           fsnan_exit
3442 fsnan_out_d_dn:
3443         mov.l           FP_SRC_EX(%a6),%d0      # fetch SNAN sign
3444         andi.l          &0x80000000,%d0         # keep sign
3445         ori.l           &0x7fc00000,%d0         # insert new exponent,SNAN bit
3446         mov.l           %d1,-(%sp)
3447         mov.l           FP_SRC_HI(%a6),%d1      # load mantissa
3448         lsr.l           &0x8,%d1                # shift mantissa for sgl
3449         or.l            %d1,%d0                 # create sgl SNAN
3450         mov.l           (%sp)+,%d1
3451         andi.w          &0x0007,%d1
3452         bsr.l           store_dreg_l            # store result to regfile
3453         bra.w           fsnan_exit
3454
3455 fsnan_out_d:
3456         mov.l           FP_SRC_EX(%a6),%d0      # fetch SNAN sign
3457         andi.l          &0x80000000,%d0         # keep sign
3458         ori.l           &0x7ff80000,%d0         # insert new exponent,SNAN bit
3459         mov.l           FP_SRC_HI(%a6),%d1      # load hi mantissa
3460         mov.l           %d0,FP_SCR0_EX(%a6)     # store to temp space
3461         mov.l           &11,%d0                 # load shift amt
3462         lsr.l           %d0,%d1
3463         or.l            %d1,FP_SCR0_EX(%a6)     # create dbl hi
3464         mov.l           FP_SRC_HI(%a6),%d1      # load hi mantissa
3465         andi.l          &0x000007ff,%d1
3466         ror.l           %d0,%d1
3467         mov.l           %d1,FP_SCR0_HI(%a6)     # store to temp space
3468         mov.l           FP_SRC_LO(%a6),%d1      # load lo mantissa
3469         lsr.l           %d0,%d1
3470         or.l            %d1,FP_SCR0_HI(%a6)     # create dbl lo
3471         lea             FP_SCR0(%a6),%a0        # pass: ptr to operand
3472         mov.l           EXC_EA(%a6),%a1         # pass: dst addr
3473         movq.l          &0x8,%d0                # pass: size of 8 bytes
3474         bsr.l           _dmem_write             # write the default result
3475
3476         tst.l           %d1                     # did dstore fail?
3477         bne.l           facc_out_d              # yes
3478
3479         bra.w           fsnan_exit
3480
3481 # for extended precision, if the addressing mode is pre-decrement or
3482 # post-increment, then the address register did not get updated.
3483 # in addition, for pre-decrement, the stacked <ea> is incorrect.
3484 fsnan_out_x:
3485         clr.b           SPCOND_FLG(%a6)         # clear special case flag
3486
3487         mov.w           FP_SRC_EX(%a6),FP_SCR0_EX(%a6)
3488         clr.w           2+FP_SCR0(%a6)
3489         mov.l           FP_SRC_HI(%a6),%d0
3490         bset            &30,%d0
3491         mov.l           %d0,FP_SCR0_HI(%a6)
3492         mov.l           FP_SRC_LO(%a6),FP_SCR0_LO(%a6)
3493
3494         btst            &0x5,EXC_SR(%a6)        # supervisor mode exception?
3495         bne.b           fsnan_out_x_s           # yes
3496
3497         mov.l           %usp,%a0                # fetch user stack pointer
3498         mov.l           %a0,EXC_A7(%a6)         # save on stack for calc_ea()
3499         mov.l           (%a6),EXC_A6(%a6)
3500
3501         bsr.l           _calc_ea_fout           # find the correct ea,update An
3502         mov.l           %a0,%a1
3503         mov.l           %a0,EXC_EA(%a6)         # stack correct <ea>
3504
3505         mov.l           EXC_A7(%a6),%a0
3506         mov.l           %a0,%usp                # restore user stack pointer
3507         mov.l           EXC_A6(%a6),(%a6)
3508
3509 fsnan_out_x_save:
3510         lea             FP_SCR0(%a6),%a0        # pass: ptr to operand
3511         movq.l          &0xc,%d0                # pass: size of extended
3512         bsr.l           _dmem_write             # write the default result
3513
3514         tst.l           %d1                     # did dstore fail?
3515         bne.l           facc_out_x              # yes
3516
3517         bra.w           fsnan_exit
3518
3519 fsnan_out_x_s:
3520         mov.l           (%a6),EXC_A6(%a6)
3521
3522         bsr.l           _calc_ea_fout           # find the correct ea,update An
3523         mov.l           %a0,%a1
3524         mov.l           %a0,EXC_EA(%a6)         # stack correct <ea>
3525
3526         mov.l           EXC_A6(%a6),(%a6)
3527
3528         cmpi.b          SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)?
3529         bne.b           fsnan_out_x_save        # no
3530
3531 # the operation was "fmove.x SNAN,-(a7)" from supervisor mode.
3532         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
3533         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
3534         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
3535
3536         frestore        FP_SRC(%a6)
3537
3538         mov.l           EXC_A6(%a6),%a6         # restore frame pointer
3539
3540         mov.l           LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
3541         mov.l           LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp)
3542         mov.l           LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
3543
3544         mov.l           LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp)
3545         mov.l           LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp)
3546         mov.l           LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp)
3547
3548         add.l           &LOCAL_SIZE-0x8,%sp
3549
3550         bra.l           _real_snan
3551
3552 #########################################################################
3553 # XDEF **************************************************************** #
3554 #       _fpsp_inex(): 060FPSP entry point for FP Inexact exception.     #
3555 #                                                                       #
3556 #       This handler should be the first code executed upon taking the  #
3557 #       FP Inexact exception in an operating system.                    #
3558 #                                                                       #
3559 # XREF **************************************************************** #
3560 #       _imem_read_long() - read instruction longword                   #
3561 #       fix_skewed_ops() - adjust src operand in fsave frame            #
3562 #       set_tag_x() - determine optype of src/dst operands              #
3563 #       store_fpreg() - store opclass 0 or 2 result to FP regfile       #
3564 #       unnorm_fix() - change UNNORM operands to NORM or ZERO           #
3565 #       load_fpn2() - load dst operand from FP regfile                  #
3566 #       smovcr() - emulate an "fmovcr" instruction                      #
3567 #       fout() - emulate an opclass 3 instruction                       #
3568 #       tbl_unsupp - add of table of emulation routines for opclass 0,2 #
3569 #       _real_inex() - "callout" to operating system inexact handler    #
3570 #                                                                       #
3571 # INPUT *************************************************************** #
3572 #       - The system stack contains the FP Inexact exception frame      #
3573 #       - The fsave frame contains the source operand                   #
3574 #                                                                       #
3575 # OUTPUT ************************************************************** #
3576 #       - The system stack is unchanged                                 #
3577 #       - The fsave frame contains the adjusted src op for opclass 0,2  #
3578 #                                                                       #
3579 # ALGORITHM *********************************************************** #
3580 #       In a system where the FP Inexact exception is enabled, the goal #
3581 # is to get to the handler specified at _real_inex(). But, on the 060,  #
3582 # for opclass zero and two instruction taking this exception, the       #
3583 # hardware doesn't store the correct result to the destination FP       #
3584 # register as did the '040 and '881/2. This handler must emulate the    #
3585 # instruction in order to get this value and then store it to the       #
3586 # correct register before calling _real_inex().                         #
3587 #       For opclass 3 instructions, the 060 doesn't store the default   #
3588 # inexact result out to memory or data register file as it should.      #
3589 # This code must emulate the move out by calling fout() before finally  #
3590 # exiting through _real_inex().                                         #
3591 #                                                                       #
3592 #########################################################################
3593
3594         global          _fpsp_inex
3595 _fpsp_inex:
3596
3597         link.w          %a6,&-LOCAL_SIZE        # init stack frame
3598
3599         fsave           FP_SRC(%a6)             # grab the "busy" frame
3600
3601         movm.l          &0x0303,EXC_DREGS(%a6)  # save d0-d1/a0-a1
3602         fmovm.l         %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
3603         fmovm.x         &0xc0,EXC_FPREGS(%a6)   # save fp0-fp1 on stack
3604
3605 # the FPIAR holds the "current PC" of the faulting instruction
3606         mov.l           USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
3607
3608         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
3609         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
3610         bsr.l           _imem_read_long         # fetch the instruction words
3611         mov.l           %d0,EXC_OPWORD(%a6)
3612
3613 ##############################################################################
3614
3615         btst            &13,%d0                 # is instr an fmove out?
3616         bne.w           finex_out               # fmove out
3617
3618
3619 # the hardware, for "fabs" and "fneg" w/ a long source format, puts the
3620 # longword integer directly into the upper longword of the mantissa along
3621 # w/ an exponent value of 0x401e. we convert this to extended precision here.
3622         bfextu          %d0{&19:&3},%d0         # fetch instr size
3623         bne.b           finex_cont              # instr size is not long
3624         cmpi.w          FP_SRC_EX(%a6),&0x401e  # is exponent 0x401e?
3625         bne.b           finex_cont              # no
3626         fmov.l          &0x0,%fpcr
3627         fmov.l          FP_SRC_HI(%a6),%fp0     # load integer src
3628         fmov.x          %fp0,FP_SRC(%a6)        # store integer as extended precision
3629         mov.w           &0xe001,0x2+FP_SRC(%a6)
3630
3631 finex_cont:
3632         lea             FP_SRC(%a6),%a0         # pass: ptr to src op
3633         bsr.l           fix_skewed_ops          # fix src op
3634
3635 # Here, we zero the ccode and exception byte field since we're going to
3636 # emulate the whole instruction. Notice, though, that we don't kill the
3637 # INEX1 bit. This is because a packed op has long since been converted
3638 # to extended before arriving here. Therefore, we need to retain the
3639 # INEX1 bit from when the operand was first converted.
3640         andi.l          &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field
3641
3642         fmov.l          &0x0,%fpcr              # zero current control regs
3643         fmov.l          &0x0,%fpsr
3644
3645         bfextu          EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg
3646         cmpi.b          %d1,&0x17               # is op an fmovecr?
3647         beq.w           finex_fmovcr            # yes
3648
3649         lea             FP_SRC(%a6),%a0         # pass: ptr to src op
3650         bsr.l           set_tag_x               # tag the operand type
3651         mov.b           %d0,STAG(%a6)           # maybe NORM,DENORM
3652
3653 # bits four and five of the fp extension word separate the monadic and dyadic
3654 # operations that can pass through fpsp_inex(). remember that fcmp and ftst
3655 # will never take this exception, but fsincos will.
3656         btst            &0x5,1+EXC_CMDREG(%a6)  # is operation monadic or dyadic?
3657         beq.b           finex_extract           # monadic
3658
3659         btst            &0x4,1+EXC_CMDREG(%a6)  # is operation an fsincos?
3660         bne.b           finex_extract           # yes
3661
3662         bfextu          EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
3663         bsr.l           load_fpn2               # load dst into FP_DST
3664
3665         lea             FP_DST(%a6),%a0         # pass: ptr to dst op
3666         bsr.l           set_tag_x               # tag the operand type
3667         cmpi.b          %d0,&UNNORM             # is operand an UNNORM?
3668         bne.b           finex_op2_done          # no
3669         bsr.l           unnorm_fix              # yes; convert to NORM,DENORM,or ZERO
3670 finex_op2_done:
3671         mov.b           %d0,DTAG(%a6)           # save dst optype tag
3672
3673 finex_extract:
3674         clr.l           %d0
3675         mov.b           FPCR_MODE(%a6),%d0      # pass rnd prec/mode
3676
3677         mov.b           1+EXC_CMDREG(%a6),%d1
3678         andi.w          &0x007f,%d1             # extract extension
3679
3680         lea             FP_SRC(%a6),%a0
3681         lea             FP_DST(%a6),%a1
3682
3683         mov.l           (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
3684         jsr             (tbl_unsupp.l,%pc,%d1.l*1)
3685
3686 # the operation has been emulated. the result is in fp0.
3687 finex_save:
3688         bfextu          EXC_CMDREG(%a6){&6:&3},%d0
3689         bsr.l           store_fpreg
3690
3691 finex_exit:
3692         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
3693         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
3694         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
3695
3696         frestore        FP_SRC(%a6)
3697
3698         unlk            %a6
3699         bra.l           _real_inex
3700
3701 finex_fmovcr:
3702         clr.l           %d0
3703         mov.b           FPCR_MODE(%a6),%d0      # pass rnd prec,mode
3704         mov.b           1+EXC_CMDREG(%a6),%d1
3705         andi.l          &0x0000007f,%d1         # pass rom offset
3706         bsr.l           smovcr
3707         bra.b           finex_save
3708
3709 ########################################################################
3710
3711 #
3712 # the hardware does not save the default result to memory on enabled
3713 # inexact exceptions. we do this here before passing control to
3714 # the user inexact handler.
3715 #
3716 # byte, word, and long destination format operations can pass
3717 # through here. so can double and single precision.
3718 # although packed opclass three operations can take inexact
3719 # exceptions, they won't pass through here since they are caught
3720 # first by the unsupported data format exception handler. that handler
3721 # sends them directly to _real_inex() if necessary.
3722 #
3723 finex_out:
3724
3725         mov.b           &NORM,STAG(%a6)         # src is a NORM
3726
3727         clr.l           %d0
3728         mov.b           FPCR_MODE(%a6),%d0      # pass rnd prec,mode
3729
3730         andi.l          &0xffff00ff,USER_FPSR(%a6) # zero exception field
3731
3732         lea             FP_SRC(%a6),%a0         # pass ptr to src operand
3733
3734         bsr.l           fout                    # store the default result
3735
3736         bra.b           finex_exit
3737
3738 #########################################################################
3739 # XDEF **************************************************************** #
3740 #       _fpsp_dz(): 060FPSP entry point for FP DZ exception.            #
3741 #                                                                       #
3742 #       This handler should be the first code executed upon taking      #
3743 #       the FP DZ exception in an operating system.                     #
3744 #                                                                       #
3745 # XREF **************************************************************** #
3746 #       _imem_read_long() - read instruction longword from memory       #
3747 #       fix_skewed_ops() - adjust fsave operand                         #
3748 #       _real_dz() - "callout" exit point from FP DZ handler            #
3749 #                                                                       #
3750 # INPUT *************************************************************** #
3751 #       - The system stack contains the FP DZ exception stack.          #
3752 #       - The fsave frame contains the source operand.                  #
3753 #                                                                       #
3754 # OUTPUT ************************************************************** #
3755 #       - The system stack contains the FP DZ exception stack.          #
3756 #       - The fsave frame contains the adjusted source operand.         #
3757 #                                                                       #
3758 # ALGORITHM *********************************************************** #
3759 #       In a system where the DZ exception is enabled, the goal is to   #
3760 # get to the handler specified at _real_dz(). But, on the 060, when the #
3761 # exception is taken, the input operand in the fsave state frame may    #
3762 # be incorrect for some cases and need to be adjusted. So, this package #
3763 # adjusts the operand using fix_skewed_ops() and then branches to       #
3764 # _real_dz().                                                           #
3765 #                                                                       #
3766 #########################################################################
3767
3768         global          _fpsp_dz
3769 _fpsp_dz:
3770
3771         link.w          %a6,&-LOCAL_SIZE        # init stack frame
3772
3773         fsave           FP_SRC(%a6)             # grab the "busy" frame
3774
3775         movm.l          &0x0303,EXC_DREGS(%a6)  # save d0-d1/a0-a1
3776         fmovm.l         %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
3777         fmovm.x         &0xc0,EXC_FPREGS(%a6)   # save fp0-fp1 on stack
3778
3779 # the FPIAR holds the "current PC" of the faulting instruction
3780         mov.l           USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
3781
3782         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
3783         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
3784         bsr.l           _imem_read_long         # fetch the instruction words
3785         mov.l           %d0,EXC_OPWORD(%a6)
3786
3787 ##############################################################################
3788
3789
3790 # here, we simply see if the operand in the fsave frame needs to be "unskewed".
3791 # this would be the case for opclass two operations with a source zero
3792 # in the sgl or dbl format.
3793         lea             FP_SRC(%a6),%a0         # pass: ptr to src op
3794         bsr.l           fix_skewed_ops          # fix src op
3795
3796 fdz_exit:
3797         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
3798         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
3799         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
3800
3801         frestore        FP_SRC(%a6)
3802
3803         unlk            %a6
3804         bra.l           _real_dz
3805
3806 #########################################################################
3807 # XDEF **************************************************************** #
3808 #       _fpsp_fline(): 060FPSP entry point for "Line F emulator" exc.   #
3809 #                                                                       #
3810 #       This handler should be the first code executed upon taking the  #
3811 #       "Line F Emulator" exception in an operating system.             #
3812 #                                                                       #
3813 # XREF **************************************************************** #
3814 #       _fpsp_unimp() - handle "FP Unimplemented" exceptions            #
3815 #       _real_fpu_disabled() - handle "FPU disabled" exceptions         #
3816 #       _real_fline() - handle "FLINE" exceptions                       #
3817 #       _imem_read_long() - read instruction longword                   #
3818 #                                                                       #
3819 # INPUT *************************************************************** #
3820 #       - The system stack contains a "Line F Emulator" exception       #
3821 #         stack frame.                                                  #
3822 #                                                                       #
3823 # OUTPUT ************************************************************** #
3824 #       - The system stack is unchanged                                 #
3825 #                                                                       #
3826 # ALGORITHM *********************************************************** #
3827 #       When a "Line F Emulator" exception occurs, there are 3 possible #
3828 # exception types, denoted by the exception stack frame format number:  #
3829 #       (1) FPU unimplemented instruction (6 word stack frame)          #
3830 #       (2) FPU disabled (8 word stack frame)                           #
3831 #       (3) Line F (4 word stack frame)                                 #
3832 #                                                                       #
3833 #       This module determines which and forks the flow off to the      #
3834 # appropriate "callout" (for "disabled" and "Line F") or to the         #
3835 # correct emulation code (for "FPU unimplemented").                     #
3836 #       This code also must check for "fmovecr" instructions w/ a       #
3837 # non-zero <ea> field. These may get flagged as "Line F" but should     #
3838 # really be flagged as "FPU Unimplemented". (This is a "feature" on     #
3839 # the '060.                                                             #
3840 #                                                                       #
3841 #########################################################################
3842
3843         global          _fpsp_fline
3844 _fpsp_fline:
3845
3846 # check to see if this exception is a "FP Unimplemented Instruction"
3847 # exception. if so, branch directly to that handler's entry point.
3848         cmpi.w          0x6(%sp),&0x202c
3849         beq.l           _fpsp_unimp
3850
3851 # check to see if the FPU is disabled. if so, jump to the OS entry
3852 # point for that condition.
3853         cmpi.w          0x6(%sp),&0x402c
3854         beq.l           _real_fpu_disabled
3855
3856 # the exception was an "F-Line Illegal" exception. we check to see
3857 # if the F-Line instruction is an "fmovecr" w/ a non-zero <ea>. if
3858 # so, convert the F-Line exception stack frame to an FP Unimplemented
3859 # Instruction exception stack frame else branch to the OS entry
3860 # point for the F-Line exception handler.
3861         link.w          %a6,&-LOCAL_SIZE        # init stack frame
3862
3863         movm.l          &0x0303,EXC_DREGS(%a6)  # save d0-d1/a0-a1
3864
3865         mov.l           EXC_PC(%a6),EXC_EXTWPTR(%a6)
3866         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
3867         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
3868         bsr.l           _imem_read_long         # fetch instruction words
3869
3870         bfextu          %d0{&0:&10},%d1         # is it an fmovecr?
3871         cmpi.w          %d1,&0x03c8
3872         bne.b           fline_fline             # no
3873
3874         bfextu          %d0{&16:&6},%d1         # is it an fmovecr?
3875         cmpi.b          %d1,&0x17
3876         bne.b           fline_fline             # no
3877
3878 # it's an fmovecr w/ a non-zero <ea> that has entered through
3879 # the F-Line Illegal exception.
3880 # so, we need to convert the F-Line exception stack frame into an
3881 # FP Unimplemented Instruction stack frame and jump to that entry
3882 # point.
3883 #
3884 # but, if the FPU is disabled, then we need to jump to the FPU diabled
3885 # entry point.
3886         movc            %pcr,%d0
3887         btst            &0x1,%d0
3888         beq.b           fline_fmovcr
3889
3890         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
3891
3892         unlk            %a6
3893
3894         sub.l           &0x8,%sp                # make room for "Next PC", <ea>
3895         mov.w           0x8(%sp),(%sp)
3896         mov.l           0xa(%sp),0x2(%sp)       # move "Current PC"
3897         mov.w           &0x402c,0x6(%sp)
3898         mov.l           0x2(%sp),0xc(%sp)
3899         addq.l          &0x4,0x2(%sp)           # set "Next PC"
3900
3901         bra.l           _real_fpu_disabled
3902
3903 fline_fmovcr:
3904         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
3905
3906         unlk            %a6
3907
3908         fmov.l          0x2(%sp),%fpiar         # set current PC
3909         addq.l          &0x4,0x2(%sp)           # set Next PC
3910
3911         mov.l           (%sp),-(%sp)
3912         mov.l           0x8(%sp),0x4(%sp)
3913         mov.b           &0x20,0x6(%sp)
3914
3915         bra.l           _fpsp_unimp
3916
3917 fline_fline:
3918         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
3919
3920         unlk            %a6
3921
3922         bra.l           _real_fline
3923
3924 #########################################################################
3925 # XDEF **************************************************************** #
3926 #       _fpsp_unimp(): 060FPSP entry point for FP "Unimplemented        #
3927 #                      Instruction" exception.                          #
3928 #                                                                       #
3929 #       This handler should be the first code executed upon taking the  #
3930 #       FP Unimplemented Instruction exception in an operating system.  #
3931 #                                                                       #
3932 # XREF **************************************************************** #
3933 #       _imem_read_{word,long}() - read instruction word/longword       #
3934 #       load_fop() - load src/dst ops from memory and/or FP regfile     #
3935 #       store_fpreg() - store opclass 0 or 2 result to FP regfile       #
3936 #       tbl_trans - addr of table of emulation routines for trnscndls   #
3937 #       _real_access() - "callout" for access error exception           #
3938 #       _fpsp_done() - "callout" for exit; work all done                #
3939 #       _real_trace() - "callout" for Trace enabled exception           #
3940 #       smovcr() - emulate "fmovecr" instruction                        #
3941 #       funimp_skew() - adjust fsave src ops to "incorrect" value       #
3942 #       _ftrapcc() - emulate an "ftrapcc" instruction                   #
3943 #       _fdbcc() - emulate an "fdbcc" instruction                       #
3944 #       _fscc() - emulate an "fscc" instruction                         #
3945 #       _real_trap() - "callout" for Trap exception                     #
3946 #       _real_bsun() - "callout" for enabled Bsun exception             #
3947 #                                                                       #
3948 # INPUT *************************************************************** #
3949 #       - The system stack contains the "Unimplemented Instr" stk frame #
3950 #                                                                       #
3951 # OUTPUT ************************************************************** #
3952 #       If access error:                                                #
3953 #       - The system stack is changed to an access error stack frame    #
3954 #       If Trace exception enabled:                                     #
3955 #       - The system stack is changed to a Trace exception stack frame  #
3956 #       Else: (normal case)                                             #
3957 #       - Correct result has been stored as appropriate                 #
3958 #                                                                       #
3959 # ALGORITHM *********************************************************** #
3960 #       There are two main cases of instructions that may enter here to #
3961 # be emulated: (1) the FPgen instructions, most of which were also      #
3962 # unimplemented on the 040, and (2) "ftrapcc", "fscc", and "fdbcc".     #
3963 #       For the first set, this handler calls the routine load_fop()    #
3964 # to load the source and destination (for dyadic) operands to be used   #
3965 # for instruction emulation. The correct emulation routine is then      #
3966 # chosen by decoding the instruction type and indexing into an          #
3967 # emulation subroutine index table. After emulation returns, this       #
3968 # handler checks to see if an exception should occur as a result of the #
3969 # FP instruction emulation. If so, then an FP exception of the correct  #
3970 # type is inserted into the FPU state frame using the "frestore"        #
3971 # instruction before exiting through _fpsp_done(). In either the        #
3972 # exceptional or non-exceptional cases, we must check to see if the     #
3973 # Trace exception is enabled. If so, then we must create a Trace        #
3974 # exception frame from the current exception frame and exit through     #
3975 # _real_trace().                                                        #
3976 #       For "fdbcc", "ftrapcc", and "fscc", the emulation subroutines   #
3977 # _fdbcc(), _ftrapcc(), and _fscc() respectively are used. All three    #
3978 # may flag that a BSUN exception should be taken. If so, then the       #
3979 # current exception stack frame is converted into a BSUN exception      #
3980 # stack frame and an exit is made through _real_bsun(). If the          #
3981 # instruction was "ftrapcc" and a Trap exception should result, a Trap  #
3982 # exception stack frame is created from the current frame and an exit   #
3983 # is made through _real_trap(). If a Trace exception is pending, then   #
3984 # a Trace exception frame is created from the current frame and a jump  #
3985 # is made to _real_trace(). Finally, if none of these conditions exist, #
3986 # then the handler exits though the callout _fpsp_done().               #
3987 #                                                                       #
3988 #       In any of the above scenarios, if a _mem_read() or _mem_write() #
3989 # "callout" returns a failing value, then an access error stack frame   #
3990 # is created from the current stack frame and an exit is made through   #
3991 # _real_access().                                                       #
3992 #                                                                       #
3993 #########################################################################
3994
3995 #
3996 # FP UNIMPLEMENTED INSTRUCTION STACK FRAME:
3997 #
3998 #       *****************
3999 #       *               * => <ea> of fp unimp instr.
4000 #       -      EA       -
4001 #       *               *
4002 #       *****************
4003 #       * 0x2 *  0x02c  * => frame format and vector offset(vector #11)
4004 #       *****************
4005 #       *               *
4006 #       -    Next PC    - => PC of instr to execute after exc handling
4007 #       *               *
4008 #       *****************
4009 #       *      SR       * => SR at the time the exception was taken
4010 #       *****************
4011 #
4012 # Note: the !NULL bit does not get set in the fsave frame when the
4013 # machine encounters an fp unimp exception. Therefore, it must be set
4014 # before leaving this handler.
4015 #
4016         global          _fpsp_unimp
4017 _fpsp_unimp:
4018
4019         link.w          %a6,&-LOCAL_SIZE        # init stack frame
4020
4021         movm.l          &0x0303,EXC_DREGS(%a6)  # save d0-d1/a0-a1
4022         fmovm.l         %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
4023         fmovm.x         &0xc0,EXC_FPREGS(%a6)   # save fp0-fp1
4024
4025         btst            &0x5,EXC_SR(%a6)        # user mode exception?
4026         bne.b           funimp_s                # no; supervisor mode
4027
4028 # save the value of the user stack pointer onto the stack frame
4029 funimp_u:
4030         mov.l           %usp,%a0                # fetch user stack pointer
4031         mov.l           %a0,EXC_A7(%a6)         # store in stack frame
4032         bra.b           funimp_cont
4033
4034 # store the value of the supervisor stack pointer BEFORE the exc occurred.
4035 # old_sp is address just above stacked effective address.
4036 funimp_s:
4037         lea             4+EXC_EA(%a6),%a0       # load old a7'
4038         mov.l           %a0,EXC_A7(%a6)         # store a7'
4039         mov.l           %a0,OLD_A7(%a6)         # make a copy
4040
4041 funimp_cont:
4042
4043 # the FPIAR holds the "current PC" of the faulting instruction.
4044         mov.l           USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
4045
4046         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
4047         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
4048         bsr.l           _imem_read_long         # fetch the instruction words
4049         mov.l           %d0,EXC_OPWORD(%a6)
4050
4051 ############################################################################
4052
4053         fmov.l          &0x0,%fpcr              # clear FPCR
4054         fmov.l          &0x0,%fpsr              # clear FPSR
4055
4056         clr.b           SPCOND_FLG(%a6)         # clear "special case" flag
4057
4058 # Divide the fp instructions into 8 types based on the TYPE field in
4059 # bits 6-8 of the opword(classes 6,7 are undefined).
4060 # (for the '060, only two types  can take this exception)
4061 #       bftst           %d0{&7:&3}              # test TYPE
4062         btst            &22,%d0                 # type 0 or 1 ?
4063         bne.w           funimp_misc             # type 1
4064
4065 #########################################
4066 # TYPE == 0: General instructions       #
4067 #########################################
4068 funimp_gen:
4069
4070         clr.b           STORE_FLG(%a6)          # clear "store result" flag
4071
4072 # clear the ccode byte and exception status byte
4073         andi.l          &0x00ff00ff,USER_FPSR(%a6)
4074
4075         bfextu          %d0{&16:&6},%d1         # extract upper 6 of cmdreg
4076         cmpi.b          %d1,&0x17               # is op an fmovecr?
4077         beq.w           funimp_fmovcr           # yes
4078
4079 funimp_gen_op:
4080         bsr.l           _load_fop               # load
4081
4082         clr.l           %d0
4083         mov.b           FPCR_MODE(%a6),%d0      # fetch rnd mode
4084
4085         mov.b           1+EXC_CMDREG(%a6),%d1
4086         andi.w          &0x003f,%d1             # extract extension bits
4087         lsl.w           &0x3,%d1                # shift right 3 bits
4088         or.b            STAG(%a6),%d1           # insert src optag bits
4089
4090         lea             FP_DST(%a6),%a1         # pass dst ptr in a1
4091         lea             FP_SRC(%a6),%a0         # pass src ptr in a0
4092
4093         mov.w           (tbl_trans.w,%pc,%d1.w*2),%d1
4094         jsr             (tbl_trans.w,%pc,%d1.w*1) # emulate
4095
4096 funimp_fsave:
4097         mov.b           FPCR_ENABLE(%a6),%d0    # fetch exceptions enabled
4098         bne.w           funimp_ena              # some are enabled
4099
4100 funimp_store:
4101         bfextu          EXC_CMDREG(%a6){&6:&3},%d0 # fetch Dn
4102         bsr.l           store_fpreg             # store result to fp regfile
4103
4104 funimp_gen_exit:
4105         fmovm.x         EXC_FP0(%a6),&0xc0      # restore fp0-fp1
4106         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
4107         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
4108
4109 funimp_gen_exit_cmp:
4110         cmpi.b          SPCOND_FLG(%a6),&mia7_flg # was the ea mode (sp)+ ?
4111         beq.b           funimp_gen_exit_a7      # yes
4112
4113         cmpi.b          SPCOND_FLG(%a6),&mda7_flg # was the ea mode -(sp) ?
4114         beq.b           funimp_gen_exit_a7      # yes
4115
4116 funimp_gen_exit_cont:
4117         unlk            %a6
4118
4119 funimp_gen_exit_cont2:
4120         btst            &0x7,(%sp)              # is trace on?
4121         beq.l           _fpsp_done              # no
4122
4123 # this catches a problem with the case where an exception will be re-inserted
4124 # into the machine. the frestore has already been executed...so, the fmov.l
4125 # alone of the control register would trigger an unwanted exception.
4126 # until I feel like fixing this, we'll sidestep the exception.
4127         fsave           -(%sp)
4128         fmov.l          %fpiar,0x14(%sp)        # "Current PC" is in FPIAR
4129         frestore        (%sp)+
4130         mov.w           &0x2024,0x6(%sp)        # stk fmt = 0x2; voff = 0x24
4131         bra.l           _real_trace
4132
4133 funimp_gen_exit_a7:
4134         btst            &0x5,EXC_SR(%a6)        # supervisor or user mode?
4135         bne.b           funimp_gen_exit_a7_s    # supervisor
4136
4137         mov.l           %a0,-(%sp)
4138         mov.l           EXC_A7(%a6),%a0
4139         mov.l           %a0,%usp
4140         mov.l           (%sp)+,%a0
4141         bra.b           funimp_gen_exit_cont
4142
4143 # if the instruction was executed from supervisor mode and the addressing
4144 # mode was (a7)+, then the stack frame for the rte must be shifted "up"
4145 # "n" bytes where "n" is the size of the src operand type.
4146 # f<op>.{b,w,l,s,d,x,p}
4147 funimp_gen_exit_a7_s:
4148         mov.l           %d0,-(%sp)              # save d0
4149         mov.l           EXC_A7(%a6),%d0         # load new a7'
4150         sub.l           OLD_A7(%a6),%d0         # subtract old a7'
4151         mov.l           0x2+EXC_PC(%a6),(0x2+EXC_PC,%a6,%d0) # shift stack frame
4152         mov.l           EXC_SR(%a6),(EXC_SR,%a6,%d0) # shift stack frame
4153         mov.w           %d0,EXC_SR(%a6)         # store incr number
4154         mov.l           (%sp)+,%d0              # restore d0
4155
4156         unlk            %a6
4157
4158         add.w           (%sp),%sp               # stack frame shifted
4159         bra.b           funimp_gen_exit_cont2
4160
4161 ######################
4162 # fmovecr.x #ccc,fpn #
4163 ######################
4164 funimp_fmovcr:
4165         clr.l           %d0
4166         mov.b           FPCR_MODE(%a6),%d0
4167         mov.b           1+EXC_CMDREG(%a6),%d1
4168         andi.l          &0x0000007f,%d1         # pass rom offset in d1
4169         bsr.l           smovcr
4170         bra.w           funimp_fsave
4171
4172 #########################################################################
4173
4174 #
4175 # the user has enabled some exceptions. we figure not to see this too
4176 # often so that's why it gets lower priority.
4177 #
4178 funimp_ena:
4179
4180 # was an exception set that was also enabled?
4181         and.b           FPSR_EXCEPT(%a6),%d0    # keep only ones enabled and set
4182         bfffo           %d0{&24:&8},%d0         # find highest priority exception
4183         bne.b           funimp_exc              # at least one was set
4184
4185 # no exception that was enabled was set BUT if we got an exact overflow
4186 # and overflow wasn't enabled but inexact was (yech!) then this is
4187 # an inexact exception; otherwise, return to normal non-exception flow.
4188         btst            &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
4189         beq.w           funimp_store            # no; return to normal flow
4190
4191 # the overflow w/ exact result happened but was inexact set in the FPCR?
4192 funimp_ovfl:
4193         btst            &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled?
4194         beq.w           funimp_store            # no; return to normal flow
4195         bra.b           funimp_exc_ovfl         # yes
4196
4197 # some exception happened that was actually enabled.
4198 # we'll insert this new exception into the FPU and then return.
4199 funimp_exc:
4200         subi.l          &24,%d0                 # fix offset to be 0-8
4201         cmpi.b          %d0,&0x6                # is exception INEX?
4202         bne.b           funimp_exc_force        # no
4203
4204 # the enabled exception was inexact. so, if it occurs with an overflow
4205 # or underflow that was disabled, then we have to force an overflow or
4206 # underflow frame. the eventual overflow or underflow handler will see that
4207 # it's actually an inexact and act appropriately. this is the only easy
4208 # way to have the EXOP available for the enabled inexact handler when
4209 # a disabled overflow or underflow has also happened.
4210         btst            &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
4211         bne.b           funimp_exc_ovfl         # yes
4212         btst            &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur?
4213         bne.b           funimp_exc_unfl         # yes
4214
4215 # force the fsave exception status bits to signal an exception of the
4216 # appropriate type. don't forget to "skew" the source operand in case we
4217 # "unskewed" the one the hardware initially gave us.
4218 funimp_exc_force:
4219         mov.l           %d0,-(%sp)              # save d0
4220         bsr.l           funimp_skew             # check for special case
4221         mov.l           (%sp)+,%d0              # restore d0
4222         mov.w           (tbl_funimp_except.b,%pc,%d0.w*2),2+FP_SRC(%a6)
4223         bra.b           funimp_gen_exit2        # exit with frestore
4224
4225 tbl_funimp_except:
4226         short           0xe002, 0xe006, 0xe004, 0xe005
4227         short           0xe003, 0xe002, 0xe001, 0xe001
4228
4229 # insert an overflow frame
4230 funimp_exc_ovfl:
4231         bsr.l           funimp_skew             # check for special case
4232         mov.w           &0xe005,2+FP_SRC(%a6)
4233         bra.b           funimp_gen_exit2
4234
4235 # insert an underflow frame
4236 funimp_exc_unfl:
4237         bsr.l           funimp_skew             # check for special case
4238         mov.w           &0xe003,2+FP_SRC(%a6)
4239
4240 # this is the general exit point for an enabled exception that will be
4241 # restored into the machine for the instruction just emulated.
4242 funimp_gen_exit2:
4243         fmovm.x         EXC_FP0(%a6),&0xc0      # restore fp0-fp1
4244         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
4245         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
4246
4247         frestore        FP_SRC(%a6)             # insert exceptional status
4248
4249         bra.w           funimp_gen_exit_cmp
4250
4251 ############################################################################
4252
4253 #
4254 # TYPE == 1: FDB<cc>, FS<cc>, FTRAP<cc>
4255 #
4256 # These instructions were implemented on the '881/2 and '040 in hardware but
4257 # are emulated in software on the '060.
4258 #
4259 funimp_misc:
4260         bfextu          %d0{&10:&3},%d1         # extract mode field
4261         cmpi.b          %d1,&0x1                # is it an fdb<cc>?
4262         beq.w           funimp_fdbcc            # yes
4263         cmpi.b          %d1,&0x7                # is it an fs<cc>?
4264         bne.w           funimp_fscc             # yes
4265         bfextu          %d0{&13:&3},%d1
4266         cmpi.b          %d1,&0x2                # is it an fs<cc>?
4267         blt.w           funimp_fscc             # yes
4268
4269 #########################
4270 # ftrap<cc>             #
4271 # ftrap<cc>.w #<data>   #
4272 # ftrap<cc>.l #<data>   #
4273 #########################
4274 funimp_ftrapcc:
4275
4276         bsr.l           _ftrapcc                # FTRAP<cc>()
4277
4278         cmpi.b          SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring?
4279         beq.w           funimp_bsun             # yes
4280
4281         cmpi.b          SPCOND_FLG(%a6),&ftrapcc_flg # should a trap occur?
4282         bne.w           funimp_done             # no
4283
4284 #        FP UNIMP FRAME            TRAP  FRAME
4285 #       *****************       *****************
4286 #       **    <EA>     **       **  Current PC **
4287 #       *****************       *****************
4288 #       * 0x2 *  0x02c  *       * 0x2 *  0x01c  *
4289 #       *****************       *****************
4290 #       **   Next PC   **       **   Next PC   **
4291 #       *****************       *****************
4292 #       *      SR       *       *      SR       *
4293 #       *****************       *****************
4294 #           (6 words)               (6 words)
4295 #
4296 # the ftrapcc instruction should take a trap. so, here we must create a
4297 # trap stack frame from an unimplemented fp instruction stack frame and
4298 # jump to the user supplied entry point for the trap exception
4299 funimp_ftrapcc_tp:
4300         mov.l           USER_FPIAR(%a6),EXC_EA(%a6) # Address = Current PC
4301         mov.w           &0x201c,EXC_VOFF(%a6)   # Vector Offset = 0x01c
4302
4303         fmovm.x         EXC_FP0(%a6),&0xc0      # restore fp0-fp1
4304         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
4305         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
4306
4307         unlk            %a6
4308         bra.l           _real_trap
4309
4310 #########################
4311 # fdb<cc> Dn,<label>    #
4312 #########################
4313 funimp_fdbcc:
4314
4315         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
4316         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
4317         bsr.l           _imem_read_word         # read displacement
4318
4319         tst.l           %d1                     # did ifetch fail?
4320         bne.w           funimp_iacc             # yes
4321
4322         ext.l           %d0                     # sign extend displacement
4323
4324         bsr.l           _fdbcc                  # FDB<cc>()
4325
4326         cmpi.b          SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring?
4327         beq.w           funimp_bsun
4328
4329         bra.w           funimp_done             # branch to finish
4330
4331 #################
4332 # fs<cc>.b <ea> #
4333 #################
4334 funimp_fscc:
4335
4336         bsr.l           _fscc                   # FS<cc>()
4337
4338 # I am assuming here that an "fs<cc>.b -(An)" or "fs<cc>.b (An)+" instruction
4339 # does not need to update "An" before taking a bsun exception.
4340         cmpi.b          SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring?
4341         beq.w           funimp_bsun
4342
4343         btst            &0x5,EXC_SR(%a6)        # yes; is it a user mode exception?
4344         bne.b           funimp_fscc_s           # no
4345
4346 funimp_fscc_u:
4347         mov.l           EXC_A7(%a6),%a0         # yes; set new USP
4348         mov.l           %a0,%usp
4349         bra.w           funimp_done             # branch to finish
4350
4351 # remember, I'm assuming that post-increment is bogus...(it IS!!!)
4352 # so, the least significant WORD of the stacked effective address got
4353 # overwritten by the "fs<cc> -(An)". We must shift the stack frame "down"
4354 # so that the rte will work correctly without destroying the result.
4355 # even though the operation size is byte, the stack ptr is decr by 2.
4356 #
4357 # remember, also, this instruction may be traced.
4358 funimp_fscc_s:
4359         cmpi.b          SPCOND_FLG(%a6),&mda7_flg # was a7 modified?
4360         bne.w           funimp_done             # no
4361
4362         fmovm.x         EXC_FP0(%a6),&0xc0      # restore fp0-fp1
4363         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
4364         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
4365
4366         unlk            %a6
4367
4368         btst            &0x7,(%sp)              # is trace enabled?
4369         bne.b           funimp_fscc_s_trace     # yes
4370
4371         subq.l          &0x2,%sp
4372         mov.l           0x2(%sp),(%sp)          # shift SR,hi(PC) "down"
4373         mov.l           0x6(%sp),0x4(%sp)       # shift lo(PC),voff "down"
4374         bra.l           _fpsp_done
4375
4376 funimp_fscc_s_trace:
4377         subq.l          &0x2,%sp
4378         mov.l           0x2(%sp),(%sp)          # shift SR,hi(PC) "down"
4379         mov.w           0x6(%sp),0x4(%sp)       # shift lo(PC)
4380         mov.w           &0x2024,0x6(%sp)        # fmt/voff = $2024
4381         fmov.l          %fpiar,0x8(%sp)         # insert "current PC"
4382
4383         bra.l           _real_trace
4384
4385 #
4386 # The ftrap<cc>, fs<cc>, or fdb<cc> is to take an enabled bsun. we must convert
4387 # the fp unimplemented instruction exception stack frame into a bsun stack frame,
4388 # restore a bsun exception into the machine, and branch to the user
4389 # supplied bsun hook.
4390 #
4391 #        FP UNIMP FRAME            BSUN FRAME
4392 #       *****************       *****************
4393 #       **    <EA>     **       * 0x0 * 0x0c0   *
4394 #       *****************       *****************
4395 #       * 0x2 *  0x02c  *       ** Current PC  **
4396 #       *****************       *****************
4397 #       **   Next PC   **       *      SR       *
4398 #       *****************       *****************
4399 #       *      SR       *           (4 words)
4400 #       *****************
4401 #           (6 words)
4402 #
4403 funimp_bsun:
4404         mov.w           &0x00c0,2+EXC_EA(%a6)   # Fmt = 0x0; Vector Offset = 0x0c0
4405         mov.l           USER_FPIAR(%a6),EXC_VOFF(%a6) # PC = Current PC
4406         mov.w           EXC_SR(%a6),2+EXC_PC(%a6) # shift SR "up"
4407
4408         mov.w           &0xe000,2+FP_SRC(%a6)   # bsun exception enabled
4409
4410         fmovm.x         EXC_FP0(%a6),&0xc0      # restore fp0-fp1
4411         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
4412         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
4413
4414         frestore        FP_SRC(%a6)             # restore bsun exception
4415
4416         unlk            %a6
4417
4418         addq.l          &0x4,%sp                # erase sludge
4419
4420         bra.l           _real_bsun              # branch to user bsun hook
4421
4422 #
4423 # all ftrapcc/fscc/fdbcc processing has been completed. unwind the stack frame
4424 # and return.
4425 #
4426 # as usual, we have to check for trace mode being on here. since instructions
4427 # modifying the supervisor stack frame don't pass through here, this is a
4428 # relatively easy task.
4429 #
4430 funimp_done:
4431         fmovm.x         EXC_FP0(%a6),&0xc0      # restore fp0-fp1
4432         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
4433         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
4434
4435         unlk            %a6
4436
4437         btst            &0x7,(%sp)              # is trace enabled?
4438         bne.b           funimp_trace            # yes
4439
4440         bra.l           _fpsp_done
4441
4442 #        FP UNIMP FRAME           TRACE  FRAME
4443 #       *****************       *****************
4444 #       **    <EA>     **       **  Current PC **
4445 #       *****************       *****************
4446 #       * 0x2 *  0x02c  *       * 0x2 *  0x024  *
4447 #       *****************       *****************
4448 #       **   Next PC   **       **   Next PC   **
4449 #       *****************       *****************
4450 #       *      SR       *       *      SR       *
4451 #       *****************       *****************
4452 #           (6 words)               (6 words)
4453 #
4454 # the fscc instruction should take a trace trap. so, here we must create a
4455 # trace stack frame from an unimplemented fp instruction stack frame and
4456 # jump to the user supplied entry point for the trace exception
4457 funimp_trace:
4458         fmov.l          %fpiar,0x8(%sp)         # current PC is in fpiar
4459         mov.b           &0x24,0x7(%sp)          # vector offset = 0x024
4460
4461         bra.l           _real_trace
4462
4463 ################################################################
4464
4465         global          tbl_trans
4466         swbeg           &0x1c0
4467 tbl_trans:
4468         short           tbl_trans - tbl_trans   # $00-0 fmovecr all
4469         short           tbl_trans - tbl_trans   # $00-1 fmovecr all
4470         short           tbl_trans - tbl_trans   # $00-2 fmovecr all
4471         short           tbl_trans - tbl_trans   # $00-3 fmovecr all
4472         short           tbl_trans - tbl_trans   # $00-4 fmovecr all
4473         short           tbl_trans - tbl_trans   # $00-5 fmovecr all
4474         short           tbl_trans - tbl_trans   # $00-6 fmovecr all
4475         short           tbl_trans - tbl_trans   # $00-7 fmovecr all
4476
4477         short           tbl_trans - tbl_trans   # $01-0 fint norm
4478         short           tbl_trans - tbl_trans   # $01-1 fint zero
4479         short           tbl_trans - tbl_trans   # $01-2 fint inf
4480         short           tbl_trans - tbl_trans   # $01-3 fint qnan
4481         short           tbl_trans - tbl_trans   # $01-5 fint denorm
4482         short           tbl_trans - tbl_trans   # $01-4 fint snan
4483         short           tbl_trans - tbl_trans   # $01-6 fint unnorm
4484         short           tbl_trans - tbl_trans   # $01-7 ERROR
4485
4486         short           ssinh    - tbl_trans    # $02-0 fsinh norm
4487         short           src_zero - tbl_trans    # $02-1 fsinh zero
4488         short           src_inf  - tbl_trans    # $02-2 fsinh inf
4489         short           src_qnan - tbl_trans    # $02-3 fsinh qnan
4490         short           ssinhd   - tbl_trans    # $02-5 fsinh denorm
4491         short           src_snan - tbl_trans    # $02-4 fsinh snan
4492         short           tbl_trans - tbl_trans   # $02-6 fsinh unnorm
4493         short           tbl_trans - tbl_trans   # $02-7 ERROR
4494
4495         short           tbl_trans - tbl_trans   # $03-0 fintrz norm
4496         short           tbl_trans - tbl_trans   # $03-1 fintrz zero
4497         short           tbl_trans - tbl_trans   # $03-2 fintrz inf
4498         short           tbl_trans - tbl_trans   # $03-3 fintrz qnan
4499         short           tbl_trans - tbl_trans   # $03-5 fintrz denorm
4500         short           tbl_trans - tbl_trans   # $03-4 fintrz snan
4501         short           tbl_trans - tbl_trans   # $03-6 fintrz unnorm
4502         short           tbl_trans - tbl_trans   # $03-7 ERROR
4503
4504         short           tbl_trans - tbl_trans   # $04-0 fsqrt norm
4505         short           tbl_trans - tbl_trans   # $04-1 fsqrt zero
4506         short           tbl_trans - tbl_trans   # $04-2 fsqrt inf
4507         short           tbl_trans - tbl_trans   # $04-3 fsqrt qnan
4508         short           tbl_trans - tbl_trans   # $04-5 fsqrt denorm
4509         short           tbl_trans - tbl_trans   # $04-4 fsqrt snan
4510         short           tbl_trans - tbl_trans   # $04-6 fsqrt unnorm
4511         short           tbl_trans - tbl_trans   # $04-7 ERROR
4512
4513         short           tbl_trans - tbl_trans   # $05-0 ERROR
4514         short           tbl_trans - tbl_trans   # $05-1 ERROR
4515         short           tbl_trans - tbl_trans   # $05-2 ERROR
4516         short           tbl_trans - tbl_trans   # $05-3 ERROR
4517         short           tbl_trans - tbl_trans   # $05-4 ERROR
4518         short           tbl_trans - tbl_trans   # $05-5 ERROR
4519         short           tbl_trans - tbl_trans   # $05-6 ERROR
4520         short           tbl_trans - tbl_trans   # $05-7 ERROR
4521
4522         short           slognp1  - tbl_trans    # $06-0 flognp1 norm
4523         short           src_zero - tbl_trans    # $06-1 flognp1 zero
4524         short           sopr_inf - tbl_trans    # $06-2 flognp1 inf
4525         short           src_qnan - tbl_trans    # $06-3 flognp1 qnan
4526         short           slognp1d - tbl_trans    # $06-5 flognp1 denorm
4527         short           src_snan - tbl_trans    # $06-4 flognp1 snan
4528         short           tbl_trans - tbl_trans   # $06-6 flognp1 unnorm
4529         short           tbl_trans - tbl_trans   # $06-7 ERROR
4530
4531         short           tbl_trans - tbl_trans   # $07-0 ERROR
4532         short           tbl_trans - tbl_trans   # $07-1 ERROR
4533         short           tbl_trans - tbl_trans   # $07-2 ERROR
4534         short           tbl_trans - tbl_trans   # $07-3 ERROR
4535         short           tbl_trans - tbl_trans   # $07-4 ERROR
4536         short           tbl_trans - tbl_trans   # $07-5 ERROR
4537         short           tbl_trans - tbl_trans   # $07-6 ERROR
4538         short           tbl_trans - tbl_trans   # $07-7 ERROR
4539
4540         short           setoxm1  - tbl_trans    # $08-0 fetoxm1 norm
4541         short           src_zero - tbl_trans    # $08-1 fetoxm1 zero
4542         short           setoxm1i - tbl_trans    # $08-2 fetoxm1 inf
4543         short           src_qnan - tbl_trans    # $08-3 fetoxm1 qnan
4544         short           setoxm1d - tbl_trans    # $08-5 fetoxm1 denorm
4545         short           src_snan - tbl_trans    # $08-4 fetoxm1 snan
4546         short           tbl_trans - tbl_trans   # $08-6 fetoxm1 unnorm
4547         short           tbl_trans - tbl_trans   # $08-7 ERROR
4548
4549         short           stanh    - tbl_trans    # $09-0 ftanh norm
4550         short           src_zero - tbl_trans    # $09-1 ftanh zero
4551         short           src_one  - tbl_trans    # $09-2 ftanh inf
4552         short           src_qnan - tbl_trans    # $09-3 ftanh qnan
4553         short           stanhd   - tbl_trans    # $09-5 ftanh denorm
4554         short           src_snan - tbl_trans    # $09-4 ftanh snan
4555         short           tbl_trans - tbl_trans   # $09-6 ftanh unnorm
4556         short           tbl_trans - tbl_trans   # $09-7 ERROR
4557
4558         short           satan    - tbl_trans    # $0a-0 fatan norm
4559         short           src_zero - tbl_trans    # $0a-1 fatan zero
4560         short           spi_2    - tbl_trans    # $0a-2 fatan inf
4561         short           src_qnan - tbl_trans    # $0a-3 fatan qnan
4562         short           satand   - tbl_trans    # $0a-5 fatan denorm
4563         short           src_snan - tbl_trans    # $0a-4 fatan snan
4564         short           tbl_trans - tbl_trans   # $0a-6 fatan unnorm
4565         short           tbl_trans - tbl_trans   # $0a-7 ERROR
4566
4567         short           tbl_trans - tbl_trans   # $0b-0 ERROR
4568         short           tbl_trans - tbl_trans   # $0b-1 ERROR
4569         short           tbl_trans - tbl_trans   # $0b-2 ERROR
4570         short           tbl_trans - tbl_trans   # $0b-3 ERROR
4571         short           tbl_trans - tbl_trans   # $0b-4 ERROR
4572         short           tbl_trans - tbl_trans   # $0b-5 ERROR
4573         short           tbl_trans - tbl_trans   # $0b-6 ERROR
4574         short           tbl_trans - tbl_trans   # $0b-7 ERROR
4575
4576         short           sasin    - tbl_trans    # $0c-0 fasin norm
4577         short           src_zero - tbl_trans    # $0c-1 fasin zero
4578         short           t_operr  - tbl_trans    # $0c-2 fasin inf
4579         short           src_qnan - tbl_trans    # $0c-3 fasin qnan
4580         short           sasind   - tbl_trans    # $0c-5 fasin denorm
4581         short           src_snan - tbl_trans    # $0c-4 fasin snan
4582         short           tbl_trans - tbl_trans   # $0c-6 fasin unnorm
4583         short           tbl_trans - tbl_trans   # $0c-7 ERROR
4584
4585         short           satanh   - tbl_trans    # $0d-0 fatanh norm
4586         short           src_zero - tbl_trans    # $0d-1 fatanh zero
4587         short           t_operr  - tbl_trans    # $0d-2 fatanh inf
4588         short           src_qnan - tbl_trans    # $0d-3 fatanh qnan
4589         short           satanhd  - tbl_trans    # $0d-5 fatanh denorm
4590         short           src_snan - tbl_trans    # $0d-4 fatanh snan
4591         short           tbl_trans - tbl_trans   # $0d-6 fatanh unnorm
4592         short           tbl_trans - tbl_trans   # $0d-7 ERROR
4593
4594         short           ssin     - tbl_trans    # $0e-0 fsin norm
4595         short           src_zero - tbl_trans    # $0e-1 fsin zero
4596         short           t_operr  - tbl_trans    # $0e-2 fsin inf
4597         short           src_qnan - tbl_trans    # $0e-3 fsin qnan
4598         short           ssind    - tbl_trans    # $0e-5 fsin denorm
4599         short           src_snan - tbl_trans    # $0e-4 fsin snan
4600         short           tbl_trans - tbl_trans   # $0e-6 fsin unnorm
4601         short           tbl_trans - tbl_trans   # $0e-7 ERROR
4602
4603         short           stan     - tbl_trans    # $0f-0 ftan norm
4604         short           src_zero - tbl_trans    # $0f-1 ftan zero
4605         short           t_operr  - tbl_trans    # $0f-2 ftan inf
4606         short           src_qnan - tbl_trans    # $0f-3 ftan qnan
4607         short           stand    - tbl_trans    # $0f-5 ftan denorm
4608         short           src_snan - tbl_trans    # $0f-4 ftan snan
4609         short           tbl_trans - tbl_trans   # $0f-6 ftan unnorm
4610         short           tbl_trans - tbl_trans   # $0f-7 ERROR
4611
4612         short           setox    - tbl_trans    # $10-0 fetox norm
4613         short           ld_pone  - tbl_trans    # $10-1 fetox zero
4614         short           szr_inf  - tbl_trans    # $10-2 fetox inf
4615         short           src_qnan - tbl_trans    # $10-3 fetox qnan
4616         short           setoxd   - tbl_trans    # $10-5 fetox denorm
4617         short           src_snan - tbl_trans    # $10-4 fetox snan
4618         short           tbl_trans - tbl_trans   # $10-6 fetox unnorm
4619         short           tbl_trans - tbl_trans   # $10-7 ERROR
4620
4621         short           stwotox  - tbl_trans    # $11-0 ftwotox norm
4622         short           ld_pone  - tbl_trans    # $11-1 ftwotox zero
4623         short           szr_inf  - tbl_trans    # $11-2 ftwotox inf
4624         short           src_qnan - tbl_trans    # $11-3 ftwotox qnan
4625         short           stwotoxd - tbl_trans    # $11-5 ftwotox denorm
4626         short           src_snan - tbl_trans    # $11-4 ftwotox snan
4627         short           tbl_trans - tbl_trans   # $11-6 ftwotox unnorm
4628         short           tbl_trans - tbl_trans   # $11-7 ERROR
4629
4630         short           stentox  - tbl_trans    # $12-0 ftentox norm
4631         short           ld_pone  - tbl_trans    # $12-1 ftentox zero
4632         short           szr_inf  - tbl_trans    # $12-2 ftentox inf
4633         short           src_qnan - tbl_trans    # $12-3 ftentox qnan
4634         short           stentoxd - tbl_trans    # $12-5 ftentox denorm
4635         short           src_snan - tbl_trans    # $12-4 ftentox snan
4636         short           tbl_trans - tbl_trans   # $12-6 ftentox unnorm
4637         short           tbl_trans - tbl_trans   # $12-7 ERROR
4638
4639         short           tbl_trans - tbl_trans   # $13-0 ERROR
4640         short           tbl_trans - tbl_trans   # $13-1 ERROR
4641         short           tbl_trans - tbl_trans   # $13-2 ERROR
4642         short           tbl_trans - tbl_trans   # $13-3 ERROR
4643         short           tbl_trans - tbl_trans   # $13-4 ERROR
4644         short           tbl_trans - tbl_trans   # $13-5 ERROR
4645         short           tbl_trans - tbl_trans   # $13-6 ERROR
4646         short           tbl_trans - tbl_trans   # $13-7 ERROR
4647
4648         short           slogn    - tbl_trans    # $14-0 flogn norm
4649         short           t_dz2    - tbl_trans    # $14-1 flogn zero
4650         short           sopr_inf - tbl_trans    # $14-2 flogn inf
4651         short           src_qnan - tbl_trans    # $14-3 flogn qnan
4652         short           slognd   - tbl_trans    # $14-5 flogn denorm
4653         short           src_snan - tbl_trans    # $14-4 flogn snan
4654         short           tbl_trans - tbl_trans   # $14-6 flogn unnorm
4655         short           tbl_trans - tbl_trans   # $14-7 ERROR
4656
4657         short           slog10   - tbl_trans    # $15-0 flog10 norm
4658         short           t_dz2    - tbl_trans    # $15-1 flog10 zero
4659         short           sopr_inf - tbl_trans    # $15-2 flog10 inf
4660         short           src_qnan - tbl_trans    # $15-3 flog10 qnan
4661         short           slog10d  - tbl_trans    # $15-5 flog10 denorm
4662         short           src_snan - tbl_trans    # $15-4 flog10 snan
4663         short           tbl_trans - tbl_trans   # $15-6 flog10 unnorm
4664         short           tbl_trans - tbl_trans   # $15-7 ERROR
4665
4666         short           slog2    - tbl_trans    # $16-0 flog2 norm
4667         short           t_dz2    - tbl_trans    # $16-1 flog2 zero
4668         short           sopr_inf - tbl_trans    # $16-2 flog2 inf
4669         short           src_qnan - tbl_trans    # $16-3 flog2 qnan
4670         short           slog2d   - tbl_trans    # $16-5 flog2 denorm
4671         short           src_snan - tbl_trans    # $16-4 flog2 snan
4672         short           tbl_trans - tbl_trans   # $16-6 flog2 unnorm
4673         short           tbl_trans - tbl_trans   # $16-7 ERROR
4674
4675         short           tbl_trans - tbl_trans   # $17-0 ERROR
4676         short           tbl_trans - tbl_trans   # $17-1 ERROR
4677         short           tbl_trans - tbl_trans   # $17-2 ERROR
4678         short           tbl_trans - tbl_trans   # $17-3 ERROR
4679         short           tbl_trans - tbl_trans   # $17-4 ERROR
4680         short           tbl_trans - tbl_trans   # $17-5 ERROR
4681         short           tbl_trans - tbl_trans   # $17-6 ERROR
4682         short           tbl_trans - tbl_trans   # $17-7 ERROR
4683
4684         short           tbl_trans - tbl_trans   # $18-0 fabs norm
4685         short           tbl_trans - tbl_trans   # $18-1 fabs zero
4686         short           tbl_trans - tbl_trans   # $18-2 fabs inf
4687         short           tbl_trans - tbl_trans   # $18-3 fabs qnan
4688         short           tbl_trans - tbl_trans   # $18-5 fabs denorm
4689         short           tbl_trans - tbl_trans   # $18-4 fabs snan
4690         short           tbl_trans - tbl_trans   # $18-6 fabs unnorm
4691         short           tbl_trans - tbl_trans   # $18-7 ERROR
4692
4693         short           scosh    - tbl_trans    # $19-0 fcosh norm
4694         short           ld_pone  - tbl_trans    # $19-1 fcosh zero
4695         short           ld_pinf  - tbl_trans    # $19-2 fcosh inf
4696         short           src_qnan - tbl_trans    # $19-3 fcosh qnan
4697         short           scoshd   - tbl_trans    # $19-5 fcosh denorm
4698         short           src_snan - tbl_trans    # $19-4 fcosh snan
4699         short           tbl_trans - tbl_trans   # $19-6 fcosh unnorm
4700         short           tbl_trans - tbl_trans   # $19-7 ERROR
4701
4702         short           tbl_trans - tbl_trans   # $1a-0 fneg norm
4703         short           tbl_trans - tbl_trans   # $1a-1 fneg zero
4704         short           tbl_trans - tbl_trans   # $1a-2 fneg inf
4705         short           tbl_trans - tbl_trans   # $1a-3 fneg qnan
4706         short           tbl_trans - tbl_trans   # $1a-5 fneg denorm
4707         short           tbl_trans - tbl_trans   # $1a-4 fneg snan
4708         short           tbl_trans - tbl_trans   # $1a-6 fneg unnorm
4709         short           tbl_trans - tbl_trans   # $1a-7 ERROR
4710
4711         short           tbl_trans - tbl_trans   # $1b-0 ERROR
4712         short           tbl_trans - tbl_trans   # $1b-1 ERROR
4713         short           tbl_trans - tbl_trans   # $1b-2 ERROR
4714         short           tbl_trans - tbl_trans   # $1b-3 ERROR
4715         short           tbl_trans - tbl_trans   # $1b-4 ERROR
4716         short           tbl_trans - tbl_trans   # $1b-5 ERROR
4717         short           tbl_trans - tbl_trans   # $1b-6 ERROR
4718         short           tbl_trans - tbl_trans   # $1b-7 ERROR
4719
4720         short           sacos    - tbl_trans    # $1c-0 facos norm
4721         short           ld_ppi2  - tbl_trans    # $1c-1 facos zero
4722         short           t_operr  - tbl_trans    # $1c-2 facos inf
4723         short           src_qnan - tbl_trans    # $1c-3 facos qnan
4724         short           sacosd   - tbl_trans    # $1c-5 facos denorm
4725         short           src_snan - tbl_trans    # $1c-4 facos snan
4726         short           tbl_trans - tbl_trans   # $1c-6 facos unnorm
4727         short           tbl_trans - tbl_trans   # $1c-7 ERROR
4728
4729         short           scos     - tbl_trans    # $1d-0 fcos norm
4730         short           ld_pone  - tbl_trans    # $1d-1 fcos zero
4731         short           t_operr  - tbl_trans    # $1d-2 fcos inf
4732         short           src_qnan - tbl_trans    # $1d-3 fcos qnan
4733         short           scosd    - tbl_trans    # $1d-5 fcos denorm
4734         short           src_snan - tbl_trans    # $1d-4 fcos snan
4735         short           tbl_trans - tbl_trans   # $1d-6 fcos unnorm
4736         short           tbl_trans - tbl_trans   # $1d-7 ERROR
4737
4738         short           sgetexp  - tbl_trans    # $1e-0 fgetexp norm
4739         short           src_zero - tbl_trans    # $1e-1 fgetexp zero
4740         short           t_operr  - tbl_trans    # $1e-2 fgetexp inf
4741         short           src_qnan - tbl_trans    # $1e-3 fgetexp qnan
4742         short           sgetexpd - tbl_trans    # $1e-5 fgetexp denorm
4743         short           src_snan - tbl_trans    # $1e-4 fgetexp snan
4744         short           tbl_trans - tbl_trans   # $1e-6 fgetexp unnorm
4745         short           tbl_trans - tbl_trans   # $1e-7 ERROR
4746
4747         short           sgetman  - tbl_trans    # $1f-0 fgetman norm
4748         short           src_zero - tbl_trans    # $1f-1 fgetman zero
4749         short           t_operr  - tbl_trans    # $1f-2 fgetman inf
4750         short           src_qnan - tbl_trans    # $1f-3 fgetman qnan
4751         short           sgetmand - tbl_trans    # $1f-5 fgetman denorm
4752         short           src_snan - tbl_trans    # $1f-4 fgetman snan
4753         short           tbl_trans - tbl_trans   # $1f-6 fgetman unnorm
4754         short           tbl_trans - tbl_trans   # $1f-7 ERROR
4755
4756         short           tbl_trans - tbl_trans   # $20-0 fdiv norm
4757         short           tbl_trans - tbl_trans   # $20-1 fdiv zero
4758         short           tbl_trans - tbl_trans   # $20-2 fdiv inf
4759         short           tbl_trans - tbl_trans   # $20-3 fdiv qnan
4760         short           tbl_trans - tbl_trans   # $20-5 fdiv denorm
4761         short           tbl_trans - tbl_trans   # $20-4 fdiv snan
4762         short           tbl_trans - tbl_trans   # $20-6 fdiv unnorm
4763         short           tbl_trans - tbl_trans   # $20-7 ERROR
4764
4765         short           smod_snorm - tbl_trans  # $21-0 fmod norm
4766         short           smod_szero - tbl_trans  # $21-1 fmod zero
4767         short           smod_sinf - tbl_trans   # $21-2 fmod inf
4768         short           sop_sqnan - tbl_trans   # $21-3 fmod qnan
4769         short           smod_sdnrm - tbl_trans  # $21-5 fmod denorm
4770         short           sop_ssnan - tbl_trans   # $21-4 fmod snan
4771         short           tbl_trans - tbl_trans   # $21-6 fmod unnorm
4772         short           tbl_trans - tbl_trans   # $21-7 ERROR
4773
4774         short           tbl_trans - tbl_trans   # $22-0 fadd norm
4775         short           tbl_trans - tbl_trans   # $22-1 fadd zero
4776         short           tbl_trans - tbl_trans   # $22-2 fadd inf
4777         short           tbl_trans - tbl_trans   # $22-3 fadd qnan
4778         short           tbl_trans - tbl_trans   # $22-5 fadd denorm
4779         short           tbl_trans - tbl_trans   # $22-4 fadd snan
4780         short           tbl_trans - tbl_trans   # $22-6 fadd unnorm
4781         short           tbl_trans - tbl_trans   # $22-7 ERROR
4782
4783         short           tbl_trans - tbl_trans   # $23-0 fmul norm
4784         short           tbl_trans - tbl_trans   # $23-1 fmul zero
4785         short           tbl_trans - tbl_trans   # $23-2 fmul inf
4786         short           tbl_trans - tbl_trans   # $23-3 fmul qnan
4787         short           tbl_trans - tbl_trans   # $23-5 fmul denorm
4788         short           tbl_trans - tbl_trans   # $23-4 fmul snan
4789         short           tbl_trans - tbl_trans   # $23-6 fmul unnorm
4790         short           tbl_trans - tbl_trans   # $23-7 ERROR
4791
4792         short           tbl_trans - tbl_trans   # $24-0 fsgldiv norm
4793         short           tbl_trans - tbl_trans   # $24-1 fsgldiv zero
4794         short           tbl_trans - tbl_trans   # $24-2 fsgldiv inf
4795         short           tbl_trans - tbl_trans   # $24-3 fsgldiv qnan
4796         short           tbl_trans - tbl_trans   # $24-5 fsgldiv denorm
4797         short           tbl_trans - tbl_trans   # $24-4 fsgldiv snan
4798         short           tbl_trans - tbl_trans   # $24-6 fsgldiv unnorm
4799         short           tbl_trans - tbl_trans   # $24-7 ERROR
4800
4801         short           srem_snorm - tbl_trans  # $25-0 frem norm
4802         short           srem_szero - tbl_trans  # $25-1 frem zero
4803         short           srem_sinf - tbl_trans   # $25-2 frem inf
4804         short           sop_sqnan - tbl_trans   # $25-3 frem qnan
4805         short           srem_sdnrm - tbl_trans  # $25-5 frem denorm
4806         short           sop_ssnan - tbl_trans   # $25-4 frem snan
4807         short           tbl_trans - tbl_trans   # $25-6 frem unnorm
4808         short           tbl_trans - tbl_trans   # $25-7 ERROR
4809
4810         short           sscale_snorm - tbl_trans # $26-0 fscale norm
4811         short           sscale_szero - tbl_trans # $26-1 fscale zero
4812         short           sscale_sinf - tbl_trans # $26-2 fscale inf
4813         short           sop_sqnan - tbl_trans   # $26-3 fscale qnan
4814         short           sscale_sdnrm - tbl_trans # $26-5 fscale denorm
4815         short           sop_ssnan - tbl_trans   # $26-4 fscale snan
4816         short           tbl_trans - tbl_trans   # $26-6 fscale unnorm
4817         short           tbl_trans - tbl_trans   # $26-7 ERROR
4818
4819         short           tbl_trans - tbl_trans   # $27-0 fsglmul norm
4820         short           tbl_trans - tbl_trans   # $27-1 fsglmul zero
4821         short           tbl_trans - tbl_trans   # $27-2 fsglmul inf
4822         short           tbl_trans - tbl_trans   # $27-3 fsglmul qnan
4823         short           tbl_trans - tbl_trans   # $27-5 fsglmul denorm
4824         short           tbl_trans - tbl_trans   # $27-4 fsglmul snan
4825         short           tbl_trans - tbl_trans   # $27-6 fsglmul unnorm
4826         short           tbl_trans - tbl_trans   # $27-7 ERROR
4827
4828         short           tbl_trans - tbl_trans   # $28-0 fsub norm
4829         short           tbl_trans - tbl_trans   # $28-1 fsub zero
4830         short           tbl_trans - tbl_trans   # $28-2 fsub inf
4831         short           tbl_trans - tbl_trans   # $28-3 fsub qnan
4832         short           tbl_trans - tbl_trans   # $28-5 fsub denorm
4833         short           tbl_trans - tbl_trans   # $28-4 fsub snan
4834         short           tbl_trans - tbl_trans   # $28-6 fsub unnorm
4835         short           tbl_trans - tbl_trans   # $28-7 ERROR
4836
4837         short           tbl_trans - tbl_trans   # $29-0 ERROR
4838         short           tbl_trans - tbl_trans   # $29-1 ERROR
4839         short           tbl_trans - tbl_trans   # $29-2 ERROR
4840         short           tbl_trans - tbl_trans   # $29-3 ERROR
4841         short           tbl_trans - tbl_trans   # $29-4 ERROR
4842         short           tbl_trans - tbl_trans   # $29-5 ERROR
4843         short           tbl_trans - tbl_trans   # $29-6 ERROR
4844         short           tbl_trans - tbl_trans   # $29-7 ERROR
4845
4846         short           tbl_trans - tbl_trans   # $2a-0 ERROR
4847         short           tbl_trans - tbl_trans   # $2a-1 ERROR
4848         short           tbl_trans - tbl_trans   # $2a-2 ERROR
4849         short           tbl_trans - tbl_trans   # $2a-3 ERROR
4850         short           tbl_trans - tbl_trans   # $2a-4 ERROR
4851         short           tbl_trans - tbl_trans   # $2a-5 ERROR
4852         short           tbl_trans - tbl_trans   # $2a-6 ERROR
4853         short           tbl_trans - tbl_trans   # $2a-7 ERROR
4854
4855         short           tbl_trans - tbl_trans   # $2b-0 ERROR
4856         short           tbl_trans - tbl_trans   # $2b-1 ERROR
4857         short           tbl_trans - tbl_trans   # $2b-2 ERROR
4858         short           tbl_trans - tbl_trans   # $2b-3 ERROR
4859         short           tbl_trans - tbl_trans   # $2b-4 ERROR
4860         short           tbl_trans - tbl_trans   # $2b-5 ERROR
4861         short           tbl_trans - tbl_trans   # $2b-6 ERROR
4862         short           tbl_trans - tbl_trans   # $2b-7 ERROR
4863
4864         short           tbl_trans - tbl_trans   # $2c-0 ERROR
4865         short           tbl_trans - tbl_trans   # $2c-1 ERROR
4866         short           tbl_trans - tbl_trans   # $2c-2 ERROR
4867         short           tbl_trans - tbl_trans   # $2c-3 ERROR
4868         short           tbl_trans - tbl_trans   # $2c-4 ERROR
4869         short           tbl_trans - tbl_trans   # $2c-5 ERROR
4870         short           tbl_trans - tbl_trans   # $2c-6 ERROR
4871         short           tbl_trans - tbl_trans   # $2c-7 ERROR
4872
4873         short           tbl_trans - tbl_trans   # $2d-0 ERROR
4874         short           tbl_trans - tbl_trans   # $2d-1 ERROR
4875         short           tbl_trans - tbl_trans   # $2d-2 ERROR
4876         short           tbl_trans - tbl_trans   # $2d-3 ERROR
4877         short           tbl_trans - tbl_trans   # $2d-4 ERROR
4878         short           tbl_trans - tbl_trans   # $2d-5 ERROR
4879         short           tbl_trans - tbl_trans   # $2d-6 ERROR
4880         short           tbl_trans - tbl_trans   # $2d-7 ERROR
4881
4882         short           tbl_trans - tbl_trans   # $2e-0 ERROR
4883         short           tbl_trans - tbl_trans   # $2e-1 ERROR
4884         short           tbl_trans - tbl_trans   # $2e-2 ERROR
4885         short           tbl_trans - tbl_trans   # $2e-3 ERROR
4886         short           tbl_trans - tbl_trans   # $2e-4 ERROR
4887         short           tbl_trans - tbl_trans   # $2e-5 ERROR
4888         short           tbl_trans - tbl_trans   # $2e-6 ERROR
4889         short           tbl_trans - tbl_trans   # $2e-7 ERROR
4890
4891         short           tbl_trans - tbl_trans   # $2f-0 ERROR
4892         short           tbl_trans - tbl_trans   # $2f-1 ERROR
4893         short           tbl_trans - tbl_trans   # $2f-2 ERROR
4894         short           tbl_trans - tbl_trans   # $2f-3 ERROR
4895         short           tbl_trans - tbl_trans   # $2f-4 ERROR
4896         short           tbl_trans - tbl_trans   # $2f-5 ERROR
4897         short           tbl_trans - tbl_trans   # $2f-6 ERROR
4898         short           tbl_trans - tbl_trans   # $2f-7 ERROR
4899
4900         short           ssincos  - tbl_trans    # $30-0 fsincos norm
4901         short           ssincosz - tbl_trans    # $30-1 fsincos zero
4902         short           ssincosi - tbl_trans    # $30-2 fsincos inf
4903         short           ssincosqnan - tbl_trans # $30-3 fsincos qnan
4904         short           ssincosd - tbl_trans    # $30-5 fsincos denorm
4905         short           ssincossnan - tbl_trans # $30-4 fsincos snan
4906         short           tbl_trans - tbl_trans   # $30-6 fsincos unnorm
4907         short           tbl_trans - tbl_trans   # $30-7 ERROR
4908
4909         short           ssincos  - tbl_trans    # $31-0 fsincos norm
4910         short           ssincosz - tbl_trans    # $31-1 fsincos zero
4911         short           ssincosi - tbl_trans    # $31-2 fsincos inf
4912         short           ssincosqnan - tbl_trans # $31-3 fsincos qnan
4913         short           ssincosd - tbl_trans    # $31-5 fsincos denorm
4914         short           ssincossnan - tbl_trans # $31-4 fsincos snan
4915         short           tbl_trans - tbl_trans   # $31-6 fsincos unnorm
4916         short           tbl_trans - tbl_trans   # $31-7 ERROR
4917
4918         short           ssincos  - tbl_trans    # $32-0 fsincos norm
4919         short           ssincosz - tbl_trans    # $32-1 fsincos zero
4920         short           ssincosi - tbl_trans    # $32-2 fsincos inf
4921         short           ssincosqnan - tbl_trans # $32-3 fsincos qnan
4922         short           ssincosd - tbl_trans    # $32-5 fsincos denorm
4923         short           ssincossnan - tbl_trans # $32-4 fsincos snan
4924         short           tbl_trans - tbl_trans   # $32-6 fsincos unnorm
4925         short           tbl_trans - tbl_trans   # $32-7 ERROR
4926
4927         short           ssincos  - tbl_trans    # $33-0 fsincos norm
4928         short           ssincosz - tbl_trans    # $33-1 fsincos zero
4929         short           ssincosi - tbl_trans    # $33-2 fsincos inf
4930         short           ssincosqnan - tbl_trans # $33-3 fsincos qnan
4931         short           ssincosd - tbl_trans    # $33-5 fsincos denorm
4932         short           ssincossnan - tbl_trans # $33-4 fsincos snan
4933         short           tbl_trans - tbl_trans   # $33-6 fsincos unnorm
4934         short           tbl_trans - tbl_trans   # $33-7 ERROR
4935
4936         short           ssincos  - tbl_trans    # $34-0 fsincos norm
4937         short           ssincosz - tbl_trans    # $34-1 fsincos zero
4938         short           ssincosi - tbl_trans    # $34-2 fsincos inf
4939         short           ssincosqnan - tbl_trans # $34-3 fsincos qnan
4940         short           ssincosd - tbl_trans    # $34-5 fsincos denorm
4941         short           ssincossnan - tbl_trans # $34-4 fsincos snan
4942         short           tbl_trans - tbl_trans   # $34-6 fsincos unnorm
4943         short           tbl_trans - tbl_trans   # $34-7 ERROR
4944
4945         short           ssincos  - tbl_trans    # $35-0 fsincos norm
4946         short           ssincosz - tbl_trans    # $35-1 fsincos zero
4947         short           ssincosi - tbl_trans    # $35-2 fsincos inf
4948         short           ssincosqnan - tbl_trans # $35-3 fsincos qnan
4949         short           ssincosd - tbl_trans    # $35-5 fsincos denorm
4950         short           ssincossnan - tbl_trans # $35-4 fsincos snan
4951         short           tbl_trans - tbl_trans   # $35-6 fsincos unnorm
4952         short           tbl_trans - tbl_trans   # $35-7 ERROR
4953
4954         short           ssincos  - tbl_trans    # $36-0 fsincos norm
4955         short           ssincosz - tbl_trans    # $36-1 fsincos zero
4956         short           ssincosi - tbl_trans    # $36-2 fsincos inf
4957         short           ssincosqnan - tbl_trans # $36-3 fsincos qnan
4958         short           ssincosd - tbl_trans    # $36-5 fsincos denorm
4959         short           ssincossnan - tbl_trans # $36-4 fsincos snan
4960         short           tbl_trans - tbl_trans   # $36-6 fsincos unnorm
4961         short           tbl_trans - tbl_trans   # $36-7 ERROR
4962
4963         short           ssincos  - tbl_trans    # $37-0 fsincos norm
4964         short           ssincosz - tbl_trans    # $37-1 fsincos zero
4965         short           ssincosi - tbl_trans    # $37-2 fsincos inf
4966         short           ssincosqnan - tbl_trans # $37-3 fsincos qnan
4967         short           ssincosd - tbl_trans    # $37-5 fsincos denorm
4968         short           ssincossnan - tbl_trans # $37-4 fsincos snan
4969         short           tbl_trans - tbl_trans   # $37-6 fsincos unnorm
4970         short           tbl_trans - tbl_trans   # $37-7 ERROR
4971
4972 ##########
4973
4974 # the instruction fetch access for the displacement word for the
4975 # fdbcc emulation failed. here, we create an access error frame
4976 # from the current frame and branch to _real_access().
4977 funimp_iacc:
4978         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
4979         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
4980         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
4981
4982         mov.l           USER_FPIAR(%a6),EXC_PC(%a6) # store current PC
4983
4984         unlk            %a6
4985
4986         mov.l           (%sp),-(%sp)            # store SR,hi(PC)
4987         mov.w           0x8(%sp),0x4(%sp)       # store lo(PC)
4988         mov.w           &0x4008,0x6(%sp)        # store voff
4989         mov.l           0x2(%sp),0x8(%sp)       # store EA
4990         mov.l           &0x09428001,0xc(%sp)    # store FSLW
4991
4992         btst            &0x5,(%sp)              # user or supervisor mode?
4993         beq.b           funimp_iacc_end         # user
4994         bset            &0x2,0xd(%sp)           # set supervisor TM bit
4995
4996 funimp_iacc_end:
4997         bra.l           _real_access
4998
4999 #########################################################################
5000 # ssin():     computes the sine of a normalized input                   #
5001 # ssind():    computes the sine of a denormalized input                 #
5002 # scos():     computes the cosine of a normalized input                 #
5003 # scosd():    computes the cosine of a denormalized input               #
5004 # ssincos():  computes the sine and cosine of a normalized input        #
5005 # ssincosd(): computes the sine and cosine of a denormalized input      #
5006 #                                                                       #
5007 # INPUT *************************************************************** #
5008 #       a0 = pointer to extended precision input                        #
5009 #       d0 = round precision,mode                                       #
5010 #                                                                       #
5011 # OUTPUT ************************************************************** #
5012 #       fp0 = sin(X) or cos(X)                                          #
5013 #                                                                       #
5014 #    For ssincos(X):                                                    #
5015 #       fp0 = sin(X)                                                    #
5016 #       fp1 = cos(X)                                                    #
5017 #                                                                       #
5018 # ACCURACY and MONOTONICITY ******************************************* #
5019 #       The returned result is within 1 ulp in 64 significant bit, i.e. #
5020 #       within 0.5001 ulp to 53 bits if the result is subsequently      #
5021 #       rounded to double precision. The result is provably monotonic   #
5022 #       in double precision.                                            #
5023 #                                                                       #
5024 # ALGORITHM *********************************************************** #
5025 #                                                                       #
5026 #       SIN and COS:                                                    #
5027 #       1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.  #
5028 #                                                                       #
5029 #       2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.                   #
5030 #                                                                       #
5031 #       3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let        #
5032 #               k = N mod 4, so in particular, k = 0,1,2,or 3.          #
5033 #               Overwrite k by k := k + AdjN.                           #
5034 #                                                                       #
5035 #       4. If k is even, go to 6.                                       #
5036 #                                                                       #
5037 #       5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j.                 #
5038 #               Return sgn*cos(r) where cos(r) is approximated by an    #
5039 #               even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)),  #
5040 #               s = r*r.                                                #
5041 #               Exit.                                                   #
5042 #                                                                       #
5043 #       6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)  #
5044 #               where sin(r) is approximated by an odd polynomial in r  #
5045 #               r + r*s*(A1+s*(A2+ ... + s*A7)),        s = r*r.        #
5046 #               Exit.                                                   #
5047 #                                                                       #
5048 #       7. If |X| > 1, go to 9.                                         #
5049 #                                                                       #
5050 #       8. (|X|<2**(-40)) If SIN is invoked, return X;                  #
5051 #               otherwise return 1.                                     #
5052 #                                                                       #
5053 #       9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi,           #
5054 #               go back to 3.                                           #
5055 #                                                                       #
5056 #       SINCOS:                                                         #
5057 #       1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.                   #
5058 #                                                                       #
5059 #       2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let        #
5060 #               k = N mod 4, so in particular, k = 0,1,2,or 3.          #
5061 #                                                                       #
5062 #       3. If k is even, go to 5.                                       #
5063 #                                                                       #
5064 #       4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie.  #
5065 #               j1 exclusive or with the l.s.b. of k.                   #
5066 #               sgn1 := (-1)**j1, sgn2 := (-1)**j2.                     #
5067 #               SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where   #
5068 #               sin(r) and cos(r) are computed as odd and even          #
5069 #               polynomials in r, respectively. Exit                    #
5070 #                                                                       #
5071 #       5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.                 #
5072 #               SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where   #
5073 #               sin(r) and cos(r) are computed as odd and even          #
5074 #               polynomials in r, respectively. Exit                    #
5075 #                                                                       #
5076 #       6. If |X| > 1, go to 8.                                         #
5077 #                                                                       #
5078 #       7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.              #
5079 #                                                                       #
5080 #       8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi,           #
5081 #               go back to 2.                                           #
5082 #                                                                       #
5083 #########################################################################
5084
5085 SINA7:  long            0xBD6AAA77,0xCCC994F5
5086 SINA6:  long            0x3DE61209,0x7AAE8DA1
5087 SINA5:  long            0xBE5AE645,0x2A118AE4
5088 SINA4:  long            0x3EC71DE3,0xA5341531
5089 SINA3:  long            0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
5090 SINA2:  long            0x3FF80000,0x88888888,0x888859AF,0x00000000
5091 SINA1:  long            0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
5092
5093 COSB8:  long            0x3D2AC4D0,0xD6011EE3
5094 COSB7:  long            0xBDA9396F,0x9F45AC19
5095 COSB6:  long            0x3E21EED9,0x0612C972
5096 COSB5:  long            0xBE927E4F,0xB79D9FCF
5097 COSB4:  long            0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
5098 COSB3:  long            0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
5099 COSB2:  long            0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
5100 COSB1:  long            0xBF000000
5101
5102         set             INARG,FP_SCR0
5103
5104         set             X,FP_SCR0
5105 #       set             XDCARE,X+2
5106         set             XFRAC,X+4
5107
5108         set             RPRIME,FP_SCR0
5109         set             SPRIME,FP_SCR1
5110
5111         set             POSNEG1,L_SCR1
5112         set             TWOTO63,L_SCR1
5113
5114         set             ENDFLAG,L_SCR2
5115         set             INT,L_SCR2
5116
5117         set             ADJN,L_SCR3
5118
5119 ############################################
5120         global          ssin
5121 ssin:
5122         mov.l           &0,ADJN(%a6)            # yes; SET ADJN TO 0
5123         bra.b           SINBGN
5124
5125 ############################################
5126         global          scos
5127 scos:
5128         mov.l           &1,ADJN(%a6)            # yes; SET ADJN TO 1
5129
5130 ############################################
5131 SINBGN:
5132 #--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
5133
5134         fmov.x          (%a0),%fp0              # LOAD INPUT
5135         fmov.x          %fp0,X(%a6)             # save input at X
5136
5137 # "COMPACTIFY" X
5138         mov.l           (%a0),%d1               # put exp in hi word
5139         mov.w           4(%a0),%d1              # fetch hi(man)
5140         and.l           &0x7FFFFFFF,%d1         # strip sign
5141
5142         cmpi.l          %d1,&0x3FD78000         # is |X| >= 2**(-40)?
5143         bge.b           SOK1                    # no
5144         bra.w           SINSM                   # yes; input is very small
5145
5146 SOK1:
5147         cmp.l           %d1,&0x4004BC7E         # is |X| < 15 PI?
5148         blt.b           SINMAIN                 # no
5149         bra.w           SREDUCEX                # yes; input is very large
5150
5151 #--THIS IS THE USUAL CASE, |X| <= 15 PI.
5152 #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
5153 SINMAIN:
5154         fmov.x          %fp0,%fp1
5155         fmul.d          TWOBYPI(%pc),%fp1       # X*2/PI
5156
5157         lea             PITBL+0x200(%pc),%a1    # TABLE OF N*PI/2, N = -32,...,32
5158
5159         fmov.l          %fp1,INT(%a6)           # CONVERT TO INTEGER
5160
5161         mov.l           INT(%a6),%d1            # make a copy of N
5162         asl.l           &4,%d1                  # N *= 16
5163         add.l           %d1,%a1                 # tbl_addr = a1 + (N*16)
5164
5165 # A1 IS THE ADDRESS OF N*PIBY2
5166 # ...WHICH IS IN TWO PIECES Y1 & Y2
5167         fsub.x          (%a1)+,%fp0             # X-Y1
5168         fsub.s          (%a1),%fp0              # fp0 = R = (X-Y1)-Y2
5169
5170 SINCONT:
5171 #--continuation from REDUCEX
5172
5173 #--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
5174         mov.l           INT(%a6),%d1
5175         add.l           ADJN(%a6),%d1           # SEE IF D0 IS ODD OR EVEN
5176         ror.l           &1,%d1                  # D0 WAS ODD IFF D0 IS NEGATIVE
5177         cmp.l           %d1,&0
5178         blt.w           COSPOLY
5179
5180 #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
5181 #--THEN WE RETURN       SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
5182 #--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
5183 #--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
5184 #--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
5185 #--WHERE T=S*S.
5186 #--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
5187 #--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
5188 SINPOLY:
5189         fmovm.x         &0x0c,-(%sp)            # save fp2/fp3
5190
5191         fmov.x          %fp0,X(%a6)             # X IS R
5192         fmul.x          %fp0,%fp0               # FP0 IS S
5193
5194         fmov.d          SINA7(%pc),%fp3
5195         fmov.d          SINA6(%pc),%fp2
5196
5197         fmov.x          %fp0,%fp1
5198         fmul.x          %fp1,%fp1               # FP1 IS T
5199
5200         ror.l           &1,%d1
5201         and.l           &0x80000000,%d1
5202 # ...LEAST SIG. BIT OF D0 IN SIGN POSITION
5203         eor.l           %d1,X(%a6)              # X IS NOW R'= SGN*R
5204
5205         fmul.x          %fp1,%fp3               # TA7
5206         fmul.x          %fp1,%fp2               # TA6
5207
5208         fadd.d          SINA5(%pc),%fp3         # A5+TA7
5209         fadd.d          SINA4(%pc),%fp2         # A4+TA6
5210
5211         fmul.x          %fp1,%fp3               # T(A5+TA7)
5212         fmul.x          %fp1,%fp2               # T(A4+TA6)
5213
5214         fadd.d          SINA3(%pc),%fp3         # A3+T(A5+TA7)
5215         fadd.x          SINA2(%pc),%fp2         # A2+T(A4+TA6)
5216
5217         fmul.x          %fp3,%fp1               # T(A3+T(A5+TA7))
5218
5219         fmul.x          %fp0,%fp2               # S(A2+T(A4+TA6))
5220         fadd.x          SINA1(%pc),%fp1         # A1+T(A3+T(A5+TA7))
5221         fmul.x          X(%a6),%fp0             # R'*S
5222
5223         fadd.x          %fp2,%fp1               # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
5224
5225         fmul.x          %fp1,%fp0               # SIN(R')-R'
5226
5227         fmovm.x         (%sp)+,&0x30            # restore fp2/fp3
5228
5229         fmov.l          %d0,%fpcr               # restore users round mode,prec
5230         fadd.x          X(%a6),%fp0             # last inst - possible exception set
5231         bra             t_inx2
5232
5233 #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
5234 #--THEN WE RETURN       SGN*COS(R). SGN*COS(R) IS COMPUTED BY
5235 #--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
5236 #--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
5237 #--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
5238 #--WHERE T=S*S.
5239 #--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
5240 #--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
5241 #--AND IS THEREFORE STORED AS SINGLE PRECISION.
5242 COSPOLY:
5243         fmovm.x         &0x0c,-(%sp)            # save fp2/fp3
5244
5245         fmul.x          %fp0,%fp0               # FP0 IS S
5246
5247         fmov.d          COSB8(%pc),%fp2
5248         fmov.d          COSB7(%pc),%fp3
5249
5250         fmov.x          %fp0,%fp1
5251         fmul.x          %fp1,%fp1               # FP1 IS T
5252
5253         fmov.x          %fp0,X(%a6)             # X IS S
5254         ror.l           &1,%d1
5255         and.l           &0x80000000,%d1
5256 # ...LEAST SIG. BIT OF D0 IN SIGN POSITION
5257
5258         fmul.x          %fp1,%fp2               # TB8
5259
5260         eor.l           %d1,X(%a6)              # X IS NOW S'= SGN*S
5261         and.l           &0x80000000,%d1
5262
5263         fmul.x          %fp1,%fp3               # TB7
5264
5265         or.l            &0x3F800000,%d1         # D0 IS SGN IN SINGLE
5266         mov.l           %d1,POSNEG1(%a6)
5267
5268         fadd.d          COSB6(%pc),%fp2         # B6+TB8
5269         fadd.d          COSB5(%pc),%fp3         # B5+TB7
5270
5271         fmul.x          %fp1,%fp2               # T(B6+TB8)
5272         fmul.x          %fp1,%fp3               # T(B5+TB7)
5273
5274         fadd.d          COSB4(%pc),%fp2         # B4+T(B6+TB8)
5275         fadd.x          COSB3(%pc),%fp3         # B3+T(B5+TB7)
5276
5277         fmul.x          %fp1,%fp2               # T(B4+T(B6+TB8))
5278         fmul.x          %fp3,%fp1               # T(B3+T(B5+TB7))
5279
5280         fadd.x          COSB2(%pc),%fp2         # B2+T(B4+T(B6+TB8))
5281         fadd.s          COSB1(%pc),%fp1         # B1+T(B3+T(B5+TB7))
5282
5283         fmul.x          %fp2,%fp0               # S(B2+T(B4+T(B6+TB8)))
5284
5285         fadd.x          %fp1,%fp0
5286
5287         fmul.x          X(%a6),%fp0
5288
5289         fmovm.x         (%sp)+,&0x30            # restore fp2/fp3
5290
5291         fmov.l          %d0,%fpcr               # restore users round mode,prec
5292         fadd.s          POSNEG1(%a6),%fp0       # last inst - possible exception set
5293         bra             t_inx2
5294
5295 ##############################################
5296
5297 # SINe: Big OR Small?
5298 #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
5299 #--IF |X| < 2**(-40), RETURN X OR 1.
5300 SINBORS:
5301         cmp.l           %d1,&0x3FFF8000
5302         bgt.l           SREDUCEX
5303
5304 SINSM:
5305         mov.l           ADJN(%a6),%d1
5306         cmp.l           %d1,&0
5307         bgt.b           COSTINY
5308
5309 # here, the operation may underflow iff the precision is sgl or dbl.
5310 # extended denorms are handled through another entry point.
5311 SINTINY:
5312 #       mov.w           &0x0000,XDCARE(%a6)     # JUST IN CASE
5313
5314         fmov.l          %d0,%fpcr               # restore users round mode,prec
5315         mov.b           &FMOV_OP,%d1            # last inst is MOVE
5316         fmov.x          X(%a6),%fp0             # last inst - possible exception set
5317         bra             t_catch
5318
5319 COSTINY:
5320         fmov.s          &0x3F800000,%fp0        # fp0 = 1.0
5321         fmov.l          %d0,%fpcr               # restore users round mode,prec
5322         fadd.s          &0x80800000,%fp0        # last inst - possible exception set
5323         bra             t_pinx2
5324
5325 ################################################
5326         global          ssind
5327 #--SIN(X) = X FOR DENORMALIZED X
5328 ssind:
5329         bra             t_extdnrm
5330
5331 ############################################
5332         global          scosd
5333 #--COS(X) = 1 FOR DENORMALIZED X
5334 scosd:
5335         fmov.s          &0x3F800000,%fp0        # fp0 = 1.0
5336         bra             t_pinx2
5337
5338 ##################################################
5339
5340         global          ssincos
5341 ssincos:
5342 #--SET ADJN TO 4
5343         mov.l           &4,ADJN(%a6)
5344
5345         fmov.x          (%a0),%fp0              # LOAD INPUT
5346         fmov.x          %fp0,X(%a6)
5347
5348         mov.l           (%a0),%d1
5349         mov.w           4(%a0),%d1
5350         and.l           &0x7FFFFFFF,%d1         # COMPACTIFY X
5351
5352         cmp.l           %d1,&0x3FD78000         # |X| >= 2**(-40)?
5353         bge.b           SCOK1
5354         bra.w           SCSM
5355
5356 SCOK1:
5357         cmp.l           %d1,&0x4004BC7E         # |X| < 15 PI?
5358         blt.b           SCMAIN
5359         bra.w           SREDUCEX
5360
5361
5362 #--THIS IS THE USUAL CASE, |X| <= 15 PI.
5363 #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
5364 SCMAIN:
5365         fmov.x          %fp0,%fp1
5366
5367         fmul.d          TWOBYPI(%pc),%fp1       # X*2/PI
5368
5369         lea             PITBL+0x200(%pc),%a1    # TABLE OF N*PI/2, N = -32,...,32
5370
5371         fmov.l          %fp1,INT(%a6)           # CONVERT TO INTEGER
5372
5373         mov.l           INT(%a6),%d1
5374         asl.l           &4,%d1
5375         add.l           %d1,%a1                 # ADDRESS OF N*PIBY2, IN Y1, Y2
5376
5377         fsub.x          (%a1)+,%fp0             # X-Y1
5378         fsub.s          (%a1),%fp0              # FP0 IS R = (X-Y1)-Y2
5379
5380 SCCONT:
5381 #--continuation point from REDUCEX
5382
5383         mov.l           INT(%a6),%d1
5384         ror.l           &1,%d1
5385         cmp.l           %d1,&0                  # D0 < 0 IFF N IS ODD
5386         bge.w           NEVEN
5387
5388 SNODD:
5389 #--REGISTERS SAVED SO FAR: D0, A0, FP2.
5390         fmovm.x         &0x04,-(%sp)            # save fp2
5391
5392         fmov.x          %fp0,RPRIME(%a6)
5393         fmul.x          %fp0,%fp0               # FP0 IS S = R*R
5394         fmov.d          SINA7(%pc),%fp1         # A7
5395         fmov.d          COSB8(%pc),%fp2         # B8
5396         fmul.x          %fp0,%fp1               # SA7
5397         fmul.x          %fp0,%fp2               # SB8
5398
5399         mov.l           %d2,-(%sp)
5400         mov.l           %d1,%d2
5401         ror.l           &1,%d2
5402         and.l           &0x80000000,%d2
5403         eor.l           %d1,%d2
5404         and.l           &0x80000000,%d2
5405
5406         fadd.d          SINA6(%pc),%fp1         # A6+SA7
5407         fadd.d          COSB7(%pc),%fp2         # B7+SB8
5408
5409         fmul.x          %fp0,%fp1               # S(A6+SA7)
5410         eor.l           %d2,RPRIME(%a6)
5411         mov.l           (%sp)+,%d2
5412         fmul.x          %fp0,%fp2               # S(B7+SB8)
5413         ror.l           &1,%d1
5414         and.l           &0x80000000,%d1
5415         mov.l           &0x3F800000,POSNEG1(%a6)
5416         eor.l           %d1,POSNEG1(%a6)
5417
5418         fadd.d          SINA5(%pc),%fp1         # A5+S(A6+SA7)
5419         fadd.d          COSB6(%pc),%fp2         # B6+S(B7+SB8)
5420
5421         fmul.x          %fp0,%fp1               # S(A5+S(A6+SA7))
5422         fmul.x          %fp0,%fp2               # S(B6+S(B7+SB8))
5423         fmov.x          %fp0,SPRIME(%a6)
5424
5425         fadd.d          SINA4(%pc),%fp1         # A4+S(A5+S(A6+SA7))
5426         eor.l           %d1,SPRIME(%a6)
5427         fadd.d          COSB5(%pc),%fp2         # B5+S(B6+S(B7+SB8))
5428
5429         fmul.x          %fp0,%fp1               # S(A4+...)
5430         fmul.x          %fp0,%fp2               # S(B5+...)
5431
5432         fadd.d          SINA3(%pc),%fp1         # A3+S(A4+...)
5433         fadd.d          COSB4(%pc),%fp2         # B4+S(B5+...)
5434
5435         fmul.x          %fp0,%fp1               # S(A3+...)
5436         fmul.x          %fp0,%fp2               # S(B4+...)
5437
5438         fadd.x          SINA2(%pc),%fp1         # A2+S(A3+...)
5439         fadd.x          COSB3(%pc),%fp2         # B3+S(B4+...)
5440
5441         fmul.x          %fp0,%fp1               # S(A2+...)
5442         fmul.x          %fp0,%fp2               # S(B3+...)
5443
5444         fadd.x          SINA1(%pc),%fp1         # A1+S(A2+...)
5445         fadd.x          COSB2(%pc),%fp2         # B2+S(B3+...)
5446
5447         fmul.x          %fp0,%fp1               # S(A1+...)
5448         fmul.x          %fp2,%fp0               # S(B2+...)
5449
5450         fmul.x          RPRIME(%a6),%fp1        # R'S(A1+...)
5451         fadd.s          COSB1(%pc),%fp0         # B1+S(B2...)
5452         fmul.x          SPRIME(%a6),%fp0        # S'(B1+S(B2+...))
5453
5454         fmovm.x         (%sp)+,&0x20            # restore fp2
5455
5456         fmov.l          %d0,%fpcr
5457         fadd.x          RPRIME(%a6),%fp1        # COS(X)
5458         bsr             sto_cos                 # store cosine result
5459         fadd.s          POSNEG1(%a6),%fp0       # SIN(X)
5460         bra             t_inx2
5461
5462 NEVEN:
5463 #--REGISTERS SAVED SO FAR: FP2.
5464         fmovm.x         &0x04,-(%sp)            # save fp2
5465
5466         fmov.x          %fp0,RPRIME(%a6)
5467         fmul.x          %fp0,%fp0               # FP0 IS S = R*R
5468
5469         fmov.d          COSB8(%pc),%fp1         # B8
5470         fmov.d          SINA7(%pc),%fp2         # A7
5471
5472         fmul.x          %fp0,%fp1               # SB8
5473         fmov.x          %fp0,SPRIME(%a6)
5474         fmul.x          %fp0,%fp2               # SA7
5475
5476         ror.l           &1,%d1
5477         and.l           &0x80000000,%d1
5478
5479         fadd.d          COSB7(%pc),%fp1         # B7+SB8
5480         fadd.d          SINA6(%pc),%fp2         # A6+SA7
5481
5482         eor.l           %d1,RPRIME(%a6)
5483         eor.l           %d1,SPRIME(%a6)
5484
5485         fmul.x          %fp0,%fp1               # S(B7+SB8)
5486
5487         or.l            &0x3F800000,%d1
5488         mov.l           %d1,POSNEG1(%a6)
5489
5490         fmul.x          %fp0,%fp2               # S(A6+SA7)
5491
5492         fadd.d          COSB6(%pc),%fp1         # B6+S(B7+SB8)
5493         fadd.d          SINA5(%pc),%fp2         # A5+S(A6+SA7)
5494
5495         fmul.x          %fp0,%fp1               # S(B6+S(B7+SB8))
5496         fmul.x          %fp0,%fp2               # S(A5+S(A6+SA7))
5497
5498         fadd.d          COSB5(%pc),%fp1         # B5+S(B6+S(B7+SB8))
5499         fadd.d          SINA4(%pc),%fp2         # A4+S(A5+S(A6+SA7))
5500
5501         fmul.x          %fp0,%fp1               # S(B5+...)
5502         fmul.x          %fp0,%fp2               # S(A4+...)
5503
5504         fadd.d          COSB4(%pc),%fp1         # B4+S(B5+...)
5505         fadd.d          SINA3(%pc),%fp2         # A3+S(A4+...)
5506
5507         fmul.x          %fp0,%fp1               # S(B4+...)
5508         fmul.x          %fp0,%fp2               # S(A3+...)
5509
5510         fadd.x          COSB3(%pc),%fp1         # B3+S(B4+...)
5511         fadd.x          SINA2(%pc),%fp2         # A2+S(A3+...)
5512
5513         fmul.x          %fp0,%fp1               # S(B3+...)
5514         fmul.x          %fp0,%fp2               # S(A2+...)
5515
5516         fadd.x          COSB2(%pc),%fp1         # B2+S(B3+...)
5517         fadd.x          SINA1(%pc),%fp2         # A1+S(A2+...)
5518
5519         fmul.x          %fp0,%fp1               # S(B2+...)
5520         fmul.x          %fp2,%fp0               # s(a1+...)
5521
5522
5523         fadd.s          COSB1(%pc),%fp1         # B1+S(B2...)
5524         fmul.x          RPRIME(%a6),%fp0        # R'S(A1+...)
5525         fmul.x          SPRIME(%a6),%fp1        # S'(B1+S(B2+...))
5526
5527         fmovm.x         (%sp)+,&0x20            # restore fp2
5528
5529         fmov.l          %d0,%fpcr
5530         fadd.s          POSNEG1(%a6),%fp1       # COS(X)
5531         bsr             sto_cos                 # store cosine result
5532         fadd.x          RPRIME(%a6),%fp0        # SIN(X)
5533         bra             t_inx2
5534
5535 ################################################
5536
5537 SCBORS:
5538         cmp.l           %d1,&0x3FFF8000
5539         bgt.w           SREDUCEX
5540
5541 ################################################
5542
5543 SCSM:
5544 #       mov.w           &0x0000,XDCARE(%a6)
5545         fmov.s          &0x3F800000,%fp1
5546
5547         fmov.l          %d0,%fpcr
5548         fsub.s          &0x00800000,%fp1
5549         bsr             sto_cos                 # store cosine result
5550         fmov.l          %fpcr,%d0               # d0 must have fpcr,too
5551         mov.b           &FMOV_OP,%d1            # last inst is MOVE
5552         fmov.x          X(%a6),%fp0
5553         bra             t_catch
5554
5555 ##############################################
5556
5557         global          ssincosd
5558 #--SIN AND COS OF X FOR DENORMALIZED X
5559 ssincosd:
5560         mov.l           %d0,-(%sp)              # save d0
5561         fmov.s          &0x3F800000,%fp1
5562         bsr             sto_cos                 # store cosine result
5563         mov.l           (%sp)+,%d0              # restore d0
5564         bra             t_extdnrm
5565
5566 ############################################
5567
5568 #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
5569 #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
5570 #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
5571 SREDUCEX:
5572         fmovm.x         &0x3c,-(%sp)            # save {fp2-fp5}
5573         mov.l           %d2,-(%sp)              # save d2
5574         fmov.s          &0x00000000,%fp1        # fp1 = 0
5575
5576 #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
5577 #--there is a danger of unwanted overflow in first LOOP iteration.  In this
5578 #--case, reduce argument by one remainder step to make subsequent reduction
5579 #--safe.
5580         cmp.l           %d1,&0x7ffeffff         # is arg dangerously large?
5581         bne.b           SLOOP                   # no
5582
5583 # yes; create 2**16383*PI/2
5584         mov.w           &0x7ffe,FP_SCR0_EX(%a6)
5585         mov.l           &0xc90fdaa2,FP_SCR0_HI(%a6)
5586         clr.l           FP_SCR0_LO(%a6)
5587
5588 # create low half of 2**16383*PI/2 at FP_SCR1
5589         mov.w           &0x7fdc,FP_SCR1_EX(%a6)
5590         mov.l           &0x85a308d3,FP_SCR1_HI(%a6)
5591         clr.l           FP_SCR1_LO(%a6)
5592
5593         ftest.x         %fp0                    # test sign of argument
5594         fblt.w          sred_neg
5595
5596         or.b            &0x80,FP_SCR0_EX(%a6)   # positive arg
5597         or.b            &0x80,FP_SCR1_EX(%a6)
5598 sred_neg:
5599         fadd.x          FP_SCR0(%a6),%fp0       # high part of reduction is exact
5600         fmov.x          %fp0,%fp1               # save high result in fp1
5601         fadd.x          FP_SCR1(%a6),%fp0       # low part of reduction
5602         fsub.x          %fp0,%fp1               # determine low component of result
5603         fadd.x          FP_SCR1(%a6),%fp1       # fp0/fp1 are reduced argument.
5604
5605 #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
5606 #--integer quotient will be stored in N
5607 #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
5608 SLOOP:
5609         fmov.x          %fp0,INARG(%a6)         # +-2**K * F, 1 <= F < 2
5610         mov.w           INARG(%a6),%d1
5611         mov.l           %d1,%a1                 # save a copy of D0
5612         and.l           &0x00007FFF,%d1
5613         sub.l           &0x00003FFF,%d1         # d0 = K
5614         cmp.l           %d1,&28
5615         ble.b           SLASTLOOP
5616 SCONTLOOP:
5617         sub.l           &27,%d1                 # d0 = L := K-27
5618         mov.b           &0,ENDFLAG(%a6)
5619         bra.b           SWORK
5620 SLASTLOOP:
5621         clr.l           %d1                     # d0 = L := 0
5622         mov.b           &1,ENDFLAG(%a6)
5623
5624 SWORK:
5625 #--FIND THE REMAINDER OF (R,r) W.R.T.   2**L * (PI/2). L IS SO CHOSEN
5626 #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
5627
5628 #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
5629 #--2**L * (PIby2_1), 2**L * (PIby2_2)
5630
5631         mov.l           &0x00003FFE,%d2         # BIASED EXP OF 2/PI
5632         sub.l           %d1,%d2                 # BIASED EXP OF 2**(-L)*(2/PI)
5633
5634         mov.l           &0xA2F9836E,FP_SCR0_HI(%a6)
5635         mov.l           &0x4E44152A,FP_SCR0_LO(%a6)
5636         mov.w           %d2,FP_SCR0_EX(%a6)     # FP_SCR0 = 2**(-L)*(2/PI)
5637
5638         fmov.x          %fp0,%fp2
5639         fmul.x          FP_SCR0(%a6),%fp2       # fp2 = X * 2**(-L)*(2/PI)
5640
5641 #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
5642 #--FLOATING POINT FORMAT, THE TWO FMOVE'S       FMOVE.L FP <--> N
5643 #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
5644 #--(SIGN(INARG)*2**63   +       FP2) - SIGN(INARG)*2**63 WILL GIVE
5645 #--US THE DESIRED VALUE IN FLOATING POINT.
5646         mov.l           %a1,%d2
5647         swap            %d2
5648         and.l           &0x80000000,%d2
5649         or.l            &0x5F000000,%d2         # d2 = SIGN(INARG)*2**63 IN SGL
5650         mov.l           %d2,TWOTO63(%a6)
5651         fadd.s          TWOTO63(%a6),%fp2       # THE FRACTIONAL PART OF FP1 IS ROUNDED
5652         fsub.s          TWOTO63(%a6),%fp2       # fp2 = N
5653 #       fint.x          %fp2
5654
5655 #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
5656         mov.l           %d1,%d2                 # d2 = L
5657
5658         add.l           &0x00003FFF,%d2         # BIASED EXP OF 2**L * (PI/2)
5659         mov.w           %d2,FP_SCR0_EX(%a6)
5660         mov.l           &0xC90FDAA2,FP_SCR0_HI(%a6)
5661         clr.l           FP_SCR0_LO(%a6)         # FP_SCR0 = 2**(L) * Piby2_1
5662
5663         add.l           &0x00003FDD,%d1
5664         mov.w           %d1,FP_SCR1_EX(%a6)
5665         mov.l           &0x85A308D3,FP_SCR1_HI(%a6)
5666         clr.l           FP_SCR1_LO(%a6)         # FP_SCR1 = 2**(L) * Piby2_2
5667
5668         mov.b           ENDFLAG(%a6),%d1
5669
5670 #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
5671 #--P2 = 2**(L) * Piby2_2
5672         fmov.x          %fp2,%fp4               # fp4 = N
5673         fmul.x          FP_SCR0(%a6),%fp4       # fp4 = W = N*P1
5674         fmov.x          %fp2,%fp5               # fp5 = N
5675         fmul.x          FP_SCR1(%a6),%fp5       # fp5 = w = N*P2
5676         fmov.x          %fp4,%fp3               # fp3 = W = N*P1
5677
5678 #--we want P+p = W+w  but  |p| <= half ulp of P
5679 #--Then, we need to compute  A := R-P   and  a := r-p
5680         fadd.x          %fp5,%fp3               # fp3 = P
5681         fsub.x          %fp3,%fp4               # fp4 = W-P
5682
5683         fsub.x          %fp3,%fp0               # fp0 = A := R - P
5684         fadd.x          %fp5,%fp4               # fp4 = p = (W-P)+w
5685
5686         fmov.x          %fp0,%fp3               # fp3 = A
5687         fsub.x          %fp4,%fp1               # fp1 = a := r - p
5688
5689 #--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but
5690 #--|r| <= half ulp of R.
5691         fadd.x          %fp1,%fp0               # fp0 = R := A+a
5692 #--No need to calculate r if this is the last loop
5693         cmp.b           %d1,&0
5694         bgt.w           SRESTORE
5695
5696 #--Need to calculate r
5697         fsub.x          %fp0,%fp3               # fp3 = A-R
5698         fadd.x          %fp3,%fp1               # fp1 = r := (A-R)+a
5699         bra.w           SLOOP
5700
5701 SRESTORE:
5702         fmov.l          %fp2,INT(%a6)
5703         mov.l           (%sp)+,%d2              # restore d2
5704         fmovm.x         (%sp)+,&0x3c            # restore {fp2-fp5}
5705
5706         mov.l           ADJN(%a6),%d1
5707         cmp.l           %d1,&4
5708
5709         blt.w           SINCONT
5710         bra.w           SCCONT
5711
5712 #########################################################################
5713 # stan():  computes the tangent of a normalized input                   #
5714 # stand(): computes the tangent of a denormalized input                 #
5715 #                                                                       #
5716 # INPUT *************************************************************** #
5717 #       a0 = pointer to extended precision input                        #
5718 #       d0 = round precision,mode                                       #
5719 #                                                                       #
5720 # OUTPUT ************************************************************** #
5721 #       fp0 = tan(X)                                                    #
5722 #                                                                       #
5723 # ACCURACY and MONOTONICITY ******************************************* #
5724 #       The returned result is within 3 ulp in 64 significant bit, i.e. #
5725 #       within 0.5001 ulp to 53 bits if the result is subsequently      #
5726 #       rounded to double precision. The result is provably monotonic   #
5727 #       in double precision.                                            #
5728 #                                                                       #
5729 # ALGORITHM *********************************************************** #
5730 #                                                                       #
5731 #       1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.                   #
5732 #                                                                       #
5733 #       2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let        #
5734 #               k = N mod 2, so in particular, k = 0 or 1.              #
5735 #                                                                       #
5736 #       3. If k is odd, go to 5.                                        #
5737 #                                                                       #
5738 #       4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a  #
5739 #               rational function U/V where                             #
5740 #               U = r + r*s*(P1 + s*(P2 + s*P3)), and                   #
5741 #               V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))),  s = r*r.      #
5742 #               Exit.                                                   #
5743 #                                                                       #
5744 #       4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by #
5745 #               a rational function U/V where                           #
5746 #               U = r + r*s*(P1 + s*(P2 + s*P3)), and                   #
5747 #               V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,       #
5748 #               -Cot(r) = -V/U. Exit.                                   #
5749 #                                                                       #
5750 #       6. If |X| > 1, go to 8.                                         #
5751 #                                                                       #
5752 #       7. (|X|<2**(-40)) Tan(X) = X. Exit.                             #
5753 #                                                                       #
5754 #       8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back   #
5755 #               to 2.                                                   #
5756 #                                                                       #
5757 #########################################################################
5758
5759 TANQ4:
5760         long            0x3EA0B759,0xF50F8688
5761 TANP3:
5762         long            0xBEF2BAA5,0xA8924F04
5763
5764 TANQ3:
5765         long            0xBF346F59,0xB39BA65F,0x00000000,0x00000000
5766
5767 TANP2:
5768         long            0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
5769
5770 TANQ2:
5771         long            0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
5772
5773 TANP1:
5774         long            0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
5775
5776 TANQ1:
5777         long            0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
5778
5779 INVTWOPI:
5780         long            0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
5781
5782 TWOPI1:
5783         long            0x40010000,0xC90FDAA2,0x00000000,0x00000000
5784 TWOPI2:
5785         long            0x3FDF0000,0x85A308D4,0x00000000,0x00000000
5786
5787 #--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
5788 #--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
5789 #--MOST 69 BITS LONG.
5790 #       global          PITBL
5791 PITBL:
5792         long            0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
5793         long            0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
5794         long            0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
5795         long            0xC0040000,0xB6365E22,0xEE46F000,0x21480000
5796         long            0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
5797         long            0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
5798         long            0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
5799         long            0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
5800         long            0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
5801         long            0xC0040000,0x90836524,0x88034B96,0x20B00000
5802         long            0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
5803         long            0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
5804         long            0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
5805         long            0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
5806         long            0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
5807         long            0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
5808         long            0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
5809         long            0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
5810         long            0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
5811         long            0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
5812         long            0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
5813         long            0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
5814         long            0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
5815         long            0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
5816         long            0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
5817         long            0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
5818         long            0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
5819         long            0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
5820         long            0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
5821         long            0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
5822         long            0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
5823         long            0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
5824         long            0x00000000,0x00000000,0x00000000,0x00000000
5825         long            0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
5826         long            0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
5827         long            0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
5828         long            0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
5829         long            0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
5830         long            0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
5831         long            0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
5832         long            0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
5833         long            0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
5834         long            0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
5835         long            0x40030000,0x8A3AE64F,0x76F80584,0x21080000
5836         long            0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
5837         long            0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
5838         long            0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
5839         long            0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
5840         long            0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
5841         long            0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
5842         long            0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
5843         long            0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
5844         long            0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
5845         long            0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
5846         long            0x40040000,0x8A3AE64F,0x76F80584,0x21880000
5847         long            0x40040000,0x90836524,0x88034B96,0xA0B00000
5848         long            0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
5849         long            0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
5850         long            0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
5851         long            0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
5852         long            0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
5853         long            0x40040000,0xB6365E22,0xEE46F000,0xA1480000
5854         long            0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
5855         long            0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
5856         long            0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
5857
5858         set             INARG,FP_SCR0
5859
5860         set             TWOTO63,L_SCR1
5861         set             INT,L_SCR1
5862         set             ENDFLAG,L_SCR2
5863
5864         global          stan
5865 stan:
5866         fmov.x          (%a0),%fp0              # LOAD INPUT
5867
5868         mov.l           (%a0),%d1
5869         mov.w           4(%a0),%d1
5870         and.l           &0x7FFFFFFF,%d1
5871
5872         cmp.l           %d1,&0x3FD78000         # |X| >= 2**(-40)?
5873         bge.b           TANOK1
5874         bra.w           TANSM
5875 TANOK1:
5876         cmp.l           %d1,&0x4004BC7E         # |X| < 15 PI?
5877         blt.b           TANMAIN
5878         bra.w           REDUCEX
5879
5880 TANMAIN:
5881 #--THIS IS THE USUAL CASE, |X| <= 15 PI.
5882 #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
5883         fmov.x          %fp0,%fp1
5884         fmul.d          TWOBYPI(%pc),%fp1       # X*2/PI
5885
5886         lea.l           PITBL+0x200(%pc),%a1    # TABLE OF N*PI/2, N = -32,...,32
5887
5888         fmov.l          %fp1,%d1                # CONVERT TO INTEGER
5889
5890         asl.l           &4,%d1
5891         add.l           %d1,%a1                 # ADDRESS N*PIBY2 IN Y1, Y2
5892
5893         fsub.x          (%a1)+,%fp0             # X-Y1
5894
5895         fsub.s          (%a1),%fp0              # FP0 IS R = (X-Y1)-Y2
5896
5897         ror.l           &5,%d1
5898         and.l           &0x80000000,%d1         # D0 WAS ODD IFF D0 < 0
5899
5900 TANCONT:
5901         fmovm.x         &0x0c,-(%sp)            # save fp2,fp3
5902
5903         cmp.l           %d1,&0
5904         blt.w           NODD
5905
5906         fmov.x          %fp0,%fp1
5907         fmul.x          %fp1,%fp1               # S = R*R
5908
5909         fmov.d          TANQ4(%pc),%fp3
5910         fmov.d          TANP3(%pc),%fp2
5911
5912         fmul.x          %fp1,%fp3               # SQ4
5913         fmul.x          %fp1,%fp2               # SP3
5914
5915         fadd.d          TANQ3(%pc),%fp3         # Q3+SQ4
5916         fadd.x          TANP2(%pc),%fp2         # P2+SP3
5917
5918         fmul.x          %fp1,%fp3               # S(Q3+SQ4)
5919         fmul.x          %fp1,%fp2               # S(P2+SP3)
5920
5921         fadd.x          TANQ2(%pc),%fp3         # Q2+S(Q3+SQ4)
5922         fadd.x          TANP1(%pc),%fp2         # P1+S(P2+SP3)
5923
5924         fmul.x          %fp1,%fp3               # S(Q2+S(Q3+SQ4))
5925         fmul.x          %fp1,%fp2               # S(P1+S(P2+SP3))
5926
5927         fadd.x          TANQ1(%pc),%fp3         # Q1+S(Q2+S(Q3+SQ4))
5928         fmul.x          %fp0,%fp2               # RS(P1+S(P2+SP3))
5929
5930         fmul.x          %fp3,%fp1               # S(Q1+S(Q2+S(Q3+SQ4)))
5931
5932         fadd.x          %fp2,%fp0               # R+RS(P1+S(P2+SP3))
5933
5934         fadd.s          &0x3F800000,%fp1        # 1+S(Q1+...)
5935
5936         fmovm.x         (%sp)+,&0x30            # restore fp2,fp3
5937
5938         fmov.l          %d0,%fpcr               # restore users round mode,prec
5939         fdiv.x          %fp1,%fp0               # last inst - possible exception set
5940         bra             t_inx2
5941
5942 NODD:
5943         fmov.x          %fp0,%fp1
5944         fmul.x          %fp0,%fp0               # S = R*R
5945
5946         fmov.d          TANQ4(%pc),%fp3
5947         fmov.d          TANP3(%pc),%fp2
5948
5949         fmul.x          %fp0,%fp3               # SQ4
5950         fmul.x          %fp0,%fp2               # SP3
5951
5952         fadd.d          TANQ3(%pc),%fp3         # Q3+SQ4
5953         fadd.x          TANP2(%pc),%fp2         # P2+SP3
5954
5955         fmul.x          %fp0,%fp3               # S(Q3+SQ4)
5956         fmul.x          %fp0,%fp2               # S(P2+SP3)
5957
5958         fadd.x          TANQ2(%pc),%fp3         # Q2+S(Q3+SQ4)
5959         fadd.x          TANP1(%pc),%fp2         # P1+S(P2+SP3)
5960
5961         fmul.x          %fp0,%fp3               # S(Q2+S(Q3+SQ4))
5962         fmul.x          %fp0,%fp2               # S(P1+S(P2+SP3))
5963
5964         fadd.x          TANQ1(%pc),%fp3         # Q1+S(Q2+S(Q3+SQ4))
5965         fmul.x          %fp1,%fp2               # RS(P1+S(P2+SP3))
5966
5967         fmul.x          %fp3,%fp0               # S(Q1+S(Q2+S(Q3+SQ4)))
5968
5969         fadd.x          %fp2,%fp1               # R+RS(P1+S(P2+SP3))
5970         fadd.s          &0x3F800000,%fp0        # 1+S(Q1+...)
5971
5972         fmovm.x         (%sp)+,&0x30            # restore fp2,fp3
5973
5974         fmov.x          %fp1,-(%sp)
5975         eor.l           &0x80000000,(%sp)
5976
5977         fmov.l          %d0,%fpcr               # restore users round mode,prec
5978         fdiv.x          (%sp)+,%fp0             # last inst - possible exception set
5979         bra             t_inx2
5980
5981 TANBORS:
5982 #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
5983 #--IF |X| < 2**(-40), RETURN X OR 1.
5984         cmp.l           %d1,&0x3FFF8000
5985         bgt.b           REDUCEX
5986
5987 TANSM:
5988         fmov.x          %fp0,-(%sp)
5989         fmov.l          %d0,%fpcr               # restore users round mode,prec
5990         mov.b           &FMOV_OP,%d1            # last inst is MOVE
5991         fmov.x          (%sp)+,%fp0             # last inst - posibble exception set
5992         bra             t_catch
5993
5994         global          stand
5995 #--TAN(X) = X FOR DENORMALIZED X
5996 stand:
5997         bra             t_extdnrm
5998
5999 #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
6000 #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
6001 #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
6002 REDUCEX:
6003         fmovm.x         &0x3c,-(%sp)            # save {fp2-fp5}
6004         mov.l           %d2,-(%sp)              # save d2
6005         fmov.s          &0x00000000,%fp1        # fp1 = 0
6006
6007 #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
6008 #--there is a danger of unwanted overflow in first LOOP iteration.  In this
6009 #--case, reduce argument by one remainder step to make subsequent reduction
6010 #--safe.
6011         cmp.l           %d1,&0x7ffeffff         # is arg dangerously large?
6012         bne.b           LOOP                    # no
6013
6014 # yes; create 2**16383*PI/2
6015         mov.w           &0x7ffe,FP_SCR0_EX(%a6)
6016         mov.l           &0xc90fdaa2,FP_SCR0_HI(%a6)
6017         clr.l           FP_SCR0_LO(%a6)
6018
6019 # create low half of 2**16383*PI/2 at FP_SCR1
6020         mov.w           &0x7fdc,FP_SCR1_EX(%a6)
6021         mov.l           &0x85a308d3,FP_SCR1_HI(%a6)
6022         clr.l           FP_SCR1_LO(%a6)
6023
6024         ftest.x         %fp0                    # test sign of argument
6025         fblt.w          red_neg
6026
6027         or.b            &0x80,FP_SCR0_EX(%a6)   # positive arg
6028         or.b            &0x80,FP_SCR1_EX(%a6)
6029 red_neg:
6030         fadd.x          FP_SCR0(%a6),%fp0       # high part of reduction is exact
6031         fmov.x          %fp0,%fp1               # save high result in fp1
6032         fadd.x          FP_SCR1(%a6),%fp0       # low part of reduction
6033         fsub.x          %fp0,%fp1               # determine low component of result
6034         fadd.x          FP_SCR1(%a6),%fp1       # fp0/fp1 are reduced argument.
6035
6036 #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
6037 #--integer quotient will be stored in N
6038 #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
6039 LOOP:
6040         fmov.x          %fp0,INARG(%a6)         # +-2**K * F, 1 <= F < 2
6041         mov.w           INARG(%a6),%d1
6042         mov.l           %d1,%a1                 # save a copy of D0
6043         and.l           &0x00007FFF,%d1
6044         sub.l           &0x00003FFF,%d1         # d0 = K
6045         cmp.l           %d1,&28
6046         ble.b           LASTLOOP
6047 CONTLOOP:
6048         sub.l           &27,%d1                 # d0 = L := K-27
6049         mov.b           &0,ENDFLAG(%a6)
6050         bra.b           WORK
6051 LASTLOOP:
6052         clr.l           %d1                     # d0 = L := 0
6053         mov.b           &1,ENDFLAG(%a6)
6054
6055 WORK:
6056 #--FIND THE REMAINDER OF (R,r) W.R.T.   2**L * (PI/2). L IS SO CHOSEN
6057 #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
6058
6059 #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
6060 #--2**L * (PIby2_1), 2**L * (PIby2_2)
6061
6062         mov.l           &0x00003FFE,%d2         # BIASED EXP OF 2/PI
6063         sub.l           %d1,%d2                 # BIASED EXP OF 2**(-L)*(2/PI)
6064
6065         mov.l           &0xA2F9836E,FP_SCR0_HI(%a6)
6066         mov.l           &0x4E44152A,FP_SCR0_LO(%a6)
6067         mov.w           %d2,FP_SCR0_EX(%a6)     # FP_SCR0 = 2**(-L)*(2/PI)
6068
6069         fmov.x          %fp0,%fp2
6070         fmul.x          FP_SCR0(%a6),%fp2       # fp2 = X * 2**(-L)*(2/PI)
6071
6072 #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
6073 #--FLOATING POINT FORMAT, THE TWO FMOVE'S       FMOVE.L FP <--> N
6074 #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
6075 #--(SIGN(INARG)*2**63   +       FP2) - SIGN(INARG)*2**63 WILL GIVE
6076 #--US THE DESIRED VALUE IN FLOATING POINT.
6077         mov.l           %a1,%d2
6078         swap            %d2
6079         and.l           &0x80000000,%d2
6080         or.l            &0x5F000000,%d2         # d2 = SIGN(INARG)*2**63 IN SGL
6081         mov.l           %d2,TWOTO63(%a6)
6082         fadd.s          TWOTO63(%a6),%fp2       # THE FRACTIONAL PART OF FP1 IS ROUNDED
6083         fsub.s          TWOTO63(%a6),%fp2       # fp2 = N
6084 #       fintrz.x        %fp2,%fp2
6085
6086 #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
6087         mov.l           %d1,%d2                 # d2 = L
6088
6089         add.l           &0x00003FFF,%d2         # BIASED EXP OF 2**L * (PI/2)
6090         mov.w           %d2,FP_SCR0_EX(%a6)
6091         mov.l           &0xC90FDAA2,FP_SCR0_HI(%a6)
6092         clr.l           FP_SCR0_LO(%a6)         # FP_SCR0 = 2**(L) * Piby2_1
6093
6094         add.l           &0x00003FDD,%d1
6095         mov.w           %d1,FP_SCR1_EX(%a6)
6096         mov.l           &0x85A308D3,FP_SCR1_HI(%a6)
6097         clr.l           FP_SCR1_LO(%a6)         # FP_SCR1 = 2**(L) * Piby2_2
6098
6099         mov.b           ENDFLAG(%a6),%d1
6100
6101 #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
6102 #--P2 = 2**(L) * Piby2_2
6103         fmov.x          %fp2,%fp4               # fp4 = N
6104         fmul.x          FP_SCR0(%a6),%fp4       # fp4 = W = N*P1
6105         fmov.x          %fp2,%fp5               # fp5 = N
6106         fmul.x          FP_SCR1(%a6),%fp5       # fp5 = w = N*P2
6107         fmov.x          %fp4,%fp3               # fp3 = W = N*P1
6108
6109 #--we want P+p = W+w  but  |p| <= half ulp of P
6110 #--Then, we need to compute  A := R-P   and  a := r-p
6111         fadd.x          %fp5,%fp3               # fp3 = P
6112         fsub.x          %fp3,%fp4               # fp4 = W-P
6113
6114         fsub.x          %fp3,%fp0               # fp0 = A := R - P
6115         fadd.x          %fp5,%fp4               # fp4 = p = (W-P)+w
6116
6117         fmov.x          %fp0,%fp3               # fp3 = A
6118         fsub.x          %fp4,%fp1               # fp1 = a := r - p
6119
6120 #--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but
6121 #--|r| <= half ulp of R.
6122         fadd.x          %fp1,%fp0               # fp0 = R := A+a
6123 #--No need to calculate r if this is the last loop
6124         cmp.b           %d1,&0
6125         bgt.w           RESTORE
6126
6127 #--Need to calculate r
6128         fsub.x          %fp0,%fp3               # fp3 = A-R
6129         fadd.x          %fp3,%fp1               # fp1 = r := (A-R)+a
6130         bra.w           LOOP
6131
6132 RESTORE:
6133         fmov.l          %fp2,INT(%a6)
6134         mov.l           (%sp)+,%d2              # restore d2
6135         fmovm.x         (%sp)+,&0x3c            # restore {fp2-fp5}
6136
6137         mov.l           INT(%a6),%d1
6138         ror.l           &1,%d1
6139
6140         bra.w           TANCONT
6141
6142 #########################################################################
6143 # satan():  computes the arctangent of a normalized number              #
6144 # satand(): computes the arctangent of a denormalized number            #
6145 #                                                                       #
6146 # INPUT *************************************************************** #
6147 #       a0 = pointer to extended precision input                        #
6148 #       d0 = round precision,mode                                       #
6149 #                                                                       #
6150 # OUTPUT ************************************************************** #
6151 #       fp0 = arctan(X)                                                 #
6152 #                                                                       #
6153 # ACCURACY and MONOTONICITY ******************************************* #
6154 #       The returned result is within 2 ulps in 64 significant bit,     #
6155 #       i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
6156 #       rounded to double precision. The result is provably monotonic   #
6157 #       in double precision.                                            #
6158 #                                                                       #
6159 # ALGORITHM *********************************************************** #
6160 #       Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5.               #
6161 #                                                                       #
6162 #       Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x.                    #
6163 #               Note that k = -4, -3,..., or 3.                         #
6164 #               Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5       #
6165 #               significant bits of X with a bit-1 attached at the 6-th #
6166 #               bit position. Define u to be u = (X-F) / (1 + X*F).     #
6167 #                                                                       #
6168 #       Step 3. Approximate arctan(u) by a polynomial poly.             #
6169 #                                                                       #
6170 #       Step 4. Return arctan(F) + poly, arctan(F) is fetched from a    #
6171 #               table of values calculated beforehand. Exit.            #
6172 #                                                                       #
6173 #       Step 5. If |X| >= 16, go to Step 7.                             #
6174 #                                                                       #
6175 #       Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.  #
6176 #                                                                       #
6177 #       Step 7. Define X' = -1/X. Approximate arctan(X') by an odd      #
6178 #               polynomial in X'.                                       #
6179 #               Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit.            #
6180 #                                                                       #
6181 #########################################################################
6182
6183 ATANA3: long            0xBFF6687E,0x314987D8
6184 ATANA2: long            0x4002AC69,0x34A26DB3
6185 ATANA1: long            0xBFC2476F,0x4E1DA28E
6186
6187 ATANB6: long            0x3FB34444,0x7F876989
6188 ATANB5: long            0xBFB744EE,0x7FAF45DB
6189 ATANB4: long            0x3FBC71C6,0x46940220
6190 ATANB3: long            0xBFC24924,0x921872F9
6191 ATANB2: long            0x3FC99999,0x99998FA9
6192 ATANB1: long            0xBFD55555,0x55555555
6193
6194 ATANC5: long            0xBFB70BF3,0x98539E6A
6195 ATANC4: long            0x3FBC7187,0x962D1D7D
6196 ATANC3: long            0xBFC24924,0x827107B8
6197 ATANC2: long            0x3FC99999,0x9996263E
6198 ATANC1: long            0xBFD55555,0x55555536
6199
6200 PPIBY2: long            0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
6201 NPIBY2: long            0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000
6202
6203 PTINY:  long            0x00010000,0x80000000,0x00000000,0x00000000
6204 NTINY:  long            0x80010000,0x80000000,0x00000000,0x00000000
6205
6206 ATANTBL:
6207         long            0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000
6208         long            0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000
6209         long            0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000
6210         long            0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000
6211         long            0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000
6212         long            0x3FFB0000,0xAB98E943,0x62765619,0x00000000
6213         long            0x3FFB0000,0xB389E502,0xF9C59862,0x00000000
6214         long            0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000
6215         long            0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000
6216         long            0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000
6217         long            0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000
6218         long            0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000
6219         long            0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000
6220         long            0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000
6221         long            0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000
6222         long            0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000
6223         long            0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000
6224         long            0x3FFC0000,0x8B232A08,0x304282D8,0x00000000
6225         long            0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000
6226         long            0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000
6227         long            0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000
6228         long            0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000
6229         long            0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000
6230         long            0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000
6231         long            0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000
6232         long            0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000
6233         long            0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000
6234         long            0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000
6235         long            0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000
6236         long            0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000
6237         long            0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000
6238         long            0x3FFC0000,0xF7170A28,0xECC06666,0x00000000
6239         long            0x3FFD0000,0x812FD288,0x332DAD32,0x00000000
6240         long            0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000
6241         long            0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000
6242         long            0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000
6243         long            0x3FFD0000,0x9EB68949,0x3889A227,0x00000000
6244         long            0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000
6245         long            0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000
6246         long            0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000
6247         long            0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000
6248         long            0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000
6249         long            0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000
6250         long            0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000
6251         long            0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000
6252         long            0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000
6253         long            0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000
6254         long            0x3FFD0000,0xEA2D764F,0x64315989,0x00000000
6255         long            0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000
6256         long            0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000
6257         long            0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000
6258         long            0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000
6259         long            0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000
6260         long            0x3FFE0000,0x97731420,0x365E538C,0x00000000
6261         long            0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000
6262         long            0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000
6263         long            0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000
6264         long            0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000
6265         long            0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000
6266         long            0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000
6267         long            0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000
6268         long            0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000
6269         long            0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000
6270         long            0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000
6271         long            0x3FFE0000,0xCD000549,0xADEC7159,0x00000000
6272         long            0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000
6273         long            0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000
6274         long            0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000
6275         long            0x3FFE0000,0xE8771129,0xC4353259,0x00000000
6276         long            0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000
6277         long            0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000
6278         long            0x3FFE0000,0xF919039D,0x758B8D41,0x00000000
6279         long            0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000
6280         long            0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000
6281         long            0x3FFF0000,0x83889E35,0x49D108E1,0x00000000
6282         long            0x3FFF0000,0x859CFA76,0x511D724B,0x00000000
6283         long            0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000
6284         long            0x3FFF0000,0x89732FD1,0x9557641B,0x00000000
6285         long            0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000
6286         long            0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000
6287         long            0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000
6288         long            0x3FFF0000,0x922DA7D7,0x91888487,0x00000000
6289         long            0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000
6290         long            0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000
6291         long            0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000
6292         long            0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000
6293         long            0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000
6294         long            0x3FFF0000,0x9F100575,0x006CC571,0x00000000
6295         long            0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000
6296         long            0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000
6297         long            0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000
6298         long            0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000
6299         long            0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000
6300         long            0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000
6301         long            0x3FFF0000,0xA83A5153,0x0956168F,0x00000000
6302         long            0x3FFF0000,0xA93A2007,0x7539546E,0x00000000
6303         long            0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000
6304         long            0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000
6305         long            0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000
6306         long            0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000
6307         long            0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000
6308         long            0x3FFF0000,0xB1846515,0x0F71496A,0x00000000
6309         long            0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000
6310         long            0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000
6311         long            0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000
6312         long            0x3FFF0000,0xB525529D,0x562246BD,0x00000000
6313         long            0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000
6314         long            0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000
6315         long            0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000
6316         long            0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000
6317         long            0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000
6318         long            0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000
6319         long            0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000
6320         long            0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000
6321         long            0x3FFF0000,0xBB471285,0x7637E17D,0x00000000
6322         long            0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000
6323         long            0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000
6324         long            0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000
6325         long            0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000
6326         long            0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000
6327         long            0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000
6328         long            0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000
6329         long            0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000
6330         long            0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000
6331         long            0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000
6332         long            0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000
6333         long            0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000
6334         long            0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000
6335
6336         set             X,FP_SCR0
6337         set             XDCARE,X+2
6338         set             XFRAC,X+4
6339         set             XFRACLO,X+8
6340
6341         set             ATANF,FP_SCR1
6342         set             ATANFHI,ATANF+4
6343         set             ATANFLO,ATANF+8
6344
6345         global          satan
6346 #--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
6347 satan:
6348         fmov.x          (%a0),%fp0              # LOAD INPUT
6349
6350         mov.l           (%a0),%d1
6351         mov.w           4(%a0),%d1
6352         fmov.x          %fp0,X(%a6)
6353         and.l           &0x7FFFFFFF,%d1
6354
6355         cmp.l           %d1,&0x3FFB8000         # |X| >= 1/16?
6356         bge.b           ATANOK1
6357         bra.w           ATANSM
6358
6359 ATANOK1:
6360         cmp.l           %d1,&0x4002FFFF         # |X| < 16 ?
6361         ble.b           ATANMAIN
6362         bra.w           ATANBIG
6363
6364 #--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
6365 #--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).
6366 #--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN
6367 #--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
6368 #--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS
6369 #--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR
6370 #--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO
6371 #--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE
6372 #--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL
6373 #--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE
6374 #--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION
6375 #--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION
6376 #--WILL INVOLVE A VERY LONG POLYNOMIAL.
6377
6378 #--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
6379 #--WE CHOSE F TO BE +-2^K * 1.BBBB1
6380 #--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE
6381 #--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE
6382 #--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS
6383 #-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).
6384
6385 ATANMAIN:
6386
6387         and.l           &0xF8000000,XFRAC(%a6)  # FIRST 5 BITS
6388         or.l            &0x04000000,XFRAC(%a6)  # SET 6-TH BIT TO 1
6389         mov.l           &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F
6390
6391         fmov.x          %fp0,%fp1               # FP1 IS X
6392         fmul.x          X(%a6),%fp1             # FP1 IS X*F, NOTE THAT X*F > 0
6393         fsub.x          X(%a6),%fp0             # FP0 IS X-F
6394         fadd.s          &0x3F800000,%fp1        # FP1 IS 1 + X*F
6395         fdiv.x          %fp1,%fp0               # FP0 IS U = (X-F)/(1+X*F)
6396
6397 #--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
6398 #--CREATE ATAN(F) AND STORE IT IN ATANF, AND
6399 #--SAVE REGISTERS FP2.
6400
6401         mov.l           %d2,-(%sp)              # SAVE d2 TEMPORARILY
6402         mov.l           %d1,%d2                 # THE EXP AND 16 BITS OF X
6403         and.l           &0x00007800,%d1         # 4 VARYING BITS OF F'S FRACTION
6404         and.l           &0x7FFF0000,%d2         # EXPONENT OF F
6405         sub.l           &0x3FFB0000,%d2         # K+4
6406         asr.l           &1,%d2
6407         add.l           %d2,%d1                 # THE 7 BITS IDENTIFYING F
6408         asr.l           &7,%d1                  # INDEX INTO TBL OF ATAN(|F|)
6409         lea             ATANTBL(%pc),%a1
6410         add.l           %d1,%a1                 # ADDRESS OF ATAN(|F|)
6411         mov.l           (%a1)+,ATANF(%a6)
6412         mov.l           (%a1)+,ATANFHI(%a6)
6413         mov.l           (%a1)+,ATANFLO(%a6)     # ATANF IS NOW ATAN(|F|)
6414         mov.l           X(%a6),%d1              # LOAD SIGN AND EXPO. AGAIN
6415         and.l           &0x80000000,%d1         # SIGN(F)
6416         or.l            %d1,ATANF(%a6)          # ATANF IS NOW SIGN(F)*ATAN(|F|)
6417         mov.l           (%sp)+,%d2              # RESTORE d2
6418
6419 #--THAT'S ALL I HAVE TO DO FOR NOW,
6420 #--BUT ALAS, THE DIVIDE IS STILL CRANKING!
6421
6422 #--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
6423 #--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U
6424 #--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.
6425 #--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))
6426 #--WHAT WE HAVE HERE IS MERELY  A1 = A3, A2 = A1/A3, A3 = A2/A3.
6427 #--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT
6428 #--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED
6429
6430         fmovm.x         &0x04,-(%sp)            # save fp2
6431
6432         fmov.x          %fp0,%fp1
6433         fmul.x          %fp1,%fp1
6434         fmov.d          ATANA3(%pc),%fp2
6435         fadd.x          %fp1,%fp2               # A3+V
6436         fmul.x          %fp1,%fp2               # V*(A3+V)
6437         fmul.x          %fp0,%fp1               # U*V
6438         fadd.d          ATANA2(%pc),%fp2        # A2+V*(A3+V)
6439         fmul.d          ATANA1(%pc),%fp1        # A1*U*V
6440         fmul.x          %fp2,%fp1               # A1*U*V*(A2+V*(A3+V))
6441         fadd.x          %fp1,%fp0               # ATAN(U), FP1 RELEASED
6442
6443         fmovm.x         (%sp)+,&0x20            # restore fp2
6444
6445         fmov.l          %d0,%fpcr               # restore users rnd mode,prec
6446         fadd.x          ATANF(%a6),%fp0         # ATAN(X)
6447         bra             t_inx2
6448
6449 ATANBORS:
6450 #--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.
6451 #--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.
6452         cmp.l           %d1,&0x3FFF8000
6453         bgt.w           ATANBIG                 # I.E. |X| >= 16
6454
6455 ATANSM:
6456 #--|X| <= 1/16
6457 #--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE
6458 #--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))
6459 #--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )
6460 #--WHERE Y = X*X, AND Z = Y*Y.
6461
6462         cmp.l           %d1,&0x3FD78000
6463         blt.w           ATANTINY
6464
6465 #--COMPUTE POLYNOMIAL
6466         fmovm.x         &0x0c,-(%sp)            # save fp2/fp3
6467
6468         fmul.x          %fp0,%fp0               # FPO IS Y = X*X
6469
6470         fmov.x          %fp0,%fp1
6471         fmul.x          %fp1,%fp1               # FP1 IS Z = Y*Y
6472
6473         fmov.d          ATANB6(%pc),%fp2
6474         fmov.d          ATANB5(%pc),%fp3
6475
6476         fmul.x          %fp1,%fp2               # Z*B6
6477         fmul.x          %fp1,%fp3               # Z*B5
6478
6479         fadd.d          ATANB4(%pc),%fp2        # B4+Z*B6
6480         fadd.d          ATANB3(%pc),%fp3        # B3+Z*B5
6481
6482         fmul.x          %fp1,%fp2               # Z*(B4+Z*B6)
6483         fmul.x          %fp3,%fp1               # Z*(B3+Z*B5)
6484
6485         fadd.d          ATANB2(%pc),%fp2        # B2+Z*(B4+Z*B6)
6486         fadd.d          ATANB1(%pc),%fp1        # B1+Z*(B3+Z*B5)
6487
6488         fmul.x          %fp0,%fp2               # Y*(B2+Z*(B4+Z*B6))
6489         fmul.x          X(%a6),%fp0             # X*Y
6490
6491         fadd.x          %fp2,%fp1               # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]
6492
6493         fmul.x          %fp1,%fp0               # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])
6494
6495         fmovm.x         (%sp)+,&0x30            # restore fp2/fp3
6496
6497         fmov.l          %d0,%fpcr               # restore users rnd mode,prec
6498         fadd.x          X(%a6),%fp0
6499         bra             t_inx2
6500
6501 ATANTINY:
6502 #--|X| < 2^(-40), ATAN(X) = X
6503
6504         fmov.l          %d0,%fpcr               # restore users rnd mode,prec
6505         mov.b           &FMOV_OP,%d1            # last inst is MOVE
6506         fmov.x          X(%a6),%fp0             # last inst - possible exception set
6507
6508         bra             t_catch
6509
6510 ATANBIG:
6511 #--IF |X| > 2^(100), RETURN     SIGN(X)*(PI/2 - TINY). OTHERWISE,
6512 #--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
6513         cmp.l           %d1,&0x40638000
6514         bgt.w           ATANHUGE
6515
6516 #--APPROXIMATE ATAN(-1/X) BY
6517 #--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'
6518 #--THIS CAN BE RE-WRITTEN AS
6519 #--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.
6520
6521         fmovm.x         &0x0c,-(%sp)            # save fp2/fp3
6522
6523         fmov.s          &0xBF800000,%fp1        # LOAD -1
6524         fdiv.x          %fp0,%fp1               # FP1 IS -1/X
6525
6526 #--DIVIDE IS STILL CRANKING
6527
6528         fmov.x          %fp1,%fp0               # FP0 IS X'
6529         fmul.x          %fp0,%fp0               # FP0 IS Y = X'*X'
6530         fmov.x          %fp1,X(%a6)             # X IS REALLY X'
6531
6532         fmov.x          %fp0,%fp1
6533         fmul.x          %fp1,%fp1               # FP1 IS Z = Y*Y
6534
6535         fmov.d          ATANC5(%pc),%fp3
6536         fmov.d          ATANC4(%pc),%fp2
6537
6538         fmul.x          %fp1,%fp3               # Z*C5
6539         fmul.x          %fp1,%fp2               # Z*B4
6540
6541         fadd.d          ATANC3(%pc),%fp3        # C3+Z*C5
6542         fadd.d          ATANC2(%pc),%fp2        # C2+Z*C4
6543
6544         fmul.x          %fp3,%fp1               # Z*(C3+Z*C5), FP3 RELEASED
6545         fmul.x          %fp0,%fp2               # Y*(C2+Z*C4)
6546
6547         fadd.d          ATANC1(%pc),%fp1        # C1+Z*(C3+Z*C5)
6548         fmul.x          X(%a6),%fp0             # X'*Y
6549
6550         fadd.x          %fp2,%fp1               # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]
6551
6552         fmul.x          %fp1,%fp0               # X'*Y*([B1+Z*(B3+Z*B5)]
6553 #                                       ...     +[Y*(B2+Z*(B4+Z*B6))])
6554         fadd.x          X(%a6),%fp0
6555
6556         fmovm.x         (%sp)+,&0x30            # restore fp2/fp3
6557
6558         fmov.l          %d0,%fpcr               # restore users rnd mode,prec
6559         tst.b           (%a0)
6560         bpl.b           pos_big
6561
6562 neg_big:
6563         fadd.x          NPIBY2(%pc),%fp0
6564         bra             t_minx2
6565
6566 pos_big:
6567         fadd.x          PPIBY2(%pc),%fp0
6568         bra             t_pinx2
6569
6570 ATANHUGE:
6571 #--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY
6572         tst.b           (%a0)
6573         bpl.b           pos_huge
6574
6575 neg_huge:
6576         fmov.x          NPIBY2(%pc),%fp0
6577         fmov.l          %d0,%fpcr
6578         fadd.x          PTINY(%pc),%fp0
6579         bra             t_minx2
6580
6581 pos_huge:
6582         fmov.x          PPIBY2(%pc),%fp0
6583         fmov.l          %d0,%fpcr
6584         fadd.x          NTINY(%pc),%fp0
6585         bra             t_pinx2
6586
6587         global          satand
6588 #--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT
6589 satand:
6590         bra             t_extdnrm
6591
6592 #########################################################################
6593 # sasin():  computes the inverse sine of a normalized input             #
6594 # sasind(): computes the inverse sine of a denormalized input           #
6595 #                                                                       #
6596 # INPUT *************************************************************** #
6597 #       a0 = pointer to extended precision input                        #
6598 #       d0 = round precision,mode                                       #
6599 #                                                                       #
6600 # OUTPUT ************************************************************** #
6601 #       fp0 = arcsin(X)                                                 #
6602 #                                                                       #
6603 # ACCURACY and MONOTONICITY ******************************************* #
6604 #       The returned result is within 3 ulps in 64 significant bit,     #
6605 #       i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
6606 #       rounded to double precision. The result is provably monotonic   #
6607 #       in double precision.                                            #
6608 #                                                                       #
6609 # ALGORITHM *********************************************************** #
6610 #                                                                       #
6611 #       ASIN                                                            #
6612 #       1. If |X| >= 1, go to 3.                                        #
6613 #                                                                       #
6614 #       2. (|X| < 1) Calculate asin(X) by                               #
6615 #               z := sqrt( [1-X][1+X] )                                 #
6616 #               asin(X) = atan( x / z ).                                #
6617 #               Exit.                                                   #
6618 #                                                                       #
6619 #       3. If |X| > 1, go to 5.                                         #
6620 #                                                                       #
6621 #       4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.#
6622 #                                                                       #
6623 #       5. (|X| > 1) Generate an invalid operation by 0 * infinity.     #
6624 #               Exit.                                                   #
6625 #                                                                       #
6626 #########################################################################
6627
6628         global          sasin
6629 sasin:
6630         fmov.x          (%a0),%fp0              # LOAD INPUT
6631
6632         mov.l           (%a0),%d1
6633         mov.w           4(%a0),%d1
6634         and.l           &0x7FFFFFFF,%d1
6635         cmp.l           %d1,&0x3FFF8000
6636         bge.b           ASINBIG
6637
6638 # This catch is added here for the '060 QSP. Originally, the call to
6639 # satan() would handle this case by causing the exception which would
6640 # not be caught until gen_except(). Now, with the exceptions being
6641 # detected inside of satan(), the exception would have been handled there
6642 # instead of inside sasin() as expected.
6643         cmp.l           %d1,&0x3FD78000
6644         blt.w           ASINTINY
6645
6646 #--THIS IS THE USUAL CASE, |X| < 1
6647 #--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) )
6648
6649 ASINMAIN:
6650         fmov.s          &0x3F800000,%fp1
6651         fsub.x          %fp0,%fp1               # 1-X
6652         fmovm.x         &0x4,-(%sp)             #  {fp2}
6653         fmov.s          &0x3F800000,%fp2
6654         fadd.x          %fp0,%fp2               # 1+X
6655         fmul.x          %fp2,%fp1               # (1+X)(1-X)
6656         fmovm.x         (%sp)+,&0x20            #  {fp2}
6657         fsqrt.x         %fp1                    # SQRT([1-X][1+X])
6658         fdiv.x          %fp1,%fp0               # X/SQRT([1-X][1+X])
6659         fmovm.x         &0x01,-(%sp)            # save X/SQRT(...)
6660         lea             (%sp),%a0               # pass ptr to X/SQRT(...)
6661         bsr             satan
6662         add.l           &0xc,%sp                # clear X/SQRT(...) from stack
6663         bra             t_inx2
6664
6665 ASINBIG:
6666         fabs.x          %fp0                    # |X|
6667         fcmp.s          %fp0,&0x3F800000
6668         fbgt            t_operr                 # cause an operr exception
6669
6670 #--|X| = 1, ASIN(X) = +- PI/2.
6671 ASINONE:
6672         fmov.x          PIBY2(%pc),%fp0
6673         mov.l           (%a0),%d1
6674         and.l           &0x80000000,%d1         # SIGN BIT OF X
6675         or.l            &0x3F800000,%d1         # +-1 IN SGL FORMAT
6676         mov.l           %d1,-(%sp)              # push SIGN(X) IN SGL-FMT
6677         fmov.l          %d0,%fpcr
6678         fmul.s          (%sp)+,%fp0
6679         bra             t_inx2
6680
6681 #--|X| < 2^(-40), ATAN(X) = X
6682 ASINTINY:
6683         fmov.l          %d0,%fpcr               # restore users rnd mode,prec
6684         mov.b           &FMOV_OP,%d1            # last inst is MOVE
6685         fmov.x          (%a0),%fp0              # last inst - possible exception
6686         bra             t_catch
6687
6688         global          sasind
6689 #--ASIN(X) = X FOR DENORMALIZED X
6690 sasind:
6691         bra             t_extdnrm
6692
6693 #########################################################################
6694 # sacos():  computes the inverse cosine of a normalized input           #
6695 # sacosd(): computes the inverse cosine of a denormalized input         #
6696 #                                                                       #
6697 # INPUT *************************************************************** #
6698 #       a0 = pointer to extended precision input                        #
6699 #       d0 = round precision,mode                                       #
6700 #                                                                       #
6701 # OUTPUT ************************************************************** #
6702 #       fp0 = arccos(X)                                                 #
6703 #                                                                       #
6704 # ACCURACY and MONOTONICITY ******************************************* #
6705 #       The returned result is within 3 ulps in 64 significant bit,     #
6706 #       i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
6707 #       rounded to double precision. The result is provably monotonic   #
6708 #       in double precision.                                            #
6709 #                                                                       #
6710 # ALGORITHM *********************************************************** #
6711 #                                                                       #
6712 #       ACOS                                                            #
6713 #       1. If |X| >= 1, go to 3.                                        #
6714 #                                                                       #
6715 #       2. (|X| < 1) Calculate acos(X) by                               #
6716 #               z := (1-X) / (1+X)                                      #
6717 #               acos(X) = 2 * atan( sqrt(z) ).                          #
6718 #               Exit.                                                   #
6719 #                                                                       #
6720 #       3. If |X| > 1, go to 5.                                         #
6721 #                                                                       #
6722 #       4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit.    #
6723 #                                                                       #
6724 #       5. (|X| > 1) Generate an invalid operation by 0 * infinity.     #
6725 #               Exit.                                                   #
6726 #                                                                       #
6727 #########################################################################
6728
6729         global          sacos
6730 sacos:
6731         fmov.x          (%a0),%fp0              # LOAD INPUT
6732
6733         mov.l           (%a0),%d1               # pack exp w/ upper 16 fraction
6734         mov.w           4(%a0),%d1
6735         and.l           &0x7FFFFFFF,%d1
6736         cmp.l           %d1,&0x3FFF8000
6737         bge.b           ACOSBIG
6738
6739 #--THIS IS THE USUAL CASE, |X| < 1
6740 #--ACOS(X) = 2 * ATAN(  SQRT( (1-X)/(1+X) ) )
6741
6742 ACOSMAIN:
6743         fmov.s          &0x3F800000,%fp1
6744         fadd.x          %fp0,%fp1               # 1+X
6745         fneg.x          %fp0                    # -X
6746         fadd.s          &0x3F800000,%fp0        # 1-X
6747         fdiv.x          %fp1,%fp0               # (1-X)/(1+X)
6748         fsqrt.x         %fp0                    # SQRT((1-X)/(1+X))
6749         mov.l           %d0,-(%sp)              # save original users fpcr
6750         clr.l           %d0
6751         fmovm.x         &0x01,-(%sp)            # save SQRT(...) to stack
6752         lea             (%sp),%a0               # pass ptr to sqrt
6753         bsr             satan                   # ATAN(SQRT([1-X]/[1+X]))
6754         add.l           &0xc,%sp                # clear SQRT(...) from stack
6755
6756         fmov.l          (%sp)+,%fpcr            # restore users round prec,mode
6757         fadd.x          %fp0,%fp0               # 2 * ATAN( STUFF )
6758         bra             t_pinx2
6759
6760 ACOSBIG:
6761         fabs.x          %fp0
6762         fcmp.s          %fp0,&0x3F800000
6763         fbgt            t_operr                 # cause an operr exception
6764
6765 #--|X| = 1, ACOS(X) = 0 OR PI
6766         tst.b           (%a0)                   # is X positive or negative?
6767         bpl.b           ACOSP1
6768
6769 #--X = -1
6770 #Returns PI and inexact exception
6771 ACOSM1:
6772         fmov.x          PI(%pc),%fp0            # load PI
6773         fmov.l          %d0,%fpcr               # load round mode,prec
6774         fadd.s          &0x00800000,%fp0        # add a small value
6775         bra             t_pinx2
6776
6777 ACOSP1:
6778         bra             ld_pzero                # answer is positive zero
6779
6780         global          sacosd
6781 #--ACOS(X) = PI/2 FOR DENORMALIZED X
6782 sacosd:
6783         fmov.l          %d0,%fpcr               # load user's rnd mode/prec
6784         fmov.x          PIBY2(%pc),%fp0
6785         bra             t_pinx2
6786
6787 #########################################################################
6788 # setox():    computes the exponential for a normalized input           #
6789 # setoxd():   computes the exponential for a denormalized input         #
6790 # setoxm1():  computes the exponential minus 1 for a normalized input   #
6791 # setoxm1d(): computes the exponential minus 1 for a denormalized input #
6792 #                                                                       #
6793 # INPUT *************************************************************** #
6794 #       a0 = pointer to extended precision input                        #
6795 #       d0 = round precision,mode                                       #
6796 #                                                                       #
6797 # OUTPUT ************************************************************** #
6798 #       fp0 = exp(X) or exp(X)-1                                        #
6799 #                                                                       #
6800 # ACCURACY and MONOTONICITY ******************************************* #
6801 #       The returned result is within 0.85 ulps in 64 significant bit,  #
6802 #       i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
6803 #       rounded to double precision. The result is provably monotonic   #
6804 #       in double precision.                                            #
6805 #                                                                       #
6806 # ALGORITHM and IMPLEMENTATION **************************************** #
6807 #                                                                       #
6808 #       setoxd                                                          #
6809 #       ------                                                          #
6810 #       Step 1. Set ans := 1.0                                          #
6811 #                                                                       #
6812 #       Step 2. Return  ans := ans + sign(X)*2^(-126). Exit.            #
6813 #       Notes:  This will always generate one exception -- inexact.     #
6814 #                                                                       #
6815 #                                                                       #
6816 #       setox                                                           #
6817 #       -----                                                           #
6818 #                                                                       #
6819 #       Step 1. Filter out extreme cases of input argument.             #
6820 #               1.1     If |X| >= 2^(-65), go to Step 1.3.              #
6821 #               1.2     Go to Step 7.                                   #
6822 #               1.3     If |X| < 16380 log(2), go to Step 2.            #
6823 #               1.4     Go to Step 8.                                   #
6824 #       Notes:  The usual case should take the branches 1.1 -> 1.3 -> 2.#
6825 #               To avoid the use of floating-point comparisons, a       #
6826 #               compact representation of |X| is used. This format is a #
6827 #               32-bit integer, the upper (more significant) 16 bits    #
6828 #               are the sign and biased exponent field of |X|; the      #
6829 #               lower 16 bits are the 16 most significant fraction      #
6830 #               (including the explicit bit) bits of |X|. Consequently, #
6831 #               the comparisons in Steps 1.1 and 1.3 can be performed   #
6832 #               by integer comparison. Note also that the constant      #
6833 #               16380 log(2) used in Step 1.3 is also in the compact    #
6834 #               form. Thus taking the branch to Step 2 guarantees       #
6835 #               |X| < 16380 log(2). There is no harm to have a small    #
6836 #               number of cases where |X| is less than, but close to,   #
6837 #               16380 log(2) and the branch to Step 9 is taken.         #
6838 #                                                                       #
6839 #       Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).      #
6840 #               2.1     Set AdjFlag := 0 (indicates the branch 1.3 -> 2 #
6841 #                       was taken)                                      #
6842 #               2.2     N := round-to-nearest-integer( X * 64/log2 ).   #
6843 #               2.3     Calculate       J = N mod 64; so J = 0,1,2,..., #
6844 #                       or 63.                                          #
6845 #               2.4     Calculate       M = (N - J)/64; so N = 64M + J. #
6846 #               2.5     Calculate the address of the stored value of    #
6847 #                       2^(J/64).                                       #
6848 #               2.6     Create the value Scale = 2^M.                   #
6849 #       Notes:  The calculation in 2.2 is really performed by           #
6850 #                       Z := X * constant                               #
6851 #                       N := round-to-nearest-integer(Z)                #
6852 #               where                                                   #
6853 #                       constant := single-precision( 64/log 2 ).       #
6854 #                                                                       #
6855 #               Using a single-precision constant avoids memory         #
6856 #               access. Another effect of using a single-precision      #
6857 #               "constant" is that the calculated value Z is            #
6858 #                                                                       #
6859 #                       Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).      #
6860 #                                                                       #
6861 #               This error has to be considered later in Steps 3 and 4. #
6862 #                                                                       #
6863 #       Step 3. Calculate X - N*log2/64.                                #
6864 #               3.1     R := X + N*L1,                                  #
6865 #                               where L1 := single-precision(-log2/64). #
6866 #               3.2     R := R + N*L2,                                  #
6867 #                               L2 := extended-precision(-log2/64 - L1).#
6868 #       Notes:  a) The way L1 and L2 are chosen ensures L1+L2           #
6869 #               approximate the value -log2/64 to 88 bits of accuracy.  #
6870 #               b) N*L1 is exact because N is no longer than 22 bits    #
6871 #               and L1 is no longer than 24 bits.                       #
6872 #               c) The calculation X+N*L1 is also exact due to          #
6873 #               cancellation. Thus, R is practically X+N(L1+L2) to full #
6874 #               64 bits.                                                #
6875 #               d) It is important to estimate how large can |R| be     #
6876 #               after Step 3.2.                                         #
6877 #                                                                       #
6878 #               N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)     #
6879 #               X*64/log2 (1+eps)       =       N + f,  |f| <= 0.5      #
6880 #               X*64/log2 - N   =       f - eps*X 64/log2               #
6881 #               X - N*log2/64   =       f*log2/64 - eps*X               #
6882 #                                                                       #
6883 #                                                                       #
6884 #               Now |X| <= 16446 log2, thus                             #
6885 #                                                                       #
6886 #                       |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 #
6887 #                                       <= 0.57 log2/64.                #
6888 #                This bound will be used in Step 4.                     #
6889 #                                                                       #
6890 #       Step 4. Approximate exp(R)-1 by a polynomial                    #
6891 #               p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))      #
6892 #       Notes:  a) In order to reduce memory access, the coefficients   #
6893 #               are made as "short" as possible: A1 (which is 1/2), A4  #
6894 #               and A5 are single precision; A2 and A3 are double       #
6895 #               precision.                                              #
6896 #               b) Even with the restrictions above,                    #
6897 #                  |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.  #
6898 #               Note that 0.0062 is slightly bigger than 0.57 log2/64.  #
6899 #               c) To fully utilize the pipeline, p is separated into   #
6900 #               two independent pieces of roughly equal complexities    #
6901 #                       p = [ R + R*S*(A2 + S*A4) ]     +               #
6902 #                               [ S*(A1 + S*(A3 + S*A5)) ]              #
6903 #               where S = R*R.                                          #
6904 #                                                                       #
6905 #       Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by             #
6906 #                               ans := T + ( T*p + t)                   #
6907 #               where T and t are the stored values for 2^(J/64).       #
6908 #       Notes:  2^(J/64) is stored as T and t where T+t approximates    #
6909 #               2^(J/64) to roughly 85 bits; T is in extended precision #
6910 #               and t is in single precision. Note also that T is       #
6911 #               rounded to 62 bits so that the last two bits of T are   #
6912 #               zero. The reason for such a special form is that T-1,   #
6913 #               T-2, and T-8 will all be exact --- a property that will #
6914 #               give much more accurate computation of the function     #
6915 #               EXPM1.                                                  #
6916 #                                                                       #
6917 #       Step 6. Reconstruction of exp(X)                                #
6918 #                       exp(X) = 2^M * 2^(J/64) * exp(R).               #
6919 #               6.1     If AdjFlag = 0, go to 6.3                       #
6920 #               6.2     ans := ans * AdjScale                           #
6921 #               6.3     Restore the user FPCR                           #
6922 #               6.4     Return ans := ans * Scale. Exit.                #
6923 #       Notes:  If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,       #
6924 #               |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will    #
6925 #               neither overflow nor underflow. If AdjFlag = 1, that    #
6926 #               means that                                              #
6927 #                       X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. #
6928 #               Hence, exp(X) may overflow or underflow or neither.     #
6929 #               When that is the case, AdjScale = 2^(M1) where M1 is    #
6930 #               approximately M. Thus 6.2 will never cause              #
6931 #               over/underflow. Possible exception in 6.4 is overflow   #
6932 #               or underflow. The inexact exception is not generated in #
6933 #               6.4. Although one can argue that the inexact flag       #
6934 #               should always be raised, to simulate that exception     #
6935 #               cost to much than the flag is worth in practical uses.  #
6936 #                                                                       #
6937 #       Step 7. Return 1 + X.                                           #
6938 #               7.1     ans := X                                        #
6939 #               7.2     Restore user FPCR.                              #
6940 #               7.3     Return ans := 1 + ans. Exit                     #
6941 #       Notes:  For non-zero X, the inexact exception will always be    #
6942 #               raised by 7.3. That is the only exception raised by 7.3.#
6943 #               Note also that we use the FMOVEM instruction to move X  #
6944 #               in Step 7.1 to avoid unnecessary trapping. (Although    #
6945 #               the FMOVEM may not seem relevant since X is normalized, #
6946 #               the precaution will be useful in the library version of #
6947 #               this code where the separate entry for denormalized     #
6948 #               inputs will be done away with.)                         #
6949 #                                                                       #
6950 #       Step 8. Handle exp(X) where |X| >= 16380log2.                   #
6951 #               8.1     If |X| > 16480 log2, go to Step 9.              #
6952 #               (mimic 2.2 - 2.6)                                       #
6953 #               8.2     N := round-to-integer( X * 64/log2 )            #
6954 #               8.3     Calculate J = N mod 64, J = 0,1,...,63          #
6955 #               8.4     K := (N-J)/64, M1 := truncate(K/2), M = K-M1,   #
6956 #                       AdjFlag := 1.                                   #
6957 #               8.5     Calculate the address of the stored value       #
6958 #                       2^(J/64).                                       #
6959 #               8.6     Create the values Scale = 2^M, AdjScale = 2^M1. #
6960 #               8.7     Go to Step 3.                                   #
6961 #       Notes:  Refer to notes for 2.2 - 2.6.                           #
6962 #                                                                       #
6963 #       Step 9. Handle exp(X), |X| > 16480 log2.                        #
6964 #               9.1     If X < 0, go to 9.3                             #
6965 #               9.2     ans := Huge, go to 9.4                          #
6966 #               9.3     ans := Tiny.                                    #
6967 #               9.4     Restore user FPCR.                              #
6968 #               9.5     Return ans := ans * ans. Exit.                  #
6969 #       Notes:  Exp(X) will surely overflow or underflow, depending on  #
6970 #               X's sign. "Huge" and "Tiny" are respectively large/tiny #
6971 #               extended-precision numbers whose square over/underflow  #
6972 #               with an inexact result. Thus, 9.5 always raises the     #
6973 #               inexact together with either overflow or underflow.     #
6974 #                                                                       #
6975 #       setoxm1d                                                        #
6976 #       --------                                                        #
6977 #                                                                       #
6978 #       Step 1. Set ans := 0                                            #
6979 #                                                                       #
6980 #       Step 2. Return  ans := X + ans. Exit.                           #
6981 #       Notes:  This will return X with the appropriate rounding        #
6982 #                precision prescribed by the user FPCR.                 #
6983 #                                                                       #
6984 #       setoxm1                                                         #
6985 #       -------                                                         #
6986 #                                                                       #
6987 #       Step 1. Check |X|                                               #
6988 #               1.1     If |X| >= 1/4, go to Step 1.3.                  #
6989 #               1.2     Go to Step 7.                                   #
6990 #               1.3     If |X| < 70 log(2), go to Step 2.               #
6991 #               1.4     Go to Step 10.                                  #
6992 #       Notes:  The usual case should take the branches 1.1 -> 1.3 -> 2.#
6993 #               However, it is conceivable |X| can be small very often  #
6994 #               because EXPM1 is intended to evaluate exp(X)-1          #
6995 #               accurately when |X| is small. For further details on    #
6996 #               the comparisons, see the notes on Step 1 of setox.      #
6997 #                                                                       #
6998 #       Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).      #
6999 #               2.1     N := round-to-nearest-integer( X * 64/log2 ).   #
7000 #               2.2     Calculate       J = N mod 64; so J = 0,1,2,..., #
7001 #                       or 63.                                          #
7002 #               2.3     Calculate       M = (N - J)/64; so N = 64M + J. #
7003 #               2.4     Calculate the address of the stored value of    #
7004 #                       2^(J/64).                                       #
7005 #               2.5     Create the values Sc = 2^M and                  #
7006 #                       OnebySc := -2^(-M).                             #
7007 #       Notes:  See the notes on Step 2 of setox.                       #
7008 #                                                                       #
7009 #       Step 3. Calculate X - N*log2/64.                                #
7010 #               3.1     R := X + N*L1,                                  #
7011 #                               where L1 := single-precision(-log2/64). #
7012 #               3.2     R := R + N*L2,                                  #
7013 #                               L2 := extended-precision(-log2/64 - L1).#
7014 #       Notes:  Applying the analysis of Step 3 of setox in this case   #
7015 #               shows that |R| <= 0.0055 (note that |X| <= 70 log2 in   #
7016 #               this case).                                             #
7017 #                                                                       #
7018 #       Step 4. Approximate exp(R)-1 by a polynomial                    #
7019 #                       p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) #
7020 #       Notes:  a) In order to reduce memory access, the coefficients   #
7021 #               are made as "short" as possible: A1 (which is 1/2), A5  #
7022 #               and A6 are single precision; A2, A3 and A4 are double   #
7023 #               precision.                                              #
7024 #               b) Even with the restriction above,                     #
7025 #                       |p - (exp(R)-1)| <      |R| * 2^(-72.7)         #
7026 #               for all |R| <= 0.0055.                                  #
7027 #               c) To fully utilize the pipeline, p is separated into   #
7028 #               two independent pieces of roughly equal complexity      #
7029 #                       p = [ R*S*(A2 + S*(A4 + S*A6)) ]        +       #
7030 #                               [ R + S*(A1 + S*(A3 + S*A5)) ]          #
7031 #               where S = R*R.                                          #
7032 #                                                                       #
7033 #       Step 5. Compute 2^(J/64)*p by                                   #
7034 #                               p := T*p                                #
7035 #               where T and t are the stored values for 2^(J/64).       #
7036 #       Notes:  2^(J/64) is stored as T and t where T+t approximates    #
7037 #               2^(J/64) to roughly 85 bits; T is in extended precision #
7038 #               and t is in single precision. Note also that T is       #
7039 #               rounded to 62 bits so that the last two bits of T are   #
7040 #               zero. The reason for such a special form is that T-1,   #
7041 #               T-2, and T-8 will all be exact --- a property that will #
7042 #               be exploited in Step 6 below. The total relative error  #
7043 #               in p is no bigger than 2^(-67.7) compared to the final  #
7044 #               result.                                                 #
7045 #                                                                       #
7046 #       Step 6. Reconstruction of exp(X)-1                              #
7047 #                       exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).     #
7048 #               6.1     If M <= 63, go to Step 6.3.                     #
7049 #               6.2     ans := T + (p + (t + OnebySc)). Go to 6.6       #
7050 #               6.3     If M >= -3, go to 6.5.                          #
7051 #               6.4     ans := (T + (p + t)) + OnebySc. Go to 6.6       #
7052 #               6.5     ans := (T + OnebySc) + (p + t).                 #
7053 #               6.6     Restore user FPCR.                              #
7054 #               6.7     Return ans := Sc * ans. Exit.                   #
7055 #       Notes:  The various arrangements of the expressions give        #
7056 #               accurate evaluations.                                   #
7057 #                                                                       #
7058 #       Step 7. exp(X)-1 for |X| < 1/4.                                 #
7059 #               7.1     If |X| >= 2^(-65), go to Step 9.                #
7060 #               7.2     Go to Step 8.                                   #
7061 #                                                                       #
7062 #       Step 8. Calculate exp(X)-1, |X| < 2^(-65).                      #
7063 #               8.1     If |X| < 2^(-16312), goto 8.3                   #
7064 #               8.2     Restore FPCR; return ans := X - 2^(-16382).     #
7065 #                       Exit.                                           #
7066 #               8.3     X := X * 2^(140).                               #
7067 #               8.4     Restore FPCR; ans := ans - 2^(-16382).          #
7068 #                Return ans := ans*2^(140). Exit                        #
7069 #       Notes:  The idea is to return "X - tiny" under the user         #
7070 #               precision and rounding modes. To avoid unnecessary      #
7071 #               inefficiency, we stay away from denormalized numbers    #
7072 #               the best we can. For |X| >= 2^(-16312), the             #
7073 #               straightforward 8.2 generates the inexact exception as  #
7074 #               the case warrants.                                      #
7075 #                                                                       #
7076 #       Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial          #
7077 #                       p = X + X*X*(B1 + X*(B2 + ... + X*B12))         #
7078 #       Notes:  a) In order to reduce memory access, the coefficients   #
7079 #               are made as "short" as possible: B1 (which is 1/2), B9  #
7080 #               to B12 are single precision; B3 to B8 are double        #
7081 #               precision; and B2 is double extended.                   #
7082 #               b) Even with the restriction above,                     #
7083 #                       |p - (exp(X)-1)| < |X| 2^(-70.6)                #
7084 #               for all |X| <= 0.251.                                   #
7085 #               Note that 0.251 is slightly bigger than 1/4.            #
7086 #               c) To fully preserve accuracy, the polynomial is        #
7087 #               computed as                                             #
7088 #                       X + ( S*B1 +    Q ) where S = X*X and           #
7089 #                       Q       =       X*S*(B2 + X*(B3 + ... + X*B12)) #
7090 #               d) To fully utilize the pipeline, Q is separated into   #
7091 #               two independent pieces of roughly equal complexity      #
7092 #                       Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +       #
7093 #                               [ S*S*(B3 + S*(B5 + ... + S*B11)) ]     #
7094 #                                                                       #
7095 #       Step 10. Calculate exp(X)-1 for |X| >= 70 log 2.                #
7096 #               10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all       #
7097 #               practical purposes. Therefore, go to Step 1 of setox.   #
7098 #               10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical #
7099 #               purposes.                                               #
7100 #               ans := -1                                               #
7101 #               Restore user FPCR                                       #
7102 #               Return ans := ans + 2^(-126). Exit.                     #
7103 #       Notes:  10.2 will always create an inexact and return -1 + tiny #
7104 #               in the user rounding precision and mode.                #
7105 #                                                                       #
7106 #########################################################################
7107
7108 L2:     long            0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000
7109
7110 EEXPA3: long            0x3FA55555,0x55554CC1
7111 EEXPA2: long            0x3FC55555,0x55554A54
7112
7113 EM1A4:  long            0x3F811111,0x11174385
7114 EM1A3:  long            0x3FA55555,0x55554F5A
7115
7116 EM1A2:  long            0x3FC55555,0x55555555,0x00000000,0x00000000
7117
7118 EM1B8:  long            0x3EC71DE3,0xA5774682
7119 EM1B7:  long            0x3EFA01A0,0x19D7CB68
7120
7121 EM1B6:  long            0x3F2A01A0,0x1A019DF3
7122 EM1B5:  long            0x3F56C16C,0x16C170E2
7123
7124 EM1B4:  long            0x3F811111,0x11111111
7125 EM1B3:  long            0x3FA55555,0x55555555
7126
7127 EM1B2:  long            0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB
7128         long            0x00000000
7129
7130 TWO140: long            0x48B00000,0x00000000
7131 TWON140:
7132         long            0x37300000,0x00000000
7133
7134 EEXPTBL:
7135         long            0x3FFF0000,0x80000000,0x00000000,0x00000000
7136         long            0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B
7137         long            0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9
7138         long            0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369
7139         long            0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C
7140         long            0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F
7141         long            0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729
7142         long            0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF
7143         long            0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF
7144         long            0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA
7145         long            0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051
7146         long            0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029
7147         long            0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494
7148         long            0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0
7149         long            0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D
7150         long            0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537
7151         long            0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD
7152         long            0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087
7153         long            0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818
7154         long            0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D
7155         long            0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890
7156         long            0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C
7157         long            0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05
7158         long            0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126
7159         long            0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140
7160         long            0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA
7161         long            0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A
7162         long            0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC
7163         long            0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC
7164         long            0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610
7165         long            0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90
7166         long            0x3FFF0000,0xB311C412,0xA9112488,0x201F678A
7167         long            0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13
7168         long            0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30
7169         long            0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC
7170         long            0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6
7171         long            0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70
7172         long            0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518
7173         long            0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41
7174         long            0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B
7175         long            0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568
7176         long            0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E
7177         long            0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03
7178         long            0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D
7179         long            0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4
7180         long            0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C
7181         long            0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9
7182         long            0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21
7183         long            0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F
7184         long            0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F
7185         long            0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207
7186         long            0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175
7187         long            0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B
7188         long            0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5
7189         long            0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A
7190         long            0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22
7191         long            0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945
7192         long            0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B
7193         long            0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3
7194         long            0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05
7195         long            0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19
7196         long            0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5
7197         long            0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22
7198         long            0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A
7199
7200         set             ADJFLAG,L_SCR2
7201         set             SCALE,FP_SCR0
7202         set             ADJSCALE,FP_SCR1
7203         set             SC,FP_SCR0
7204         set             ONEBYSC,FP_SCR1
7205
7206         global          setox
7207 setox:
7208 #--entry point for EXP(X), here X is finite, non-zero, and not NaN's
7209
7210 #--Step 1.
7211         mov.l           (%a0),%d1               # load part of input X
7212         and.l           &0x7FFF0000,%d1         # biased expo. of X
7213         cmp.l           %d1,&0x3FBE0000         # 2^(-65)
7214         bge.b           EXPC1                   # normal case
7215         bra             EXPSM
7216
7217 EXPC1:
7218 #--The case |X| >= 2^(-65)
7219         mov.w           4(%a0),%d1              # expo. and partial sig. of |X|
7220         cmp.l           %d1,&0x400CB167         # 16380 log2 trunc. 16 bits
7221         blt.b           EXPMAIN                 # normal case
7222         bra             EEXPBIG
7223
7224 EXPMAIN:
7225 #--Step 2.
7226 #--This is the normal branch:   2^(-65) <= |X| < 16380 log2.
7227         fmov.x          (%a0),%fp0              # load input from (a0)
7228
7229         fmov.x          %fp0,%fp1
7230         fmul.s          &0x42B8AA3B,%fp0        # 64/log2 * X
7231         fmovm.x         &0xc,-(%sp)             # save fp2 {%fp2/%fp3}
7232         mov.l           &0,ADJFLAG(%a6)
7233         fmov.l          %fp0,%d1                # N = int( X * 64/log2 )
7234         lea             EEXPTBL(%pc),%a1
7235         fmov.l          %d1,%fp0                # convert to floating-format
7236
7237         mov.l           %d1,L_SCR1(%a6)         # save N temporarily
7238         and.l           &0x3F,%d1               # D0 is J = N mod 64
7239         lsl.l           &4,%d1
7240         add.l           %d1,%a1                 # address of 2^(J/64)
7241         mov.l           L_SCR1(%a6),%d1
7242         asr.l           &6,%d1                  # D0 is M
7243         add.w           &0x3FFF,%d1             # biased expo. of 2^(M)
7244         mov.w           L2(%pc),L_SCR1(%a6)     # prefetch L2, no need in CB
7245
7246 EXPCONT1:
7247 #--Step 3.
7248 #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
7249 #--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
7250         fmov.x          %fp0,%fp2
7251         fmul.s          &0xBC317218,%fp0        # N * L1, L1 = lead(-log2/64)
7252         fmul.x          L2(%pc),%fp2            # N * L2, L1+L2 = -log2/64
7253         fadd.x          %fp1,%fp0               # X + N*L1
7254         fadd.x          %fp2,%fp0               # fp0 is R, reduced arg.
7255
7256 #--Step 4.
7257 #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
7258 #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
7259 #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
7260 #--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
7261
7262         fmov.x          %fp0,%fp1
7263         fmul.x          %fp1,%fp1               # fp1 IS S = R*R
7264
7265         fmov.s          &0x3AB60B70,%fp2        # fp2 IS A5
7266
7267         fmul.x          %fp1,%fp2               # fp2 IS S*A5
7268         fmov.x          %fp1,%fp3
7269         fmul.s          &0x3C088895,%fp3        # fp3 IS S*A4
7270
7271         fadd.d          EEXPA3(%pc),%fp2        # fp2 IS A3+S*A5
7272         fadd.d          EEXPA2(%pc),%fp3        # fp3 IS A2+S*A4
7273
7274         fmul.x          %fp1,%fp2               # fp2 IS S*(A3+S*A5)
7275         mov.w           %d1,SCALE(%a6)          # SCALE is 2^(M) in extended
7276         mov.l           &0x80000000,SCALE+4(%a6)
7277         clr.l           SCALE+8(%a6)
7278
7279         fmul.x          %fp1,%fp3               # fp3 IS S*(A2+S*A4)
7280
7281         fadd.s          &0x3F000000,%fp2        # fp2 IS A1+S*(A3+S*A5)
7282         fmul.x          %fp0,%fp3               # fp3 IS R*S*(A2+S*A4)
7283
7284         fmul.x          %fp1,%fp2               # fp2 IS S*(A1+S*(A3+S*A5))
7285         fadd.x          %fp3,%fp0               # fp0 IS R+R*S*(A2+S*A4),
7286
7287         fmov.x          (%a1)+,%fp1             # fp1 is lead. pt. of 2^(J/64)
7288         fadd.x          %fp2,%fp0               # fp0 is EXP(R) - 1
7289
7290 #--Step 5
7291 #--final reconstruction process
7292 #--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
7293
7294         fmul.x          %fp1,%fp0               # 2^(J/64)*(Exp(R)-1)
7295         fmovm.x         (%sp)+,&0x30            # fp2 restored {%fp2/%fp3}
7296         fadd.s          (%a1),%fp0              # accurate 2^(J/64)
7297
7298         fadd.x          %fp1,%fp0               # 2^(J/64) + 2^(J/64)*...
7299         mov.l           ADJFLAG(%a6),%d1
7300
7301 #--Step 6
7302         tst.l           %d1
7303         beq.b           NORMAL
7304 ADJUST:
7305         fmul.x          ADJSCALE(%a6),%fp0
7306 NORMAL:
7307         fmov.l          %d0,%fpcr               # restore user FPCR
7308         mov.b           &FMUL_OP,%d1            # last inst is MUL
7309         fmul.x          SCALE(%a6),%fp0         # multiply 2^(M)
7310         bra             t_catch
7311
7312 EXPSM:
7313 #--Step 7
7314         fmovm.x         (%a0),&0x80             # load X
7315         fmov.l          %d0,%fpcr
7316         fadd.s          &0x3F800000,%fp0        # 1+X in user mode
7317         bra             t_pinx2
7318
7319 EEXPBIG:
7320 #--Step 8
7321         cmp.l           %d1,&0x400CB27C         # 16480 log2
7322         bgt.b           EXP2BIG
7323 #--Steps 8.2 -- 8.6
7324         fmov.x          (%a0),%fp0              # load input from (a0)
7325
7326         fmov.x          %fp0,%fp1
7327         fmul.s          &0x42B8AA3B,%fp0        # 64/log2 * X
7328         fmovm.x         &0xc,-(%sp)             # save fp2 {%fp2/%fp3}
7329         mov.l           &1,ADJFLAG(%a6)
7330         fmov.l          %fp0,%d1                # N = int( X * 64/log2 )
7331         lea             EEXPTBL(%pc),%a1
7332         fmov.l          %d1,%fp0                # convert to floating-format
7333         mov.l           %d1,L_SCR1(%a6)         # save N temporarily
7334         and.l           &0x3F,%d1               # D0 is J = N mod 64
7335         lsl.l           &4,%d1
7336         add.l           %d1,%a1                 # address of 2^(J/64)
7337         mov.l           L_SCR1(%a6),%d1
7338         asr.l           &6,%d1                  # D0 is K
7339         mov.l           %d1,L_SCR1(%a6)         # save K temporarily
7340         asr.l           &1,%d1                  # D0 is M1
7341         sub.l           %d1,L_SCR1(%a6)         # a1 is M
7342         add.w           &0x3FFF,%d1             # biased expo. of 2^(M1)
7343         mov.w           %d1,ADJSCALE(%a6)       # ADJSCALE := 2^(M1)
7344         mov.l           &0x80000000,ADJSCALE+4(%a6)
7345         clr.l           ADJSCALE+8(%a6)
7346         mov.l           L_SCR1(%a6),%d1         # D0 is M
7347         add.w           &0x3FFF,%d1             # biased expo. of 2^(M)
7348         bra.w           EXPCONT1                # go back to Step 3
7349
7350 EXP2BIG:
7351 #--Step 9
7352         tst.b           (%a0)                   # is X positive or negative?
7353         bmi             t_unfl2
7354         bra             t_ovfl2
7355
7356         global          setoxd
7357 setoxd:
7358 #--entry point for EXP(X), X is denormalized
7359         mov.l           (%a0),-(%sp)
7360         andi.l          &0x80000000,(%sp)
7361         ori.l           &0x00800000,(%sp)       # sign(X)*2^(-126)
7362
7363         fmov.s          &0x3F800000,%fp0
7364
7365         fmov.l          %d0,%fpcr
7366         fadd.s          (%sp)+,%fp0
7367         bra             t_pinx2
7368
7369         global          setoxm1
7370 setoxm1:
7371 #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
7372
7373 #--Step 1.
7374 #--Step 1.1
7375         mov.l           (%a0),%d1               # load part of input X
7376         and.l           &0x7FFF0000,%d1         # biased expo. of X
7377         cmp.l           %d1,&0x3FFD0000         # 1/4
7378         bge.b           EM1CON1                 # |X| >= 1/4
7379         bra             EM1SM
7380
7381 EM1CON1:
7382 #--Step 1.3
7383 #--The case |X| >= 1/4
7384         mov.w           4(%a0),%d1              # expo. and partial sig. of |X|
7385         cmp.l           %d1,&0x4004C215         # 70log2 rounded up to 16 bits
7386         ble.b           EM1MAIN                 # 1/4 <= |X| <= 70log2
7387         bra             EM1BIG
7388
7389 EM1MAIN:
7390 #--Step 2.
7391 #--This is the case:    1/4 <= |X| <= 70 log2.
7392         fmov.x          (%a0),%fp0              # load input from (a0)
7393
7394         fmov.x          %fp0,%fp1
7395         fmul.s          &0x42B8AA3B,%fp0        # 64/log2 * X
7396         fmovm.x         &0xc,-(%sp)             # save fp2 {%fp2/%fp3}
7397         fmov.l          %fp0,%d1                # N = int( X * 64/log2 )
7398         lea             EEXPTBL(%pc),%a1
7399         fmov.l          %d1,%fp0                # convert to floating-format
7400
7401         mov.l           %d1,L_SCR1(%a6)         # save N temporarily
7402         and.l           &0x3F,%d1               # D0 is J = N mod 64
7403         lsl.l           &4,%d1
7404         add.l           %d1,%a1                 # address of 2^(J/64)
7405         mov.l           L_SCR1(%a6),%d1
7406         asr.l           &6,%d1                  # D0 is M
7407         mov.l           %d1,L_SCR1(%a6)         # save a copy of M
7408
7409 #--Step 3.
7410 #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
7411 #--a0 points to 2^(J/64), D0 and a1 both contain M
7412         fmov.x          %fp0,%fp2
7413         fmul.s          &0xBC317218,%fp0        # N * L1, L1 = lead(-log2/64)
7414         fmul.x          L2(%pc),%fp2            # N * L2, L1+L2 = -log2/64
7415         fadd.x          %fp1,%fp0               # X + N*L1
7416         fadd.x          %fp2,%fp0               # fp0 is R, reduced arg.
7417         add.w           &0x3FFF,%d1             # D0 is biased expo. of 2^M
7418
7419 #--Step 4.
7420 #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
7421 #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
7422 #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
7423 #--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
7424
7425         fmov.x          %fp0,%fp1
7426         fmul.x          %fp1,%fp1               # fp1 IS S = R*R
7427
7428         fmov.s          &0x3950097B,%fp2        # fp2 IS a6
7429
7430         fmul.x          %fp1,%fp2               # fp2 IS S*A6
7431         fmov.x          %fp1,%fp3
7432         fmul.s          &0x3AB60B6A,%fp3        # fp3 IS S*A5
7433
7434         fadd.d          EM1A4(%pc),%fp2         # fp2 IS A4+S*A6
7435         fadd.d          EM1A3(%pc),%fp3         # fp3 IS A3+S*A5
7436         mov.w           %d1,SC(%a6)             # SC is 2^(M) in extended
7437         mov.l           &0x80000000,SC+4(%a6)
7438         clr.l           SC+8(%a6)
7439
7440         fmul.x          %fp1,%fp2               # fp2 IS S*(A4+S*A6)
7441         mov.l           L_SCR1(%a6),%d1         # D0 is M
7442         neg.w           %d1                     # D0 is -M
7443         fmul.x          %fp1,%fp3               # fp3 IS S*(A3+S*A5)
7444         add.w           &0x3FFF,%d1             # biased expo. of 2^(-M)
7445         fadd.d          EM1A2(%pc),%fp2         # fp2 IS A2+S*(A4+S*A6)
7446         fadd.s          &0x3F000000,%fp3        # fp3 IS A1+S*(A3+S*A5)
7447
7448         fmul.x          %fp1,%fp2               # fp2 IS S*(A2+S*(A4+S*A6))
7449         or.w            &0x8000,%d1             # signed/expo. of -2^(-M)
7450         mov.w           %d1,ONEBYSC(%a6)        # OnebySc is -2^(-M)
7451         mov.l           &0x80000000,ONEBYSC+4(%a6)
7452         clr.l           ONEBYSC+8(%a6)
7453         fmul.x          %fp3,%fp1               # fp1 IS S*(A1+S*(A3+S*A5))
7454
7455         fmul.x          %fp0,%fp2               # fp2 IS R*S*(A2+S*(A4+S*A6))
7456         fadd.x          %fp1,%fp0               # fp0 IS R+S*(A1+S*(A3+S*A5))
7457
7458         fadd.x          %fp2,%fp0               # fp0 IS EXP(R)-1
7459
7460         fmovm.x         (%sp)+,&0x30            # fp2 restored {%fp2/%fp3}
7461
7462 #--Step 5
7463 #--Compute 2^(J/64)*p
7464
7465         fmul.x          (%a1),%fp0              # 2^(J/64)*(Exp(R)-1)
7466
7467 #--Step 6
7468 #--Step 6.1
7469         mov.l           L_SCR1(%a6),%d1         # retrieve M
7470         cmp.l           %d1,&63
7471         ble.b           MLE63
7472 #--Step 6.2     M >= 64
7473         fmov.s          12(%a1),%fp1            # fp1 is t
7474         fadd.x          ONEBYSC(%a6),%fp1       # fp1 is t+OnebySc
7475         fadd.x          %fp1,%fp0               # p+(t+OnebySc), fp1 released
7476         fadd.x          (%a1),%fp0              # T+(p+(t+OnebySc))
7477         bra             EM1SCALE
7478 MLE63:
7479 #--Step 6.3     M <= 63
7480         cmp.l           %d1,&-3
7481         bge.b           MGEN3
7482 MLTN3:
7483 #--Step 6.4     M <= -4
7484         fadd.s          12(%a1),%fp0            # p+t
7485         fadd.x          (%a1),%fp0              # T+(p+t)
7486         fadd.x          ONEBYSC(%a6),%fp0       # OnebySc + (T+(p+t))
7487         bra             EM1SCALE
7488 MGEN3:
7489 #--Step 6.5     -3 <= M <= 63
7490         fmov.x          (%a1)+,%fp1             # fp1 is T
7491         fadd.s          (%a1),%fp0              # fp0 is p+t
7492         fadd.x          ONEBYSC(%a6),%fp1       # fp1 is T+OnebySc
7493         fadd.x          %fp1,%fp0               # (T+OnebySc)+(p+t)
7494
7495 EM1SCALE:
7496 #--Step 6.6
7497         fmov.l          %d0,%fpcr
7498         fmul.x          SC(%a6),%fp0
7499         bra             t_inx2
7500
7501 EM1SM:
7502 #--Step 7       |X| < 1/4.
7503         cmp.l           %d1,&0x3FBE0000         # 2^(-65)
7504         bge.b           EM1POLY
7505
7506 EM1TINY:
7507 #--Step 8       |X| < 2^(-65)
7508         cmp.l           %d1,&0x00330000         # 2^(-16312)
7509         blt.b           EM12TINY
7510 #--Step 8.2
7511         mov.l           &0x80010000,SC(%a6)     # SC is -2^(-16382)
7512         mov.l           &0x80000000,SC+4(%a6)
7513         clr.l           SC+8(%a6)
7514         fmov.x          (%a0),%fp0
7515         fmov.l          %d0,%fpcr
7516         mov.b           &FADD_OP,%d1            # last inst is ADD
7517         fadd.x          SC(%a6),%fp0
7518         bra             t_catch
7519
7520 EM12TINY:
7521 #--Step 8.3
7522         fmov.x          (%a0),%fp0
7523         fmul.d          TWO140(%pc),%fp0
7524         mov.l           &0x80010000,SC(%a6)
7525         mov.l           &0x80000000,SC+4(%a6)
7526         clr.l           SC+8(%a6)
7527         fadd.x          SC(%a6),%fp0
7528         fmov.l          %d0,%fpcr
7529         mov.b           &FMUL_OP,%d1            # last inst is MUL
7530         fmul.d          TWON140(%pc),%fp0
7531         bra             t_catch
7532
7533 EM1POLY:
7534 #--Step 9       exp(X)-1 by a simple polynomial
7535         fmov.x          (%a0),%fp0              # fp0 is X
7536         fmul.x          %fp0,%fp0               # fp0 is S := X*X
7537         fmovm.x         &0xc,-(%sp)             # save fp2 {%fp2/%fp3}
7538         fmov.s          &0x2F30CAA8,%fp1        # fp1 is B12
7539         fmul.x          %fp0,%fp1               # fp1 is S*B12
7540         fmov.s          &0x310F8290,%fp2        # fp2 is B11
7541         fadd.s          &0x32D73220,%fp1        # fp1 is B10+S*B12
7542
7543         fmul.x          %fp0,%fp2               # fp2 is S*B11
7544         fmul.x          %fp0,%fp1               # fp1 is S*(B10 + ...
7545
7546         fadd.s          &0x3493F281,%fp2        # fp2 is B9+S*...
7547         fadd.d          EM1B8(%pc),%fp1         # fp1 is B8+S*...
7548
7549         fmul.x          %fp0,%fp2               # fp2 is S*(B9+...
7550         fmul.x          %fp0,%fp1               # fp1 is S*(B8+...
7551
7552         fadd.d          EM1B7(%pc),%fp2         # fp2 is B7+S*...
7553         fadd.d          EM1B6(%pc),%fp1         # fp1 is B6+S*...
7554
7555         fmul.x          %fp0,%fp2               # fp2 is S*(B7+...
7556         fmul.x          %fp0,%fp1               # fp1 is S*(B6+...
7557
7558         fadd.d          EM1B5(%pc),%fp2         # fp2 is B5+S*...
7559         fadd.d          EM1B4(%pc),%fp1         # fp1 is B4+S*...
7560
7561         fmul.x          %fp0,%fp2               # fp2 is S*(B5+...
7562         fmul.x          %fp0,%fp1               # fp1 is S*(B4+...
7563
7564         fadd.d          EM1B3(%pc),%fp2         # fp2 is B3+S*...
7565         fadd.x          EM1B2(%pc),%fp1         # fp1 is B2+S*...
7566
7567         fmul.x          %fp0,%fp2               # fp2 is S*(B3+...
7568         fmul.x          %fp0,%fp1               # fp1 is S*(B2+...
7569
7570         fmul.x          %fp0,%fp2               # fp2 is S*S*(B3+...)
7571         fmul.x          (%a0),%fp1              # fp1 is X*S*(B2...
7572
7573         fmul.s          &0x3F000000,%fp0        # fp0 is S*B1
7574         fadd.x          %fp2,%fp1               # fp1 is Q
7575
7576         fmovm.x         (%sp)+,&0x30            # fp2 restored {%fp2/%fp3}
7577
7578         fadd.x          %fp1,%fp0               # fp0 is S*B1+Q
7579
7580         fmov.l          %d0,%fpcr
7581         fadd.x          (%a0),%fp0
7582         bra             t_inx2
7583
7584 EM1BIG:
7585 #--Step 10      |X| > 70 log2
7586         mov.l           (%a0),%d1
7587         cmp.l           %d1,&0
7588         bgt.w           EXPC1
7589 #--Step 10.2
7590         fmov.s          &0xBF800000,%fp0        # fp0 is -1
7591         fmov.l          %d0,%fpcr
7592         fadd.s          &0x00800000,%fp0        # -1 + 2^(-126)
7593         bra             t_minx2
7594
7595         global          setoxm1d
7596 setoxm1d:
7597 #--entry point for EXPM1(X), here X is denormalized
7598 #--Step 0.
7599         bra             t_extdnrm
7600
7601 #########################################################################
7602 # sgetexp():  returns the exponent portion of the input argument.       #
7603 #             The exponent bias is removed and the exponent value is    #
7604 #             returned as an extended precision number in fp0.          #
7605 # sgetexpd(): handles denormalized numbers.                             #
7606 #                                                                       #
7607 # sgetman():  extracts the mantissa of the input argument. The          #
7608 #             mantissa is converted to an extended precision number w/  #
7609 #             an exponent of $3fff and is returned in fp0. The range of #
7610 #             the result is [1.0 - 2.0).                                #
7611 # sgetmand(): handles denormalized numbers.                             #
7612 #                                                                       #
7613 # INPUT *************************************************************** #
7614 #       a0  = pointer to extended precision input                       #
7615 #                                                                       #
7616 # OUTPUT ************************************************************** #
7617 #       fp0 = exponent(X) or mantissa(X)                                #
7618 #                                                                       #
7619 #########################################################################
7620
7621         global          sgetexp
7622 sgetexp:
7623         mov.w           SRC_EX(%a0),%d0         # get the exponent
7624         bclr            &0xf,%d0                # clear the sign bit
7625         subi.w          &0x3fff,%d0             # subtract off the bias
7626         fmov.w          %d0,%fp0                # return exp in fp0
7627         blt.b           sgetexpn                # it's negative
7628         rts
7629
7630 sgetexpn:
7631         mov.b           &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
7632         rts
7633
7634         global          sgetexpd
7635 sgetexpd:
7636         bsr.l           norm                    # normalize
7637         neg.w           %d0                     # new exp = -(shft amt)
7638         subi.w          &0x3fff,%d0             # subtract off the bias
7639         fmov.w          %d0,%fp0                # return exp in fp0
7640         mov.b           &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
7641         rts
7642
7643         global          sgetman
7644 sgetman:
7645         mov.w           SRC_EX(%a0),%d0         # get the exp
7646         ori.w           &0x7fff,%d0             # clear old exp
7647         bclr            &0xe,%d0                # make it the new exp +-3fff
7648
7649 # here, we build the result in a tmp location so as not to disturb the input
7650         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc
7651         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc
7652         mov.w           %d0,FP_SCR0_EX(%a6)     # insert new exponent
7653         fmov.x          FP_SCR0(%a6),%fp0       # put new value back in fp0
7654         bmi.b           sgetmann                # it's negative
7655         rts
7656
7657 sgetmann:
7658         mov.b           &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
7659         rts
7660
7661 #
7662 # For denormalized numbers, shift the mantissa until the j-bit = 1,
7663 # then load the exponent with +/1 $3fff.
7664 #
7665         global          sgetmand
7666 sgetmand:
7667         bsr.l           norm                    # normalize exponent
7668         bra.b           sgetman
7669
7670 #########################################################################
7671 # scosh():  computes the hyperbolic cosine of a normalized input        #
7672 # scoshd(): computes the hyperbolic cosine of a denormalized input      #
7673 #                                                                       #
7674 # INPUT *************************************************************** #
7675 #       a0 = pointer to extended precision input                        #
7676 #       d0 = round precision,mode                                       #
7677 #                                                                       #
7678 # OUTPUT ************************************************************** #
7679 #       fp0 = cosh(X)                                                   #
7680 #                                                                       #
7681 # ACCURACY and MONOTONICITY ******************************************* #
7682 #       The returned result is within 3 ulps in 64 significant bit,     #
7683 #       i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
7684 #       rounded to double precision. The result is provably monotonic   #
7685 #       in double precision.                                            #
7686 #                                                                       #
7687 # ALGORITHM *********************************************************** #
7688 #                                                                       #
7689 #       COSH                                                            #
7690 #       1. If |X| > 16380 log2, go to 3.                                #
7691 #                                                                       #
7692 #       2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae      #
7693 #               y = |X|, z = exp(Y), and                                #
7694 #               cosh(X) = (1/2)*( z + 1/z ).                            #
7695 #               Exit.                                                   #
7696 #                                                                       #
7697 #       3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5.            #
7698 #                                                                       #
7699 #       4. (16380 log2 < |X| <= 16480 log2)                             #
7700 #               cosh(X) = sign(X) * exp(|X|)/2.                         #
7701 #               However, invoking exp(|X|) may cause premature          #
7702 #               overflow. Thus, we calculate sinh(X) as follows:        #
7703 #               Y       := |X|                                          #
7704 #               Fact    :=      2**(16380)                              #
7705 #               Y'      := Y - 16381 log2                               #
7706 #               cosh(X) := Fact * exp(Y').                              #
7707 #               Exit.                                                   #
7708 #                                                                       #
7709 #       5. (|X| > 16480 log2) sinh(X) must overflow. Return             #
7710 #               Huge*Huge to generate overflow and an infinity with     #
7711 #               the appropriate sign. Huge is the largest finite number #
7712 #               in extended format. Exit.                               #
7713 #                                                                       #
7714 #########################################################################
7715
7716 TWO16380:
7717         long            0x7FFB0000,0x80000000,0x00000000,0x00000000
7718
7719         global          scosh
7720 scosh:
7721         fmov.x          (%a0),%fp0              # LOAD INPUT
7722
7723         mov.l           (%a0),%d1
7724         mov.w           4(%a0),%d1
7725         and.l           &0x7FFFFFFF,%d1
7726         cmp.l           %d1,&0x400CB167
7727         bgt.b           COSHBIG
7728
7729 #--THIS IS THE USUAL CASE, |X| < 16380 LOG2
7730 #--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) )
7731
7732         fabs.x          %fp0                    # |X|
7733
7734         mov.l           %d0,-(%sp)
7735         clr.l           %d0
7736         fmovm.x         &0x01,-(%sp)            # save |X| to stack
7737         lea             (%sp),%a0               # pass ptr to |X|
7738         bsr             setox                   # FP0 IS EXP(|X|)
7739         add.l           &0xc,%sp                # erase |X| from stack
7740         fmul.s          &0x3F000000,%fp0        # (1/2)EXP(|X|)
7741         mov.l           (%sp)+,%d0
7742
7743         fmov.s          &0x3E800000,%fp1        # (1/4)
7744         fdiv.x          %fp0,%fp1               # 1/(2 EXP(|X|))
7745
7746         fmov.l          %d0,%fpcr
7747         mov.b           &FADD_OP,%d1            # last inst is ADD
7748         fadd.x          %fp1,%fp0
7749         bra             t_catch
7750
7751 COSHBIG:
7752         cmp.l           %d1,&0x400CB2B3
7753         bgt.b           COSHHUGE
7754
7755         fabs.x          %fp0
7756         fsub.d          T1(%pc),%fp0            # (|X|-16381LOG2_LEAD)
7757         fsub.d          T2(%pc),%fp0            # |X| - 16381 LOG2, ACCURATE
7758
7759         mov.l           %d0,-(%sp)
7760         clr.l           %d0
7761         fmovm.x         &0x01,-(%sp)            # save fp0 to stack
7762         lea             (%sp),%a0               # pass ptr to fp0
7763         bsr             setox
7764         add.l           &0xc,%sp                # clear fp0 from stack
7765         mov.l           (%sp)+,%d0
7766
7767         fmov.l          %d0,%fpcr
7768         mov.b           &FMUL_OP,%d1            # last inst is MUL
7769         fmul.x          TWO16380(%pc),%fp0
7770         bra             t_catch
7771
7772 COSHHUGE:
7773         bra             t_ovfl2
7774
7775         global          scoshd
7776 #--COSH(X) = 1 FOR DENORMALIZED X
7777 scoshd:
7778         fmov.s          &0x3F800000,%fp0
7779
7780         fmov.l          %d0,%fpcr
7781         fadd.s          &0x00800000,%fp0
7782         bra             t_pinx2
7783
7784 #########################################################################
7785 # ssinh():  computes the hyperbolic sine of a normalized input          #
7786 # ssinhd(): computes the hyperbolic sine of a denormalized input        #
7787 #                                                                       #
7788 # INPUT *************************************************************** #
7789 #       a0 = pointer to extended precision input                        #
7790 #       d0 = round precision,mode                                       #
7791 #                                                                       #
7792 # OUTPUT ************************************************************** #
7793 #       fp0 = sinh(X)                                                   #
7794 #                                                                       #
7795 # ACCURACY and MONOTONICITY ******************************************* #
7796 #       The returned result is within 3 ulps in 64 significant bit,     #
7797 #       i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
7798 #       rounded to double precision. The result is provably monotonic   #
7799 #       in double precision.                                            #
7800 #                                                                       #
7801 # ALGORITHM *********************************************************** #
7802 #                                                                       #
7803 #       SINH                                                            #
7804 #       1. If |X| > 16380 log2, go to 3.                                #
7805 #                                                                       #
7806 #       2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula       #
7807 #               y = |X|, sgn = sign(X), and z = expm1(Y),               #
7808 #               sinh(X) = sgn*(1/2)*( z + z/(1+z) ).                    #
7809 #          Exit.                                                        #
7810 #                                                                       #
7811 #       3. If |X| > 16480 log2, go to 5.                                #
7812 #                                                                       #
7813 #       4. (16380 log2 < |X| <= 16480 log2)                             #
7814 #               sinh(X) = sign(X) * exp(|X|)/2.                         #
7815 #          However, invoking exp(|X|) may cause premature overflow.     #
7816 #          Thus, we calculate sinh(X) as follows:                       #
7817 #             Y       := |X|                                            #
7818 #             sgn     := sign(X)                                        #
7819 #             sgnFact := sgn * 2**(16380)                               #
7820 #             Y'      := Y - 16381 log2                                 #
7821 #             sinh(X) := sgnFact * exp(Y').                             #
7822 #          Exit.                                                        #
7823 #                                                                       #
7824 #       5. (|X| > 16480 log2) sinh(X) must overflow. Return             #
7825 #          sign(X)*Huge*Huge to generate overflow and an infinity with  #
7826 #          the appropriate sign. Huge is the largest finite number in   #
7827 #          extended format. Exit.                                       #
7828 #                                                                       #
7829 #########################################################################
7830
7831         global          ssinh
7832 ssinh:
7833         fmov.x          (%a0),%fp0              # LOAD INPUT
7834
7835         mov.l           (%a0),%d1
7836         mov.w           4(%a0),%d1
7837         mov.l           %d1,%a1                 # save (compacted) operand
7838         and.l           &0x7FFFFFFF,%d1
7839         cmp.l           %d1,&0x400CB167
7840         bgt.b           SINHBIG
7841
7842 #--THIS IS THE USUAL CASE, |X| < 16380 LOG2
7843 #--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
7844
7845         fabs.x          %fp0                    # Y = |X|
7846
7847         movm.l          &0x8040,-(%sp)          # {a1/d0}
7848         fmovm.x         &0x01,-(%sp)            # save Y on stack
7849         lea             (%sp),%a0               # pass ptr to Y
7850         clr.l           %d0
7851         bsr             setoxm1                 # FP0 IS Z = EXPM1(Y)
7852         add.l           &0xc,%sp                # clear Y from stack
7853         fmov.l          &0,%fpcr
7854         movm.l          (%sp)+,&0x0201          # {a1/d0}
7855
7856         fmov.x          %fp0,%fp1
7857         fadd.s          &0x3F800000,%fp1        # 1+Z
7858         fmov.x          %fp0,-(%sp)
7859         fdiv.x          %fp1,%fp0               # Z/(1+Z)
7860         mov.l           %a1,%d1
7861         and.l           &0x80000000,%d1
7862         or.l            &0x3F000000,%d1
7863         fadd.x          (%sp)+,%fp0
7864         mov.l           %d1,-(%sp)
7865
7866         fmov.l          %d0,%fpcr
7867         mov.b           &FMUL_OP,%d1            # last inst is MUL
7868         fmul.s          (%sp)+,%fp0             # last fp inst - possible exceptions set
7869         bra             t_catch
7870
7871 SINHBIG:
7872         cmp.l           %d1,&0x400CB2B3
7873         bgt             t_ovfl
7874         fabs.x          %fp0
7875         fsub.d          T1(%pc),%fp0            # (|X|-16381LOG2_LEAD)
7876         mov.l           &0,-(%sp)
7877         mov.l           &0x80000000,-(%sp)
7878         mov.l           %a1,%d1
7879         and.l           &0x80000000,%d1
7880         or.l            &0x7FFB0000,%d1
7881         mov.l           %d1,-(%sp)              # EXTENDED FMT
7882         fsub.d          T2(%pc),%fp0            # |X| - 16381 LOG2, ACCURATE
7883
7884         mov.l           %d0,-(%sp)
7885         clr.l           %d0
7886         fmovm.x         &0x01,-(%sp)            # save fp0 on stack
7887         lea             (%sp),%a0               # pass ptr to fp0
7888         bsr             setox
7889         add.l           &0xc,%sp                # clear fp0 from stack
7890
7891         mov.l           (%sp)+,%d0
7892         fmov.l          %d0,%fpcr
7893         mov.b           &FMUL_OP,%d1            # last inst is MUL
7894         fmul.x          (%sp)+,%fp0             # possible exception
7895         bra             t_catch
7896
7897         global          ssinhd
7898 #--SINH(X) = X FOR DENORMALIZED X
7899 ssinhd:
7900         bra             t_extdnrm
7901
7902 #########################################################################
7903 # stanh():  computes the hyperbolic tangent of a normalized input       #
7904 # stanhd(): computes the hyperbolic tangent of a denormalized input     #
7905 #                                                                       #
7906 # INPUT *************************************************************** #
7907 #       a0 = pointer to extended precision input                        #
7908 #       d0 = round precision,mode                                       #
7909 #                                                                       #
7910 # OUTPUT ************************************************************** #
7911 #       fp0 = tanh(X)                                                   #
7912 #                                                                       #
7913 # ACCURACY and MONOTONICITY ******************************************* #
7914 #       The returned result is within 3 ulps in 64 significant bit,     #
7915 #       i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
7916 #       rounded to double precision. The result is provably monotonic   #
7917 #       in double precision.                                            #
7918 #                                                                       #
7919 # ALGORITHM *********************************************************** #
7920 #                                                                       #
7921 #       TANH                                                            #
7922 #       1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3.            #
7923 #                                                                       #
7924 #       2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by           #
7925 #               sgn := sign(X), y := 2|X|, z := expm1(Y), and           #
7926 #               tanh(X) = sgn*( z/(2+z) ).                              #
7927 #               Exit.                                                   #
7928 #                                                                       #
7929 #       3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1,          #
7930 #               go to 7.                                                #
7931 #                                                                       #
7932 #       4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6.              #
7933 #                                                                       #
7934 #       5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by           #
7935 #               sgn := sign(X), y := 2|X|, z := exp(Y),                 #
7936 #               tanh(X) = sgn - [ sgn*2/(1+z) ].                        #
7937 #               Exit.                                                   #
7938 #                                                                       #
7939 #       6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we  #
7940 #               calculate Tanh(X) by                                    #
7941 #               sgn := sign(X), Tiny := 2**(-126),                      #
7942 #               tanh(X) := sgn - sgn*Tiny.                              #
7943 #               Exit.                                                   #
7944 #                                                                       #
7945 #       7. (|X| < 2**(-40)). Tanh(X) = X.       Exit.                   #
7946 #                                                                       #
7947 #########################################################################
7948
7949         set             X,FP_SCR0
7950         set             XFRAC,X+4
7951
7952         set             SGN,L_SCR3
7953
7954         set             V,FP_SCR0
7955
7956         global          stanh
7957 stanh:
7958         fmov.x          (%a0),%fp0              # LOAD INPUT
7959
7960         fmov.x          %fp0,X(%a6)
7961         mov.l           (%a0),%d1
7962         mov.w           4(%a0),%d1
7963         mov.l           %d1,X(%a6)
7964         and.l           &0x7FFFFFFF,%d1
7965         cmp.l           %d1, &0x3fd78000        # is |X| < 2^(-40)?
7966         blt.w           TANHBORS                # yes
7967         cmp.l           %d1, &0x3fffddce        # is |X| > (5/2)LOG2?
7968         bgt.w           TANHBORS                # yes
7969
7970 #--THIS IS THE USUAL CASE
7971 #--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).
7972
7973         mov.l           X(%a6),%d1
7974         mov.l           %d1,SGN(%a6)
7975         and.l           &0x7FFF0000,%d1
7976         add.l           &0x00010000,%d1         # EXPONENT OF 2|X|
7977         mov.l           %d1,X(%a6)
7978         and.l           &0x80000000,SGN(%a6)
7979         fmov.x          X(%a6),%fp0             # FP0 IS Y = 2|X|
7980
7981         mov.l           %d0,-(%sp)
7982         clr.l           %d0
7983         fmovm.x         &0x1,-(%sp)             # save Y on stack
7984         lea             (%sp),%a0               # pass ptr to Y
7985         bsr             setoxm1                 # FP0 IS Z = EXPM1(Y)
7986         add.l           &0xc,%sp                # clear Y from stack
7987         mov.l           (%sp)+,%d0
7988
7989         fmov.x          %fp0,%fp1
7990         fadd.s          &0x40000000,%fp1        # Z+2
7991         mov.l           SGN(%a6),%d1
7992         fmov.x          %fp1,V(%a6)
7993         eor.l           %d1,V(%a6)
7994
7995         fmov.l          %d0,%fpcr               # restore users round prec,mode
7996         fdiv.x          V(%a6),%fp0
7997         bra             t_inx2
7998
7999 TANHBORS:
8000         cmp.l           %d1,&0x3FFF8000
8001         blt.w           TANHSM
8002
8003         cmp.l           %d1,&0x40048AA1
8004         bgt.w           TANHHUGE
8005
8006 #-- (5/2) LOG2 < |X| < 50 LOG2,
8007 #--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),
8008 #--TANH(X) = SGN -      SGN*2/[EXP(Y)+1].
8009
8010         mov.l           X(%a6),%d1
8011         mov.l           %d1,SGN(%a6)
8012         and.l           &0x7FFF0000,%d1
8013         add.l           &0x00010000,%d1         # EXPO OF 2|X|
8014         mov.l           %d1,X(%a6)              # Y = 2|X|
8015         and.l           &0x80000000,SGN(%a6)
8016         mov.l           SGN(%a6),%d1
8017         fmov.x          X(%a6),%fp0             # Y = 2|X|
8018
8019         mov.l           %d0,-(%sp)
8020         clr.l           %d0
8021         fmovm.x         &0x01,-(%sp)            # save Y on stack
8022         lea             (%sp),%a0               # pass ptr to Y
8023         bsr             setox                   # FP0 IS EXP(Y)
8024         add.l           &0xc,%sp                # clear Y from stack
8025         mov.l           (%sp)+,%d0
8026         mov.l           SGN(%a6),%d1
8027         fadd.s          &0x3F800000,%fp0        # EXP(Y)+1
8028
8029         eor.l           &0xC0000000,%d1         # -SIGN(X)*2
8030         fmov.s          %d1,%fp1                # -SIGN(X)*2 IN SGL FMT
8031         fdiv.x          %fp0,%fp1               # -SIGN(X)2 / [EXP(Y)+1 ]
8032
8033         mov.l           SGN(%a6),%d1
8034         or.l            &0x3F800000,%d1         # SGN
8035         fmov.s          %d1,%fp0                # SGN IN SGL FMT
8036
8037         fmov.l          %d0,%fpcr               # restore users round prec,mode
8038         mov.b           &FADD_OP,%d1            # last inst is ADD
8039         fadd.x          %fp1,%fp0
8040         bra             t_inx2
8041
8042 TANHSM:
8043         fmov.l          %d0,%fpcr               # restore users round prec,mode
8044         mov.b           &FMOV_OP,%d1            # last inst is MOVE
8045         fmov.x          X(%a6),%fp0             # last inst - possible exception set
8046         bra             t_catch
8047
8048 #---RETURN SGN(X) - SGN(X)EPS
8049 TANHHUGE:
8050         mov.l           X(%a6),%d1
8051         and.l           &0x80000000,%d1
8052         or.l            &0x3F800000,%d1
8053         fmov.s          %d1,%fp0
8054         and.l           &0x80000000,%d1
8055         eor.l           &0x80800000,%d1         # -SIGN(X)*EPS
8056
8057         fmov.l          %d0,%fpcr               # restore users round prec,mode
8058         fadd.s          %d1,%fp0
8059         bra             t_inx2
8060
8061         global          stanhd
8062 #--TANH(X) = X FOR DENORMALIZED X
8063 stanhd:
8064         bra             t_extdnrm
8065
8066 #########################################################################
8067 # slogn():    computes the natural logarithm of a normalized input      #
8068 # slognd():   computes the natural logarithm of a denormalized input    #
8069 # slognp1():  computes the log(1+X) of a normalized input               #
8070 # slognp1d(): computes the log(1+X) of a denormalized input             #
8071 #                                                                       #
8072 # INPUT *************************************************************** #
8073 #       a0 = pointer to extended precision input                        #
8074 #       d0 = round precision,mode                                       #
8075 #                                                                       #
8076 # OUTPUT ************************************************************** #
8077 #       fp0 = log(X) or log(1+X)                                        #
8078 #                                                                       #
8079 # ACCURACY and MONOTONICITY ******************************************* #
8080 #       The returned result is within 2 ulps in 64 significant bit,     #
8081 #       i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
8082 #       rounded to double precision. The result is provably monotonic   #
8083 #       in double precision.                                            #
8084 #                                                                       #
8085 # ALGORITHM *********************************************************** #
8086 #       LOGN:                                                           #
8087 #       Step 1. If |X-1| < 1/16, approximate log(X) by an odd           #
8088 #               polynomial in u, where u = 2(X-1)/(X+1). Otherwise,     #
8089 #               move on to Step 2.                                      #
8090 #                                                                       #
8091 #       Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first #
8092 #               seven significant bits of Y plus 2**(-7), i.e.          #
8093 #               F = 1.xxxxxx1 in base 2 where the six "x" match those   #
8094 #               of Y. Note that |Y-F| <= 2**(-7).                       #
8095 #                                                                       #
8096 #       Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a           #
8097 #               polynomial in u, log(1+u) = poly.                       #
8098 #                                                                       #
8099 #       Step 4. Reconstruct                                             #
8100 #               log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) #
8101 #               by k*log(2) + (log(F) + poly). The values of log(F) are #
8102 #               calculated beforehand and stored in the program.        #
8103 #                                                                       #
8104 #       lognp1:                                                         #
8105 #       Step 1: If |X| < 1/16, approximate log(1+X) by an odd           #
8106 #               polynomial in u where u = 2X/(2+X). Otherwise, move on  #
8107 #               to Step 2.                                              #
8108 #                                                                       #
8109 #       Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done  #
8110 #               in Step 2 of the algorithm for LOGN and compute         #
8111 #               log(1+X) as k*log(2) + log(F) + poly where poly         #
8112 #               approximates log(1+u), u = (Y-F)/F.                     #
8113 #                                                                       #
8114 #       Implementation Notes:                                           #
8115 #       Note 1. There are 64 different possible values for F, thus 64   #
8116 #               log(F)'s need to be tabulated. Moreover, the values of  #
8117 #               1/F are also tabulated so that the division in (Y-F)/F  #
8118 #               can be performed by a multiplication.                   #
8119 #                                                                       #
8120 #       Note 2. In Step 2 of lognp1, in order to preserved accuracy,    #
8121 #               the value Y-F has to be calculated carefully when       #
8122 #               1/2 <= X < 3/2.                                         #
8123 #                                                                       #
8124 #       Note 3. To fully exploit the pipeline, polynomials are usually  #
8125 #               separated into two parts evaluated independently before #
8126 #               being added up.                                         #
8127 #                                                                       #
8128 #########################################################################
8129 LOGOF2:
8130         long            0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
8131
8132 one:
8133         long            0x3F800000
8134 zero:
8135         long            0x00000000
8136 infty:
8137         long            0x7F800000
8138 negone:
8139         long            0xBF800000
8140
8141 LOGA6:
8142         long            0x3FC2499A,0xB5E4040B
8143 LOGA5:
8144         long            0xBFC555B5,0x848CB7DB
8145
8146 LOGA4:
8147         long            0x3FC99999,0x987D8730
8148 LOGA3:
8149         long            0xBFCFFFFF,0xFF6F7E97
8150
8151 LOGA2:
8152         long            0x3FD55555,0x555555A4
8153 LOGA1:
8154         long            0xBFE00000,0x00000008
8155
8156 LOGB5:
8157         long            0x3F175496,0xADD7DAD6
8158 LOGB4:
8159         long            0x3F3C71C2,0xFE80C7E0
8160
8161 LOGB3:
8162         long            0x3F624924,0x928BCCFF
8163 LOGB2:
8164         long            0x3F899999,0x999995EC
8165
8166 LOGB1:
8167         long            0x3FB55555,0x55555555
8168 TWO:
8169         long            0x40000000,0x00000000
8170
8171 LTHOLD:
8172         long            0x3f990000,0x80000000,0x00000000,0x00000000
8173
8174 LOGTBL:
8175         long            0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000
8176         long            0x3FF70000,0xFF015358,0x833C47E2,0x00000000
8177         long            0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000
8178         long            0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000
8179         long            0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000
8180         long            0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000
8181         long            0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000
8182         long            0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000
8183         long            0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000
8184         long            0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000
8185         long            0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000
8186         long            0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000
8187         long            0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000
8188         long            0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000
8189         long            0x3FFE0000,0xE525982A,0xF70C880E,0x00000000
8190         long            0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000
8191         long            0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000
8192         long            0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000
8193         long            0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000
8194         long            0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000
8195         long            0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000
8196         long            0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000
8197         long            0x3FFE0000,0xD901B203,0x6406C80E,0x00000000
8198         long            0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000
8199         long            0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000
8200         long            0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000
8201         long            0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000
8202         long            0x3FFC0000,0xC3FD0329,0x06488481,0x00000000
8203         long            0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000
8204         long            0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000
8205         long            0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000
8206         long            0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000
8207         long            0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000
8208         long            0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000
8209         long            0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000
8210         long            0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000
8211         long            0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000
8212         long            0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000
8213         long            0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000
8214         long            0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000
8215         long            0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000
8216         long            0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000
8217         long            0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000
8218         long            0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000
8219         long            0x3FFE0000,0xBD691047,0x07661AA3,0x00000000
8220         long            0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000
8221         long            0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000
8222         long            0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000
8223         long            0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000
8224         long            0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000
8225         long            0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000
8226         long            0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000
8227         long            0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000
8228         long            0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000
8229         long            0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000
8230         long            0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000
8231         long            0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000
8232         long            0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000
8233         long            0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000
8234         long            0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000
8235         long            0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000
8236         long            0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000
8237         long            0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000
8238         long            0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000
8239         long            0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000
8240         long            0x3FFD0000,0xD2420487,0x2DD85160,0x00000000
8241         long            0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000
8242         long            0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000
8243         long            0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000
8244         long            0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000
8245         long            0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000
8246         long            0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000
8247         long            0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000
8248         long            0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000
8249         long            0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000
8250         long            0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000
8251         long            0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000
8252         long            0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000
8253         long            0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000
8254         long            0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000
8255         long            0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000
8256         long            0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000
8257         long            0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000
8258         long            0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000
8259         long            0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000
8260         long            0x3FFE0000,0x825EFCED,0x49369330,0x00000000
8261         long            0x3FFE0000,0x9868C809,0x868C8098,0x00000000
8262         long            0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000
8263         long            0x3FFE0000,0x97012E02,0x5C04B809,0x00000000
8264         long            0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000
8265         long            0x3FFE0000,0x95A02568,0x095A0257,0x00000000
8266         long            0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000
8267         long            0x3FFE0000,0x94458094,0x45809446,0x00000000
8268         long            0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000
8269         long            0x3FFE0000,0x92F11384,0x0497889C,0x00000000
8270         long            0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000
8271         long            0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000
8272         long            0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000
8273         long            0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000
8274         long            0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000
8275         long            0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000
8276         long            0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000
8277         long            0x3FFE0000,0x8DDA5202,0x37694809,0x00000000
8278         long            0x3FFE0000,0x9723A1B7,0x20134203,0x00000000
8279         long            0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000
8280         long            0x3FFE0000,0x995899C8,0x90EB8990,0x00000000
8281         long            0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000
8282         long            0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000
8283         long            0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000
8284         long            0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000
8285         long            0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000
8286         long            0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000
8287         long            0x3FFE0000,0x87F78087,0xF78087F8,0x00000000
8288         long            0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000
8289         long            0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000
8290         long            0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000
8291         long            0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000
8292         long            0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000
8293         long            0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000
8294         long            0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000
8295         long            0x3FFE0000,0x83993052,0x3FBE3368,0x00000000
8296         long            0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000
8297         long            0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000
8298         long            0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000
8299         long            0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000
8300         long            0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000
8301         long            0x3FFE0000,0x80808080,0x80808081,0x00000000
8302         long            0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000
8303
8304         set             ADJK,L_SCR1
8305
8306         set             X,FP_SCR0
8307         set             XDCARE,X+2
8308         set             XFRAC,X+4
8309
8310         set             F,FP_SCR1
8311         set             FFRAC,F+4
8312
8313         set             KLOG2,FP_SCR0
8314
8315         set             SAVEU,FP_SCR0
8316
8317         global          slogn
8318 #--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S
8319 slogn:
8320         fmov.x          (%a0),%fp0              # LOAD INPUT
8321         mov.l           &0x00000000,ADJK(%a6)
8322
8323 LOGBGN:
8324 #--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS
8325 #--A FINITE, NON-ZERO, NORMALIZED NUMBER.
8326
8327         mov.l           (%a0),%d1
8328         mov.w           4(%a0),%d1
8329
8330         mov.l           (%a0),X(%a6)
8331         mov.l           4(%a0),X+4(%a6)
8332         mov.l           8(%a0),X+8(%a6)
8333
8334         cmp.l           %d1,&0                  # CHECK IF X IS NEGATIVE
8335         blt.w           LOGNEG                  # LOG OF NEGATIVE ARGUMENT IS INVALID
8336 # X IS POSITIVE, CHECK IF X IS NEAR 1
8337         cmp.l           %d1,&0x3ffef07d         # IS X < 15/16?
8338         blt.b           LOGMAIN                 # YES
8339         cmp.l           %d1,&0x3fff8841         # IS X > 17/16?
8340         ble.w           LOGNEAR1                # NO
8341
8342 LOGMAIN:
8343 #--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1
8344
8345 #--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY.
8346 #--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
8347 #--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y)
8348 #--                      = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F).
8349 #--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING
8350 #--LOG(1+U) CAN BE VERY EFFICIENT.
8351 #--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO
8352 #--DIVISION IS NEEDED TO CALCULATE (Y-F)/F.
8353
8354 #--GET K, Y, F, AND ADDRESS OF 1/F.
8355         asr.l           &8,%d1
8356         asr.l           &8,%d1                  # SHIFTED 16 BITS, BIASED EXPO. OF X
8357         sub.l           &0x3FFF,%d1             # THIS IS K
8358         add.l           ADJK(%a6),%d1           # ADJUST K, ORIGINAL INPUT MAY BE  DENORM.
8359         lea             LOGTBL(%pc),%a0         # BASE ADDRESS OF 1/F AND LOG(F)
8360         fmov.l          %d1,%fp1                # CONVERT K TO FLOATING-POINT FORMAT
8361
8362 #--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F
8363         mov.l           &0x3FFF0000,X(%a6)      # X IS NOW Y, I.E. 2^(-K)*X
8364         mov.l           XFRAC(%a6),FFRAC(%a6)
8365         and.l           &0xFE000000,FFRAC(%a6)  # FIRST 7 BITS OF Y
8366         or.l            &0x01000000,FFRAC(%a6)  # GET F: ATTACH A 1 AT THE EIGHTH BIT
8367         mov.l           FFRAC(%a6),%d1  # READY TO GET ADDRESS OF 1/F
8368         and.l           &0x7E000000,%d1
8369         asr.l           &8,%d1
8370         asr.l           &8,%d1
8371         asr.l           &4,%d1                  # SHIFTED 20, D0 IS THE DISPLACEMENT
8372         add.l           %d1,%a0                 # A0 IS THE ADDRESS FOR 1/F
8373
8374         fmov.x          X(%a6),%fp0
8375         mov.l           &0x3fff0000,F(%a6)
8376         clr.l           F+8(%a6)
8377         fsub.x          F(%a6),%fp0             # Y-F
8378         fmovm.x         &0xc,-(%sp)             # SAVE FP2-3 WHILE FP0 IS NOT READY
8379 #--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K
8380 #--REGISTERS SAVED: FPCR, FP1, FP2
8381
8382 LP1CONT1:
8383 #--AN RE-ENTRY POINT FOR LOGNP1
8384         fmul.x          (%a0),%fp0              # FP0 IS U = (Y-F)/F
8385         fmul.x          LOGOF2(%pc),%fp1        # GET K*LOG2 WHILE FP0 IS NOT READY
8386         fmov.x          %fp0,%fp2
8387         fmul.x          %fp2,%fp2               # FP2 IS V=U*U
8388         fmov.x          %fp1,KLOG2(%a6)         # PUT K*LOG2 IN MEMEORY, FREE FP1
8389
8390 #--LOG(1+U) IS APPROXIMATED BY
8391 #--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS
8392 #--[U + V*(A1+V*(A3+V*A5))]  +  [U*V*(A2+V*(A4+V*A6))]
8393
8394         fmov.x          %fp2,%fp3
8395         fmov.x          %fp2,%fp1
8396
8397         fmul.d          LOGA6(%pc),%fp1         # V*A6
8398         fmul.d          LOGA5(%pc),%fp2         # V*A5
8399
8400         fadd.d          LOGA4(%pc),%fp1         # A4+V*A6
8401         fadd.d          LOGA3(%pc),%fp2         # A3+V*A5
8402
8403         fmul.x          %fp3,%fp1               # V*(A4+V*A6)
8404         fmul.x          %fp3,%fp2               # V*(A3+V*A5)
8405
8406         fadd.d          LOGA2(%pc),%fp1         # A2+V*(A4+V*A6)
8407         fadd.d          LOGA1(%pc),%fp2         # A1+V*(A3+V*A5)
8408
8409         fmul.x          %fp3,%fp1               # V*(A2+V*(A4+V*A6))
8410         add.l           &16,%a0                 # ADDRESS OF LOG(F)
8411         fmul.x          %fp3,%fp2               # V*(A1+V*(A3+V*A5))
8412
8413         fmul.x          %fp0,%fp1               # U*V*(A2+V*(A4+V*A6))
8414         fadd.x          %fp2,%fp0               # U+V*(A1+V*(A3+V*A5))
8415
8416         fadd.x          (%a0),%fp1              # LOG(F)+U*V*(A2+V*(A4+V*A6))
8417         fmovm.x         (%sp)+,&0x30            # RESTORE FP2-3
8418         fadd.x          %fp1,%fp0               # FP0 IS LOG(F) + LOG(1+U)
8419
8420         fmov.l          %d0,%fpcr
8421         fadd.x          KLOG2(%a6),%fp0         # FINAL ADD
8422         bra             t_inx2
8423
8424
8425 LOGNEAR1:
8426
8427 # if the input is exactly equal to one, then exit through ld_pzero.
8428 # if these 2 lines weren't here, the correct answer would be returned
8429 # but the INEX2 bit would be set.
8430         fcmp.b          %fp0,&0x1               # is it equal to one?
8431         fbeq.l          ld_pzero                # yes
8432
8433 #--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT.
8434         fmov.x          %fp0,%fp1
8435         fsub.s          one(%pc),%fp1           # FP1 IS X-1
8436         fadd.s          one(%pc),%fp0           # FP0 IS X+1
8437         fadd.x          %fp1,%fp1               # FP1 IS 2(X-1)
8438 #--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL
8439 #--IN U, U = 2(X-1)/(X+1) = FP1/FP0
8440
8441 LP1CONT2:
8442 #--THIS IS AN RE-ENTRY POINT FOR LOGNP1
8443         fdiv.x          %fp0,%fp1               # FP1 IS U
8444         fmovm.x         &0xc,-(%sp)             # SAVE FP2-3
8445 #--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3
8446 #--LET V=U*U, W=V*V, CALCULATE
8447 #--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY
8448 #--U + U*V*(  [B1 + W*(B3 + W*B5)]  +  [V*(B2 + W*B4)]  )
8449         fmov.x          %fp1,%fp0
8450         fmul.x          %fp0,%fp0               # FP0 IS V
8451         fmov.x          %fp1,SAVEU(%a6)         # STORE U IN MEMORY, FREE FP1
8452         fmov.x          %fp0,%fp1
8453         fmul.x          %fp1,%fp1               # FP1 IS W
8454
8455         fmov.d          LOGB5(%pc),%fp3
8456         fmov.d          LOGB4(%pc),%fp2
8457
8458         fmul.x          %fp1,%fp3               # W*B5
8459         fmul.x          %fp1,%fp2               # W*B4
8460
8461         fadd.d          LOGB3(%pc),%fp3         # B3+W*B5
8462         fadd.d          LOGB2(%pc),%fp2         # B2+W*B4
8463
8464         fmul.x          %fp3,%fp1               # W*(B3+W*B5), FP3 RELEASED
8465
8466         fmul.x          %fp0,%fp2               # V*(B2+W*B4)
8467
8468         fadd.d          LOGB1(%pc),%fp1         # B1+W*(B3+W*B5)
8469         fmul.x          SAVEU(%a6),%fp0         # FP0 IS U*V
8470
8471         fadd.x          %fp2,%fp1               # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED
8472         fmovm.x         (%sp)+,&0x30            # FP2-3 RESTORED
8473
8474         fmul.x          %fp1,%fp0               # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] )
8475
8476         fmov.l          %d0,%fpcr
8477         fadd.x          SAVEU(%a6),%fp0
8478         bra             t_inx2
8479
8480 #--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID
8481 LOGNEG:
8482         bra             t_operr
8483
8484         global          slognd
8485 slognd:
8486 #--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT
8487
8488         mov.l           &-100,ADJK(%a6)         # INPUT = 2^(ADJK) * FP0
8489
8490 #----normalize the input value by left shifting k bits (k to be determined
8491 #----below), adjusting exponent and storing -k to  ADJK
8492 #----the value TWOTO100 is no longer needed.
8493 #----Note that this code assumes the denormalized input is NON-ZERO.
8494
8495         movm.l          &0x3f00,-(%sp)          # save some registers  {d2-d7}
8496         mov.l           (%a0),%d3               # D3 is exponent of smallest norm. #
8497         mov.l           4(%a0),%d4
8498         mov.l           8(%a0),%d5              # (D4,D5) is (Hi_X,Lo_X)
8499         clr.l           %d2                     # D2 used for holding K
8500
8501         tst.l           %d4
8502         bne.b           Hi_not0
8503
8504 Hi_0:
8505         mov.l           %d5,%d4
8506         clr.l           %d5
8507         mov.l           &32,%d2
8508         clr.l           %d6
8509         bfffo           %d4{&0:&32},%d6
8510         lsl.l           %d6,%d4
8511         add.l           %d6,%d2                 # (D3,D4,D5) is normalized
8512
8513         mov.l           %d3,X(%a6)
8514         mov.l           %d4,XFRAC(%a6)
8515         mov.l           %d5,XFRAC+4(%a6)
8516         neg.l           %d2
8517         mov.l           %d2,ADJK(%a6)
8518         fmov.x          X(%a6),%fp0
8519         movm.l          (%sp)+,&0xfc            # restore registers {d2-d7}
8520         lea             X(%a6),%a0
8521         bra.w           LOGBGN                  # begin regular log(X)
8522
8523 Hi_not0:
8524         clr.l           %d6
8525         bfffo           %d4{&0:&32},%d6         # find first 1
8526         mov.l           %d6,%d2                 # get k
8527         lsl.l           %d6,%d4
8528         mov.l           %d5,%d7                 # a copy of D5
8529         lsl.l           %d6,%d5
8530         neg.l           %d6
8531         add.l           &32,%d6
8532         lsr.l           %d6,%d7
8533         or.l            %d7,%d4                 # (D3,D4,D5) normalized
8534
8535         mov.l           %d3,X(%a6)
8536         mov.l           %d4,XFRAC(%a6)
8537         mov.l           %d5,XFRAC+4(%a6)
8538         neg.l           %d2
8539         mov.l           %d2,ADJK(%a6)
8540         fmov.x          X(%a6),%fp0
8541         movm.l          (%sp)+,&0xfc            # restore registers {d2-d7}
8542         lea             X(%a6),%a0
8543         bra.w           LOGBGN                  # begin regular log(X)
8544
8545         global          slognp1
8546 #--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S
8547 slognp1:
8548         fmov.x          (%a0),%fp0              # LOAD INPUT
8549         fabs.x          %fp0                    # test magnitude
8550         fcmp.x          %fp0,LTHOLD(%pc)        # compare with min threshold
8551         fbgt.w          LP1REAL                 # if greater, continue
8552         fmov.l          %d0,%fpcr
8553         mov.b           &FMOV_OP,%d1            # last inst is MOVE
8554         fmov.x          (%a0),%fp0              # return signed argument
8555         bra             t_catch
8556
8557 LP1REAL:
8558         fmov.x          (%a0),%fp0              # LOAD INPUT
8559         mov.l           &0x00000000,ADJK(%a6)
8560         fmov.x          %fp0,%fp1               # FP1 IS INPUT Z
8561         fadd.s          one(%pc),%fp0           # X := ROUND(1+Z)
8562         fmov.x          %fp0,X(%a6)
8563         mov.w           XFRAC(%a6),XDCARE(%a6)
8564         mov.l           X(%a6),%d1
8565         cmp.l           %d1,&0
8566         ble.w           LP1NEG0                 # LOG OF ZERO OR -VE
8567         cmp.l           %d1,&0x3ffe8000         # IS BOUNDS [1/2,3/2]?
8568         blt.w           LOGMAIN
8569         cmp.l           %d1,&0x3fffc000
8570         bgt.w           LOGMAIN
8571 #--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z,
8572 #--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE,
8573 #--SIMPLY INVOKE LOG(X) FOR LOG(1+Z).
8574
8575 LP1NEAR1:
8576 #--NEXT SEE IF EXP(-1/16) < X < EXP(1/16)
8577         cmp.l           %d1,&0x3ffef07d
8578         blt.w           LP1CARE
8579         cmp.l           %d1,&0x3fff8841
8580         bgt.w           LP1CARE
8581
8582 LP1ONE16:
8583 #--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2)
8584 #--WHERE U = 2Z/(2+Z) = 2Z/(1+X).
8585         fadd.x          %fp1,%fp1               # FP1 IS 2Z
8586         fadd.s          one(%pc),%fp0           # FP0 IS 1+X
8587 #--U = FP1/FP0
8588         bra.w           LP1CONT2
8589
8590 LP1CARE:
8591 #--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE
8592 #--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST
8593 #--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2],
8594 #--THERE ARE ONLY TWO CASES.
8595 #--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z
8596 #--CASE 2: 1+Z > 1, THEN K = 0  AND Y-F = (1-F) + Z
8597 #--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF
8598 #--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED.
8599
8600         mov.l           XFRAC(%a6),FFRAC(%a6)
8601         and.l           &0xFE000000,FFRAC(%a6)
8602         or.l            &0x01000000,FFRAC(%a6)  # F OBTAINED
8603         cmp.l           %d1,&0x3FFF8000         # SEE IF 1+Z > 1
8604         bge.b           KISZERO
8605
8606 KISNEG1:
8607         fmov.s          TWO(%pc),%fp0
8608         mov.l           &0x3fff0000,F(%a6)
8609         clr.l           F+8(%a6)
8610         fsub.x          F(%a6),%fp0             # 2-F
8611         mov.l           FFRAC(%a6),%d1
8612         and.l           &0x7E000000,%d1
8613         asr.l           &8,%d1
8614         asr.l           &8,%d1
8615         asr.l           &4,%d1                  # D0 CONTAINS DISPLACEMENT FOR 1/F
8616         fadd.x          %fp1,%fp1               # GET 2Z
8617         fmovm.x         &0xc,-(%sp)             # SAVE FP2  {%fp2/%fp3}
8618         fadd.x          %fp1,%fp0               # FP0 IS Y-F = (2-F)+2Z
8619         lea             LOGTBL(%pc),%a0         # A0 IS ADDRESS OF 1/F
8620         add.l           %d1,%a0
8621         fmov.s          negone(%pc),%fp1        # FP1 IS K = -1
8622         bra.w           LP1CONT1
8623
8624 KISZERO:
8625         fmov.s          one(%pc),%fp0
8626         mov.l           &0x3fff0000,F(%a6)
8627         clr.l           F+8(%a6)
8628         fsub.x          F(%a6),%fp0             # 1-F
8629         mov.l           FFRAC(%a6),%d1
8630         and.l           &0x7E000000,%d1
8631         asr.l           &8,%d1
8632         asr.l           &8,%d1
8633         asr.l           &4,%d1
8634         fadd.x          %fp1,%fp0               # FP0 IS Y-F
8635         fmovm.x         &0xc,-(%sp)             # FP2 SAVED {%fp2/%fp3}
8636         lea             LOGTBL(%pc),%a0
8637         add.l           %d1,%a0                 # A0 IS ADDRESS OF 1/F
8638         fmov.s          zero(%pc),%fp1          # FP1 IS K = 0
8639         bra.w           LP1CONT1
8640
8641 LP1NEG0:
8642 #--FPCR SAVED. D0 IS X IN COMPACT FORM.
8643         cmp.l           %d1,&0
8644         blt.b           LP1NEG
8645 LP1ZERO:
8646         fmov.s          negone(%pc),%fp0
8647
8648         fmov.l          %d0,%fpcr
8649         bra             t_dz
8650
8651 LP1NEG:
8652         fmov.s          zero(%pc),%fp0
8653
8654         fmov.l          %d0,%fpcr
8655         bra             t_operr
8656
8657         global          slognp1d
8658 #--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT
8659 # Simply return the denorm
8660 slognp1d:
8661         bra             t_extdnrm
8662
8663 #########################################################################
8664 # satanh():  computes the inverse hyperbolic tangent of a norm input    #
8665 # satanhd(): computes the inverse hyperbolic tangent of a denorm input  #
8666 #                                                                       #
8667 # INPUT *************************************************************** #
8668 #       a0 = pointer to extended precision input                        #
8669 #       d0 = round precision,mode                                       #
8670 #                                                                       #
8671 # OUTPUT ************************************************************** #
8672 #       fp0 = arctanh(X)                                                #
8673 #                                                                       #
8674 # ACCURACY and MONOTONICITY ******************************************* #
8675 #       The returned result is within 3 ulps in 64 significant bit,     #
8676 #       i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
8677 #       rounded to double precision. The result is provably monotonic   #
8678 #       in double precision.                                            #
8679 #                                                                       #
8680 # ALGORITHM *********************************************************** #
8681 #                                                                       #
8682 #       ATANH                                                           #
8683 #       1. If |X| >= 1, go to 3.                                        #
8684 #                                                                       #
8685 #       2. (|X| < 1) Calculate atanh(X) by                              #
8686 #               sgn := sign(X)                                          #
8687 #               y := |X|                                                #
8688 #               z := 2y/(1-y)                                           #
8689 #               atanh(X) := sgn * (1/2) * logp1(z)                      #
8690 #               Exit.                                                   #
8691 #                                                                       #
8692 #       3. If |X| > 1, go to 5.                                         #
8693 #                                                                       #
8694 #       4. (|X| = 1) Generate infinity with an appropriate sign and     #
8695 #               divide-by-zero by                                       #
8696 #               sgn := sign(X)                                          #
8697 #               atan(X) := sgn / (+0).                                  #
8698 #               Exit.                                                   #
8699 #                                                                       #
8700 #       5. (|X| > 1) Generate an invalid operation by 0 * infinity.     #
8701 #               Exit.                                                   #
8702 #                                                                       #
8703 #########################################################################
8704
8705         global          satanh
8706 satanh:
8707         mov.l           (%a0),%d1
8708         mov.w           4(%a0),%d1
8709         and.l           &0x7FFFFFFF,%d1
8710         cmp.l           %d1,&0x3FFF8000
8711         bge.b           ATANHBIG
8712
8713 #--THIS IS THE USUAL CASE, |X| < 1
8714 #--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z).
8715
8716         fabs.x          (%a0),%fp0              # Y = |X|
8717         fmov.x          %fp0,%fp1
8718         fneg.x          %fp1                    # -Y
8719         fadd.x          %fp0,%fp0               # 2Y
8720         fadd.s          &0x3F800000,%fp1        # 1-Y
8721         fdiv.x          %fp1,%fp0               # 2Y/(1-Y)
8722         mov.l           (%a0),%d1
8723         and.l           &0x80000000,%d1
8724         or.l            &0x3F000000,%d1         # SIGN(X)*HALF
8725         mov.l           %d1,-(%sp)
8726
8727         mov.l           %d0,-(%sp)              # save rnd prec,mode
8728         clr.l           %d0                     # pass ext prec,RN
8729         fmovm.x         &0x01,-(%sp)            # save Z on stack
8730         lea             (%sp),%a0               # pass ptr to Z
8731         bsr             slognp1                 # LOG1P(Z)
8732         add.l           &0xc,%sp                # clear Z from stack
8733
8734         mov.l           (%sp)+,%d0              # fetch old prec,mode
8735         fmov.l          %d0,%fpcr               # load it
8736         mov.b           &FMUL_OP,%d1            # last inst is MUL
8737         fmul.s          (%sp)+,%fp0
8738         bra             t_catch
8739
8740 ATANHBIG:
8741         fabs.x          (%a0),%fp0              # |X|
8742         fcmp.s          %fp0,&0x3F800000
8743         fbgt            t_operr
8744         bra             t_dz
8745
8746         global          satanhd
8747 #--ATANH(X) = X FOR DENORMALIZED X
8748 satanhd:
8749         bra             t_extdnrm
8750
8751 #########################################################################
8752 # slog10():  computes the base-10 logarithm of a normalized input       #
8753 # slog10d(): computes the base-10 logarithm of a denormalized input     #
8754 # slog2():   computes the base-2 logarithm of a normalized input        #
8755 # slog2d():  computes the base-2 logarithm of a denormalized input      #
8756 #                                                                       #
8757 # INPUT *************************************************************** #
8758 #       a0 = pointer to extended precision input                        #
8759 #       d0 = round precision,mode                                       #
8760 #                                                                       #
8761 # OUTPUT ************************************************************** #
8762 #       fp0 = log_10(X) or log_2(X)                                     #
8763 #                                                                       #
8764 # ACCURACY and MONOTONICITY ******************************************* #
8765 #       The returned result is within 1.7 ulps in 64 significant bit,   #
8766 #       i.e. within 0.5003 ulp to 53 bits if the result is subsequently #
8767 #       rounded to double precision. The result is provably monotonic   #
8768 #       in double precision.                                            #
8769 #                                                                       #
8770 # ALGORITHM *********************************************************** #
8771 #                                                                       #
8772 #       slog10d:                                                        #
8773 #                                                                       #
8774 #       Step 0. If X < 0, create a NaN and raise the invalid operation  #
8775 #               flag. Otherwise, save FPCR in D1; set FpCR to default.  #
8776 #       Notes:  Default means round-to-nearest mode, no floating-point  #
8777 #               traps, and precision control = double extended.         #
8778 #                                                                       #
8779 #       Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
8780 #       Notes:  Even if X is denormalized, log(X) is always normalized. #
8781 #                                                                       #
8782 #       Step 2.  Compute log_10(X) = log(X) * (1/log(10)).              #
8783 #            2.1 Restore the user FPCR                                  #
8784 #            2.2 Return ans := Y * INV_L10.                             #
8785 #                                                                       #
8786 #       slog10:                                                         #
8787 #                                                                       #
8788 #       Step 0. If X < 0, create a NaN and raise the invalid operation  #
8789 #               flag. Otherwise, save FPCR in D1; set FpCR to default.  #
8790 #       Notes:  Default means round-to-nearest mode, no floating-point  #
8791 #               traps, and precision control = double extended.         #
8792 #                                                                       #
8793 #       Step 1. Call sLogN to obtain Y = log(X), the natural log of X.  #
8794 #                                                                       #
8795 #       Step 2.   Compute log_10(X) = log(X) * (1/log(10)).             #
8796 #            2.1  Restore the user FPCR                                 #
8797 #            2.2  Return ans := Y * INV_L10.                            #
8798 #                                                                       #
8799 #       sLog2d:                                                         #
8800 #                                                                       #
8801 #       Step 0. If X < 0, create a NaN and raise the invalid operation  #
8802 #               flag. Otherwise, save FPCR in D1; set FpCR to default.  #
8803 #       Notes:  Default means round-to-nearest mode, no floating-point  #
8804 #               traps, and precision control = double extended.         #
8805 #                                                                       #
8806 #       Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
8807 #       Notes:  Even if X is denormalized, log(X) is always normalized. #
8808 #                                                                       #
8809 #       Step 2.   Compute log_10(X) = log(X) * (1/log(2)).              #
8810 #            2.1  Restore the user FPCR                                 #
8811 #            2.2  Return ans := Y * INV_L2.                             #
8812 #                                                                       #
8813 #       sLog2:                                                          #
8814 #                                                                       #
8815 #       Step 0. If X < 0, create a NaN and raise the invalid operation  #
8816 #               flag. Otherwise, save FPCR in D1; set FpCR to default.  #
8817 #       Notes:  Default means round-to-nearest mode, no floating-point  #
8818 #               traps, and precision control = double extended.         #
8819 #                                                                       #
8820 #       Step 1. If X is not an integer power of two, i.e., X != 2^k,    #
8821 #               go to Step 3.                                           #
8822 #                                                                       #
8823 #       Step 2.   Return k.                                             #
8824 #            2.1  Get integer k, X = 2^k.                               #
8825 #            2.2  Restore the user FPCR.                                #
8826 #            2.3  Return ans := convert-to-double-extended(k).          #
8827 #                                                                       #
8828 #       Step 3. Call sLogN to obtain Y = log(X), the natural log of X.  #
8829 #                                                                       #
8830 #       Step 4.   Compute log_2(X) = log(X) * (1/log(2)).               #
8831 #            4.1  Restore the user FPCR                                 #
8832 #            4.2  Return ans := Y * INV_L2.                             #
8833 #                                                                       #
8834 #########################################################################
8835
8836 INV_L10:
8837         long            0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000
8838
8839 INV_L2:
8840         long            0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000
8841
8842         global          slog10
8843 #--entry point for Log10(X), X is normalized
8844 slog10:
8845         fmov.b          &0x1,%fp0
8846         fcmp.x          %fp0,(%a0)              # if operand == 1,
8847         fbeq.l          ld_pzero                # return an EXACT zero
8848
8849         mov.l           (%a0),%d1
8850         blt.w           invalid
8851         mov.l           %d0,-(%sp)
8852         clr.l           %d0
8853         bsr             slogn                   # log(X), X normal.
8854         fmov.l          (%sp)+,%fpcr
8855         fmul.x          INV_L10(%pc),%fp0
8856         bra             t_inx2
8857
8858         global          slog10d
8859 #--entry point for Log10(X), X is denormalized
8860 slog10d:
8861         mov.l           (%a0),%d1
8862         blt.w           invalid
8863         mov.l           %d0,-(%sp)
8864         clr.l           %d0
8865         bsr             slognd                  # log(X), X denorm.
8866         fmov.l          (%sp)+,%fpcr
8867         fmul.x          INV_L10(%pc),%fp0
8868         bra             t_minx2
8869
8870         global          slog2
8871 #--entry point for Log2(X), X is normalized
8872 slog2:
8873         mov.l           (%a0),%d1
8874         blt.w           invalid
8875
8876         mov.l           8(%a0),%d1
8877         bne.b           continue                # X is not 2^k
8878
8879         mov.l           4(%a0),%d1
8880         and.l           &0x7FFFFFFF,%d1
8881         bne.b           continue
8882
8883 #--X = 2^k.
8884         mov.w           (%a0),%d1
8885         and.l           &0x00007FFF,%d1
8886         sub.l           &0x3FFF,%d1
8887         beq.l           ld_pzero
8888         fmov.l          %d0,%fpcr
8889         fmov.l          %d1,%fp0
8890         bra             t_inx2
8891
8892 continue:
8893         mov.l           %d0,-(%sp)
8894         clr.l           %d0
8895         bsr             slogn                   # log(X), X normal.
8896         fmov.l          (%sp)+,%fpcr
8897         fmul.x          INV_L2(%pc),%fp0
8898         bra             t_inx2
8899
8900 invalid:
8901         bra             t_operr
8902
8903         global          slog2d
8904 #--entry point for Log2(X), X is denormalized
8905 slog2d:
8906         mov.l           (%a0),%d1
8907         blt.w           invalid
8908         mov.l           %d0,-(%sp)
8909         clr.l           %d0
8910         bsr             slognd                  # log(X), X denorm.
8911         fmov.l          (%sp)+,%fpcr
8912         fmul.x          INV_L2(%pc),%fp0
8913         bra             t_minx2
8914
8915 #########################################################################
8916 # stwotox():  computes 2**X for a normalized input                      #
8917 # stwotoxd(): computes 2**X for a denormalized input                    #
8918 # stentox():  computes 10**X for a normalized input                     #
8919 # stentoxd(): computes 10**X for a denormalized input                   #
8920 #                                                                       #
8921 # INPUT *************************************************************** #
8922 #       a0 = pointer to extended precision input                        #
8923 #       d0 = round precision,mode                                       #
8924 #                                                                       #
8925 # OUTPUT ************************************************************** #
8926 #       fp0 = 2**X or 10**X                                             #
8927 #                                                                       #
8928 # ACCURACY and MONOTONICITY ******************************************* #
8929 #       The returned result is within 2 ulps in 64 significant bit,     #
8930 #       i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
8931 #       rounded to double precision. The result is provably monotonic   #
8932 #       in double precision.                                            #
8933 #                                                                       #
8934 # ALGORITHM *********************************************************** #
8935 #                                                                       #
8936 #       twotox                                                          #
8937 #       1. If |X| > 16480, go to ExpBig.                                #
8938 #                                                                       #
8939 #       2. If |X| < 2**(-70), go to ExpSm.                              #
8940 #                                                                       #
8941 #       3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore  #
8942 #               decompose N as                                          #
8943 #                N = 64(M + M') + j,  j = 0,1,2,...,63.                 #
8944 #                                                                       #
8945 #       4. Overwrite r := r * log2. Then                                #
8946 #               2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r).           #
8947 #               Go to expr to compute that expression.                  #
8948 #                                                                       #
8949 #       tentox                                                          #
8950 #       1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig.   #
8951 #                                                                       #
8952 #       2. If |X| < 2**(-70), go to ExpSm.                              #
8953 #                                                                       #
8954 #       3. Set y := X*log_2(10)*64 (base 2 log of 10). Set              #
8955 #               N := round-to-int(y). Decompose N as                    #
8956 #                N = 64(M + M') + j,  j = 0,1,2,...,63.                 #
8957 #                                                                       #
8958 #       4. Define r as                                                  #
8959 #               r := ((X - N*L1)-N*L2) * L10                            #
8960 #               where L1, L2 are the leading and trailing parts of      #
8961 #               log_10(2)/64 and L10 is the natural log of 10. Then     #
8962 #               10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r).          #
8963 #               Go to expr to compute that expression.                  #
8964 #                                                                       #
8965 #       expr                                                            #
8966 #       1. Fetch 2**(j/64) from table as Fact1 and Fact2.               #
8967 #                                                                       #
8968 #       2. Overwrite Fact1 and Fact2 by                                 #
8969 #               Fact1 := 2**(M) * Fact1                                 #
8970 #               Fact2 := 2**(M) * Fact2                                 #
8971 #               Thus Fact1 + Fact2 = 2**(M) * 2**(j/64).                #
8972 #                                                                       #
8973 #       3. Calculate P where 1 + P approximates exp(r):                 #
8974 #               P = r + r*r*(A1+r*(A2+...+r*A5)).                       #
8975 #                                                                       #
8976 #       4. Let AdjFact := 2**(M'). Return                               #
8977 #               AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ).              #
8978 #               Exit.                                                   #
8979 #                                                                       #
8980 #       ExpBig                                                          #
8981 #       1. Generate overflow by Huge * Huge if X > 0; otherwise,        #
8982 #               generate underflow by Tiny * Tiny.                      #
8983 #                                                                       #
8984 #       ExpSm                                                           #
8985 #       1. Return 1 + X.                                                #
8986 #                                                                       #
8987 #########################################################################
8988
8989 L2TEN64:
8990         long            0x406A934F,0x0979A371   # 64LOG10/LOG2
8991 L10TWO1:
8992         long            0x3F734413,0x509F8000   # LOG2/64LOG10
8993
8994 L10TWO2:
8995         long            0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000
8996
8997 LOG10:  long            0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000
8998
8999 LOG2:   long            0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
9000
9001 EXPA5:  long            0x3F56C16D,0x6F7BD0B2
9002 EXPA4:  long            0x3F811112,0x302C712C
9003 EXPA3:  long            0x3FA55555,0x55554CC1
9004 EXPA2:  long            0x3FC55555,0x55554A54
9005 EXPA1:  long            0x3FE00000,0x00000000,0x00000000,0x00000000
9006
9007 TEXPTBL:
9008         long            0x3FFF0000,0x80000000,0x00000000,0x3F738000
9009         long            0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA
9010         long            0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9
9011         long            0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9
9012         long            0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA
9013         long            0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C
9014         long            0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1
9015         long            0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA
9016         long            0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373
9017         long            0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670
9018         long            0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700
9019         long            0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0
9020         long            0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D
9021         long            0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319
9022         long            0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B
9023         long            0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5
9024         long            0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A
9025         long            0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B
9026         long            0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF
9027         long            0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA
9028         long            0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD
9029         long            0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E
9030         long            0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B
9031         long            0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB
9032         long            0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB
9033         long            0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274
9034         long            0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C
9035         long            0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00
9036         long            0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301
9037         long            0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367
9038         long            0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F
9039         long            0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C
9040         long            0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB
9041         long            0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB
9042         long            0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C
9043         long            0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA
9044         long            0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD
9045         long            0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51
9046         long            0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A
9047         long            0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2
9048         long            0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB
9049         long            0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17
9050         long            0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C
9051         long            0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8
9052         long            0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53
9053         long            0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE
9054         long            0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124
9055         long            0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243
9056         long            0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A
9057         long            0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61
9058         long            0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610
9059         long            0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1
9060         long            0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12
9061         long            0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE
9062         long            0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4
9063         long            0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F
9064         long            0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A
9065         long            0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A
9066         long            0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC
9067         long            0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F
9068         long            0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A
9069         long            0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795
9070         long            0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B
9071         long            0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581
9072
9073         set             INT,L_SCR1
9074
9075         set             X,FP_SCR0
9076         set             XDCARE,X+2
9077         set             XFRAC,X+4
9078
9079         set             ADJFACT,FP_SCR0
9080
9081         set             FACT1,FP_SCR0
9082         set             FACT1HI,FACT1+4
9083         set             FACT1LOW,FACT1+8
9084
9085         set             FACT2,FP_SCR1
9086         set             FACT2HI,FACT2+4
9087         set             FACT2LOW,FACT2+8
9088
9089         global          stwotox
9090 #--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
9091 stwotox:
9092         fmovm.x         (%a0),&0x80             # LOAD INPUT
9093
9094         mov.l           (%a0),%d1
9095         mov.w           4(%a0),%d1
9096         fmov.x          %fp0,X(%a6)
9097         and.l           &0x7FFFFFFF,%d1
9098
9099         cmp.l           %d1,&0x3FB98000         # |X| >= 2**(-70)?
9100         bge.b           TWOOK1
9101         bra.w           EXPBORS
9102
9103 TWOOK1:
9104         cmp.l           %d1,&0x400D80C0         # |X| > 16480?
9105         ble.b           TWOMAIN
9106         bra.w           EXPBORS
9107
9108 TWOMAIN:
9109 #--USUAL CASE, 2^(-70) <= |X| <= 16480
9110
9111         fmov.x          %fp0,%fp1
9112         fmul.s          &0x42800000,%fp1        # 64 * X
9113         fmov.l          %fp1,INT(%a6)           # N = ROUND-TO-INT(64 X)
9114         mov.l           %d2,-(%sp)
9115         lea             TEXPTBL(%pc),%a1        # LOAD ADDRESS OF TABLE OF 2^(J/64)
9116         fmov.l          INT(%a6),%fp1           # N --> FLOATING FMT
9117         mov.l           INT(%a6),%d1
9118         mov.l           %d1,%d2
9119         and.l           &0x3F,%d1               # D0 IS J
9120         asl.l           &4,%d1                  # DISPLACEMENT FOR 2^(J/64)
9121         add.l           %d1,%a1                 # ADDRESS FOR 2^(J/64)
9122         asr.l           &6,%d2                  # d2 IS L, N = 64L + J
9123         mov.l           %d2,%d1
9124         asr.l           &1,%d1                  # D0 IS M
9125         sub.l           %d1,%d2                 # d2 IS M', N = 64(M+M') + J
9126         add.l           &0x3FFF,%d2
9127
9128 #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
9129 #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
9130 #--ADJFACT = 2^(M').
9131 #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
9132
9133         fmovm.x         &0x0c,-(%sp)            # save fp2/fp3
9134
9135         fmul.s          &0x3C800000,%fp1        # (1/64)*N
9136         mov.l           (%a1)+,FACT1(%a6)
9137         mov.l           (%a1)+,FACT1HI(%a6)
9138         mov.l           (%a1)+,FACT1LOW(%a6)
9139         mov.w           (%a1)+,FACT2(%a6)
9140
9141         fsub.x          %fp1,%fp0               # X - (1/64)*INT(64 X)
9142
9143         mov.w           (%a1)+,FACT2HI(%a6)
9144         clr.w           FACT2HI+2(%a6)
9145         clr.l           FACT2LOW(%a6)
9146         add.w           %d1,FACT1(%a6)
9147         fmul.x          LOG2(%pc),%fp0          # FP0 IS R
9148         add.w           %d1,FACT2(%a6)
9149
9150         bra.w           expr
9151
9152 EXPBORS:
9153 #--FPCR, D0 SAVED
9154         cmp.l           %d1,&0x3FFF8000
9155         bgt.b           TEXPBIG
9156
9157 #--|X| IS SMALL, RETURN 1 + X
9158
9159         fmov.l          %d0,%fpcr               # restore users round prec,mode
9160         fadd.s          &0x3F800000,%fp0        # RETURN 1 + X
9161         bra             t_pinx2
9162
9163 TEXPBIG:
9164 #--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW
9165 #--REGISTERS SAVE SO FAR ARE FPCR AND  D0
9166         mov.l           X(%a6),%d1
9167         cmp.l           %d1,&0
9168         blt.b           EXPNEG
9169
9170         bra             t_ovfl2                 # t_ovfl expects positive value
9171
9172 EXPNEG:
9173         bra             t_unfl2                 # t_unfl expects positive value
9174
9175         global          stwotoxd
9176 stwotoxd:
9177 #--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT
9178
9179         fmov.l          %d0,%fpcr               # set user's rounding mode/precision
9180         fmov.s          &0x3F800000,%fp0        # RETURN 1 + X
9181         mov.l           (%a0),%d1
9182         or.l            &0x00800001,%d1
9183         fadd.s          %d1,%fp0
9184         bra             t_pinx2
9185
9186         global          stentox
9187 #--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
9188 stentox:
9189         fmovm.x         (%a0),&0x80             # LOAD INPUT
9190
9191         mov.l           (%a0),%d1
9192         mov.w           4(%a0),%d1
9193         fmov.x          %fp0,X(%a6)
9194         and.l           &0x7FFFFFFF,%d1
9195
9196         cmp.l           %d1,&0x3FB98000         # |X| >= 2**(-70)?
9197         bge.b           TENOK1
9198         bra.w           EXPBORS
9199
9200 TENOK1:
9201         cmp.l           %d1,&0x400B9B07         # |X| <= 16480*log2/log10 ?
9202         ble.b           TENMAIN
9203         bra.w           EXPBORS
9204
9205 TENMAIN:
9206 #--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10
9207
9208         fmov.x          %fp0,%fp1
9209         fmul.d          L2TEN64(%pc),%fp1       # X*64*LOG10/LOG2
9210         fmov.l          %fp1,INT(%a6)           # N=INT(X*64*LOG10/LOG2)
9211         mov.l           %d2,-(%sp)
9212         lea             TEXPTBL(%pc),%a1        # LOAD ADDRESS OF TABLE OF 2^(J/64)
9213         fmov.l          INT(%a6),%fp1           # N --> FLOATING FMT
9214         mov.l           INT(%a6),%d1
9215         mov.l           %d1,%d2
9216         and.l           &0x3F,%d1               # D0 IS J
9217         asl.l           &4,%d1                  # DISPLACEMENT FOR 2^(J/64)
9218         add.l           %d1,%a1                 # ADDRESS FOR 2^(J/64)
9219         asr.l           &6,%d2                  # d2 IS L, N = 64L + J
9220         mov.l           %d2,%d1
9221         asr.l           &1,%d1                  # D0 IS M
9222         sub.l           %d1,%d2                 # d2 IS M', N = 64(M+M') + J
9223         add.l           &0x3FFF,%d2
9224
9225 #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
9226 #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
9227 #--ADJFACT = 2^(M').
9228 #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
9229         fmovm.x         &0x0c,-(%sp)            # save fp2/fp3
9230
9231         fmov.x          %fp1,%fp2
9232
9233         fmul.d          L10TWO1(%pc),%fp1       # N*(LOG2/64LOG10)_LEAD
9234         mov.l           (%a1)+,FACT1(%a6)
9235
9236         fmul.x          L10TWO2(%pc),%fp2       # N*(LOG2/64LOG10)_TRAIL
9237
9238         mov.l           (%a1)+,FACT1HI(%a6)
9239         mov.l           (%a1)+,FACT1LOW(%a6)
9240         fsub.x          %fp1,%fp0               # X - N L_LEAD
9241         mov.w           (%a1)+,FACT2(%a6)
9242
9243         fsub.x          %fp2,%fp0               # X - N L_TRAIL
9244
9245         mov.w           (%a1)+,FACT2HI(%a6)
9246         clr.w           FACT2HI+2(%a6)
9247         clr.l           FACT2LOW(%a6)
9248
9249         fmul.x          LOG10(%pc),%fp0         # FP0 IS R
9250         add.w           %d1,FACT1(%a6)
9251         add.w           %d1,FACT2(%a6)
9252
9253 expr:
9254 #--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN.
9255 #--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64).
9256 #--FP0 IS R. THE FOLLOWING CODE COMPUTES
9257 #--     2**(M'+M) * 2**(J/64) * EXP(R)
9258
9259         fmov.x          %fp0,%fp1
9260         fmul.x          %fp1,%fp1               # FP1 IS S = R*R
9261
9262         fmov.d          EXPA5(%pc),%fp2         # FP2 IS A5
9263         fmov.d          EXPA4(%pc),%fp3         # FP3 IS A4
9264
9265         fmul.x          %fp1,%fp2               # FP2 IS S*A5
9266         fmul.x          %fp1,%fp3               # FP3 IS S*A4
9267
9268         fadd.d          EXPA3(%pc),%fp2         # FP2 IS A3+S*A5
9269         fadd.d          EXPA2(%pc),%fp3         # FP3 IS A2+S*A4
9270
9271         fmul.x          %fp1,%fp2               # FP2 IS S*(A3+S*A5)
9272         fmul.x          %fp1,%fp3               # FP3 IS S*(A2+S*A4)
9273
9274         fadd.d          EXPA1(%pc),%fp2         # FP2 IS A1+S*(A3+S*A5)
9275         fmul.x          %fp0,%fp3               # FP3 IS R*S*(A2+S*A4)
9276
9277         fmul.x          %fp1,%fp2               # FP2 IS S*(A1+S*(A3+S*A5))
9278         fadd.x          %fp3,%fp0               # FP0 IS R+R*S*(A2+S*A4)
9279         fadd.x          %fp2,%fp0               # FP0 IS EXP(R) - 1
9280
9281         fmovm.x         (%sp)+,&0x30            # restore fp2/fp3
9282
9283 #--FINAL RECONSTRUCTION PROCESS
9284 #--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1)  -  (1 OR 0)
9285
9286         fmul.x          FACT1(%a6),%fp0
9287         fadd.x          FACT2(%a6),%fp0
9288         fadd.x          FACT1(%a6),%fp0
9289
9290         fmov.l          %d0,%fpcr               # restore users round prec,mode
9291         mov.w           %d2,ADJFACT(%a6)        # INSERT EXPONENT
9292         mov.l           (%sp)+,%d2
9293         mov.l           &0x80000000,ADJFACT+4(%a6)
9294         clr.l           ADJFACT+8(%a6)
9295         mov.b           &FMUL_OP,%d1            # last inst is MUL
9296         fmul.x          ADJFACT(%a6),%fp0       # FINAL ADJUSTMENT
9297         bra             t_catch
9298
9299         global          stentoxd
9300 stentoxd:
9301 #--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT
9302
9303         fmov.l          %d0,%fpcr               # set user's rounding mode/precision
9304         fmov.s          &0x3F800000,%fp0        # RETURN 1 + X
9305         mov.l           (%a0),%d1
9306         or.l            &0x00800001,%d1
9307         fadd.s          %d1,%fp0
9308         bra             t_pinx2
9309
9310 #########################################################################
9311 # smovcr(): returns the ROM constant at the offset specified in d1      #
9312 #           rounded to the mode and precision specified in d0.          #
9313 #                                                                       #
9314 # INPUT *************************************************************** #
9315 #       d0 = rnd prec,mode                                              #
9316 #       d1 = ROM offset                                                 #
9317 #                                                                       #
9318 # OUTPUT ************************************************************** #
9319 #       fp0 = the ROM constant rounded to the user's rounding mode,prec #
9320 #                                                                       #
9321 #########################################################################
9322
9323         global          smovcr
9324 smovcr:
9325         mov.l           %d1,-(%sp)              # save rom offset for a sec
9326
9327         lsr.b           &0x4,%d0                # shift ctrl bits to lo
9328         mov.l           %d0,%d1                 # make a copy
9329         andi.w          &0x3,%d1                # extract rnd mode
9330         andi.w          &0xc,%d0                # extract rnd prec
9331         swap            %d0                     # put rnd prec in hi
9332         mov.w           %d1,%d0                 # put rnd mode in lo
9333
9334         mov.l           (%sp)+,%d1              # get rom offset
9335
9336 #
9337 # check range of offset
9338 #
9339         tst.b           %d1                     # if zero, offset is to pi
9340         beq.b           pi_tbl                  # it is pi
9341         cmpi.b          %d1,&0x0a               # check range $01 - $0a
9342         ble.b           z_val                   # if in this range, return zero
9343         cmpi.b          %d1,&0x0e               # check range $0b - $0e
9344         ble.b           sm_tbl                  # valid constants in this range
9345         cmpi.b          %d1,&0x2f               # check range $10 - $2f
9346         ble.b           z_val                   # if in this range, return zero
9347         cmpi.b          %d1,&0x3f               # check range $30 - $3f
9348         ble.b           bg_tbl                  # valid constants in this range
9349
9350 z_val:
9351         bra.l           ld_pzero                # return a zero
9352
9353 #
9354 # the answer is PI rounded to the proper precision.
9355 #
9356 # fetch a pointer to the answer table relating to the proper rounding
9357 # precision.
9358 #
9359 pi_tbl:
9360         tst.b           %d0                     # is rmode RN?
9361         bne.b           pi_not_rn               # no
9362 pi_rn:
9363         lea.l           PIRN(%pc),%a0           # yes; load PI RN table addr
9364         bra.w           set_finx
9365 pi_not_rn:
9366         cmpi.b          %d0,&rp_mode            # is rmode RP?
9367         beq.b           pi_rp                   # yes
9368 pi_rzrm:
9369         lea.l           PIRZRM(%pc),%a0         # no; load PI RZ,RM table addr
9370         bra.b           set_finx
9371 pi_rp:
9372         lea.l           PIRP(%pc),%a0           # load PI RP table addr
9373         bra.b           set_finx
9374
9375 #
9376 # the answer is one of:
9377 #       $0B     log10(2)        (inexact)
9378 #       $0C     e               (inexact)
9379 #       $0D     log2(e)         (inexact)
9380 #       $0E     log10(e)        (exact)
9381 #
9382 # fetch a pointer to the answer table relating to the proper rounding
9383 # precision.
9384 #
9385 sm_tbl:
9386         subi.b          &0xb,%d1                # make offset in 0-4 range
9387         tst.b           %d0                     # is rmode RN?
9388         bne.b           sm_not_rn               # no
9389 sm_rn:
9390         lea.l           SMALRN(%pc),%a0         # yes; load RN table addr
9391 sm_tbl_cont:
9392         cmpi.b          %d1,&0x2                # is result log10(e)?
9393         ble.b           set_finx                # no; answer is inexact
9394         bra.b           no_finx                 # yes; answer is exact
9395 sm_not_rn:
9396         cmpi.b          %d0,&rp_mode            # is rmode RP?
9397         beq.b           sm_rp                   # yes
9398 sm_rzrm:
9399         lea.l           SMALRZRM(%pc),%a0       # no; load RZ,RM table addr
9400         bra.b           sm_tbl_cont
9401 sm_rp:
9402         lea.l           SMALRP(%pc),%a0         # load RP table addr
9403         bra.b           sm_tbl_cont
9404
9405 #
9406 # the answer is one of:
9407 #       $30     ln(2)           (inexact)
9408 #       $31     ln(10)          (inexact)
9409 #       $32     10^0            (exact)
9410 #       $33     10^1            (exact)
9411 #       $34     10^2            (exact)
9412 #       $35     10^4            (exact)
9413 #       $36     10^8            (exact)
9414 #       $37     10^16           (exact)
9415 #       $38     10^32           (inexact)
9416 #       $39     10^64           (inexact)
9417 #       $3A     10^128          (inexact)
9418 #       $3B     10^256          (inexact)
9419 #       $3C     10^512          (inexact)
9420 #       $3D     10^1024         (inexact)
9421 #       $3E     10^2048         (inexact)
9422 #       $3F     10^4096         (inexact)
9423 #
9424 # fetch a pointer to the answer table relating to the proper rounding
9425 # precision.
9426 #
9427 bg_tbl:
9428         subi.b          &0x30,%d1               # make offset in 0-f range
9429         tst.b           %d0                     # is rmode RN?
9430         bne.b           bg_not_rn               # no
9431 bg_rn:
9432         lea.l           BIGRN(%pc),%a0          # yes; load RN table addr
9433 bg_tbl_cont:
9434         cmpi.b          %d1,&0x1                # is offset <= $31?
9435         ble.b           set_finx                # yes; answer is inexact
9436         cmpi.b          %d1,&0x7                # is $32 <= offset <= $37?
9437         ble.b           no_finx                 # yes; answer is exact
9438         bra.b           set_finx                # no; answer is inexact
9439 bg_not_rn:
9440         cmpi.b          %d0,&rp_mode            # is rmode RP?
9441         beq.b           bg_rp                   # yes
9442 bg_rzrm:
9443         lea.l           BIGRZRM(%pc),%a0        # no; load RZ,RM table addr
9444         bra.b           bg_tbl_cont
9445 bg_rp:
9446         lea.l           BIGRP(%pc),%a0          # load RP table addr
9447         bra.b           bg_tbl_cont
9448
9449 # answer is inexact, so set INEX2 and AINEX in the user's FPSR.
9450 set_finx:
9451         ori.l           &inx2a_mask,USER_FPSR(%a6) # set INEX2/AINEX
9452 no_finx:
9453         mulu.w          &0xc,%d1                # offset points into tables
9454         swap            %d0                     # put rnd prec in lo word
9455         tst.b           %d0                     # is precision extended?
9456
9457         bne.b           not_ext                 # if xprec, do not call round
9458
9459 # Precision is extended
9460         fmovm.x         (%a0,%d1.w),&0x80       # return result in fp0
9461         rts
9462
9463 # Precision is single or double
9464 not_ext:
9465         swap            %d0                     # rnd prec in upper word
9466
9467 # call round() to round the answer to the proper precision.
9468 # exponents out of range for single or double DO NOT cause underflow
9469 # or overflow.
9470         mov.w           0x0(%a0,%d1.w),FP_SCR1_EX(%a6) # load first word
9471         mov.l           0x4(%a0,%d1.w),FP_SCR1_HI(%a6) # load second word
9472         mov.l           0x8(%a0,%d1.w),FP_SCR1_LO(%a6) # load third word
9473         mov.l           %d0,%d1
9474         clr.l           %d0                     # clear g,r,s
9475         lea             FP_SCR1(%a6),%a0        # pass ptr to answer
9476         clr.w           LOCAL_SGN(%a0)          # sign always positive
9477         bsr.l           _round                  # round the mantissa
9478
9479         fmovm.x         (%a0),&0x80             # return rounded result in fp0
9480         rts
9481
9482         align           0x4
9483
9484 PIRN:   long            0x40000000,0xc90fdaa2,0x2168c235        # pi
9485 PIRZRM: long            0x40000000,0xc90fdaa2,0x2168c234        # pi
9486 PIRP:   long            0x40000000,0xc90fdaa2,0x2168c235        # pi
9487
9488 SMALRN: long            0x3ffd0000,0x9a209a84,0xfbcff798        # log10(2)
9489         long            0x40000000,0xadf85458,0xa2bb4a9a        # e
9490         long            0x3fff0000,0xb8aa3b29,0x5c17f0bc        # log2(e)
9491         long            0x3ffd0000,0xde5bd8a9,0x37287195        # log10(e)
9492         long            0x00000000,0x00000000,0x00000000        # 0.0
9493
9494 SMALRZRM:
9495         long            0x3ffd0000,0x9a209a84,0xfbcff798        # log10(2)
9496         long            0x40000000,0xadf85458,0xa2bb4a9a        # e
9497         long            0x3fff0000,0xb8aa3b29,0x5c17f0bb        # log2(e)
9498         long            0x3ffd0000,0xde5bd8a9,0x37287195        # log10(e)
9499         long            0x00000000,0x00000000,0x00000000        # 0.0
9500
9501 SMALRP: long            0x3ffd0000,0x9a209a84,0xfbcff799        # log10(2)
9502         long            0x40000000,0xadf85458,0xa2bb4a9b        # e
9503         long            0x3fff0000,0xb8aa3b29,0x5c17f0bc        # log2(e)
9504         long            0x3ffd0000,0xde5bd8a9,0x37287195        # log10(e)
9505         long            0x00000000,0x00000000,0x00000000        # 0.0
9506
9507 BIGRN:  long            0x3ffe0000,0xb17217f7,0xd1cf79ac        # ln(2)
9508         long            0x40000000,0x935d8ddd,0xaaa8ac17        # ln(10)
9509
9510         long            0x3fff0000,0x80000000,0x00000000        # 10 ^ 0
9511         long            0x40020000,0xA0000000,0x00000000        # 10 ^ 1
9512         long            0x40050000,0xC8000000,0x00000000        # 10 ^ 2
9513         long            0x400C0000,0x9C400000,0x00000000        # 10 ^ 4
9514         long            0x40190000,0xBEBC2000,0x00000000        # 10 ^ 8
9515         long            0x40340000,0x8E1BC9BF,0x04000000        # 10 ^ 16
9516         long            0x40690000,0x9DC5ADA8,0x2B70B59E        # 10 ^ 32
9517         long            0x40D30000,0xC2781F49,0xFFCFA6D5        # 10 ^ 64
9518         long            0x41A80000,0x93BA47C9,0x80E98CE0        # 10 ^ 128
9519         long            0x43510000,0xAA7EEBFB,0x9DF9DE8E        # 10 ^ 256
9520         long            0x46A30000,0xE319A0AE,0xA60E91C7        # 10 ^ 512
9521         long            0x4D480000,0xC9767586,0x81750C17        # 10 ^ 1024
9522         long            0x5A920000,0x9E8B3B5D,0xC53D5DE5        # 10 ^ 2048
9523         long            0x75250000,0xC4605202,0x8A20979B        # 10 ^ 4096
9524
9525 BIGRZRM:
9526         long            0x3ffe0000,0xb17217f7,0xd1cf79ab        # ln(2)
9527         long            0x40000000,0x935d8ddd,0xaaa8ac16        # ln(10)
9528
9529         long            0x3fff0000,0x80000000,0x00000000        # 10 ^ 0
9530         long            0x40020000,0xA0000000,0x00000000        # 10 ^ 1
9531         long            0x40050000,0xC8000000,0x00000000        # 10 ^ 2
9532         long            0x400C0000,0x9C400000,0x00000000        # 10 ^ 4
9533         long            0x40190000,0xBEBC2000,0x00000000        # 10 ^ 8
9534         long            0x40340000,0x8E1BC9BF,0x04000000        # 10 ^ 16
9535         long            0x40690000,0x9DC5ADA8,0x2B70B59D        # 10 ^ 32
9536         long            0x40D30000,0xC2781F49,0xFFCFA6D5        # 10 ^ 64
9537         long            0x41A80000,0x93BA47C9,0x80E98CDF        # 10 ^ 128
9538         long            0x43510000,0xAA7EEBFB,0x9DF9DE8D        # 10 ^ 256
9539         long            0x46A30000,0xE319A0AE,0xA60E91C6        # 10 ^ 512
9540         long            0x4D480000,0xC9767586,0x81750C17        # 10 ^ 1024
9541         long            0x5A920000,0x9E8B3B5D,0xC53D5DE4        # 10 ^ 2048
9542         long            0x75250000,0xC4605202,0x8A20979A        # 10 ^ 4096
9543
9544 BIGRP:
9545         long            0x3ffe0000,0xb17217f7,0xd1cf79ac        # ln(2)
9546         long            0x40000000,0x935d8ddd,0xaaa8ac17        # ln(10)
9547
9548         long            0x3fff0000,0x80000000,0x00000000        # 10 ^ 0
9549         long            0x40020000,0xA0000000,0x00000000        # 10 ^ 1
9550         long            0x40050000,0xC8000000,0x00000000        # 10 ^ 2
9551         long            0x400C0000,0x9C400000,0x00000000        # 10 ^ 4
9552         long            0x40190000,0xBEBC2000,0x00000000        # 10 ^ 8
9553         long            0x40340000,0x8E1BC9BF,0x04000000        # 10 ^ 16
9554         long            0x40690000,0x9DC5ADA8,0x2B70B59E        # 10 ^ 32
9555         long            0x40D30000,0xC2781F49,0xFFCFA6D6        # 10 ^ 64
9556         long            0x41A80000,0x93BA47C9,0x80E98CE0        # 10 ^ 128
9557         long            0x43510000,0xAA7EEBFB,0x9DF9DE8E        # 10 ^ 256
9558         long            0x46A30000,0xE319A0AE,0xA60E91C7        # 10 ^ 512
9559         long            0x4D480000,0xC9767586,0x81750C18        # 10 ^ 1024
9560         long            0x5A920000,0x9E8B3B5D,0xC53D5DE5        # 10 ^ 2048
9561         long            0x75250000,0xC4605202,0x8A20979B        # 10 ^ 4096
9562
9563 #########################################################################
9564 # sscale(): computes the destination operand scaled by the source       #
9565 #           operand. If the absoulute value of the source operand is    #
9566 #           >= 2^14, an overflow or underflow is returned.              #
9567 #                                                                       #
9568 # INPUT *************************************************************** #
9569 #       a0  = pointer to double-extended source operand X               #
9570 #       a1  = pointer to double-extended destination operand Y          #
9571 #                                                                       #
9572 # OUTPUT ************************************************************** #
9573 #       fp0 =  scale(X,Y)                                               #
9574 #                                                                       #
9575 #########################################################################
9576
9577 set     SIGN,           L_SCR1
9578
9579         global          sscale
9580 sscale:
9581         mov.l           %d0,-(%sp)              # store off ctrl bits for now
9582
9583         mov.w           DST_EX(%a1),%d1         # get dst exponent
9584         smi.b           SIGN(%a6)               # use SIGN to hold dst sign
9585         andi.l          &0x00007fff,%d1         # strip sign from dst exp
9586
9587         mov.w           SRC_EX(%a0),%d0         # check src bounds
9588         andi.w          &0x7fff,%d0             # clr src sign bit
9589         cmpi.w          %d0,&0x3fff             # is src ~ ZERO?
9590         blt.w           src_small               # yes
9591         cmpi.w          %d0,&0x400c             # no; is src too big?
9592         bgt.w           src_out                 # yes
9593
9594 #
9595 # Source is within 2^14 range.
9596 #
9597 src_ok:
9598         fintrz.x        SRC(%a0),%fp0           # calc int of src
9599         fmov.l          %fp0,%d0                # int src to d0
9600 # don't want any accrued bits from the fintrz showing up later since
9601 # we may need to read the fpsr for the last fp op in t_catch2().
9602         fmov.l          &0x0,%fpsr
9603
9604         tst.b           DST_HI(%a1)             # is dst denormalized?
9605         bmi.b           sok_norm
9606
9607 # the dst is a DENORM. normalize the DENORM and add the adjustment to
9608 # the src value. then, jump to the norm part of the routine.
9609 sok_dnrm:
9610         mov.l           %d0,-(%sp)              # save src for now
9611
9612         mov.w           DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy
9613         mov.l           DST_HI(%a1),FP_SCR0_HI(%a6)
9614         mov.l           DST_LO(%a1),FP_SCR0_LO(%a6)
9615
9616         lea             FP_SCR0(%a6),%a0        # pass ptr to DENORM
9617         bsr.l           norm                    # normalize the DENORM
9618         neg.l           %d0
9619         add.l           (%sp)+,%d0              # add adjustment to src
9620
9621         fmovm.x         FP_SCR0(%a6),&0x80      # load normalized DENORM
9622
9623         cmpi.w          %d0,&-0x3fff            # is the shft amt really low?
9624         bge.b           sok_norm2               # thank goodness no
9625
9626 # the multiply factor that we're trying to create should be a denorm
9627 # for the multiply to work. Therefore, we're going to actually do a
9628 # multiply with a denorm which will cause an unimplemented data type
9629 # exception to be put into the machine which will be caught and corrected
9630 # later. we don't do this with the DENORMs above because this method
9631 # is slower. but, don't fret, I don't see it being used much either.
9632         fmov.l          (%sp)+,%fpcr            # restore user fpcr
9633         mov.l           &0x80000000,%d1         # load normalized mantissa
9634         subi.l          &-0x3fff,%d0            # how many should we shift?
9635         neg.l           %d0                     # make it positive
9636         cmpi.b          %d0,&0x20               # is it > 32?
9637         bge.b           sok_dnrm_32             # yes
9638         lsr.l           %d0,%d1                 # no; bit stays in upper lw
9639         clr.l           -(%sp)                  # insert zero low mantissa
9640         mov.l           %d1,-(%sp)              # insert new high mantissa
9641         clr.l           -(%sp)                  # make zero exponent
9642         bra.b           sok_norm_cont
9643 sok_dnrm_32:
9644         subi.b          &0x20,%d0               # get shift count
9645         lsr.l           %d0,%d1                 # make low mantissa longword
9646         mov.l           %d1,-(%sp)              # insert new low mantissa
9647         clr.l           -(%sp)                  # insert zero high mantissa
9648         clr.l           -(%sp)                  # make zero exponent
9649         bra.b           sok_norm_cont
9650
9651 # the src will force the dst to a DENORM value or worse. so, let's
9652 # create an fp multiply that will create the result.
9653 sok_norm:
9654         fmovm.x         DST(%a1),&0x80          # load fp0 with normalized src
9655 sok_norm2:
9656         fmov.l          (%sp)+,%fpcr            # restore user fpcr
9657
9658         addi.w          &0x3fff,%d0             # turn src amt into exp value
9659         swap            %d0                     # put exponent in high word
9660         clr.l           -(%sp)                  # insert new exponent
9661         mov.l           &0x80000000,-(%sp)      # insert new high mantissa
9662         mov.l           %d0,-(%sp)              # insert new lo mantissa
9663
9664 sok_norm_cont:
9665         fmov.l          %fpcr,%d0               # d0 needs fpcr for t_catch2
9666         mov.b           &FMUL_OP,%d1            # last inst is MUL
9667         fmul.x          (%sp)+,%fp0             # do the multiply
9668         bra             t_catch2                # catch any exceptions
9669
9670 #
9671 # Source is outside of 2^14 range.  Test the sign and branch
9672 # to the appropriate exception handler.
9673 #
9674 src_out:
9675         mov.l           (%sp)+,%d0              # restore ctrl bits
9676         exg             %a0,%a1                 # swap src,dst ptrs
9677         tst.b           SRC_EX(%a1)             # is src negative?
9678         bmi             t_unfl                  # yes; underflow
9679         bra             t_ovfl_sc               # no; overflow
9680
9681 #
9682 # The source input is below 1, so we check for denormalized numbers
9683 # and set unfl.
9684 #
9685 src_small:
9686         tst.b           DST_HI(%a1)             # is dst denormalized?
9687         bpl.b           ssmall_done             # yes
9688
9689         mov.l           (%sp)+,%d0
9690         fmov.l          %d0,%fpcr               # no; load control bits
9691         mov.b           &FMOV_OP,%d1            # last inst is MOVE
9692         fmov.x          DST(%a1),%fp0           # simply return dest
9693         bra             t_catch2
9694 ssmall_done:
9695         mov.l           (%sp)+,%d0              # load control bits into d1
9696         mov.l           %a1,%a0                 # pass ptr to dst
9697         bra             t_resdnrm
9698
9699 #########################################################################
9700 # smod(): computes the fp MOD of the input values X,Y.                  #
9701 # srem(): computes the fp (IEEE) REM of the input values X,Y.           #
9702 #                                                                       #
9703 # INPUT *************************************************************** #
9704 #       a0 = pointer to extended precision input X                      #
9705 #       a1 = pointer to extended precision input Y                      #
9706 #       d0 = round precision,mode                                       #
9707 #                                                                       #
9708 #       The input operands X and Y can be either normalized or          #
9709 #       denormalized.                                                   #
9710 #                                                                       #
9711 # OUTPUT ************************************************************** #
9712 #      fp0 = FREM(X,Y) or FMOD(X,Y)                                     #
9713 #                                                                       #
9714 # ALGORITHM *********************************************************** #
9715 #                                                                       #
9716 #       Step 1.  Save and strip signs of X and Y: signX := sign(X),     #
9717 #                signY := sign(Y), X := |X|, Y := |Y|,                  #
9718 #                signQ := signX EOR signY. Record whether MOD or REM    #
9719 #                is requested.                                          #
9720 #                                                                       #
9721 #       Step 2.  Set L := expo(X)-expo(Y), k := 0, Q := 0.              #
9722 #                If (L < 0) then                                        #
9723 #                   R := X, go to Step 4.                               #
9724 #                else                                                   #
9725 #                   R := 2^(-L)X, j := L.                               #
9726 #                endif                                                  #
9727 #                                                                       #
9728 #       Step 3.  Perform MOD(X,Y)                                       #
9729 #            3.1 If R = Y, go to Step 9.                                #
9730 #            3.2 If R > Y, then { R := R - Y, Q := Q + 1}               #
9731 #            3.3 If j = 0, go to Step 4.                                #
9732 #            3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to        #
9733 #                Step 3.1.                                              #
9734 #                                                                       #
9735 #       Step 4.  At this point, R = X - QY = MOD(X,Y). Set              #
9736 #                Last_Subtract := false (used in Step 7 below). If      #
9737 #                MOD is requested, go to Step 6.                        #
9738 #                                                                       #
9739 #       Step 5.  R = MOD(X,Y), but REM(X,Y) is requested.               #
9740 #            5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to        #
9741 #                Step 6.                                                #
9742 #            5.2 If R > Y/2, then { set Last_Subtract := true,          #
9743 #                Q := Q + 1, Y := signY*Y }. Go to Step 6.              #
9744 #            5.3 This is the tricky case of R = Y/2. If Q is odd,       #
9745 #                then { Q := Q + 1, signX := -signX }.                  #
9746 #                                                                       #
9747 #       Step 6.  R := signX*R.                                          #
9748 #                                                                       #
9749 #       Step 7.  If Last_Subtract = true, R := R - Y.                   #
9750 #                                                                       #
9751 #       Step 8.  Return signQ, last 7 bits of Q, and R as required.     #
9752 #                                                                       #
9753 #       Step 9.  At this point, R = 2^(-j)*X - Q Y = Y. Thus,           #
9754 #                X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1),                #
9755 #                R := 0. Return signQ, last 7 bits of Q, and R.         #
9756 #                                                                       #
9757 #########################################################################
9758
9759         set             Mod_Flag,L_SCR3
9760         set             Sc_Flag,L_SCR3+1
9761
9762         set             SignY,L_SCR2
9763         set             SignX,L_SCR2+2
9764         set             SignQ,L_SCR3+2
9765
9766         set             Y,FP_SCR0
9767         set             Y_Hi,Y+4
9768         set             Y_Lo,Y+8
9769
9770         set             R,FP_SCR1
9771         set             R_Hi,R+4
9772         set             R_Lo,R+8
9773
9774 Scale:
9775         long            0x00010000,0x80000000,0x00000000,0x00000000
9776
9777         global          smod
9778 smod:
9779         clr.b           FPSR_QBYTE(%a6)
9780         mov.l           %d0,-(%sp)              # save ctrl bits
9781         clr.b           Mod_Flag(%a6)
9782         bra.b           Mod_Rem
9783
9784         global          srem
9785 srem:
9786         clr.b           FPSR_QBYTE(%a6)
9787         mov.l           %d0,-(%sp)              # save ctrl bits
9788         mov.b           &0x1,Mod_Flag(%a6)
9789
9790 Mod_Rem:
9791 #..Save sign of X and Y
9792         movm.l          &0x3f00,-(%sp)          # save data registers
9793         mov.w           SRC_EX(%a0),%d3
9794         mov.w           %d3,SignY(%a6)
9795         and.l           &0x00007FFF,%d3         # Y := |Y|
9796
9797 #
9798         mov.l           SRC_HI(%a0),%d4
9799         mov.l           SRC_LO(%a0),%d5         # (D3,D4,D5) is |Y|
9800
9801         tst.l           %d3
9802         bne.b           Y_Normal
9803
9804         mov.l           &0x00003FFE,%d3         # $3FFD + 1
9805         tst.l           %d4
9806         bne.b           HiY_not0
9807
9808 HiY_0:
9809         mov.l           %d5,%d4
9810         clr.l           %d5
9811         sub.l           &32,%d3
9812         clr.l           %d6
9813         bfffo           %d4{&0:&32},%d6
9814         lsl.l           %d6,%d4
9815         sub.l           %d6,%d3                 # (D3,D4,D5) is normalized
9816 #                                               ...with bias $7FFD
9817         bra.b           Chk_X
9818
9819 HiY_not0:
9820         clr.l           %d6
9821         bfffo           %d4{&0:&32},%d6
9822         sub.l           %d6,%d3
9823         lsl.l           %d6,%d4
9824         mov.l           %d5,%d7                 # a copy of D5
9825         lsl.l           %d6,%d5
9826         neg.l           %d6
9827         add.l           &32,%d6
9828         lsr.l           %d6,%d7
9829         or.l            %d7,%d4                 # (D3,D4,D5) normalized
9830 #                                       ...with bias $7FFD
9831         bra.b           Chk_X
9832
9833 Y_Normal:
9834         add.l           &0x00003FFE,%d3         # (D3,D4,D5) normalized
9835 #                                       ...with bias $7FFD
9836
9837 Chk_X:
9838         mov.w           DST_EX(%a1),%d0
9839         mov.w           %d0,SignX(%a6)
9840         mov.w           SignY(%a6),%d1
9841         eor.l           %d0,%d1
9842         and.l           &0x00008000,%d1
9843         mov.w           %d1,SignQ(%a6)          # sign(Q) obtained
9844         and.l           &0x00007FFF,%d0
9845         mov.l           DST_HI(%a1),%d1
9846         mov.l           DST_LO(%a1),%d2         # (D0,D1,D2) is |X|
9847         tst.l           %d0
9848         bne.b           X_Normal
9849         mov.l           &0x00003FFE,%d0
9850         tst.l           %d1
9851         bne.b           HiX_not0
9852
9853 HiX_0:
9854         mov.l           %d2,%d1
9855         clr.l           %d2
9856         sub.l           &32,%d0
9857         clr.l           %d6
9858         bfffo           %d1{&0:&32},%d6
9859         lsl.l           %d6,%d1
9860         sub.l           %d6,%d0                 # (D0,D1,D2) is normalized
9861 #                                       ...with bias $7FFD
9862         bra.b           Init
9863
9864 HiX_not0:
9865         clr.l           %d6
9866         bfffo           %d1{&0:&32},%d6
9867         sub.l           %d6,%d0
9868         lsl.l           %d6,%d1
9869         mov.l           %d2,%d7                 # a copy of D2
9870         lsl.l           %d6,%d2
9871         neg.l           %d6
9872         add.l           &32,%d6
9873         lsr.l           %d6,%d7
9874         or.l            %d7,%d1                 # (D0,D1,D2) normalized
9875 #                                       ...with bias $7FFD
9876         bra.b           Init
9877
9878 X_Normal:
9879         add.l           &0x00003FFE,%d0         # (D0,D1,D2) normalized
9880 #                                       ...with bias $7FFD
9881
9882 Init:
9883 #
9884         mov.l           %d3,L_SCR1(%a6)         # save biased exp(Y)
9885         mov.l           %d0,-(%sp)              # save biased exp(X)
9886         sub.l           %d3,%d0                 # L := expo(X)-expo(Y)
9887
9888         clr.l           %d6                     # D6 := carry <- 0
9889         clr.l           %d3                     # D3 is Q
9890         mov.l           &0,%a1                  # A1 is k; j+k=L, Q=0
9891
9892 #..(Carry,D1,D2) is R
9893         tst.l           %d0
9894         bge.b           Mod_Loop_pre
9895
9896 #..expo(X) < expo(Y). Thus X = mod(X,Y)
9897 #
9898         mov.l           (%sp)+,%d0              # restore d0
9899         bra.w           Get_Mod
9900
9901 Mod_Loop_pre:
9902         addq.l          &0x4,%sp                # erase exp(X)
9903 #..At this point  R = 2^(-L)X; Q = 0; k = 0; and  k+j = L
9904 Mod_Loop:
9905         tst.l           %d6                     # test carry bit
9906         bgt.b           R_GT_Y
9907
9908 #..At this point carry = 0, R = (D1,D2), Y = (D4,D5)
9909         cmp.l           %d1,%d4                 # compare hi(R) and hi(Y)
9910         bne.b           R_NE_Y
9911         cmp.l           %d2,%d5                 # compare lo(R) and lo(Y)
9912         bne.b           R_NE_Y
9913
9914 #..At this point, R = Y
9915         bra.w           Rem_is_0
9916
9917 R_NE_Y:
9918 #..use the borrow of the previous compare
9919         bcs.b           R_LT_Y                  # borrow is set iff R < Y
9920
9921 R_GT_Y:
9922 #..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0
9923 #..and Y < (D1,D2) < 2Y. Either way, perform R - Y
9924         sub.l           %d5,%d2                 # lo(R) - lo(Y)
9925         subx.l          %d4,%d1                 # hi(R) - hi(Y)
9926         clr.l           %d6                     # clear carry
9927         addq.l          &1,%d3                  # Q := Q + 1
9928
9929 R_LT_Y:
9930 #..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0.
9931         tst.l           %d0                     # see if j = 0.
9932         beq.b           PostLoop
9933
9934         add.l           %d3,%d3                 # Q := 2Q
9935         add.l           %d2,%d2                 # lo(R) = 2lo(R)
9936         roxl.l          &1,%d1                  # hi(R) = 2hi(R) + carry
9937         scs             %d6                     # set Carry if 2(R) overflows
9938         addq.l          &1,%a1                  # k := k+1
9939         subq.l          &1,%d0                  # j := j - 1
9940 #..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y.
9941
9942         bra.b           Mod_Loop
9943
9944 PostLoop:
9945 #..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y.
9946
9947 #..normalize R.
9948         mov.l           L_SCR1(%a6),%d0         # new biased expo of R
9949         tst.l           %d1
9950         bne.b           HiR_not0
9951
9952 HiR_0:
9953         mov.l           %d2,%d1
9954         clr.l           %d2
9955         sub.l           &32,%d0
9956         clr.l           %d6
9957         bfffo           %d1{&0:&32},%d6
9958         lsl.l           %d6,%d1
9959         sub.l           %d6,%d0                 # (D0,D1,D2) is normalized
9960 #                                       ...with bias $7FFD
9961         bra.b           Get_Mod
9962
9963 HiR_not0:
9964         clr.l           %d6
9965         bfffo           %d1{&0:&32},%d6
9966         bmi.b           Get_Mod                 # already normalized
9967         sub.l           %d6,%d0
9968         lsl.l           %d6,%d1
9969         mov.l           %d2,%d7                 # a copy of D2
9970         lsl.l           %d6,%d2
9971         neg.l           %d6
9972         add.l           &32,%d6
9973         lsr.l           %d6,%d7
9974         or.l            %d7,%d1                 # (D0,D1,D2) normalized
9975
9976 #
9977 Get_Mod:
9978         cmp.l           %d0,&0x000041FE
9979         bge.b           No_Scale
9980 Do_Scale:
9981         mov.w           %d0,R(%a6)
9982         mov.l           %d1,R_Hi(%a6)
9983         mov.l           %d2,R_Lo(%a6)
9984         mov.l           L_SCR1(%a6),%d6
9985         mov.w           %d6,Y(%a6)
9986         mov.l           %d4,Y_Hi(%a6)
9987         mov.l           %d5,Y_Lo(%a6)
9988         fmov.x          R(%a6),%fp0             # no exception
9989         mov.b           &1,Sc_Flag(%a6)
9990         bra.b           ModOrRem
9991 No_Scale:
9992         mov.l           %d1,R_Hi(%a6)
9993         mov.l           %d2,R_Lo(%a6)
9994         sub.l           &0x3FFE,%d0
9995         mov.w           %d0,R(%a6)
9996         mov.l           L_SCR1(%a6),%d6
9997         sub.l           &0x3FFE,%d6
9998         mov.l           %d6,L_SCR1(%a6)
9999         fmov.x          R(%a6),%fp0
10000         mov.w           %d6,Y(%a6)
10001         mov.l           %d4,Y_Hi(%a6)
10002         mov.l           %d5,Y_Lo(%a6)
10003         clr.b           Sc_Flag(%a6)
10004
10005 #
10006 ModOrRem:
10007         tst.b           Mod_Flag(%a6)
10008         beq.b           Fix_Sign
10009
10010         mov.l           L_SCR1(%a6),%d6         # new biased expo(Y)
10011         subq.l          &1,%d6                  # biased expo(Y/2)
10012         cmp.l           %d0,%d6
10013         blt.b           Fix_Sign
10014         bgt.b           Last_Sub
10015
10016         cmp.l           %d1,%d4
10017         bne.b           Not_EQ
10018         cmp.l           %d2,%d5
10019         bne.b           Not_EQ
10020         bra.w           Tie_Case
10021
10022 Not_EQ:
10023         bcs.b           Fix_Sign
10024
10025 Last_Sub:
10026 #
10027         fsub.x          Y(%a6),%fp0             # no exceptions
10028         addq.l          &1,%d3                  # Q := Q + 1
10029
10030 #
10031 Fix_Sign:
10032 #..Get sign of X
10033         mov.w           SignX(%a6),%d6
10034         bge.b           Get_Q
10035         fneg.x          %fp0
10036
10037 #..Get Q
10038 #
10039 Get_Q:
10040         clr.l           %d6
10041         mov.w           SignQ(%a6),%d6          # D6 is sign(Q)
10042         mov.l           &8,%d7
10043         lsr.l           %d7,%d6
10044         and.l           &0x0000007F,%d3         # 7 bits of Q
10045         or.l            %d6,%d3                 # sign and bits of Q
10046 #       swap            %d3
10047 #       fmov.l          %fpsr,%d6
10048 #       and.l           &0xFF00FFFF,%d6
10049 #       or.l            %d3,%d6
10050 #       fmov.l          %d6,%fpsr               # put Q in fpsr
10051         mov.b           %d3,FPSR_QBYTE(%a6)     # put Q in fpsr
10052
10053 #
10054 Restore:
10055         movm.l          (%sp)+,&0xfc            #  {%d2-%d7}
10056         mov.l           (%sp)+,%d0
10057         fmov.l          %d0,%fpcr
10058         tst.b           Sc_Flag(%a6)
10059         beq.b           Finish
10060         mov.b           &FMUL_OP,%d1            # last inst is MUL
10061         fmul.x          Scale(%pc),%fp0         # may cause underflow
10062         bra             t_catch2
10063 # the '040 package did this apparently to see if the dst operand for the
10064 # preceding fmul was a denorm. but, it better not have been since the
10065 # algorithm just got done playing with fp0 and expected no exceptions
10066 # as a result. trust me...
10067 #       bra             t_avoid_unsupp          # check for denorm as a
10068 #                                               ;result of the scaling
10069
10070 Finish:
10071         mov.b           &FMOV_OP,%d1            # last inst is MOVE
10072         fmov.x          %fp0,%fp0               # capture exceptions & round
10073         bra             t_catch2
10074
10075 Rem_is_0:
10076 #..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1)
10077         addq.l          &1,%d3
10078         cmp.l           %d0,&8                  # D0 is j
10079         bge.b           Q_Big
10080
10081         lsl.l           %d0,%d3
10082         bra.b           Set_R_0
10083
10084 Q_Big:
10085         clr.l           %d3
10086
10087 Set_R_0:
10088         fmov.s          &0x00000000,%fp0
10089         clr.b           Sc_Flag(%a6)
10090         bra.w           Fix_Sign
10091
10092 Tie_Case:
10093 #..Check parity of Q
10094         mov.l           %d3,%d6
10095         and.l           &0x00000001,%d6
10096         tst.l           %d6
10097         beq.w           Fix_Sign                # Q is even
10098
10099 #..Q is odd, Q := Q + 1, signX := -signX
10100         addq.l          &1,%d3
10101         mov.w           SignX(%a6),%d6
10102         eor.l           &0x00008000,%d6
10103         mov.w           %d6,SignX(%a6)
10104         bra.w           Fix_Sign
10105
10106 qnan:   long            0x7fff0000, 0xffffffff, 0xffffffff
10107
10108 #########################################################################
10109 # XDEF **************************************************************** #
10110 #       t_dz(): Handle DZ exception during transcendental emulation.    #
10111 #               Sets N bit according to sign of source operand.         #
10112 #       t_dz2(): Handle DZ exception during transcendental emulation.   #
10113 #                Sets N bit always.                                     #
10114 #                                                                       #
10115 # XREF **************************************************************** #
10116 #       None                                                            #
10117 #                                                                       #
10118 # INPUT *************************************************************** #
10119 #       a0 = pointer to source operand                                  #
10120 #                                                                       #
10121 # OUTPUT ************************************************************** #
10122 #       fp0 = default result                                            #
10123 #                                                                       #
10124 # ALGORITHM *********************************************************** #
10125 #       - Store properly signed INF into fp0.                           #
10126 #       - Set FPSR exception status dz bit, ccode inf bit, and          #
10127 #         accrued dz bit.                                               #
10128 #                                                                       #
10129 #########################################################################
10130
10131         global          t_dz
10132 t_dz:
10133         tst.b           SRC_EX(%a0)             # no; is src negative?
10134         bmi.b           t_dz2                   # yes
10135
10136 dz_pinf:
10137         fmov.s          &0x7f800000,%fp0        # return +INF in fp0
10138         ori.l           &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ
10139         rts
10140
10141         global          t_dz2
10142 t_dz2:
10143         fmov.s          &0xff800000,%fp0        # return -INF in fp0
10144         ori.l           &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ
10145         rts
10146
10147 #################################################################
10148 # OPERR exception:                                              #
10149 #       - set FPSR exception status operr bit, condition code   #
10150 #         nan bit; Store default NAN into fp0                   #
10151 #################################################################
10152         global          t_operr
10153 t_operr:
10154         ori.l           &opnan_mask,USER_FPSR(%a6) # set NaN/OPERR/AIOP
10155         fmovm.x         qnan(%pc),&0x80         # return default NAN in fp0
10156         rts
10157
10158 #################################################################
10159 # Extended DENORM:                                              #
10160 #       - For all functions that have a denormalized input and  #
10161 #         that f(x)=x, this is the entry point.                 #
10162 #       - we only return the EXOP here if either underflow or   #
10163 #         inexact is enabled.                                   #
10164 #################################################################
10165
10166 # Entry point for scale w/ extended denorm. The function does
10167 # NOT set INEX2/AUNFL/AINEX.
10168         global          t_resdnrm
10169 t_resdnrm:
10170         ori.l           &unfl_mask,USER_FPSR(%a6) # set UNFL
10171         bra.b           xdnrm_con
10172
10173         global          t_extdnrm
10174 t_extdnrm:
10175         ori.l           &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX
10176
10177 xdnrm_con:
10178         mov.l           %a0,%a1                 # make copy of src ptr
10179         mov.l           %d0,%d1                 # make copy of rnd prec,mode
10180         andi.b          &0xc0,%d1               # extended precision?
10181         bne.b           xdnrm_sd                # no
10182
10183 # result precision is extended.
10184         tst.b           LOCAL_EX(%a0)           # is denorm negative?
10185         bpl.b           xdnrm_exit              # no
10186
10187         bset            &neg_bit,FPSR_CC(%a6)   # yes; set 'N' ccode bit
10188         bra.b           xdnrm_exit
10189
10190 # result precision is single or double
10191 xdnrm_sd:
10192         mov.l           %a1,-(%sp)
10193         tst.b           LOCAL_EX(%a0)           # is denorm pos or neg?
10194         smi.b           %d1                     # set d0 accodingly
10195         bsr.l           unf_sub
10196         mov.l           (%sp)+,%a1
10197 xdnrm_exit:
10198         fmovm.x         (%a0),&0x80             # return default result in fp0
10199
10200         mov.b           FPCR_ENABLE(%a6),%d0
10201         andi.b          &0x0a,%d0               # is UNFL or INEX enabled?
10202         bne.b           xdnrm_ena               # yes
10203         rts
10204
10205 ################
10206 # unfl enabled #
10207 ################
10208 # we have a DENORM that needs to be converted into an EXOP.
10209 # so, normalize the mantissa, add 0x6000 to the new exponent,
10210 # and return the result in fp1.
10211 xdnrm_ena:
10212         mov.w           LOCAL_EX(%a1),FP_SCR0_EX(%a6)
10213         mov.l           LOCAL_HI(%a1),FP_SCR0_HI(%a6)
10214         mov.l           LOCAL_LO(%a1),FP_SCR0_LO(%a6)
10215
10216         lea             FP_SCR0(%a6),%a0
10217         bsr.l           norm                    # normalize mantissa
10218         addi.l          &0x6000,%d0             # add extra bias
10219         andi.w          &0x8000,FP_SCR0_EX(%a6) # keep old sign
10220         or.w            %d0,FP_SCR0_EX(%a6)     # insert new exponent
10221
10222         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
10223         rts
10224
10225 #################################################################
10226 # UNFL exception:                                               #
10227 #       - This routine is for cases where even an EXOP isn't    #
10228 #         large enough to hold the range of this result.        #
10229 #         In such a case, the EXOP equals zero.                 #
10230 #       - Return the default result to the proper precision     #
10231 #         with the sign of this result being the same as that   #
10232 #         of the src operand.                                   #
10233 #       - t_unfl2() is provided to force the result sign to     #
10234 #         positive which is the desired result for fetox().     #
10235 #################################################################
10236         global          t_unfl
10237 t_unfl:
10238         ori.l           &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX
10239
10240         tst.b           (%a0)                   # is result pos or neg?
10241         smi.b           %d1                     # set d1 accordingly
10242         bsr.l           unf_sub                 # calc default unfl result
10243         fmovm.x         (%a0),&0x80             # return default result in fp0
10244
10245         fmov.s          &0x00000000,%fp1        # return EXOP in fp1
10246         rts
10247
10248 # t_unfl2 ALWAYS tells unf_sub to create a positive result
10249         global          t_unfl2
10250 t_unfl2:
10251         ori.l           &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX
10252
10253         sf.b            %d1                     # set d0 to represent positive
10254         bsr.l           unf_sub                 # calc default unfl result
10255         fmovm.x         (%a0),&0x80             # return default result in fp0
10256
10257         fmov.s          &0x0000000,%fp1         # return EXOP in fp1
10258         rts
10259
10260 #################################################################
10261 # OVFL exception:                                               #
10262 #       - This routine is for cases where even an EXOP isn't    #
10263 #         large enough to hold the range of this result.        #
10264 #       - Return the default result to the proper precision     #
10265 #         with the sign of this result being the same as that   #
10266 #         of the src operand.                                   #
10267 #       - t_ovfl2() is provided to force the result sign to     #
10268 #         positive which is the desired result for fcosh().     #
10269 #       - t_ovfl_sc() is provided for scale() which only sets   #
10270 #         the inexact bits if the number is inexact for the     #
10271 #         precision indicated.                                  #
10272 #################################################################
10273
10274         global          t_ovfl_sc
10275 t_ovfl_sc:
10276         ori.l           &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX
10277
10278         mov.b           %d0,%d1                 # fetch rnd mode/prec
10279         andi.b          &0xc0,%d1               # extract rnd prec
10280         beq.b           ovfl_work               # prec is extended
10281
10282         tst.b           LOCAL_HI(%a0)           # is dst a DENORM?
10283         bmi.b           ovfl_sc_norm            # no
10284
10285 # dst op is a DENORM. we have to normalize the mantissa to see if the
10286 # result would be inexact for the given precision. make a copy of the
10287 # dst so we don't screw up the version passed to us.
10288         mov.w           LOCAL_EX(%a0),FP_SCR0_EX(%a6)
10289         mov.l           LOCAL_HI(%a0),FP_SCR0_HI(%a6)
10290         mov.l           LOCAL_LO(%a0),FP_SCR0_LO(%a6)
10291         lea             FP_SCR0(%a6),%a0        # pass ptr to FP_SCR0
10292         movm.l          &0xc080,-(%sp)          # save d0-d1/a0
10293         bsr.l           norm                    # normalize mantissa
10294         movm.l          (%sp)+,&0x0103          # restore d0-d1/a0
10295
10296 ovfl_sc_norm:
10297         cmpi.b          %d1,&0x40               # is prec dbl?
10298         bne.b           ovfl_sc_dbl             # no; sgl
10299 ovfl_sc_sgl:
10300         tst.l           LOCAL_LO(%a0)           # is lo lw of sgl set?
10301         bne.b           ovfl_sc_inx             # yes
10302         tst.b           3+LOCAL_HI(%a0)         # is lo byte of hi lw set?
10303         bne.b           ovfl_sc_inx             # yes
10304         bra.b           ovfl_work               # don't set INEX2
10305 ovfl_sc_dbl:
10306         mov.l           LOCAL_LO(%a0),%d1       # are any of lo 11 bits of
10307         andi.l          &0x7ff,%d1              # dbl mantissa set?
10308         beq.b           ovfl_work               # no; don't set INEX2
10309 ovfl_sc_inx:
10310         ori.l           &inex2_mask,USER_FPSR(%a6) # set INEX2
10311         bra.b           ovfl_work               # continue
10312
10313         global          t_ovfl
10314 t_ovfl:
10315         ori.l           &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX
10316
10317 ovfl_work:
10318         tst.b           LOCAL_EX(%a0)           # what is the sign?
10319         smi.b           %d1                     # set d1 accordingly
10320         bsr.l           ovf_res                 # calc default ovfl result
10321         mov.b           %d0,FPSR_CC(%a6)        # insert new ccodes
10322         fmovm.x         (%a0),&0x80             # return default result in fp0
10323
10324         fmov.s          &0x00000000,%fp1        # return EXOP in fp1
10325         rts
10326
10327 # t_ovfl2 ALWAYS tells ovf_res to create a positive result
10328         global          t_ovfl2
10329 t_ovfl2:
10330         ori.l           &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX
10331
10332         sf.b            %d1                     # clear sign flag for positive
10333         bsr.l           ovf_res                 # calc default ovfl result
10334         mov.b           %d0,FPSR_CC(%a6)        # insert new ccodes
10335         fmovm.x         (%a0),&0x80             # return default result in fp0
10336
10337         fmov.s          &0x00000000,%fp1        # return EXOP in fp1
10338         rts
10339
10340 #################################################################
10341 # t_catch():                                                    #
10342 #       - the last operation of a transcendental emulation      #
10343 #         routine may have caused an underflow or overflow.     #
10344 #         we find out if this occurred by doing an fsave and    #
10345 #         checking the exception bit. if one did occur, then we #
10346 #         jump to fgen_except() which creates the default       #
10347 #         result and EXOP for us.                               #
10348 #################################################################
10349         global          t_catch
10350 t_catch:
10351
10352         fsave           -(%sp)
10353         tst.b           0x2(%sp)
10354         bmi.b           catch
10355         add.l           &0xc,%sp
10356
10357 #################################################################
10358 # INEX2 exception:                                              #
10359 #       - The inex2 and ainex bits are set.                     #
10360 #################################################################
10361         global          t_inx2
10362 t_inx2:
10363         fblt.w          t_minx2
10364         fbeq.w          inx2_zero
10365
10366         global          t_pinx2
10367 t_pinx2:
10368         ori.w           &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX
10369         rts
10370
10371         global          t_minx2
10372 t_minx2:
10373         ori.l           &inx2a_mask+neg_mask,USER_FPSR(%a6) # set N/INEX2/AINEX
10374         rts
10375
10376 inx2_zero:
10377         mov.b           &z_bmask,FPSR_CC(%a6)
10378         ori.w           &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX
10379         rts
10380
10381 # an underflow or overflow exception occurred.
10382 # we must set INEX/AINEX since the fmul/fdiv/fmov emulation may not!
10383 catch:
10384         ori.w           &inx2a_mask,FPSR_EXCEPT(%a6)
10385 catch2:
10386         bsr.l           fgen_except
10387         add.l           &0xc,%sp
10388         rts
10389
10390         global          t_catch2
10391 t_catch2:
10392
10393         fsave           -(%sp)
10394
10395         tst.b           0x2(%sp)
10396         bmi.b           catch2
10397         add.l           &0xc,%sp
10398
10399         fmov.l          %fpsr,%d0
10400         or.l            %d0,USER_FPSR(%a6)
10401
10402         rts
10403
10404 #########################################################################
10405
10406 #########################################################################
10407 # unf_res(): underflow default result calculation for transcendentals   #
10408 #                                                                       #
10409 # INPUT:                                                                #
10410 #       d0   : rnd mode,precision                                       #
10411 #       d1.b : sign bit of result ('11111111 = (-) ; '00000000 = (+))   #
10412 # OUTPUT:                                                               #
10413 #       a0   : points to result (in instruction memory)                 #
10414 #########################################################################
10415 unf_sub:
10416         ori.l           &unfinx_mask,USER_FPSR(%a6)
10417
10418         andi.w          &0x10,%d1               # keep sign bit in 4th spot
10419
10420         lsr.b           &0x4,%d0                # shift rnd prec,mode to lo bits
10421         andi.b          &0xf,%d0                # strip hi rnd mode bit
10422         or.b            %d1,%d0                 # concat {sgn,mode,prec}
10423
10424         mov.l           %d0,%d1                 # make a copy
10425         lsl.b           &0x1,%d1                # mult index 2 by 2
10426
10427         mov.b           (tbl_unf_cc.b,%pc,%d0.w*1),FPSR_CC(%a6) # insert ccode bits
10428         lea             (tbl_unf_result.b,%pc,%d1.w*8),%a0 # grab result ptr
10429         rts
10430
10431 tbl_unf_cc:
10432         byte            0x4, 0x4, 0x4, 0x0
10433         byte            0x4, 0x4, 0x4, 0x0
10434         byte            0x4, 0x4, 0x4, 0x0
10435         byte            0x0, 0x0, 0x0, 0x0
10436         byte            0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4
10437         byte            0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4
10438         byte            0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4
10439
10440 tbl_unf_result:
10441         long            0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
10442         long            0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
10443         long            0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
10444         long            0x00000000, 0x00000000, 0x00000001, 0x0 # MIN; ext
10445
10446         long            0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
10447         long            0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
10448         long            0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
10449         long            0x3f810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl
10450
10451         long            0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
10452         long            0x3c010000, 0x00000000, 0x00000000, 0x0 # ZER0;dbl
10453         long            0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
10454         long            0x3c010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl
10455
10456         long            0x0,0x0,0x0,0x0
10457         long            0x0,0x0,0x0,0x0
10458         long            0x0,0x0,0x0,0x0
10459         long            0x0,0x0,0x0,0x0
10460
10461         long            0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
10462         long            0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
10463         long            0x80000000, 0x00000000, 0x00000001, 0x0 # MIN; ext
10464         long            0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
10465
10466         long            0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
10467         long            0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
10468         long            0xbf810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl
10469         long            0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
10470
10471         long            0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
10472         long            0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
10473         long            0xbc010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl
10474         long            0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
10475
10476 ############################################################
10477
10478 #########################################################################
10479 # src_zero(): Return signed zero according to sign of src operand.      #
10480 #########################################################################
10481         global          src_zero
10482 src_zero:
10483         tst.b           SRC_EX(%a0)             # get sign of src operand
10484         bmi.b           ld_mzero                # if neg, load neg zero
10485
10486 #
10487 # ld_pzero(): return a positive zero.
10488 #
10489         global          ld_pzero
10490 ld_pzero:
10491         fmov.s          &0x00000000,%fp0        # load +0
10492         mov.b           &z_bmask,FPSR_CC(%a6)   # set 'Z' ccode bit
10493         rts
10494
10495 # ld_mzero(): return a negative zero.
10496         global          ld_mzero
10497 ld_mzero:
10498         fmov.s          &0x80000000,%fp0        # load -0
10499         mov.b           &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits
10500         rts
10501
10502 #########################################################################
10503 # dst_zero(): Return signed zero according to sign of dst operand.      #
10504 #########################################################################
10505         global          dst_zero
10506 dst_zero:
10507         tst.b           DST_EX(%a1)             # get sign of dst operand
10508         bmi.b           ld_mzero                # if neg, load neg zero
10509         bra.b           ld_pzero                # load positive zero
10510
10511 #########################################################################
10512 # src_inf(): Return signed inf according to sign of src operand.        #
10513 #########################################################################
10514         global          src_inf
10515 src_inf:
10516         tst.b           SRC_EX(%a0)             # get sign of src operand
10517         bmi.b           ld_minf                 # if negative branch
10518
10519 #
10520 # ld_pinf(): return a positive infinity.
10521 #
10522         global          ld_pinf
10523 ld_pinf:
10524         fmov.s          &0x7f800000,%fp0        # load +INF
10525         mov.b           &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit
10526         rts
10527
10528 #
10529 # ld_minf():return a negative infinity.
10530 #
10531         global          ld_minf
10532 ld_minf:
10533         fmov.s          &0xff800000,%fp0        # load -INF
10534         mov.b           &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
10535         rts
10536
10537 #########################################################################
10538 # dst_inf(): Return signed inf according to sign of dst operand.        #
10539 #########################################################################
10540         global          dst_inf
10541 dst_inf:
10542         tst.b           DST_EX(%a1)             # get sign of dst operand
10543         bmi.b           ld_minf                 # if negative branch
10544         bra.b           ld_pinf
10545
10546         global          szr_inf
10547 #################################################################
10548 # szr_inf(): Return +ZERO for a negative src operand or         #
10549 #                   +INF for a positive src operand.            #
10550 #            Routine used for fetox, ftwotox, and ftentox.      #
10551 #################################################################
10552 szr_inf:
10553         tst.b           SRC_EX(%a0)             # check sign of source
10554         bmi.b           ld_pzero
10555         bra.b           ld_pinf
10556
10557 #########################################################################
10558 # sopr_inf(): Return +INF for a positive src operand or                 #
10559 #             jump to operand error routine for a negative src operand. #
10560 #             Routine used for flogn, flognp1, flog10, and flog2.       #
10561 #########################################################################
10562         global          sopr_inf
10563 sopr_inf:
10564         tst.b           SRC_EX(%a0)             # check sign of source
10565         bmi.w           t_operr
10566         bra.b           ld_pinf
10567
10568 #################################################################
10569 # setoxm1i(): Return minus one for a negative src operand or    #
10570 #             positive infinity for a positive src operand.     #
10571 #             Routine used for fetoxm1.                         #
10572 #################################################################
10573         global          setoxm1i
10574 setoxm1i:
10575         tst.b           SRC_EX(%a0)             # check sign of source
10576         bmi.b           ld_mone
10577         bra.b           ld_pinf
10578
10579 #########################################################################
10580 # src_one(): Return signed one according to sign of src operand.        #
10581 #########################################################################
10582         global          src_one
10583 src_one:
10584         tst.b           SRC_EX(%a0)             # check sign of source
10585         bmi.b           ld_mone
10586
10587 #
10588 # ld_pone(): return positive one.
10589 #
10590         global          ld_pone
10591 ld_pone:
10592         fmov.s          &0x3f800000,%fp0        # load +1
10593         clr.b           FPSR_CC(%a6)
10594         rts
10595
10596 #
10597 # ld_mone(): return negative one.
10598 #
10599         global          ld_mone
10600 ld_mone:
10601         fmov.s          &0xbf800000,%fp0        # load -1
10602         mov.b           &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
10603         rts
10604
10605 ppiby2: long            0x3fff0000, 0xc90fdaa2, 0x2168c235
10606 mpiby2: long            0xbfff0000, 0xc90fdaa2, 0x2168c235
10607
10608 #################################################################
10609 # spi_2(): Return signed PI/2 according to sign of src operand. #
10610 #################################################################
10611         global          spi_2
10612 spi_2:
10613         tst.b           SRC_EX(%a0)             # check sign of source
10614         bmi.b           ld_mpi2
10615
10616 #
10617 # ld_ppi2(): return positive PI/2.
10618 #
10619         global          ld_ppi2
10620 ld_ppi2:
10621         fmov.l          %d0,%fpcr
10622         fmov.x          ppiby2(%pc),%fp0        # load +pi/2
10623         bra.w           t_pinx2                 # set INEX2
10624
10625 #
10626 # ld_mpi2(): return negative PI/2.
10627 #
10628         global          ld_mpi2
10629 ld_mpi2:
10630         fmov.l          %d0,%fpcr
10631         fmov.x          mpiby2(%pc),%fp0        # load -pi/2
10632         bra.w           t_minx2                 # set INEX2
10633
10634 ####################################################
10635 # The following routines give support for fsincos. #
10636 ####################################################
10637
10638 #
10639 # ssincosz(): When the src operand is ZERO, store a one in the
10640 #             cosine register and return a ZERO in fp0 w/ the same sign
10641 #             as the src operand.
10642 #
10643         global          ssincosz
10644 ssincosz:
10645         fmov.s          &0x3f800000,%fp1
10646         tst.b           SRC_EX(%a0)             # test sign
10647         bpl.b           sincoszp
10648         fmov.s          &0x80000000,%fp0        # return sin result in fp0
10649         mov.b           &z_bmask+neg_bmask,FPSR_CC(%a6)
10650         bra.b           sto_cos                 # store cosine result
10651 sincoszp:
10652         fmov.s          &0x00000000,%fp0        # return sin result in fp0
10653         mov.b           &z_bmask,FPSR_CC(%a6)
10654         bra.b           sto_cos                 # store cosine result
10655
10656 #
10657 # ssincosi(): When the src operand is INF, store a QNAN in the cosine
10658 #             register and jump to the operand error routine for negative
10659 #             src operands.
10660 #
10661         global          ssincosi
10662 ssincosi:
10663         fmov.x          qnan(%pc),%fp1          # load NAN
10664         bsr.l           sto_cos                 # store cosine result
10665         bra.w           t_operr
10666
10667 #
10668 # ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine
10669 #                register and branch to the src QNAN routine.
10670 #
10671         global          ssincosqnan
10672 ssincosqnan:
10673         fmov.x          LOCAL_EX(%a0),%fp1
10674         bsr.l           sto_cos
10675         bra.w           src_qnan
10676
10677 #
10678 # ssincossnan(): When the src operand is an SNAN, store the SNAN w/ the SNAN bit set
10679 #                in the cosine register and branch to the src SNAN routine.
10680 #
10681         global          ssincossnan
10682 ssincossnan:
10683         fmov.x          LOCAL_EX(%a0),%fp1
10684         bsr.l           sto_cos
10685         bra.w           src_snan
10686
10687 ########################################################################
10688
10689 #########################################################################
10690 # sto_cos(): store fp1 to the fpreg designated by the CMDREG dst field. #
10691 #            fp1 holds the result of the cosine portion of ssincos().   #
10692 #            the value in fp1 will not take any exceptions when moved.  #
10693 # INPUT:                                                                #
10694 #       fp1 : fp value to store                                         #
10695 # MODIFIED:                                                             #
10696 #       d0                                                              #
10697 #########################################################################
10698         global          sto_cos
10699 sto_cos:
10700         mov.b           1+EXC_CMDREG(%a6),%d0
10701         andi.w          &0x7,%d0
10702         mov.w           (tbl_sto_cos.b,%pc,%d0.w*2),%d0
10703         jmp             (tbl_sto_cos.b,%pc,%d0.w*1)
10704
10705 tbl_sto_cos:
10706         short           sto_cos_0 - tbl_sto_cos
10707         short           sto_cos_1 - tbl_sto_cos
10708         short           sto_cos_2 - tbl_sto_cos
10709         short           sto_cos_3 - tbl_sto_cos
10710         short           sto_cos_4 - tbl_sto_cos
10711         short           sto_cos_5 - tbl_sto_cos
10712         short           sto_cos_6 - tbl_sto_cos
10713         short           sto_cos_7 - tbl_sto_cos
10714
10715 sto_cos_0:
10716         fmovm.x         &0x40,EXC_FP0(%a6)
10717         rts
10718 sto_cos_1:
10719         fmovm.x         &0x40,EXC_FP1(%a6)
10720         rts
10721 sto_cos_2:
10722         fmov.x          %fp1,%fp2
10723         rts
10724 sto_cos_3:
10725         fmov.x          %fp1,%fp3
10726         rts
10727 sto_cos_4:
10728         fmov.x          %fp1,%fp4
10729         rts
10730 sto_cos_5:
10731         fmov.x          %fp1,%fp5
10732         rts
10733 sto_cos_6:
10734         fmov.x          %fp1,%fp6
10735         rts
10736 sto_cos_7:
10737         fmov.x          %fp1,%fp7
10738         rts
10739
10740 ##################################################################
10741         global          smod_sdnrm
10742         global          smod_snorm
10743 smod_sdnrm:
10744 smod_snorm:
10745         mov.b           DTAG(%a6),%d1
10746         beq.l           smod
10747         cmpi.b          %d1,&ZERO
10748         beq.w           smod_zro
10749         cmpi.b          %d1,&INF
10750         beq.l           t_operr
10751         cmpi.b          %d1,&DENORM
10752         beq.l           smod
10753         cmpi.b          %d1,&SNAN
10754         beq.l           dst_snan
10755         bra.l           dst_qnan
10756
10757         global          smod_szero
10758 smod_szero:
10759         mov.b           DTAG(%a6),%d1
10760         beq.l           t_operr
10761         cmpi.b          %d1,&ZERO
10762         beq.l           t_operr
10763         cmpi.b          %d1,&INF
10764         beq.l           t_operr
10765         cmpi.b          %d1,&DENORM
10766         beq.l           t_operr
10767         cmpi.b          %d1,&QNAN
10768         beq.l           dst_qnan
10769         bra.l           dst_snan
10770
10771         global          smod_sinf
10772 smod_sinf:
10773         mov.b           DTAG(%a6),%d1
10774         beq.l           smod_fpn
10775         cmpi.b          %d1,&ZERO
10776         beq.l           smod_zro
10777         cmpi.b          %d1,&INF
10778         beq.l           t_operr
10779         cmpi.b          %d1,&DENORM
10780         beq.l           smod_fpn
10781         cmpi.b          %d1,&QNAN
10782         beq.l           dst_qnan
10783         bra.l           dst_snan
10784
10785 smod_zro:
10786 srem_zro:
10787         mov.b           SRC_EX(%a0),%d1         # get src sign
10788         mov.b           DST_EX(%a1),%d0         # get dst sign
10789         eor.b           %d0,%d1                 # get qbyte sign
10790         andi.b          &0x80,%d1
10791         mov.b           %d1,FPSR_QBYTE(%a6)
10792         tst.b           %d0
10793         bpl.w           ld_pzero
10794         bra.w           ld_mzero
10795
10796 smod_fpn:
10797 srem_fpn:
10798         clr.b           FPSR_QBYTE(%a6)
10799         mov.l           %d0,-(%sp)
10800         mov.b           SRC_EX(%a0),%d1         # get src sign
10801         mov.b           DST_EX(%a1),%d0         # get dst sign
10802         eor.b           %d0,%d1                 # get qbyte sign
10803         andi.b          &0x80,%d1
10804         mov.b           %d1,FPSR_QBYTE(%a6)
10805         cmpi.b          DTAG(%a6),&DENORM
10806         bne.b           smod_nrm
10807         lea             DST(%a1),%a0
10808         mov.l           (%sp)+,%d0
10809         bra             t_resdnrm
10810 smod_nrm:
10811         fmov.l          (%sp)+,%fpcr
10812         fmov.x          DST(%a1),%fp0
10813         tst.b           DST_EX(%a1)
10814         bmi.b           smod_nrm_neg
10815         rts
10816
10817 smod_nrm_neg:
10818         mov.b           &neg_bmask,FPSR_CC(%a6) # set 'N' ccode
10819         rts
10820
10821 #########################################################################
10822         global          srem_snorm
10823         global          srem_sdnrm
10824 srem_sdnrm:
10825 srem_snorm:
10826         mov.b           DTAG(%a6),%d1
10827         beq.l           srem
10828         cmpi.b          %d1,&ZERO
10829         beq.w           srem_zro
10830         cmpi.b          %d1,&INF
10831         beq.l           t_operr
10832         cmpi.b          %d1,&DENORM
10833         beq.l           srem
10834         cmpi.b          %d1,&QNAN
10835         beq.l           dst_qnan
10836         bra.l           dst_snan
10837
10838         global          srem_szero
10839 srem_szero:
10840         mov.b           DTAG(%a6),%d1
10841         beq.l           t_operr
10842         cmpi.b          %d1,&ZERO
10843         beq.l           t_operr
10844         cmpi.b          %d1,&INF
10845         beq.l           t_operr
10846         cmpi.b          %d1,&DENORM
10847         beq.l           t_operr
10848         cmpi.b          %d1,&QNAN
10849         beq.l           dst_qnan
10850         bra.l           dst_snan
10851
10852         global          srem_sinf
10853 srem_sinf:
10854         mov.b           DTAG(%a6),%d1
10855         beq.w           srem_fpn
10856         cmpi.b          %d1,&ZERO
10857         beq.w           srem_zro
10858         cmpi.b          %d1,&INF
10859         beq.l           t_operr
10860         cmpi.b          %d1,&DENORM
10861         beq.l           srem_fpn
10862         cmpi.b          %d1,&QNAN
10863         beq.l           dst_qnan
10864         bra.l           dst_snan
10865
10866 #########################################################################
10867         global          sscale_snorm
10868         global          sscale_sdnrm
10869 sscale_snorm:
10870 sscale_sdnrm:
10871         mov.b           DTAG(%a6),%d1
10872         beq.l           sscale
10873         cmpi.b          %d1,&ZERO
10874         beq.l           dst_zero
10875         cmpi.b          %d1,&INF
10876         beq.l           dst_inf
10877         cmpi.b          %d1,&DENORM
10878         beq.l           sscale
10879         cmpi.b          %d1,&QNAN
10880         beq.l           dst_qnan
10881         bra.l           dst_snan
10882
10883         global          sscale_szero
10884 sscale_szero:
10885         mov.b           DTAG(%a6),%d1
10886         beq.l           sscale
10887         cmpi.b          %d1,&ZERO
10888         beq.l           dst_zero
10889         cmpi.b          %d1,&INF
10890         beq.l           dst_inf
10891         cmpi.b          %d1,&DENORM
10892         beq.l           sscale
10893         cmpi.b          %d1,&QNAN
10894         beq.l           dst_qnan
10895         bra.l           dst_snan
10896
10897         global          sscale_sinf
10898 sscale_sinf:
10899         mov.b           DTAG(%a6),%d1
10900         beq.l           t_operr
10901         cmpi.b          %d1,&QNAN
10902         beq.l           dst_qnan
10903         cmpi.b          %d1,&SNAN
10904         beq.l           dst_snan
10905         bra.l           t_operr
10906
10907 ########################################################################
10908
10909 #
10910 # sop_sqnan(): The src op for frem/fmod/fscale was a QNAN.
10911 #
10912         global          sop_sqnan
10913 sop_sqnan:
10914         mov.b           DTAG(%a6),%d1
10915         cmpi.b          %d1,&QNAN
10916         beq.b           dst_qnan
10917         cmpi.b          %d1,&SNAN
10918         beq.b           dst_snan
10919         bra.b           src_qnan
10920
10921 #
10922 # sop_ssnan(): The src op for frem/fmod/fscale was an SNAN.
10923 #
10924         global          sop_ssnan
10925 sop_ssnan:
10926         mov.b           DTAG(%a6),%d1
10927         cmpi.b          %d1,&QNAN
10928         beq.b           dst_qnan_src_snan
10929         cmpi.b          %d1,&SNAN
10930         beq.b           dst_snan
10931         bra.b           src_snan
10932
10933 dst_qnan_src_snan:
10934         ori.l           &snaniop_mask,USER_FPSR(%a6) # set NAN/SNAN/AIOP
10935         bra.b           dst_qnan
10936
10937 #
10938 # dst_qnan(): Return the dst SNAN w/ the SNAN bit set.
10939 #
10940         global          dst_snan
10941 dst_snan:
10942         fmov.x          DST(%a1),%fp0           # the fmove sets the SNAN bit
10943         fmov.l          %fpsr,%d0               # catch resulting status
10944         or.l            %d0,USER_FPSR(%a6)      # store status
10945         rts
10946
10947 #
10948 # dst_qnan(): Return the dst QNAN.
10949 #
10950         global          dst_qnan
10951 dst_qnan:
10952         fmov.x          DST(%a1),%fp0           # return the non-signalling nan
10953         tst.b           DST_EX(%a1)             # set ccodes according to QNAN sign
10954         bmi.b           dst_qnan_m
10955 dst_qnan_p:
10956         mov.b           &nan_bmask,FPSR_CC(%a6)
10957         rts
10958 dst_qnan_m:
10959         mov.b           &neg_bmask+nan_bmask,FPSR_CC(%a6)
10960         rts
10961
10962 #
10963 # src_snan(): Return the src SNAN w/ the SNAN bit set.
10964 #
10965         global          src_snan
10966 src_snan:
10967         fmov.x          SRC(%a0),%fp0           # the fmove sets the SNAN bit
10968         fmov.l          %fpsr,%d0               # catch resulting status
10969         or.l            %d0,USER_FPSR(%a6)      # store status
10970         rts
10971
10972 #
10973 # src_qnan(): Return the src QNAN.
10974 #
10975         global          src_qnan
10976 src_qnan:
10977         fmov.x          SRC(%a0),%fp0           # return the non-signalling nan
10978         tst.b           SRC_EX(%a0)             # set ccodes according to QNAN sign
10979         bmi.b           dst_qnan_m
10980 src_qnan_p:
10981         mov.b           &nan_bmask,FPSR_CC(%a6)
10982         rts
10983 src_qnan_m:
10984         mov.b           &neg_bmask+nan_bmask,FPSR_CC(%a6)
10985         rts
10986
10987 #
10988 # fkern2.s:
10989 #       These entry points are used by the exception handler
10990 # routines where an instruction is selected by an index into
10991 # a large jump table corresponding to a given instruction which
10992 # has been decoded. Flow continues here where we now decode
10993 # further accoding to the source operand type.
10994 #
10995
10996         global          fsinh
10997 fsinh:
10998         mov.b           STAG(%a6),%d1
10999         beq.l           ssinh
11000         cmpi.b          %d1,&ZERO
11001         beq.l           src_zero
11002         cmpi.b          %d1,&INF
11003         beq.l           src_inf
11004         cmpi.b          %d1,&DENORM
11005         beq.l           ssinhd
11006         cmpi.b          %d1,&QNAN
11007         beq.l           src_qnan
11008         bra.l           src_snan
11009
11010         global          flognp1
11011 flognp1:
11012         mov.b           STAG(%a6),%d1
11013         beq.l           slognp1
11014         cmpi.b          %d1,&ZERO
11015         beq.l           src_zero
11016         cmpi.b          %d1,&INF
11017         beq.l           sopr_inf
11018         cmpi.b          %d1,&DENORM
11019         beq.l           slognp1d
11020         cmpi.b          %d1,&QNAN
11021         beq.l           src_qnan
11022         bra.l           src_snan
11023
11024         global          fetoxm1
11025 fetoxm1:
11026         mov.b           STAG(%a6),%d1
11027         beq.l           setoxm1
11028         cmpi.b          %d1,&ZERO
11029         beq.l           src_zero
11030         cmpi.b          %d1,&INF
11031         beq.l           setoxm1i
11032         cmpi.b          %d1,&DENORM
11033         beq.l           setoxm1d
11034         cmpi.b          %d1,&QNAN
11035         beq.l           src_qnan
11036         bra.l           src_snan
11037
11038         global          ftanh
11039 ftanh:
11040         mov.b           STAG(%a6),%d1
11041         beq.l           stanh
11042         cmpi.b          %d1,&ZERO
11043         beq.l           src_zero
11044         cmpi.b          %d1,&INF
11045         beq.l           src_one
11046         cmpi.b          %d1,&DENORM
11047         beq.l           stanhd
11048         cmpi.b          %d1,&QNAN
11049         beq.l           src_qnan
11050         bra.l           src_snan
11051
11052         global          fatan
11053 fatan:
11054         mov.b           STAG(%a6),%d1
11055         beq.l           satan
11056         cmpi.b          %d1,&ZERO
11057         beq.l           src_zero
11058         cmpi.b          %d1,&INF
11059         beq.l           spi_2
11060         cmpi.b          %d1,&DENORM
11061         beq.l           satand
11062         cmpi.b          %d1,&QNAN
11063         beq.l           src_qnan
11064         bra.l           src_snan
11065
11066         global          fasin
11067 fasin:
11068         mov.b           STAG(%a6),%d1
11069         beq.l           sasin
11070         cmpi.b          %d1,&ZERO
11071         beq.l           src_zero
11072         cmpi.b          %d1,&INF
11073         beq.l           t_operr
11074         cmpi.b          %d1,&DENORM
11075         beq.l           sasind
11076         cmpi.b          %d1,&QNAN
11077         beq.l           src_qnan
11078         bra.l           src_snan
11079
11080         global          fatanh
11081 fatanh:
11082         mov.b           STAG(%a6),%d1
11083         beq.l           satanh
11084         cmpi.b          %d1,&ZERO
11085         beq.l           src_zero
11086         cmpi.b          %d1,&INF
11087         beq.l           t_operr
11088         cmpi.b          %d1,&DENORM
11089         beq.l           satanhd
11090         cmpi.b          %d1,&QNAN
11091         beq.l           src_qnan
11092         bra.l           src_snan
11093
11094         global          fsine
11095 fsine:
11096         mov.b           STAG(%a6),%d1
11097         beq.l           ssin
11098         cmpi.b          %d1,&ZERO
11099         beq.l           src_zero
11100         cmpi.b          %d1,&INF
11101         beq.l           t_operr
11102         cmpi.b          %d1,&DENORM
11103         beq.l           ssind
11104         cmpi.b          %d1,&QNAN
11105         beq.l           src_qnan
11106         bra.l           src_snan
11107
11108         global          ftan
11109 ftan:
11110         mov.b           STAG(%a6),%d1
11111         beq.l           stan
11112         cmpi.b          %d1,&ZERO
11113         beq.l           src_zero
11114         cmpi.b          %d1,&INF
11115         beq.l           t_operr
11116         cmpi.b          %d1,&DENORM
11117         beq.l           stand
11118         cmpi.b          %d1,&QNAN
11119         beq.l           src_qnan
11120         bra.l           src_snan
11121
11122         global          fetox
11123 fetox:
11124         mov.b           STAG(%a6),%d1
11125         beq.l           setox
11126         cmpi.b          %d1,&ZERO
11127         beq.l           ld_pone
11128         cmpi.b          %d1,&INF
11129         beq.l           szr_inf
11130         cmpi.b          %d1,&DENORM
11131         beq.l           setoxd
11132         cmpi.b          %d1,&QNAN
11133         beq.l           src_qnan
11134         bra.l           src_snan
11135
11136         global          ftwotox
11137 ftwotox:
11138         mov.b           STAG(%a6),%d1
11139         beq.l           stwotox
11140         cmpi.b          %d1,&ZERO
11141         beq.l           ld_pone
11142         cmpi.b          %d1,&INF
11143         beq.l           szr_inf
11144         cmpi.b          %d1,&DENORM
11145         beq.l           stwotoxd
11146         cmpi.b          %d1,&QNAN
11147         beq.l           src_qnan
11148         bra.l           src_snan
11149
11150         global          ftentox
11151 ftentox:
11152         mov.b           STAG(%a6),%d1
11153         beq.l           stentox
11154         cmpi.b          %d1,&ZERO
11155         beq.l           ld_pone
11156         cmpi.b          %d1,&INF
11157         beq.l           szr_inf
11158         cmpi.b          %d1,&DENORM
11159         beq.l           stentoxd
11160         cmpi.b          %d1,&QNAN
11161         beq.l           src_qnan
11162         bra.l           src_snan
11163
11164         global          flogn
11165 flogn:
11166         mov.b           STAG(%a6),%d1
11167         beq.l           slogn
11168         cmpi.b          %d1,&ZERO
11169         beq.l           t_dz2
11170         cmpi.b          %d1,&INF
11171         beq.l           sopr_inf
11172         cmpi.b          %d1,&DENORM
11173         beq.l           slognd
11174         cmpi.b          %d1,&QNAN
11175         beq.l           src_qnan
11176         bra.l           src_snan
11177
11178         global          flog10
11179 flog10:
11180         mov.b           STAG(%a6),%d1
11181         beq.l           slog10
11182         cmpi.b          %d1,&ZERO
11183         beq.l           t_dz2
11184         cmpi.b          %d1,&INF
11185         beq.l           sopr_inf
11186         cmpi.b          %d1,&DENORM
11187         beq.l           slog10d
11188         cmpi.b          %d1,&QNAN
11189         beq.l           src_qnan
11190         bra.l           src_snan
11191
11192         global          flog2
11193 flog2:
11194         mov.b           STAG(%a6),%d1
11195         beq.l           slog2
11196         cmpi.b          %d1,&ZERO
11197         beq.l           t_dz2
11198         cmpi.b          %d1,&INF
11199         beq.l           sopr_inf
11200         cmpi.b          %d1,&DENORM
11201         beq.l           slog2d
11202         cmpi.b          %d1,&QNAN
11203         beq.l           src_qnan
11204         bra.l           src_snan
11205
11206         global          fcosh
11207 fcosh:
11208         mov.b           STAG(%a6),%d1
11209         beq.l           scosh
11210         cmpi.b          %d1,&ZERO
11211         beq.l           ld_pone
11212         cmpi.b          %d1,&INF
11213         beq.l           ld_pinf
11214         cmpi.b          %d1,&DENORM
11215         beq.l           scoshd
11216         cmpi.b          %d1,&QNAN
11217         beq.l           src_qnan
11218         bra.l           src_snan
11219
11220         global          facos
11221 facos:
11222         mov.b           STAG(%a6),%d1
11223         beq.l           sacos
11224         cmpi.b          %d1,&ZERO
11225         beq.l           ld_ppi2
11226         cmpi.b          %d1,&INF
11227         beq.l           t_operr
11228         cmpi.b          %d1,&DENORM
11229         beq.l           sacosd
11230         cmpi.b          %d1,&QNAN
11231         beq.l           src_qnan
11232         bra.l           src_snan
11233
11234         global          fcos
11235 fcos:
11236         mov.b           STAG(%a6),%d1
11237         beq.l           scos
11238         cmpi.b          %d1,&ZERO
11239         beq.l           ld_pone
11240         cmpi.b          %d1,&INF
11241         beq.l           t_operr
11242         cmpi.b          %d1,&DENORM
11243         beq.l           scosd
11244         cmpi.b          %d1,&QNAN
11245         beq.l           src_qnan
11246         bra.l           src_snan
11247
11248         global          fgetexp
11249 fgetexp:
11250         mov.b           STAG(%a6),%d1
11251         beq.l           sgetexp
11252         cmpi.b          %d1,&ZERO
11253         beq.l           src_zero
11254         cmpi.b          %d1,&INF
11255         beq.l           t_operr
11256         cmpi.b          %d1,&DENORM
11257         beq.l           sgetexpd
11258         cmpi.b          %d1,&QNAN
11259         beq.l           src_qnan
11260         bra.l           src_snan
11261
11262         global          fgetman
11263 fgetman:
11264         mov.b           STAG(%a6),%d1
11265         beq.l           sgetman
11266         cmpi.b          %d1,&ZERO
11267         beq.l           src_zero
11268         cmpi.b          %d1,&INF
11269         beq.l           t_operr
11270         cmpi.b          %d1,&DENORM
11271         beq.l           sgetmand
11272         cmpi.b          %d1,&QNAN
11273         beq.l           src_qnan
11274         bra.l           src_snan
11275
11276         global          fsincos
11277 fsincos:
11278         mov.b           STAG(%a6),%d1
11279         beq.l           ssincos
11280         cmpi.b          %d1,&ZERO
11281         beq.l           ssincosz
11282         cmpi.b          %d1,&INF
11283         beq.l           ssincosi
11284         cmpi.b          %d1,&DENORM
11285         beq.l           ssincosd
11286         cmpi.b          %d1,&QNAN
11287         beq.l           ssincosqnan
11288         bra.l           ssincossnan
11289
11290         global          fmod
11291 fmod:
11292         mov.b           STAG(%a6),%d1
11293         beq.l           smod_snorm
11294         cmpi.b          %d1,&ZERO
11295         beq.l           smod_szero
11296         cmpi.b          %d1,&INF
11297         beq.l           smod_sinf
11298         cmpi.b          %d1,&DENORM
11299         beq.l           smod_sdnrm
11300         cmpi.b          %d1,&QNAN
11301         beq.l           sop_sqnan
11302         bra.l           sop_ssnan
11303
11304         global          frem
11305 frem:
11306         mov.b           STAG(%a6),%d1
11307         beq.l           srem_snorm
11308         cmpi.b          %d1,&ZERO
11309         beq.l           srem_szero
11310         cmpi.b          %d1,&INF
11311         beq.l           srem_sinf
11312         cmpi.b          %d1,&DENORM
11313         beq.l           srem_sdnrm
11314         cmpi.b          %d1,&QNAN
11315         beq.l           sop_sqnan
11316         bra.l           sop_ssnan
11317
11318         global          fscale
11319 fscale:
11320         mov.b           STAG(%a6),%d1
11321         beq.l           sscale_snorm
11322         cmpi.b          %d1,&ZERO
11323         beq.l           sscale_szero
11324         cmpi.b          %d1,&INF
11325         beq.l           sscale_sinf
11326         cmpi.b          %d1,&DENORM
11327         beq.l           sscale_sdnrm
11328         cmpi.b          %d1,&QNAN
11329         beq.l           sop_sqnan
11330         bra.l           sop_ssnan
11331
11332 #########################################################################
11333 # XDEF **************************************************************** #
11334 #       fgen_except(): catch an exception during transcendental         #
11335 #                      emulation                                        #
11336 #                                                                       #
11337 # XREF **************************************************************** #
11338 #       fmul() - emulate a multiply instruction                         #
11339 #       fadd() - emulate an add instruction                             #
11340 #       fin() - emulate an fmove instruction                            #
11341 #                                                                       #
11342 # INPUT *************************************************************** #
11343 #       fp0 = destination operand                                       #
11344 #       d0  = type of instruction that took exception                   #
11345 #       fsave frame = source operand                                    #
11346 #                                                                       #
11347 # OUTPUT ************************************************************** #
11348 #       fp0 = result                                                    #
11349 #       fp1 = EXOP                                                      #
11350 #                                                                       #
11351 # ALGORITHM *********************************************************** #
11352 #       An exception occurred on the last instruction of the            #
11353 # transcendental emulation. hopefully, this won't be happening much     #
11354 # because it will be VERY slow.                                         #
11355 #       The only exceptions capable of passing through here are         #
11356 # Overflow, Underflow, and Unsupported Data Type.                       #
11357 #                                                                       #
11358 #########################################################################
11359
11360         global          fgen_except
11361 fgen_except:
11362         cmpi.b          0x3(%sp),&0x7           # is exception UNSUPP?
11363         beq.b           fge_unsupp              # yes
11364
11365         mov.b           &NORM,STAG(%a6)
11366
11367 fge_cont:
11368         mov.b           &NORM,DTAG(%a6)
11369
11370 # ok, I have a problem with putting the dst op at FP_DST. the emulation
11371 # routines aren't supposed to alter the operands but we've just squashed
11372 # FP_DST here...
11373
11374 # 8/17/93 - this turns out to be more of a "cleanliness" standpoint
11375 # then a potential bug. to begin with, only the dyadic functions
11376 # frem,fmod, and fscale would get the dst trashed here. But, for
11377 # the 060SP, the FP_DST is never used again anyways.
11378         fmovm.x         &0x80,FP_DST(%a6)       # dst op is in fp0
11379
11380         lea             0x4(%sp),%a0            # pass: ptr to src op
11381         lea             FP_DST(%a6),%a1         # pass: ptr to dst op
11382
11383         cmpi.b          %d1,&FMOV_OP
11384         beq.b           fge_fin                 # it was an "fmov"
11385         cmpi.b          %d1,&FADD_OP
11386         beq.b           fge_fadd                # it was an "fadd"
11387 fge_fmul:
11388         bsr.l           fmul
11389         rts
11390 fge_fadd:
11391         bsr.l           fadd
11392         rts
11393 fge_fin:
11394         bsr.l           fin
11395         rts
11396
11397 fge_unsupp:
11398         mov.b           &DENORM,STAG(%a6)
11399         bra.b           fge_cont
11400
11401 #
11402 # This table holds the offsets of the emulation routines for each individual
11403 # math operation relative to the address of this table. Included are
11404 # routines like fadd/fmul/fabs as well as the transcendentals.
11405 # The location within the table is determined by the extension bits of the
11406 # operation longword.
11407 #
11408
11409         swbeg           &109
11410 tbl_unsupp:
11411         long            fin             - tbl_unsupp    # 00: fmove
11412         long            fint            - tbl_unsupp    # 01: fint
11413         long            fsinh           - tbl_unsupp    # 02: fsinh
11414         long            fintrz          - tbl_unsupp    # 03: fintrz
11415         long            fsqrt           - tbl_unsupp    # 04: fsqrt
11416         long            tbl_unsupp      - tbl_unsupp
11417         long            flognp1         - tbl_unsupp    # 06: flognp1
11418         long            tbl_unsupp      - tbl_unsupp
11419         long            fetoxm1         - tbl_unsupp    # 08: fetoxm1
11420         long            ftanh           - tbl_unsupp    # 09: ftanh
11421         long            fatan           - tbl_unsupp    # 0a: fatan
11422         long            tbl_unsupp      - tbl_unsupp
11423         long            fasin           - tbl_unsupp    # 0c: fasin
11424         long            fatanh          - tbl_unsupp    # 0d: fatanh
11425         long            fsine           - tbl_unsupp    # 0e: fsin
11426         long            ftan            - tbl_unsupp    # 0f: ftan
11427         long            fetox           - tbl_unsupp    # 10: fetox
11428         long            ftwotox         - tbl_unsupp    # 11: ftwotox
11429         long            ftentox         - tbl_unsupp    # 12: ftentox
11430         long            tbl_unsupp      - tbl_unsupp
11431         long            flogn           - tbl_unsupp    # 14: flogn
11432         long            flog10          - tbl_unsupp    # 15: flog10
11433         long            flog2           - tbl_unsupp    # 16: flog2
11434         long            tbl_unsupp      - tbl_unsupp
11435         long            fabs            - tbl_unsupp    # 18: fabs
11436         long            fcosh           - tbl_unsupp    # 19: fcosh
11437         long            fneg            - tbl_unsupp    # 1a: fneg
11438         long            tbl_unsupp      - tbl_unsupp
11439         long            facos           - tbl_unsupp    # 1c: facos
11440         long            fcos            - tbl_unsupp    # 1d: fcos
11441         long            fgetexp         - tbl_unsupp    # 1e: fgetexp
11442         long            fgetman         - tbl_unsupp    # 1f: fgetman
11443         long            fdiv            - tbl_unsupp    # 20: fdiv
11444         long            fmod            - tbl_unsupp    # 21: fmod
11445         long            fadd            - tbl_unsupp    # 22: fadd
11446         long            fmul            - tbl_unsupp    # 23: fmul
11447         long            fsgldiv         - tbl_unsupp    # 24: fsgldiv
11448         long            frem            - tbl_unsupp    # 25: frem
11449         long            fscale          - tbl_unsupp    # 26: fscale
11450         long            fsglmul         - tbl_unsupp    # 27: fsglmul
11451         long            fsub            - tbl_unsupp    # 28: fsub
11452         long            tbl_unsupp      - tbl_unsupp
11453         long            tbl_unsupp      - tbl_unsupp
11454         long            tbl_unsupp      - tbl_unsupp
11455         long            tbl_unsupp      - tbl_unsupp
11456         long            tbl_unsupp      - tbl_unsupp
11457         long            tbl_unsupp      - tbl_unsupp
11458         long            tbl_unsupp      - tbl_unsupp
11459         long            fsincos         - tbl_unsupp    # 30: fsincos
11460         long            fsincos         - tbl_unsupp    # 31: fsincos
11461         long            fsincos         - tbl_unsupp    # 32: fsincos
11462         long            fsincos         - tbl_unsupp    # 33: fsincos
11463         long            fsincos         - tbl_unsupp    # 34: fsincos
11464         long            fsincos         - tbl_unsupp    # 35: fsincos
11465         long            fsincos         - tbl_unsupp    # 36: fsincos
11466         long            fsincos         - tbl_unsupp    # 37: fsincos
11467         long            fcmp            - tbl_unsupp    # 38: fcmp
11468         long            tbl_unsupp      - tbl_unsupp
11469         long            ftst            - tbl_unsupp    # 3a: ftst
11470         long            tbl_unsupp      - tbl_unsupp
11471         long            tbl_unsupp      - tbl_unsupp
11472         long            tbl_unsupp      - tbl_unsupp
11473         long            tbl_unsupp      - tbl_unsupp
11474         long            tbl_unsupp      - tbl_unsupp
11475         long            fsin            - tbl_unsupp    # 40: fsmove
11476         long            fssqrt          - tbl_unsupp    # 41: fssqrt
11477         long            tbl_unsupp      - tbl_unsupp
11478         long            tbl_unsupp      - tbl_unsupp
11479         long            fdin            - tbl_unsupp    # 44: fdmove
11480         long            fdsqrt          - tbl_unsupp    # 45: fdsqrt
11481         long            tbl_unsupp      - tbl_unsupp
11482         long            tbl_unsupp      - tbl_unsupp
11483         long            tbl_unsupp      - tbl_unsupp
11484         long            tbl_unsupp      - tbl_unsupp
11485         long            tbl_unsupp      - tbl_unsupp
11486         long            tbl_unsupp      - tbl_unsupp
11487         long            tbl_unsupp      - tbl_unsupp
11488         long            tbl_unsupp      - tbl_unsupp
11489         long            tbl_unsupp      - tbl_unsupp
11490         long            tbl_unsupp      - tbl_unsupp
11491         long            tbl_unsupp      - tbl_unsupp
11492         long            tbl_unsupp      - tbl_unsupp
11493         long            tbl_unsupp      - tbl_unsupp
11494         long            tbl_unsupp      - tbl_unsupp
11495         long            tbl_unsupp      - tbl_unsupp
11496         long            tbl_unsupp      - tbl_unsupp
11497         long            tbl_unsupp      - tbl_unsupp
11498         long            tbl_unsupp      - tbl_unsupp
11499         long            fsabs           - tbl_unsupp    # 58: fsabs
11500         long            tbl_unsupp      - tbl_unsupp
11501         long            fsneg           - tbl_unsupp    # 5a: fsneg
11502         long            tbl_unsupp      - tbl_unsupp
11503         long            fdabs           - tbl_unsupp    # 5c: fdabs
11504         long            tbl_unsupp      - tbl_unsupp
11505         long            fdneg           - tbl_unsupp    # 5e: fdneg
11506         long            tbl_unsupp      - tbl_unsupp
11507         long            fsdiv           - tbl_unsupp    # 60: fsdiv
11508         long            tbl_unsupp      - tbl_unsupp
11509         long            fsadd           - tbl_unsupp    # 62: fsadd
11510         long            fsmul           - tbl_unsupp    # 63: fsmul
11511         long            fddiv           - tbl_unsupp    # 64: fddiv
11512         long            tbl_unsupp      - tbl_unsupp
11513         long            fdadd           - tbl_unsupp    # 66: fdadd
11514         long            fdmul           - tbl_unsupp    # 67: fdmul
11515         long            fssub           - tbl_unsupp    # 68: fssub
11516         long            tbl_unsupp      - tbl_unsupp
11517         long            tbl_unsupp      - tbl_unsupp
11518         long            tbl_unsupp      - tbl_unsupp
11519         long            fdsub           - tbl_unsupp    # 6c: fdsub
11520
11521 #########################################################################
11522 # XDEF **************************************************************** #
11523 #       fmul(): emulates the fmul instruction                           #
11524 #       fsmul(): emulates the fsmul instruction                         #
11525 #       fdmul(): emulates the fdmul instruction                         #
11526 #                                                                       #
11527 # XREF **************************************************************** #
11528 #       scale_to_zero_src() - scale src exponent to zero                #
11529 #       scale_to_zero_dst() - scale dst exponent to zero                #
11530 #       unf_res() - return default underflow result                     #
11531 #       ovf_res() - return default overflow result                      #
11532 #       res_qnan() - return QNAN result                                 #
11533 #       res_snan() - return SNAN result                                 #
11534 #                                                                       #
11535 # INPUT *************************************************************** #
11536 #       a0 = pointer to extended precision source operand               #
11537 #       a1 = pointer to extended precision destination operand          #
11538 #       d0  rnd prec,mode                                               #
11539 #                                                                       #
11540 # OUTPUT ************************************************************** #
11541 #       fp0 = result                                                    #
11542 #       fp1 = EXOP (if exception occurred)                              #
11543 #                                                                       #
11544 # ALGORITHM *********************************************************** #
11545 #       Handle NANs, infinities, and zeroes as special cases. Divide    #
11546 # norms/denorms into ext/sgl/dbl precision.                             #
11547 #       For norms/denorms, scale the exponents such that a multiply     #
11548 # instruction won't cause an exception. Use the regular fmul to         #
11549 # compute a result. Check if the regular operands would have taken      #
11550 # an exception. If so, return the default overflow/underflow result     #
11551 # and return the EXOP if exceptions are enabled. Else, scale the        #
11552 # result operand to the proper exponent.                                #
11553 #                                                                       #
11554 #########################################################################
11555
11556         align           0x10
11557 tbl_fmul_ovfl:
11558         long            0x3fff - 0x7ffe         # ext_max
11559         long            0x3fff - 0x407e         # sgl_max
11560         long            0x3fff - 0x43fe         # dbl_max
11561 tbl_fmul_unfl:
11562         long            0x3fff + 0x0001         # ext_unfl
11563         long            0x3fff - 0x3f80         # sgl_unfl
11564         long            0x3fff - 0x3c00         # dbl_unfl
11565
11566         global          fsmul
11567 fsmul:
11568         andi.b          &0x30,%d0               # clear rnd prec
11569         ori.b           &s_mode*0x10,%d0        # insert sgl prec
11570         bra.b           fmul
11571
11572         global          fdmul
11573 fdmul:
11574         andi.b          &0x30,%d0
11575         ori.b           &d_mode*0x10,%d0        # insert dbl prec
11576
11577         global          fmul
11578 fmul:
11579         mov.l           %d0,L_SCR3(%a6)         # store rnd info
11580
11581         clr.w           %d1
11582         mov.b           DTAG(%a6),%d1
11583         lsl.b           &0x3,%d1
11584         or.b            STAG(%a6),%d1           # combine src tags
11585         bne.w           fmul_not_norm           # optimize on non-norm input
11586
11587 fmul_norm:
11588         mov.w           DST_EX(%a1),FP_SCR1_EX(%a6)
11589         mov.l           DST_HI(%a1),FP_SCR1_HI(%a6)
11590         mov.l           DST_LO(%a1),FP_SCR1_LO(%a6)
11591
11592         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
11593         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
11594         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
11595
11596         bsr.l           scale_to_zero_src       # scale src exponent
11597         mov.l           %d0,-(%sp)              # save scale factor 1
11598
11599         bsr.l           scale_to_zero_dst       # scale dst exponent
11600
11601         add.l           %d0,(%sp)               # SCALE_FACTOR = scale1 + scale2
11602
11603         mov.w           2+L_SCR3(%a6),%d1       # fetch precision
11604         lsr.b           &0x6,%d1                # shift to lo bits
11605         mov.l           (%sp)+,%d0              # load S.F.
11606         cmp.l           %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl?
11607         beq.w           fmul_may_ovfl           # result may rnd to overflow
11608         blt.w           fmul_ovfl               # result will overflow
11609
11610         cmp.l           %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl?
11611         beq.w           fmul_may_unfl           # result may rnd to no unfl
11612         bgt.w           fmul_unfl               # result will underflow
11613
11614 #
11615 # NORMAL:
11616 # - the result of the multiply operation will neither overflow nor underflow.
11617 # - do the multiply to the proper precision and rounding mode.
11618 # - scale the result exponent using the scale factor. if both operands were
11619 # normalized then we really don't need to go through this scaling. but for now,
11620 # this will do.
11621 #
11622 fmul_normal:
11623         fmovm.x         FP_SCR1(%a6),&0x80      # load dst operand
11624
11625         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
11626         fmov.l          &0x0,%fpsr              # clear FPSR
11627
11628         fmul.x          FP_SCR0(%a6),%fp0       # execute multiply
11629
11630         fmov.l          %fpsr,%d1               # save status
11631         fmov.l          &0x0,%fpcr              # clear FPCR
11632
11633         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
11634
11635 fmul_normal_exit:
11636         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
11637         mov.l           %d2,-(%sp)              # save d2
11638         mov.w           FP_SCR0_EX(%a6),%d1     # load {sgn,exp}
11639         mov.l           %d1,%d2                 # make a copy
11640         andi.l          &0x7fff,%d1             # strip sign
11641         andi.w          &0x8000,%d2             # keep old sign
11642         sub.l           %d0,%d1                 # add scale factor
11643         or.w            %d2,%d1                 # concat old sign,new exp
11644         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
11645         mov.l           (%sp)+,%d2              # restore d2
11646         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
11647         rts
11648
11649 #
11650 # OVERFLOW:
11651 # - the result of the multiply operation is an overflow.
11652 # - do the multiply to the proper precision and rounding mode in order to
11653 # set the inexact bits.
11654 # - calculate the default result and return it in fp0.
11655 # - if overflow or inexact is enabled, we need a multiply result rounded to
11656 # extended precision. if the original operation was extended, then we have this
11657 # result. if the original operation was single or double, we have to do another
11658 # multiply using extended precision and the correct rounding mode. the result
11659 # of this operation then has its exponent scaled by -0x6000 to create the
11660 # exceptional operand.
11661 #
11662 fmul_ovfl:
11663         fmovm.x         FP_SCR1(%a6),&0x80      # load dst operand
11664
11665         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
11666         fmov.l          &0x0,%fpsr              # clear FPSR
11667
11668         fmul.x          FP_SCR0(%a6),%fp0       # execute multiply
11669
11670         fmov.l          %fpsr,%d1               # save status
11671         fmov.l          &0x0,%fpcr              # clear FPCR
11672
11673         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
11674
11675 # save setting this until now because this is where fmul_may_ovfl may jump in
11676 fmul_ovfl_tst:
11677         or.l            &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
11678
11679         mov.b           FPCR_ENABLE(%a6),%d1
11680         andi.b          &0x13,%d1               # is OVFL or INEX enabled?
11681         bne.b           fmul_ovfl_ena           # yes
11682
11683 # calculate the default result
11684 fmul_ovfl_dis:
11685         btst            &neg_bit,FPSR_CC(%a6)   # is result negative?
11686         sne             %d1                     # set sign param accordingly
11687         mov.l           L_SCR3(%a6),%d0         # pass rnd prec,mode
11688         bsr.l           ovf_res                 # calculate default result
11689         or.b            %d0,FPSR_CC(%a6)        # set INF,N if applicable
11690         fmovm.x         (%a0),&0x80             # return default result in fp0
11691         rts
11692
11693 #
11694 # OVFL is enabled; Create EXOP:
11695 # - if precision is extended, then we have the EXOP. simply bias the exponent
11696 # with an extra -0x6000. if the precision is single or double, we need to
11697 # calculate a result rounded to extended precision.
11698 #
11699 fmul_ovfl_ena:
11700         mov.l           L_SCR3(%a6),%d1
11701         andi.b          &0xc0,%d1               # test the rnd prec
11702         bne.b           fmul_ovfl_ena_sd        # it's sgl or dbl
11703
11704 fmul_ovfl_ena_cont:
11705         fmovm.x         &0x80,FP_SCR0(%a6)      # move result to stack
11706
11707         mov.l           %d2,-(%sp)              # save d2
11708         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
11709         mov.w           %d1,%d2                 # make a copy
11710         andi.l          &0x7fff,%d1             # strip sign
11711         sub.l           %d0,%d1                 # add scale factor
11712         subi.l          &0x6000,%d1             # subtract bias
11713         andi.w          &0x7fff,%d1             # clear sign bit
11714         andi.w          &0x8000,%d2             # keep old sign
11715         or.w            %d2,%d1                 # concat old sign,new exp
11716         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
11717         mov.l           (%sp)+,%d2              # restore d2
11718         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
11719         bra.b           fmul_ovfl_dis
11720
11721 fmul_ovfl_ena_sd:
11722         fmovm.x         FP_SCR1(%a6),&0x80      # load dst operand
11723
11724         mov.l           L_SCR3(%a6),%d1
11725         andi.b          &0x30,%d1               # keep rnd mode only
11726         fmov.l          %d1,%fpcr               # set FPCR
11727
11728         fmul.x          FP_SCR0(%a6),%fp0       # execute multiply
11729
11730         fmov.l          &0x0,%fpcr              # clear FPCR
11731         bra.b           fmul_ovfl_ena_cont
11732
11733 #
11734 # may OVERFLOW:
11735 # - the result of the multiply operation MAY overflow.
11736 # - do the multiply to the proper precision and rounding mode in order to
11737 # set the inexact bits.
11738 # - calculate the default result and return it in fp0.
11739 #
11740 fmul_may_ovfl:
11741         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
11742
11743         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
11744         fmov.l          &0x0,%fpsr              # clear FPSR
11745
11746         fmul.x          FP_SCR0(%a6),%fp0       # execute multiply
11747
11748         fmov.l          %fpsr,%d1               # save status
11749         fmov.l          &0x0,%fpcr              # clear FPCR
11750
11751         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
11752
11753         fabs.x          %fp0,%fp1               # make a copy of result
11754         fcmp.b          %fp1,&0x2               # is |result| >= 2.b?
11755         fbge.w          fmul_ovfl_tst           # yes; overflow has occurred
11756
11757 # no, it didn't overflow; we have correct result
11758         bra.w           fmul_normal_exit
11759
11760 #
11761 # UNDERFLOW:
11762 # - the result of the multiply operation is an underflow.
11763 # - do the multiply to the proper precision and rounding mode in order to
11764 # set the inexact bits.
11765 # - calculate the default result and return it in fp0.
11766 # - if overflow or inexact is enabled, we need a multiply result rounded to
11767 # extended precision. if the original operation was extended, then we have this
11768 # result. if the original operation was single or double, we have to do another
11769 # multiply using extended precision and the correct rounding mode. the result
11770 # of this operation then has its exponent scaled by -0x6000 to create the
11771 # exceptional operand.
11772 #
11773 fmul_unfl:
11774         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
11775
11776 # for fun, let's use only extended precision, round to zero. then, let
11777 # the unf_res() routine figure out all the rest.
11778 # will we get the correct answer.
11779         fmovm.x         FP_SCR1(%a6),&0x80      # load dst operand
11780
11781         fmov.l          &rz_mode*0x10,%fpcr     # set FPCR
11782         fmov.l          &0x0,%fpsr              # clear FPSR
11783
11784         fmul.x          FP_SCR0(%a6),%fp0       # execute multiply
11785
11786         fmov.l          %fpsr,%d1               # save status
11787         fmov.l          &0x0,%fpcr              # clear FPCR
11788
11789         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
11790
11791         mov.b           FPCR_ENABLE(%a6),%d1
11792         andi.b          &0x0b,%d1               # is UNFL or INEX enabled?
11793         bne.b           fmul_unfl_ena           # yes
11794
11795 fmul_unfl_dis:
11796         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
11797
11798         lea             FP_SCR0(%a6),%a0        # pass: result addr
11799         mov.l           L_SCR3(%a6),%d1         # pass: rnd prec,mode
11800         bsr.l           unf_res                 # calculate default result
11801         or.b            %d0,FPSR_CC(%a6)        # unf_res2 may have set 'Z'
11802         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
11803         rts
11804
11805 #
11806 # UNFL is enabled.
11807 #
11808 fmul_unfl_ena:
11809         fmovm.x         FP_SCR1(%a6),&0x40      # load dst op
11810
11811         mov.l           L_SCR3(%a6),%d1
11812         andi.b          &0xc0,%d1               # is precision extended?
11813         bne.b           fmul_unfl_ena_sd        # no, sgl or dbl
11814
11815 # if the rnd mode is anything but RZ, then we have to re-do the above
11816 # multiplication becuase we used RZ for all.
11817         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
11818
11819 fmul_unfl_ena_cont:
11820         fmov.l          &0x0,%fpsr              # clear FPSR
11821
11822         fmul.x          FP_SCR0(%a6),%fp1       # execute multiply
11823
11824         fmov.l          &0x0,%fpcr              # clear FPCR
11825
11826         fmovm.x         &0x40,FP_SCR0(%a6)      # save result to stack
11827         mov.l           %d2,-(%sp)              # save d2
11828         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
11829         mov.l           %d1,%d2                 # make a copy
11830         andi.l          &0x7fff,%d1             # strip sign
11831         andi.w          &0x8000,%d2             # keep old sign
11832         sub.l           %d0,%d1                 # add scale factor
11833         addi.l          &0x6000,%d1             # add bias
11834         andi.w          &0x7fff,%d1
11835         or.w            %d2,%d1                 # concat old sign,new exp
11836         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
11837         mov.l           (%sp)+,%d2              # restore d2
11838         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
11839         bra.w           fmul_unfl_dis
11840
11841 fmul_unfl_ena_sd:
11842         mov.l           L_SCR3(%a6),%d1
11843         andi.b          &0x30,%d1               # use only rnd mode
11844         fmov.l          %d1,%fpcr               # set FPCR
11845
11846         bra.b           fmul_unfl_ena_cont
11847
11848 # MAY UNDERFLOW:
11849 # -use the correct rounding mode and precision. this code favors operations
11850 # that do not underflow.
11851 fmul_may_unfl:
11852         fmovm.x         FP_SCR1(%a6),&0x80      # load dst operand
11853
11854         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
11855         fmov.l          &0x0,%fpsr              # clear FPSR
11856
11857         fmul.x          FP_SCR0(%a6),%fp0       # execute multiply
11858
11859         fmov.l          %fpsr,%d1               # save status
11860         fmov.l          &0x0,%fpcr              # clear FPCR
11861
11862         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
11863
11864         fabs.x          %fp0,%fp1               # make a copy of result
11865         fcmp.b          %fp1,&0x2               # is |result| > 2.b?
11866         fbgt.w          fmul_normal_exit        # no; no underflow occurred
11867         fblt.w          fmul_unfl               # yes; underflow occurred
11868
11869 #
11870 # we still don't know if underflow occurred. result is ~ equal to 2. but,
11871 # we don't know if the result was an underflow that rounded up to a 2 or
11872 # a normalized number that rounded down to a 2. so, redo the entire operation
11873 # using RZ as the rounding mode to see what the pre-rounded result is.
11874 # this case should be relatively rare.
11875 #
11876         fmovm.x         FP_SCR1(%a6),&0x40      # load dst operand
11877
11878         mov.l           L_SCR3(%a6),%d1
11879         andi.b          &0xc0,%d1               # keep rnd prec
11880         ori.b           &rz_mode*0x10,%d1       # insert RZ
11881
11882         fmov.l          %d1,%fpcr               # set FPCR
11883         fmov.l          &0x0,%fpsr              # clear FPSR
11884
11885         fmul.x          FP_SCR0(%a6),%fp1       # execute multiply
11886
11887         fmov.l          &0x0,%fpcr              # clear FPCR
11888         fabs.x          %fp1                    # make absolute value
11889         fcmp.b          %fp1,&0x2               # is |result| < 2.b?
11890         fbge.w          fmul_normal_exit        # no; no underflow occurred
11891         bra.w           fmul_unfl               # yes, underflow occurred
11892
11893 ################################################################################
11894
11895 #
11896 # Multiply: inputs are not both normalized; what are they?
11897 #
11898 fmul_not_norm:
11899         mov.w           (tbl_fmul_op.b,%pc,%d1.w*2),%d1
11900         jmp             (tbl_fmul_op.b,%pc,%d1.w)
11901
11902         swbeg           &48
11903 tbl_fmul_op:
11904         short           fmul_norm       - tbl_fmul_op # NORM x NORM
11905         short           fmul_zero       - tbl_fmul_op # NORM x ZERO
11906         short           fmul_inf_src    - tbl_fmul_op # NORM x INF
11907         short           fmul_res_qnan   - tbl_fmul_op # NORM x QNAN
11908         short           fmul_norm       - tbl_fmul_op # NORM x DENORM
11909         short           fmul_res_snan   - tbl_fmul_op # NORM x SNAN
11910         short           tbl_fmul_op     - tbl_fmul_op #
11911         short           tbl_fmul_op     - tbl_fmul_op #
11912
11913         short           fmul_zero       - tbl_fmul_op # ZERO x NORM
11914         short           fmul_zero       - tbl_fmul_op # ZERO x ZERO
11915         short           fmul_res_operr  - tbl_fmul_op # ZERO x INF
11916         short           fmul_res_qnan   - tbl_fmul_op # ZERO x QNAN
11917         short           fmul_zero       - tbl_fmul_op # ZERO x DENORM
11918         short           fmul_res_snan   - tbl_fmul_op # ZERO x SNAN
11919         short           tbl_fmul_op     - tbl_fmul_op #
11920         short           tbl_fmul_op     - tbl_fmul_op #
11921
11922         short           fmul_inf_dst    - tbl_fmul_op # INF x NORM
11923         short           fmul_res_operr  - tbl_fmul_op # INF x ZERO
11924         short           fmul_inf_dst    - tbl_fmul_op # INF x INF
11925         short           fmul_res_qnan   - tbl_fmul_op # INF x QNAN
11926         short           fmul_inf_dst    - tbl_fmul_op # INF x DENORM
11927         short           fmul_res_snan   - tbl_fmul_op # INF x SNAN
11928         short           tbl_fmul_op     - tbl_fmul_op #
11929         short           tbl_fmul_op     - tbl_fmul_op #
11930
11931         short           fmul_res_qnan   - tbl_fmul_op # QNAN x NORM
11932         short           fmul_res_qnan   - tbl_fmul_op # QNAN x ZERO
11933         short           fmul_res_qnan   - tbl_fmul_op # QNAN x INF
11934         short           fmul_res_qnan   - tbl_fmul_op # QNAN x QNAN
11935         short           fmul_res_qnan   - tbl_fmul_op # QNAN x DENORM
11936         short           fmul_res_snan   - tbl_fmul_op # QNAN x SNAN
11937         short           tbl_fmul_op     - tbl_fmul_op #
11938         short           tbl_fmul_op     - tbl_fmul_op #
11939
11940         short           fmul_norm       - tbl_fmul_op # NORM x NORM
11941         short           fmul_zero       - tbl_fmul_op # NORM x ZERO
11942         short           fmul_inf_src    - tbl_fmul_op # NORM x INF
11943         short           fmul_res_qnan   - tbl_fmul_op # NORM x QNAN
11944         short           fmul_norm       - tbl_fmul_op # NORM x DENORM
11945         short           fmul_res_snan   - tbl_fmul_op # NORM x SNAN
11946         short           tbl_fmul_op     - tbl_fmul_op #
11947         short           tbl_fmul_op     - tbl_fmul_op #
11948
11949         short           fmul_res_snan   - tbl_fmul_op # SNAN x NORM
11950         short           fmul_res_snan   - tbl_fmul_op # SNAN x ZERO
11951         short           fmul_res_snan   - tbl_fmul_op # SNAN x INF
11952         short           fmul_res_snan   - tbl_fmul_op # SNAN x QNAN
11953         short           fmul_res_snan   - tbl_fmul_op # SNAN x DENORM
11954         short           fmul_res_snan   - tbl_fmul_op # SNAN x SNAN
11955         short           tbl_fmul_op     - tbl_fmul_op #
11956         short           tbl_fmul_op     - tbl_fmul_op #
11957
11958 fmul_res_operr:
11959         bra.l           res_operr
11960 fmul_res_snan:
11961         bra.l           res_snan
11962 fmul_res_qnan:
11963         bra.l           res_qnan
11964
11965 #
11966 # Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm)
11967 #
11968         global          fmul_zero               # global for fsglmul
11969 fmul_zero:
11970         mov.b           SRC_EX(%a0),%d0         # exclusive or the signs
11971         mov.b           DST_EX(%a1),%d1
11972         eor.b           %d0,%d1
11973         bpl.b           fmul_zero_p             # result ZERO is pos.
11974 fmul_zero_n:
11975         fmov.s          &0x80000000,%fp0        # load -ZERO
11976         mov.b           &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N
11977         rts
11978 fmul_zero_p:
11979         fmov.s          &0x00000000,%fp0        # load +ZERO
11980         mov.b           &z_bmask,FPSR_CC(%a6)   # set Z
11981         rts
11982
11983 #
11984 # Multiply: (inf x inf) || (inf x norm) || (inf x denorm)
11985 #
11986 # Note: The j-bit for an infinity is a don't-care. However, to be
11987 # strictly compatible w/ the 68881/882, we make sure to return an
11988 # INF w/ the j-bit set if the input INF j-bit was set. Destination
11989 # INFs take priority.
11990 #
11991         global          fmul_inf_dst            # global for fsglmul
11992 fmul_inf_dst:
11993         fmovm.x         DST(%a1),&0x80          # return INF result in fp0
11994         mov.b           SRC_EX(%a0),%d0         # exclusive or the signs
11995         mov.b           DST_EX(%a1),%d1
11996         eor.b           %d0,%d1
11997         bpl.b           fmul_inf_dst_p          # result INF is pos.
11998 fmul_inf_dst_n:
11999         fabs.x          %fp0                    # clear result sign
12000         fneg.x          %fp0                    # set result sign
12001         mov.b           &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N
12002         rts
12003 fmul_inf_dst_p:
12004         fabs.x          %fp0                    # clear result sign
12005         mov.b           &inf_bmask,FPSR_CC(%a6) # set INF
12006         rts
12007
12008         global          fmul_inf_src            # global for fsglmul
12009 fmul_inf_src:
12010         fmovm.x         SRC(%a0),&0x80          # return INF result in fp0
12011         mov.b           SRC_EX(%a0),%d0         # exclusive or the signs
12012         mov.b           DST_EX(%a1),%d1
12013         eor.b           %d0,%d1
12014         bpl.b           fmul_inf_dst_p          # result INF is pos.
12015         bra.b           fmul_inf_dst_n
12016
12017 #########################################################################
12018 # XDEF **************************************************************** #
12019 #       fin(): emulates the fmove instruction                           #
12020 #       fsin(): emulates the fsmove instruction                         #
12021 #       fdin(): emulates the fdmove instruction                         #
12022 #                                                                       #
12023 # XREF **************************************************************** #
12024 #       norm() - normalize mantissa for EXOP on denorm                  #
12025 #       scale_to_zero_src() - scale src exponent to zero                #
12026 #       ovf_res() - return default overflow result                      #
12027 #       unf_res() - return default underflow result                     #
12028 #       res_qnan_1op() - return QNAN result                             #
12029 #       res_snan_1op() - return SNAN result                             #
12030 #                                                                       #
12031 # INPUT *************************************************************** #
12032 #       a0 = pointer to extended precision source operand               #
12033 #       d0 = round prec/mode                                            #
12034 #                                                                       #
12035 # OUTPUT ************************************************************** #
12036 #       fp0 = result                                                    #
12037 #       fp1 = EXOP (if exception occurred)                              #
12038 #                                                                       #
12039 # ALGORITHM *********************************************************** #
12040 #       Handle NANs, infinities, and zeroes as special cases. Divide    #
12041 # norms into extended, single, and double precision.                    #
12042 #       Norms can be emulated w/ a regular fmove instruction. For       #
12043 # sgl/dbl, must scale exponent and perform an "fmove". Check to see     #
12044 # if the result would have overflowed/underflowed. If so, use unf_res() #
12045 # or ovf_res() to return the default result. Also return EXOP if        #
12046 # exception is enabled. If no exception, return the default result.     #
12047 #       Unnorms don't pass through here.                                #
12048 #                                                                       #
12049 #########################################################################
12050
12051         global          fsin
12052 fsin:
12053         andi.b          &0x30,%d0               # clear rnd prec
12054         ori.b           &s_mode*0x10,%d0        # insert sgl precision
12055         bra.b           fin
12056
12057         global          fdin
12058 fdin:
12059         andi.b          &0x30,%d0               # clear rnd prec
12060         ori.b           &d_mode*0x10,%d0        # insert dbl precision
12061
12062         global          fin
12063 fin:
12064         mov.l           %d0,L_SCR3(%a6)         # store rnd info
12065
12066         mov.b           STAG(%a6),%d1           # fetch src optype tag
12067         bne.w           fin_not_norm            # optimize on non-norm input
12068
12069 #
12070 # FP MOVE IN: NORMs and DENORMs ONLY!
12071 #
12072 fin_norm:
12073         andi.b          &0xc0,%d0               # is precision extended?
12074         bne.w           fin_not_ext             # no, so go handle dbl or sgl
12075
12076 #
12077 # precision selected is extended. so...we cannot get an underflow
12078 # or overflow because of rounding to the correct precision. so...
12079 # skip the scaling and unscaling...
12080 #
12081         tst.b           SRC_EX(%a0)             # is the operand negative?
12082         bpl.b           fin_norm_done           # no
12083         bset            &neg_bit,FPSR_CC(%a6)   # yes, so set 'N' ccode bit
12084 fin_norm_done:
12085         fmovm.x         SRC(%a0),&0x80          # return result in fp0
12086         rts
12087
12088 #
12089 # for an extended precision DENORM, the UNFL exception bit is set
12090 # the accrued bit is NOT set in this instance(no inexactness!)
12091 #
12092 fin_denorm:
12093         andi.b          &0xc0,%d0               # is precision extended?
12094         bne.w           fin_not_ext             # no, so go handle dbl or sgl
12095
12096         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
12097         tst.b           SRC_EX(%a0)             # is the operand negative?
12098         bpl.b           fin_denorm_done         # no
12099         bset            &neg_bit,FPSR_CC(%a6)   # yes, so set 'N' ccode bit
12100 fin_denorm_done:
12101         fmovm.x         SRC(%a0),&0x80          # return result in fp0
12102         btst            &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
12103         bne.b           fin_denorm_unfl_ena     # yes
12104         rts
12105
12106 #
12107 # the input is an extended DENORM and underflow is enabled in the FPCR.
12108 # normalize the mantissa and add the bias of 0x6000 to the resulting negative
12109 # exponent and insert back into the operand.
12110 #
12111 fin_denorm_unfl_ena:
12112         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
12113         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
12114         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
12115         lea             FP_SCR0(%a6),%a0        # pass: ptr to operand
12116         bsr.l           norm                    # normalize result
12117         neg.w           %d0                     # new exponent = -(shft val)
12118         addi.w          &0x6000,%d0             # add new bias to exponent
12119         mov.w           FP_SCR0_EX(%a6),%d1     # fetch old sign,exp
12120         andi.w          &0x8000,%d1             # keep old sign
12121         andi.w          &0x7fff,%d0             # clear sign position
12122         or.w            %d1,%d0                 # concat new exo,old sign
12123         mov.w           %d0,FP_SCR0_EX(%a6)     # insert new exponent
12124         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
12125         rts
12126
12127 #
12128 # operand is to be rounded to single or double precision
12129 #
12130 fin_not_ext:
12131         cmpi.b          %d0,&s_mode*0x10        # separate sgl/dbl prec
12132         bne.b           fin_dbl
12133
12134 #
12135 # operand is to be rounded to single precision
12136 #
12137 fin_sgl:
12138         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
12139         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
12140         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
12141         bsr.l           scale_to_zero_src       # calculate scale factor
12142
12143         cmpi.l          %d0,&0x3fff-0x3f80      # will move in underflow?
12144         bge.w           fin_sd_unfl             # yes; go handle underflow
12145         cmpi.l          %d0,&0x3fff-0x407e      # will move in overflow?
12146         beq.w           fin_sd_may_ovfl         # maybe; go check
12147         blt.w           fin_sd_ovfl             # yes; go handle overflow
12148
12149 #
12150 # operand will NOT overflow or underflow when moved into the fp reg file
12151 #
12152 fin_sd_normal:
12153         fmov.l          &0x0,%fpsr              # clear FPSR
12154         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
12155
12156         fmov.x          FP_SCR0(%a6),%fp0       # perform move
12157
12158         fmov.l          %fpsr,%d1               # save FPSR
12159         fmov.l          &0x0,%fpcr              # clear FPCR
12160
12161         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
12162
12163 fin_sd_normal_exit:
12164         mov.l           %d2,-(%sp)              # save d2
12165         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
12166         mov.w           FP_SCR0_EX(%a6),%d1     # load {sgn,exp}
12167         mov.w           %d1,%d2                 # make a copy
12168         andi.l          &0x7fff,%d1             # strip sign
12169         sub.l           %d0,%d1                 # add scale factor
12170         andi.w          &0x8000,%d2             # keep old sign
12171         or.w            %d1,%d2                 # concat old sign,new exponent
12172         mov.w           %d2,FP_SCR0_EX(%a6)     # insert new exponent
12173         mov.l           (%sp)+,%d2              # restore d2
12174         fmovm.x         FP_SCR0(%a6),&0x80      # return result in fp0
12175         rts
12176
12177 #
12178 # operand is to be rounded to double precision
12179 #
12180 fin_dbl:
12181         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
12182         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
12183         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
12184         bsr.l           scale_to_zero_src       # calculate scale factor
12185
12186         cmpi.l          %d0,&0x3fff-0x3c00      # will move in underflow?
12187         bge.w           fin_sd_unfl             # yes; go handle underflow
12188         cmpi.l          %d0,&0x3fff-0x43fe      # will move in overflow?
12189         beq.w           fin_sd_may_ovfl         # maybe; go check
12190         blt.w           fin_sd_ovfl             # yes; go handle overflow
12191         bra.w           fin_sd_normal           # no; ho handle normalized op
12192
12193 #
12194 # operand WILL underflow when moved in to the fp register file
12195 #
12196 fin_sd_unfl:
12197         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
12198
12199         tst.b           FP_SCR0_EX(%a6)         # is operand negative?
12200         bpl.b           fin_sd_unfl_tst
12201         bset            &neg_bit,FPSR_CC(%a6)   # set 'N' ccode bit
12202
12203 # if underflow or inexact is enabled, then go calculate the EXOP first.
12204 fin_sd_unfl_tst:
12205         mov.b           FPCR_ENABLE(%a6),%d1
12206         andi.b          &0x0b,%d1               # is UNFL or INEX enabled?
12207         bne.b           fin_sd_unfl_ena         # yes
12208
12209 fin_sd_unfl_dis:
12210         lea             FP_SCR0(%a6),%a0        # pass: result addr
12211         mov.l           L_SCR3(%a6),%d1         # pass: rnd prec,mode
12212         bsr.l           unf_res                 # calculate default result
12213         or.b            %d0,FPSR_CC(%a6)        # unf_res may have set 'Z'
12214         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
12215         rts
12216
12217 #
12218 # operand will underflow AND underflow or inexact is enabled.
12219 # Therefore, we must return the result rounded to extended precision.
12220 #
12221 fin_sd_unfl_ena:
12222         mov.l           FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
12223         mov.l           FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
12224         mov.w           FP_SCR0_EX(%a6),%d1     # load current exponent
12225
12226         mov.l           %d2,-(%sp)              # save d2
12227         mov.w           %d1,%d2                 # make a copy
12228         andi.l          &0x7fff,%d1             # strip sign
12229         sub.l           %d0,%d1                 # subtract scale factor
12230         andi.w          &0x8000,%d2             # extract old sign
12231         addi.l          &0x6000,%d1             # add new bias
12232         andi.w          &0x7fff,%d1
12233         or.w            %d1,%d2                 # concat old sign,new exp
12234         mov.w           %d2,FP_SCR1_EX(%a6)     # insert new exponent
12235         fmovm.x         FP_SCR1(%a6),&0x40      # return EXOP in fp1
12236         mov.l           (%sp)+,%d2              # restore d2
12237         bra.b           fin_sd_unfl_dis
12238
12239 #
12240 # operand WILL overflow.
12241 #
12242 fin_sd_ovfl:
12243         fmov.l          &0x0,%fpsr              # clear FPSR
12244         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
12245
12246         fmov.x          FP_SCR0(%a6),%fp0       # perform move
12247
12248         fmov.l          &0x0,%fpcr              # clear FPCR
12249         fmov.l          %fpsr,%d1               # save FPSR
12250
12251         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
12252
12253 fin_sd_ovfl_tst:
12254         or.l            &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
12255
12256         mov.b           FPCR_ENABLE(%a6),%d1
12257         andi.b          &0x13,%d1               # is OVFL or INEX enabled?
12258         bne.b           fin_sd_ovfl_ena         # yes
12259
12260 #
12261 # OVFL is not enabled; therefore, we must create the default result by
12262 # calling ovf_res().
12263 #
12264 fin_sd_ovfl_dis:
12265         btst            &neg_bit,FPSR_CC(%a6)   # is result negative?
12266         sne             %d1                     # set sign param accordingly
12267         mov.l           L_SCR3(%a6),%d0         # pass: prec,mode
12268         bsr.l           ovf_res                 # calculate default result
12269         or.b            %d0,FPSR_CC(%a6)        # set INF,N if applicable
12270         fmovm.x         (%a0),&0x80             # return default result in fp0
12271         rts
12272
12273 #
12274 # OVFL is enabled.
12275 # the INEX2 bit has already been updated by the round to the correct precision.
12276 # now, round to extended(and don't alter the FPSR).
12277 #
12278 fin_sd_ovfl_ena:
12279         mov.l           %d2,-(%sp)              # save d2
12280         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
12281         mov.l           %d1,%d2                 # make a copy
12282         andi.l          &0x7fff,%d1             # strip sign
12283         andi.w          &0x8000,%d2             # keep old sign
12284         sub.l           %d0,%d1                 # add scale factor
12285         sub.l           &0x6000,%d1             # subtract bias
12286         andi.w          &0x7fff,%d1
12287         or.w            %d2,%d1
12288         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
12289         mov.l           (%sp)+,%d2              # restore d2
12290         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
12291         bra.b           fin_sd_ovfl_dis
12292
12293 #
12294 # the move in MAY overflow. so...
12295 #
12296 fin_sd_may_ovfl:
12297         fmov.l          &0x0,%fpsr              # clear FPSR
12298         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
12299
12300         fmov.x          FP_SCR0(%a6),%fp0       # perform the move
12301
12302         fmov.l          %fpsr,%d1               # save status
12303         fmov.l          &0x0,%fpcr              # clear FPCR
12304
12305         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
12306
12307         fabs.x          %fp0,%fp1               # make a copy of result
12308         fcmp.b          %fp1,&0x2               # is |result| >= 2.b?
12309         fbge.w          fin_sd_ovfl_tst         # yes; overflow has occurred
12310
12311 # no, it didn't overflow; we have correct result
12312         bra.w           fin_sd_normal_exit
12313
12314 ##########################################################################
12315
12316 #
12317 # operand is not a NORM: check its optype and branch accordingly
12318 #
12319 fin_not_norm:
12320         cmpi.b          %d1,&DENORM             # weed out DENORM
12321         beq.w           fin_denorm
12322         cmpi.b          %d1,&SNAN               # weed out SNANs
12323         beq.l           res_snan_1op
12324         cmpi.b          %d1,&QNAN               # weed out QNANs
12325         beq.l           res_qnan_1op
12326
12327 #
12328 # do the fmove in; at this point, only possible ops are ZERO and INF.
12329 # use fmov to determine ccodes.
12330 # prec:mode should be zero at this point but it won't affect answer anyways.
12331 #
12332         fmov.x          SRC(%a0),%fp0           # do fmove in
12333         fmov.l          %fpsr,%d0               # no exceptions possible
12334         rol.l           &0x8,%d0                # put ccodes in lo byte
12335         mov.b           %d0,FPSR_CC(%a6)        # insert correct ccodes
12336         rts
12337
12338 #########################################################################
12339 # XDEF **************************************************************** #
12340 #       fdiv(): emulates the fdiv instruction                           #
12341 #       fsdiv(): emulates the fsdiv instruction                         #
12342 #       fddiv(): emulates the fddiv instruction                         #
12343 #                                                                       #
12344 # XREF **************************************************************** #
12345 #       scale_to_zero_src() - scale src exponent to zero                #
12346 #       scale_to_zero_dst() - scale dst exponent to zero                #
12347 #       unf_res() - return default underflow result                     #
12348 #       ovf_res() - return default overflow result                      #
12349 #       res_qnan() - return QNAN result                                 #
12350 #       res_snan() - return SNAN result                                 #
12351 #                                                                       #
12352 # INPUT *************************************************************** #
12353 #       a0 = pointer to extended precision source operand               #
12354 #       a1 = pointer to extended precision destination operand          #
12355 #       d0  rnd prec,mode                                               #
12356 #                                                                       #
12357 # OUTPUT ************************************************************** #
12358 #       fp0 = result                                                    #
12359 #       fp1 = EXOP (if exception occurred)                              #
12360 #                                                                       #
12361 # ALGORITHM *********************************************************** #
12362 #       Handle NANs, infinities, and zeroes as special cases. Divide    #
12363 # norms/denorms into ext/sgl/dbl precision.                             #
12364 #       For norms/denorms, scale the exponents such that a divide       #
12365 # instruction won't cause an exception. Use the regular fdiv to         #
12366 # compute a result. Check if the regular operands would have taken      #
12367 # an exception. If so, return the default overflow/underflow result     #
12368 # and return the EXOP if exceptions are enabled. Else, scale the        #
12369 # result operand to the proper exponent.                                #
12370 #                                                                       #
12371 #########################################################################
12372
12373         align           0x10
12374 tbl_fdiv_unfl:
12375         long            0x3fff - 0x0000         # ext_unfl
12376         long            0x3fff - 0x3f81         # sgl_unfl
12377         long            0x3fff - 0x3c01         # dbl_unfl
12378
12379 tbl_fdiv_ovfl:
12380         long            0x3fff - 0x7ffe         # ext overflow exponent
12381         long            0x3fff - 0x407e         # sgl overflow exponent
12382         long            0x3fff - 0x43fe         # dbl overflow exponent
12383
12384         global          fsdiv
12385 fsdiv:
12386         andi.b          &0x30,%d0               # clear rnd prec
12387         ori.b           &s_mode*0x10,%d0        # insert sgl prec
12388         bra.b           fdiv
12389
12390         global          fddiv
12391 fddiv:
12392         andi.b          &0x30,%d0               # clear rnd prec
12393         ori.b           &d_mode*0x10,%d0        # insert dbl prec
12394
12395         global          fdiv
12396 fdiv:
12397         mov.l           %d0,L_SCR3(%a6)         # store rnd info
12398
12399         clr.w           %d1
12400         mov.b           DTAG(%a6),%d1
12401         lsl.b           &0x3,%d1
12402         or.b            STAG(%a6),%d1           # combine src tags
12403
12404         bne.w           fdiv_not_norm           # optimize on non-norm input
12405
12406 #
12407 # DIVIDE: NORMs and DENORMs ONLY!
12408 #
12409 fdiv_norm:
12410         mov.w           DST_EX(%a1),FP_SCR1_EX(%a6)
12411         mov.l           DST_HI(%a1),FP_SCR1_HI(%a6)
12412         mov.l           DST_LO(%a1),FP_SCR1_LO(%a6)
12413
12414         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
12415         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
12416         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
12417
12418         bsr.l           scale_to_zero_src       # scale src exponent
12419         mov.l           %d0,-(%sp)              # save scale factor 1
12420
12421         bsr.l           scale_to_zero_dst       # scale dst exponent
12422
12423         neg.l           (%sp)                   # SCALE FACTOR = scale1 - scale2
12424         add.l           %d0,(%sp)
12425
12426         mov.w           2+L_SCR3(%a6),%d1       # fetch precision
12427         lsr.b           &0x6,%d1                # shift to lo bits
12428         mov.l           (%sp)+,%d0              # load S.F.
12429         cmp.l           %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow?
12430         ble.w           fdiv_may_ovfl           # result will overflow
12431
12432         cmp.l           %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow?
12433         beq.w           fdiv_may_unfl           # maybe
12434         bgt.w           fdiv_unfl               # yes; go handle underflow
12435
12436 fdiv_normal:
12437         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
12438
12439         fmov.l          L_SCR3(%a6),%fpcr       # save FPCR
12440         fmov.l          &0x0,%fpsr              # clear FPSR
12441
12442         fdiv.x          FP_SCR0(%a6),%fp0       # perform divide
12443
12444         fmov.l          %fpsr,%d1               # save FPSR
12445         fmov.l          &0x0,%fpcr              # clear FPCR
12446
12447         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
12448
12449 fdiv_normal_exit:
12450         fmovm.x         &0x80,FP_SCR0(%a6)      # store result on stack
12451         mov.l           %d2,-(%sp)              # store d2
12452         mov.w           FP_SCR0_EX(%a6),%d1     # load {sgn,exp}
12453         mov.l           %d1,%d2                 # make a copy
12454         andi.l          &0x7fff,%d1             # strip sign
12455         andi.w          &0x8000,%d2             # keep old sign
12456         sub.l           %d0,%d1                 # add scale factor
12457         or.w            %d2,%d1                 # concat old sign,new exp
12458         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
12459         mov.l           (%sp)+,%d2              # restore d2
12460         fmovm.x         FP_SCR0(%a6),&0x80      # return result in fp0
12461         rts
12462
12463 tbl_fdiv_ovfl2:
12464         long            0x7fff
12465         long            0x407f
12466         long            0x43ff
12467
12468 fdiv_no_ovfl:
12469         mov.l           (%sp)+,%d0              # restore scale factor
12470         bra.b           fdiv_normal_exit
12471
12472 fdiv_may_ovfl:
12473         mov.l           %d0,-(%sp)              # save scale factor
12474
12475         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
12476
12477         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
12478         fmov.l          &0x0,%fpsr              # set FPSR
12479
12480         fdiv.x          FP_SCR0(%a6),%fp0       # execute divide
12481
12482         fmov.l          %fpsr,%d0
12483         fmov.l          &0x0,%fpcr
12484
12485         or.l            %d0,USER_FPSR(%a6)      # save INEX,N
12486
12487         fmovm.x         &0x01,-(%sp)            # save result to stack
12488         mov.w           (%sp),%d0               # fetch new exponent
12489         add.l           &0xc,%sp                # clear result from stack
12490         andi.l          &0x7fff,%d0             # strip sign
12491         sub.l           (%sp),%d0               # add scale factor
12492         cmp.l           %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4)
12493         blt.b           fdiv_no_ovfl
12494         mov.l           (%sp)+,%d0
12495
12496 fdiv_ovfl_tst:
12497         or.l            &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
12498
12499         mov.b           FPCR_ENABLE(%a6),%d1
12500         andi.b          &0x13,%d1               # is OVFL or INEX enabled?
12501         bne.b           fdiv_ovfl_ena           # yes
12502
12503 fdiv_ovfl_dis:
12504         btst            &neg_bit,FPSR_CC(%a6)   # is result negative?
12505         sne             %d1                     # set sign param accordingly
12506         mov.l           L_SCR3(%a6),%d0         # pass prec:rnd
12507         bsr.l           ovf_res                 # calculate default result
12508         or.b            %d0,FPSR_CC(%a6)        # set INF if applicable
12509         fmovm.x         (%a0),&0x80             # return default result in fp0
12510         rts
12511
12512 fdiv_ovfl_ena:
12513         mov.l           L_SCR3(%a6),%d1
12514         andi.b          &0xc0,%d1               # is precision extended?
12515         bne.b           fdiv_ovfl_ena_sd        # no, do sgl or dbl
12516
12517 fdiv_ovfl_ena_cont:
12518         fmovm.x         &0x80,FP_SCR0(%a6)      # move result to stack
12519
12520         mov.l           %d2,-(%sp)              # save d2
12521         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
12522         mov.w           %d1,%d2                 # make a copy
12523         andi.l          &0x7fff,%d1             # strip sign
12524         sub.l           %d0,%d1                 # add scale factor
12525         subi.l          &0x6000,%d1             # subtract bias
12526         andi.w          &0x7fff,%d1             # clear sign bit
12527         andi.w          &0x8000,%d2             # keep old sign
12528         or.w            %d2,%d1                 # concat old sign,new exp
12529         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
12530         mov.l           (%sp)+,%d2              # restore d2
12531         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
12532         bra.b           fdiv_ovfl_dis
12533
12534 fdiv_ovfl_ena_sd:
12535         fmovm.x         FP_SCR1(%a6),&0x80      # load dst operand
12536
12537         mov.l           L_SCR3(%a6),%d1
12538         andi.b          &0x30,%d1               # keep rnd mode
12539         fmov.l          %d1,%fpcr               # set FPCR
12540
12541         fdiv.x          FP_SCR0(%a6),%fp0       # execute divide
12542
12543         fmov.l          &0x0,%fpcr              # clear FPCR
12544         bra.b           fdiv_ovfl_ena_cont
12545
12546 fdiv_unfl:
12547         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
12548
12549         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
12550
12551         fmov.l          &rz_mode*0x10,%fpcr     # set FPCR
12552         fmov.l          &0x0,%fpsr              # clear FPSR
12553
12554         fdiv.x          FP_SCR0(%a6),%fp0       # execute divide
12555
12556         fmov.l          %fpsr,%d1               # save status
12557         fmov.l          &0x0,%fpcr              # clear FPCR
12558
12559         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
12560
12561         mov.b           FPCR_ENABLE(%a6),%d1
12562         andi.b          &0x0b,%d1               # is UNFL or INEX enabled?
12563         bne.b           fdiv_unfl_ena           # yes
12564
12565 fdiv_unfl_dis:
12566         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
12567
12568         lea             FP_SCR0(%a6),%a0        # pass: result addr
12569         mov.l           L_SCR3(%a6),%d1         # pass: rnd prec,mode
12570         bsr.l           unf_res                 # calculate default result
12571         or.b            %d0,FPSR_CC(%a6)        # 'Z' may have been set
12572         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
12573         rts
12574
12575 #
12576 # UNFL is enabled.
12577 #
12578 fdiv_unfl_ena:
12579         fmovm.x         FP_SCR1(%a6),&0x40      # load dst op
12580
12581         mov.l           L_SCR3(%a6),%d1
12582         andi.b          &0xc0,%d1               # is precision extended?
12583         bne.b           fdiv_unfl_ena_sd        # no, sgl or dbl
12584
12585         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
12586
12587 fdiv_unfl_ena_cont:
12588         fmov.l          &0x0,%fpsr              # clear FPSR
12589
12590         fdiv.x          FP_SCR0(%a6),%fp1       # execute divide
12591
12592         fmov.l          &0x0,%fpcr              # clear FPCR
12593
12594         fmovm.x         &0x40,FP_SCR0(%a6)      # save result to stack
12595         mov.l           %d2,-(%sp)              # save d2
12596         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
12597         mov.l           %d1,%d2                 # make a copy
12598         andi.l          &0x7fff,%d1             # strip sign
12599         andi.w          &0x8000,%d2             # keep old sign
12600         sub.l           %d0,%d1                 # add scale factoer
12601         addi.l          &0x6000,%d1             # add bias
12602         andi.w          &0x7fff,%d1
12603         or.w            %d2,%d1                 # concat old sign,new exp
12604         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exp
12605         mov.l           (%sp)+,%d2              # restore d2
12606         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
12607         bra.w           fdiv_unfl_dis
12608
12609 fdiv_unfl_ena_sd:
12610         mov.l           L_SCR3(%a6),%d1
12611         andi.b          &0x30,%d1               # use only rnd mode
12612         fmov.l          %d1,%fpcr               # set FPCR
12613
12614         bra.b           fdiv_unfl_ena_cont
12615
12616 #
12617 # the divide operation MAY underflow:
12618 #
12619 fdiv_may_unfl:
12620         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
12621
12622         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
12623         fmov.l          &0x0,%fpsr              # clear FPSR
12624
12625         fdiv.x          FP_SCR0(%a6),%fp0       # execute divide
12626
12627         fmov.l          %fpsr,%d1               # save status
12628         fmov.l          &0x0,%fpcr              # clear FPCR
12629
12630         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
12631
12632         fabs.x          %fp0,%fp1               # make a copy of result
12633         fcmp.b          %fp1,&0x1               # is |result| > 1.b?
12634         fbgt.w          fdiv_normal_exit        # no; no underflow occurred
12635         fblt.w          fdiv_unfl               # yes; underflow occurred
12636
12637 #
12638 # we still don't know if underflow occurred. result is ~ equal to 1. but,
12639 # we don't know if the result was an underflow that rounded up to a 1
12640 # or a normalized number that rounded down to a 1. so, redo the entire
12641 # operation using RZ as the rounding mode to see what the pre-rounded
12642 # result is. this case should be relatively rare.
12643 #
12644         fmovm.x         FP_SCR1(%a6),&0x40      # load dst op into fp1
12645
12646         mov.l           L_SCR3(%a6),%d1
12647         andi.b          &0xc0,%d1               # keep rnd prec
12648         ori.b           &rz_mode*0x10,%d1       # insert RZ
12649
12650         fmov.l          %d1,%fpcr               # set FPCR
12651         fmov.l          &0x0,%fpsr              # clear FPSR
12652
12653         fdiv.x          FP_SCR0(%a6),%fp1       # execute divide
12654
12655         fmov.l          &0x0,%fpcr              # clear FPCR
12656         fabs.x          %fp1                    # make absolute value
12657         fcmp.b          %fp1,&0x1               # is |result| < 1.b?
12658         fbge.w          fdiv_normal_exit        # no; no underflow occurred
12659         bra.w           fdiv_unfl               # yes; underflow occurred
12660
12661 ############################################################################
12662
12663 #
12664 # Divide: inputs are not both normalized; what are they?
12665 #
12666 fdiv_not_norm:
12667         mov.w           (tbl_fdiv_op.b,%pc,%d1.w*2),%d1
12668         jmp             (tbl_fdiv_op.b,%pc,%d1.w*1)
12669
12670         swbeg           &48
12671 tbl_fdiv_op:
12672         short           fdiv_norm       - tbl_fdiv_op # NORM / NORM
12673         short           fdiv_inf_load   - tbl_fdiv_op # NORM / ZERO
12674         short           fdiv_zero_load  - tbl_fdiv_op # NORM / INF
12675         short           fdiv_res_qnan   - tbl_fdiv_op # NORM / QNAN
12676         short           fdiv_norm       - tbl_fdiv_op # NORM / DENORM
12677         short           fdiv_res_snan   - tbl_fdiv_op # NORM / SNAN
12678         short           tbl_fdiv_op     - tbl_fdiv_op #
12679         short           tbl_fdiv_op     - tbl_fdiv_op #
12680
12681         short           fdiv_zero_load  - tbl_fdiv_op # ZERO / NORM
12682         short           fdiv_res_operr  - tbl_fdiv_op # ZERO / ZERO
12683         short           fdiv_zero_load  - tbl_fdiv_op # ZERO / INF
12684         short           fdiv_res_qnan   - tbl_fdiv_op # ZERO / QNAN
12685         short           fdiv_zero_load  - tbl_fdiv_op # ZERO / DENORM
12686         short           fdiv_res_snan   - tbl_fdiv_op # ZERO / SNAN
12687         short           tbl_fdiv_op     - tbl_fdiv_op #
12688         short           tbl_fdiv_op     - tbl_fdiv_op #
12689
12690         short           fdiv_inf_dst    - tbl_fdiv_op # INF / NORM
12691         short           fdiv_inf_dst    - tbl_fdiv_op # INF / ZERO
12692         short           fdiv_res_operr  - tbl_fdiv_op # INF / INF
12693         short           fdiv_res_qnan   - tbl_fdiv_op # INF / QNAN
12694         short           fdiv_inf_dst    - tbl_fdiv_op # INF / DENORM
12695         short           fdiv_res_snan   - tbl_fdiv_op # INF / SNAN
12696         short           tbl_fdiv_op     - tbl_fdiv_op #
12697         short           tbl_fdiv_op     - tbl_fdiv_op #
12698
12699         short           fdiv_res_qnan   - tbl_fdiv_op # QNAN / NORM
12700         short           fdiv_res_qnan   - tbl_fdiv_op # QNAN / ZERO
12701         short           fdiv_res_qnan   - tbl_fdiv_op # QNAN / INF
12702         short           fdiv_res_qnan   - tbl_fdiv_op # QNAN / QNAN
12703         short           fdiv_res_qnan   - tbl_fdiv_op # QNAN / DENORM
12704         short           fdiv_res_snan   - tbl_fdiv_op # QNAN / SNAN
12705         short           tbl_fdiv_op     - tbl_fdiv_op #
12706         short           tbl_fdiv_op     - tbl_fdiv_op #
12707
12708         short           fdiv_norm       - tbl_fdiv_op # DENORM / NORM
12709         short           fdiv_inf_load   - tbl_fdiv_op # DENORM / ZERO
12710         short           fdiv_zero_load  - tbl_fdiv_op # DENORM / INF
12711         short           fdiv_res_qnan   - tbl_fdiv_op # DENORM / QNAN
12712         short           fdiv_norm       - tbl_fdiv_op # DENORM / DENORM
12713         short           fdiv_res_snan   - tbl_fdiv_op # DENORM / SNAN
12714         short           tbl_fdiv_op     - tbl_fdiv_op #
12715         short           tbl_fdiv_op     - tbl_fdiv_op #
12716
12717         short           fdiv_res_snan   - tbl_fdiv_op # SNAN / NORM
12718         short           fdiv_res_snan   - tbl_fdiv_op # SNAN / ZERO
12719         short           fdiv_res_snan   - tbl_fdiv_op # SNAN / INF
12720         short           fdiv_res_snan   - tbl_fdiv_op # SNAN / QNAN
12721         short           fdiv_res_snan   - tbl_fdiv_op # SNAN / DENORM
12722         short           fdiv_res_snan   - tbl_fdiv_op # SNAN / SNAN
12723         short           tbl_fdiv_op     - tbl_fdiv_op #
12724         short           tbl_fdiv_op     - tbl_fdiv_op #
12725
12726 fdiv_res_qnan:
12727         bra.l           res_qnan
12728 fdiv_res_snan:
12729         bra.l           res_snan
12730 fdiv_res_operr:
12731         bra.l           res_operr
12732
12733         global          fdiv_zero_load          # global for fsgldiv
12734 fdiv_zero_load:
12735         mov.b           SRC_EX(%a0),%d0         # result sign is exclusive
12736         mov.b           DST_EX(%a1),%d1         # or of input signs.
12737         eor.b           %d0,%d1
12738         bpl.b           fdiv_zero_load_p        # result is positive
12739         fmov.s          &0x80000000,%fp0        # load a -ZERO
12740         mov.b           &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N
12741         rts
12742 fdiv_zero_load_p:
12743         fmov.s          &0x00000000,%fp0        # load a +ZERO
12744         mov.b           &z_bmask,FPSR_CC(%a6)   # set Z
12745         rts
12746
12747 #
12748 # The destination was In Range and the source was a ZERO. The result,
12749 # Therefore, is an INF w/ the proper sign.
12750 # So, determine the sign and return a new INF (w/ the j-bit cleared).
12751 #
12752         global          fdiv_inf_load           # global for fsgldiv
12753 fdiv_inf_load:
12754         ori.w           &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ
12755         mov.b           SRC_EX(%a0),%d0         # load both signs
12756         mov.b           DST_EX(%a1),%d1
12757         eor.b           %d0,%d1
12758         bpl.b           fdiv_inf_load_p         # result is positive
12759         fmov.s          &0xff800000,%fp0        # make result -INF
12760         mov.b           &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N
12761         rts
12762 fdiv_inf_load_p:
12763         fmov.s          &0x7f800000,%fp0        # make result +INF
12764         mov.b           &inf_bmask,FPSR_CC(%a6) # set INF
12765         rts
12766
12767 #
12768 # The destination was an INF w/ an In Range or ZERO source, the result is
12769 # an INF w/ the proper sign.
12770 # The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the
12771 # dst INF is set, then then j-bit of the result INF is also set).
12772 #
12773         global          fdiv_inf_dst            # global for fsgldiv
12774 fdiv_inf_dst:
12775         mov.b           DST_EX(%a1),%d0         # load both signs
12776         mov.b           SRC_EX(%a0),%d1
12777         eor.b           %d0,%d1
12778         bpl.b           fdiv_inf_dst_p          # result is positive
12779
12780         fmovm.x         DST(%a1),&0x80          # return result in fp0
12781         fabs.x          %fp0                    # clear sign bit
12782         fneg.x          %fp0                    # set sign bit
12783         mov.b           &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG
12784         rts
12785
12786 fdiv_inf_dst_p:
12787         fmovm.x         DST(%a1),&0x80          # return result in fp0
12788         fabs.x          %fp0                    # return positive INF
12789         mov.b           &inf_bmask,FPSR_CC(%a6) # set INF
12790         rts
12791
12792 #########################################################################
12793 # XDEF **************************************************************** #
12794 #       fneg(): emulates the fneg instruction                           #
12795 #       fsneg(): emulates the fsneg instruction                         #
12796 #       fdneg(): emulates the fdneg instruction                         #
12797 #                                                                       #
12798 # XREF **************************************************************** #
12799 #       norm() - normalize a denorm to provide EXOP                     #
12800 #       scale_to_zero_src() - scale sgl/dbl source exponent             #
12801 #       ovf_res() - return default overflow result                      #
12802 #       unf_res() - return default underflow result                     #
12803 #       res_qnan_1op() - return QNAN result                             #
12804 #       res_snan_1op() - return SNAN result                             #
12805 #                                                                       #
12806 # INPUT *************************************************************** #
12807 #       a0 = pointer to extended precision source operand               #
12808 #       d0 = rnd prec,mode                                              #
12809 #                                                                       #
12810 # OUTPUT ************************************************************** #
12811 #       fp0 = result                                                    #
12812 #       fp1 = EXOP (if exception occurred)                              #
12813 #                                                                       #
12814 # ALGORITHM *********************************************************** #
12815 #       Handle NANs, zeroes, and infinities as special cases. Separate  #
12816 # norms/denorms into ext/sgl/dbl precisions. Extended precision can be  #
12817 # emulated by simply setting sign bit. Sgl/dbl operands must be scaled  #
12818 # and an actual fneg performed to see if overflow/underflow would have  #
12819 # occurred. If so, return default underflow/overflow result. Else,      #
12820 # scale the result exponent and return result. FPSR gets set based on   #
12821 # the result value.                                                     #
12822 #                                                                       #
12823 #########################################################################
12824
12825         global          fsneg
12826 fsneg:
12827         andi.b          &0x30,%d0               # clear rnd prec
12828         ori.b           &s_mode*0x10,%d0        # insert sgl precision
12829         bra.b           fneg
12830
12831         global          fdneg
12832 fdneg:
12833         andi.b          &0x30,%d0               # clear rnd prec
12834         ori.b           &d_mode*0x10,%d0        # insert dbl prec
12835
12836         global          fneg
12837 fneg:
12838         mov.l           %d0,L_SCR3(%a6)         # store rnd info
12839         mov.b           STAG(%a6),%d1
12840         bne.w           fneg_not_norm           # optimize on non-norm input
12841
12842 #
12843 # NEGATE SIGN : norms and denorms ONLY!
12844 #
12845 fneg_norm:
12846         andi.b          &0xc0,%d0               # is precision extended?
12847         bne.w           fneg_not_ext            # no; go handle sgl or dbl
12848
12849 #
12850 # precision selected is extended. so...we can not get an underflow
12851 # or overflow because of rounding to the correct precision. so...
12852 # skip the scaling and unscaling...
12853 #
12854         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
12855         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
12856         mov.w           SRC_EX(%a0),%d0
12857         eori.w          &0x8000,%d0             # negate sign
12858         bpl.b           fneg_norm_load          # sign is positive
12859         mov.b           &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
12860 fneg_norm_load:
12861         mov.w           %d0,FP_SCR0_EX(%a6)
12862         fmovm.x         FP_SCR0(%a6),&0x80      # return result in fp0
12863         rts
12864
12865 #
12866 # for an extended precision DENORM, the UNFL exception bit is set
12867 # the accrued bit is NOT set in this instance(no inexactness!)
12868 #
12869 fneg_denorm:
12870         andi.b          &0xc0,%d0               # is precision extended?
12871         bne.b           fneg_not_ext            # no; go handle sgl or dbl
12872
12873         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
12874
12875         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
12876         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
12877         mov.w           SRC_EX(%a0),%d0
12878         eori.w          &0x8000,%d0             # negate sign
12879         bpl.b           fneg_denorm_done        # no
12880         mov.b           &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit
12881 fneg_denorm_done:
12882         mov.w           %d0,FP_SCR0_EX(%a6)
12883         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
12884
12885         btst            &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
12886         bne.b           fneg_ext_unfl_ena       # yes
12887         rts
12888
12889 #
12890 # the input is an extended DENORM and underflow is enabled in the FPCR.
12891 # normalize the mantissa and add the bias of 0x6000 to the resulting negative
12892 # exponent and insert back into the operand.
12893 #
12894 fneg_ext_unfl_ena:
12895         lea             FP_SCR0(%a6),%a0        # pass: ptr to operand
12896         bsr.l           norm                    # normalize result
12897         neg.w           %d0                     # new exponent = -(shft val)
12898         addi.w          &0x6000,%d0             # add new bias to exponent
12899         mov.w           FP_SCR0_EX(%a6),%d1     # fetch old sign,exp
12900         andi.w          &0x8000,%d1             # keep old sign
12901         andi.w          &0x7fff,%d0             # clear sign position
12902         or.w            %d1,%d0                 # concat old sign, new exponent
12903         mov.w           %d0,FP_SCR0_EX(%a6)     # insert new exponent
12904         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
12905         rts
12906
12907 #
12908 # operand is either single or double
12909 #
12910 fneg_not_ext:
12911         cmpi.b          %d0,&s_mode*0x10        # separate sgl/dbl prec
12912         bne.b           fneg_dbl
12913
12914 #
12915 # operand is to be rounded to single precision
12916 #
12917 fneg_sgl:
12918         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
12919         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
12920         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
12921         bsr.l           scale_to_zero_src       # calculate scale factor
12922
12923         cmpi.l          %d0,&0x3fff-0x3f80      # will move in underflow?
12924         bge.w           fneg_sd_unfl            # yes; go handle underflow
12925         cmpi.l          %d0,&0x3fff-0x407e      # will move in overflow?
12926         beq.w           fneg_sd_may_ovfl        # maybe; go check
12927         blt.w           fneg_sd_ovfl            # yes; go handle overflow
12928
12929 #
12930 # operand will NOT overflow or underflow when moved in to the fp reg file
12931 #
12932 fneg_sd_normal:
12933         fmov.l          &0x0,%fpsr              # clear FPSR
12934         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
12935
12936         fneg.x          FP_SCR0(%a6),%fp0       # perform negation
12937
12938         fmov.l          %fpsr,%d1               # save FPSR
12939         fmov.l          &0x0,%fpcr              # clear FPCR
12940
12941         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
12942
12943 fneg_sd_normal_exit:
12944         mov.l           %d2,-(%sp)              # save d2
12945         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
12946         mov.w           FP_SCR0_EX(%a6),%d1     # load sgn,exp
12947         mov.w           %d1,%d2                 # make a copy
12948         andi.l          &0x7fff,%d1             # strip sign
12949         sub.l           %d0,%d1                 # add scale factor
12950         andi.w          &0x8000,%d2             # keep old sign
12951         or.w            %d1,%d2                 # concat old sign,new exp
12952         mov.w           %d2,FP_SCR0_EX(%a6)     # insert new exponent
12953         mov.l           (%sp)+,%d2              # restore d2
12954         fmovm.x         FP_SCR0(%a6),&0x80      # return result in fp0
12955         rts
12956
12957 #
12958 # operand is to be rounded to double precision
12959 #
12960 fneg_dbl:
12961         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
12962         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
12963         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
12964         bsr.l           scale_to_zero_src       # calculate scale factor
12965
12966         cmpi.l          %d0,&0x3fff-0x3c00      # will move in underflow?
12967         bge.b           fneg_sd_unfl            # yes; go handle underflow
12968         cmpi.l          %d0,&0x3fff-0x43fe      # will move in overflow?
12969         beq.w           fneg_sd_may_ovfl        # maybe; go check
12970         blt.w           fneg_sd_ovfl            # yes; go handle overflow
12971         bra.w           fneg_sd_normal          # no; ho handle normalized op
12972
12973 #
12974 # operand WILL underflow when moved in to the fp register file
12975 #
12976 fneg_sd_unfl:
12977         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
12978
12979         eori.b          &0x80,FP_SCR0_EX(%a6)   # negate sign
12980         bpl.b           fneg_sd_unfl_tst
12981         bset            &neg_bit,FPSR_CC(%a6)   # set 'N' ccode bit
12982
12983 # if underflow or inexact is enabled, go calculate EXOP first.
12984 fneg_sd_unfl_tst:
12985         mov.b           FPCR_ENABLE(%a6),%d1
12986         andi.b          &0x0b,%d1               # is UNFL or INEX enabled?
12987         bne.b           fneg_sd_unfl_ena        # yes
12988
12989 fneg_sd_unfl_dis:
12990         lea             FP_SCR0(%a6),%a0        # pass: result addr
12991         mov.l           L_SCR3(%a6),%d1         # pass: rnd prec,mode
12992         bsr.l           unf_res                 # calculate default result
12993         or.b            %d0,FPSR_CC(%a6)        # unf_res may have set 'Z'
12994         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
12995         rts
12996
12997 #
12998 # operand will underflow AND underflow is enabled.
12999 # Therefore, we must return the result rounded to extended precision.
13000 #
13001 fneg_sd_unfl_ena:
13002         mov.l           FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
13003         mov.l           FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
13004         mov.w           FP_SCR0_EX(%a6),%d1     # load current exponent
13005
13006         mov.l           %d2,-(%sp)              # save d2
13007         mov.l           %d1,%d2                 # make a copy
13008         andi.l          &0x7fff,%d1             # strip sign
13009         andi.w          &0x8000,%d2             # keep old sign
13010         sub.l           %d0,%d1                 # subtract scale factor
13011         addi.l          &0x6000,%d1             # add new bias
13012         andi.w          &0x7fff,%d1
13013         or.w            %d2,%d1                 # concat new sign,new exp
13014         mov.w           %d1,FP_SCR1_EX(%a6)     # insert new exp
13015         fmovm.x         FP_SCR1(%a6),&0x40      # return EXOP in fp1
13016         mov.l           (%sp)+,%d2              # restore d2
13017         bra.b           fneg_sd_unfl_dis
13018
13019 #
13020 # operand WILL overflow.
13021 #
13022 fneg_sd_ovfl:
13023         fmov.l          &0x0,%fpsr              # clear FPSR
13024         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
13025
13026         fneg.x          FP_SCR0(%a6),%fp0       # perform negation
13027
13028         fmov.l          &0x0,%fpcr              # clear FPCR
13029         fmov.l          %fpsr,%d1               # save FPSR
13030
13031         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
13032
13033 fneg_sd_ovfl_tst:
13034         or.l            &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
13035
13036         mov.b           FPCR_ENABLE(%a6),%d1
13037         andi.b          &0x13,%d1               # is OVFL or INEX enabled?
13038         bne.b           fneg_sd_ovfl_ena        # yes
13039
13040 #
13041 # OVFL is not enabled; therefore, we must create the default result by
13042 # calling ovf_res().
13043 #
13044 fneg_sd_ovfl_dis:
13045         btst            &neg_bit,FPSR_CC(%a6)   # is result negative?
13046         sne             %d1                     # set sign param accordingly
13047         mov.l           L_SCR3(%a6),%d0         # pass: prec,mode
13048         bsr.l           ovf_res                 # calculate default result
13049         or.b            %d0,FPSR_CC(%a6)        # set INF,N if applicable
13050         fmovm.x         (%a0),&0x80             # return default result in fp0
13051         rts
13052
13053 #
13054 # OVFL is enabled.
13055 # the INEX2 bit has already been updated by the round to the correct precision.
13056 # now, round to extended(and don't alter the FPSR).
13057 #
13058 fneg_sd_ovfl_ena:
13059         mov.l           %d2,-(%sp)              # save d2
13060         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
13061         mov.l           %d1,%d2                 # make a copy
13062         andi.l          &0x7fff,%d1             # strip sign
13063         andi.w          &0x8000,%d2             # keep old sign
13064         sub.l           %d0,%d1                 # add scale factor
13065         subi.l          &0x6000,%d1             # subtract bias
13066         andi.w          &0x7fff,%d1
13067         or.w            %d2,%d1                 # concat sign,exp
13068         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
13069         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
13070         mov.l           (%sp)+,%d2              # restore d2
13071         bra.b           fneg_sd_ovfl_dis
13072
13073 #
13074 # the move in MAY underflow. so...
13075 #
13076 fneg_sd_may_ovfl:
13077         fmov.l          &0x0,%fpsr              # clear FPSR
13078         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
13079
13080         fneg.x          FP_SCR0(%a6),%fp0       # perform negation
13081
13082         fmov.l          %fpsr,%d1               # save status
13083         fmov.l          &0x0,%fpcr              # clear FPCR
13084
13085         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
13086
13087         fabs.x          %fp0,%fp1               # make a copy of result
13088         fcmp.b          %fp1,&0x2               # is |result| >= 2.b?
13089         fbge.w          fneg_sd_ovfl_tst        # yes; overflow has occurred
13090
13091 # no, it didn't overflow; we have correct result
13092         bra.w           fneg_sd_normal_exit
13093
13094 ##########################################################################
13095
13096 #
13097 # input is not normalized; what is it?
13098 #
13099 fneg_not_norm:
13100         cmpi.b          %d1,&DENORM             # weed out DENORM
13101         beq.w           fneg_denorm
13102         cmpi.b          %d1,&SNAN               # weed out SNAN
13103         beq.l           res_snan_1op
13104         cmpi.b          %d1,&QNAN               # weed out QNAN
13105         beq.l           res_qnan_1op
13106
13107 #
13108 # do the fneg; at this point, only possible ops are ZERO and INF.
13109 # use fneg to determine ccodes.
13110 # prec:mode should be zero at this point but it won't affect answer anyways.
13111 #
13112         fneg.x          SRC_EX(%a0),%fp0        # do fneg
13113         fmov.l          %fpsr,%d0
13114         rol.l           &0x8,%d0                # put ccodes in lo byte
13115         mov.b           %d0,FPSR_CC(%a6)        # insert correct ccodes
13116         rts
13117
13118 #########################################################################
13119 # XDEF **************************************************************** #
13120 #       ftst(): emulates the ftest instruction                          #
13121 #                                                                       #
13122 # XREF **************************************************************** #
13123 #       res{s,q}nan_1op() - set NAN result for monadic instruction      #
13124 #                                                                       #
13125 # INPUT *************************************************************** #
13126 #       a0 = pointer to extended precision source operand               #
13127 #                                                                       #
13128 # OUTPUT ************************************************************** #
13129 #       none                                                            #
13130 #                                                                       #
13131 # ALGORITHM *********************************************************** #
13132 #       Check the source operand tag (STAG) and set the FPCR according  #
13133 # to the operand type and sign.                                         #
13134 #                                                                       #
13135 #########################################################################
13136
13137         global          ftst
13138 ftst:
13139         mov.b           STAG(%a6),%d1
13140         bne.b           ftst_not_norm           # optimize on non-norm input
13141
13142 #
13143 # Norm:
13144 #
13145 ftst_norm:
13146         tst.b           SRC_EX(%a0)             # is operand negative?
13147         bmi.b           ftst_norm_m             # yes
13148         rts
13149 ftst_norm_m:
13150         mov.b           &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
13151         rts
13152
13153 #
13154 # input is not normalized; what is it?
13155 #
13156 ftst_not_norm:
13157         cmpi.b          %d1,&ZERO               # weed out ZERO
13158         beq.b           ftst_zero
13159         cmpi.b          %d1,&INF                # weed out INF
13160         beq.b           ftst_inf
13161         cmpi.b          %d1,&SNAN               # weed out SNAN
13162         beq.l           res_snan_1op
13163         cmpi.b          %d1,&QNAN               # weed out QNAN
13164         beq.l           res_qnan_1op
13165
13166 #
13167 # Denorm:
13168 #
13169 ftst_denorm:
13170         tst.b           SRC_EX(%a0)             # is operand negative?
13171         bmi.b           ftst_denorm_m           # yes
13172         rts
13173 ftst_denorm_m:
13174         mov.b           &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
13175         rts
13176
13177 #
13178 # Infinity:
13179 #
13180 ftst_inf:
13181         tst.b           SRC_EX(%a0)             # is operand negative?
13182         bmi.b           ftst_inf_m              # yes
13183 ftst_inf_p:
13184         mov.b           &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
13185         rts
13186 ftst_inf_m:
13187         mov.b           &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits
13188         rts
13189
13190 #
13191 # Zero:
13192 #
13193 ftst_zero:
13194         tst.b           SRC_EX(%a0)             # is operand negative?
13195         bmi.b           ftst_zero_m             # yes
13196 ftst_zero_p:
13197         mov.b           &z_bmask,FPSR_CC(%a6)   # set 'N' ccode bit
13198         rts
13199 ftst_zero_m:
13200         mov.b           &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
13201         rts
13202
13203 #########################################################################
13204 # XDEF **************************************************************** #
13205 #       fint(): emulates the fint instruction                           #
13206 #                                                                       #
13207 # XREF **************************************************************** #
13208 #       res_{s,q}nan_1op() - set NAN result for monadic operation       #
13209 #                                                                       #
13210 # INPUT *************************************************************** #
13211 #       a0 = pointer to extended precision source operand               #
13212 #       d0 = round precision/mode                                       #
13213 #                                                                       #
13214 # OUTPUT ************************************************************** #
13215 #       fp0 = result                                                    #
13216 #                                                                       #
13217 # ALGORITHM *********************************************************** #
13218 #       Separate according to operand type. Unnorms don't pass through  #
13219 # here. For norms, load the rounding mode/prec, execute a "fint", then  #
13220 # store the resulting FPSR bits.                                        #
13221 #       For denorms, force the j-bit to a one and do the same as for    #
13222 # norms. Denorms are so low that the answer will either be a zero or a  #
13223 # one.                                                                  #
13224 #       For zeroes/infs/NANs, return the same while setting the FPSR    #
13225 # as appropriate.                                                       #
13226 #                                                                       #
13227 #########################################################################
13228
13229         global          fint
13230 fint:
13231         mov.b           STAG(%a6),%d1
13232         bne.b           fint_not_norm           # optimize on non-norm input
13233
13234 #
13235 # Norm:
13236 #
13237 fint_norm:
13238         andi.b          &0x30,%d0               # set prec = ext
13239
13240         fmov.l          %d0,%fpcr               # set FPCR
13241         fmov.l          &0x0,%fpsr              # clear FPSR
13242
13243         fint.x          SRC(%a0),%fp0           # execute fint
13244
13245         fmov.l          &0x0,%fpcr              # clear FPCR
13246         fmov.l          %fpsr,%d0               # save FPSR
13247         or.l            %d0,USER_FPSR(%a6)      # set exception bits
13248
13249         rts
13250
13251 #
13252 # input is not normalized; what is it?
13253 #
13254 fint_not_norm:
13255         cmpi.b          %d1,&ZERO               # weed out ZERO
13256         beq.b           fint_zero
13257         cmpi.b          %d1,&INF                # weed out INF
13258         beq.b           fint_inf
13259         cmpi.b          %d1,&DENORM             # weed out DENORM
13260         beq.b           fint_denorm
13261         cmpi.b          %d1,&SNAN               # weed out SNAN
13262         beq.l           res_snan_1op
13263         bra.l           res_qnan_1op            # weed out QNAN
13264
13265 #
13266 # Denorm:
13267 #
13268 # for DENORMs, the result will be either (+/-)ZERO or (+/-)1.
13269 # also, the INEX2 and AINEX exception bits will be set.
13270 # so, we could either set these manually or force the DENORM
13271 # to a very small NORM and ship it to the NORM routine.
13272 # I do the latter.
13273 #
13274 fint_denorm:
13275         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp
13276         mov.b           &0x80,FP_SCR0_HI(%a6)   # force DENORM ==> small NORM
13277         lea             FP_SCR0(%a6),%a0
13278         bra.b           fint_norm
13279
13280 #
13281 # Zero:
13282 #
13283 fint_zero:
13284         tst.b           SRC_EX(%a0)             # is ZERO negative?
13285         bmi.b           fint_zero_m             # yes
13286 fint_zero_p:
13287         fmov.s          &0x00000000,%fp0        # return +ZERO in fp0
13288         mov.b           &z_bmask,FPSR_CC(%a6)   # set 'Z' ccode bit
13289         rts
13290 fint_zero_m:
13291         fmov.s          &0x80000000,%fp0        # return -ZERO in fp0
13292         mov.b           &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
13293         rts
13294
13295 #
13296 # Infinity:
13297 #
13298 fint_inf:
13299         fmovm.x         SRC(%a0),&0x80          # return result in fp0
13300         tst.b           SRC_EX(%a0)             # is INF negative?
13301         bmi.b           fint_inf_m              # yes
13302 fint_inf_p:
13303         mov.b           &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
13304         rts
13305 fint_inf_m:
13306         mov.b           &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
13307         rts
13308
13309 #########################################################################
13310 # XDEF **************************************************************** #
13311 #       fintrz(): emulates the fintrz instruction                       #
13312 #                                                                       #
13313 # XREF **************************************************************** #
13314 #       res_{s,q}nan_1op() - set NAN result for monadic operation       #
13315 #                                                                       #
13316 # INPUT *************************************************************** #
13317 #       a0 = pointer to extended precision source operand               #
13318 #       d0 = round precision/mode                                       #
13319 #                                                                       #
13320 # OUTPUT ************************************************************** #
13321 #       fp0 = result                                                    #
13322 #                                                                       #
13323 # ALGORITHM *********************************************************** #
13324 #       Separate according to operand type. Unnorms don't pass through  #
13325 # here. For norms, load the rounding mode/prec, execute a "fintrz",     #
13326 # then store the resulting FPSR bits.                                   #
13327 #       For denorms, force the j-bit to a one and do the same as for    #
13328 # norms. Denorms are so low that the answer will either be a zero or a  #
13329 # one.                                                                  #
13330 #       For zeroes/infs/NANs, return the same while setting the FPSR    #
13331 # as appropriate.                                                       #
13332 #                                                                       #
13333 #########################################################################
13334
13335         global          fintrz
13336 fintrz:
13337         mov.b           STAG(%a6),%d1
13338         bne.b           fintrz_not_norm         # optimize on non-norm input
13339
13340 #
13341 # Norm:
13342 #
13343 fintrz_norm:
13344         fmov.l          &0x0,%fpsr              # clear FPSR
13345
13346         fintrz.x        SRC(%a0),%fp0           # execute fintrz
13347
13348         fmov.l          %fpsr,%d0               # save FPSR
13349         or.l            %d0,USER_FPSR(%a6)      # set exception bits
13350
13351         rts
13352
13353 #
13354 # input is not normalized; what is it?
13355 #
13356 fintrz_not_norm:
13357         cmpi.b          %d1,&ZERO               # weed out ZERO
13358         beq.b           fintrz_zero
13359         cmpi.b          %d1,&INF                # weed out INF
13360         beq.b           fintrz_inf
13361         cmpi.b          %d1,&DENORM             # weed out DENORM
13362         beq.b           fintrz_denorm
13363         cmpi.b          %d1,&SNAN               # weed out SNAN
13364         beq.l           res_snan_1op
13365         bra.l           res_qnan_1op            # weed out QNAN
13366
13367 #
13368 # Denorm:
13369 #
13370 # for DENORMs, the result will be (+/-)ZERO.
13371 # also, the INEX2 and AINEX exception bits will be set.
13372 # so, we could either set these manually or force the DENORM
13373 # to a very small NORM and ship it to the NORM routine.
13374 # I do the latter.
13375 #
13376 fintrz_denorm:
13377         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp
13378         mov.b           &0x80,FP_SCR0_HI(%a6)   # force DENORM ==> small NORM
13379         lea             FP_SCR0(%a6),%a0
13380         bra.b           fintrz_norm
13381
13382 #
13383 # Zero:
13384 #
13385 fintrz_zero:
13386         tst.b           SRC_EX(%a0)             # is ZERO negative?
13387         bmi.b           fintrz_zero_m           # yes
13388 fintrz_zero_p:
13389         fmov.s          &0x00000000,%fp0        # return +ZERO in fp0
13390         mov.b           &z_bmask,FPSR_CC(%a6)   # set 'Z' ccode bit
13391         rts
13392 fintrz_zero_m:
13393         fmov.s          &0x80000000,%fp0        # return -ZERO in fp0
13394         mov.b           &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
13395         rts
13396
13397 #
13398 # Infinity:
13399 #
13400 fintrz_inf:
13401         fmovm.x         SRC(%a0),&0x80          # return result in fp0
13402         tst.b           SRC_EX(%a0)             # is INF negative?
13403         bmi.b           fintrz_inf_m            # yes
13404 fintrz_inf_p:
13405         mov.b           &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
13406         rts
13407 fintrz_inf_m:
13408         mov.b           &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
13409         rts
13410
13411 #########################################################################
13412 # XDEF **************************************************************** #
13413 #       fabs():  emulates the fabs instruction                          #
13414 #       fsabs(): emulates the fsabs instruction                         #
13415 #       fdabs(): emulates the fdabs instruction                         #
13416 #                                                                       #
13417 # XREF **************************************************************** #
13418 #       norm() - normalize denorm mantissa to provide EXOP              #
13419 #       scale_to_zero_src() - make exponent. = 0; get scale factor      #
13420 #       unf_res() - calculate underflow result                          #
13421 #       ovf_res() - calculate overflow result                           #
13422 #       res_{s,q}nan_1op() - set NAN result for monadic operation       #
13423 #                                                                       #
13424 # INPUT *************************************************************** #
13425 #       a0 = pointer to extended precision source operand               #
13426 #       d0 = rnd precision/mode                                         #
13427 #                                                                       #
13428 # OUTPUT ************************************************************** #
13429 #       fp0 = result                                                    #
13430 #       fp1 = EXOP (if exception occurred)                              #
13431 #                                                                       #
13432 # ALGORITHM *********************************************************** #
13433 #       Handle NANs, infinities, and zeroes as special cases. Divide    #
13434 # norms into extended, single, and double precision.                    #
13435 #       Simply clear sign for extended precision norm. Ext prec denorm  #
13436 # gets an EXOP created for it since it's an underflow.                  #
13437 #       Double and single precision can overflow and underflow. First,  #
13438 # scale the operand such that the exponent is zero. Perform an "fabs"   #
13439 # using the correct rnd mode/prec. Check to see if the original         #
13440 # exponent would take an exception. If so, use unf_res() or ovf_res()   #
13441 # to calculate the default result. Also, create the EXOP for the        #
13442 # exceptional case. If no exception should occur, insert the correct    #
13443 # result exponent and return.                                           #
13444 #       Unnorms don't pass through here.                                #
13445 #                                                                       #
13446 #########################################################################
13447
13448         global          fsabs
13449 fsabs:
13450         andi.b          &0x30,%d0               # clear rnd prec
13451         ori.b           &s_mode*0x10,%d0        # insert sgl precision
13452         bra.b           fabs
13453
13454         global          fdabs
13455 fdabs:
13456         andi.b          &0x30,%d0               # clear rnd prec
13457         ori.b           &d_mode*0x10,%d0        # insert dbl precision
13458
13459         global          fabs
13460 fabs:
13461         mov.l           %d0,L_SCR3(%a6)         # store rnd info
13462         mov.b           STAG(%a6),%d1
13463         bne.w           fabs_not_norm           # optimize on non-norm input
13464
13465 #
13466 # ABSOLUTE VALUE: norms and denorms ONLY!
13467 #
13468 fabs_norm:
13469         andi.b          &0xc0,%d0               # is precision extended?
13470         bne.b           fabs_not_ext            # no; go handle sgl or dbl
13471
13472 #
13473 # precision selected is extended. so...we can not get an underflow
13474 # or overflow because of rounding to the correct precision. so...
13475 # skip the scaling and unscaling...
13476 #
13477         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
13478         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
13479         mov.w           SRC_EX(%a0),%d1
13480         bclr            &15,%d1                 # force absolute value
13481         mov.w           %d1,FP_SCR0_EX(%a6)     # insert exponent
13482         fmovm.x         FP_SCR0(%a6),&0x80      # return result in fp0
13483         rts
13484
13485 #
13486 # for an extended precision DENORM, the UNFL exception bit is set
13487 # the accrued bit is NOT set in this instance(no inexactness!)
13488 #
13489 fabs_denorm:
13490         andi.b          &0xc0,%d0               # is precision extended?
13491         bne.b           fabs_not_ext            # no
13492
13493         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
13494
13495         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
13496         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
13497         mov.w           SRC_EX(%a0),%d0
13498         bclr            &15,%d0                 # clear sign
13499         mov.w           %d0,FP_SCR0_EX(%a6)     # insert exponent
13500
13501         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
13502
13503         btst            &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
13504         bne.b           fabs_ext_unfl_ena
13505         rts
13506
13507 #
13508 # the input is an extended DENORM and underflow is enabled in the FPCR.
13509 # normalize the mantissa and add the bias of 0x6000 to the resulting negative
13510 # exponent and insert back into the operand.
13511 #
13512 fabs_ext_unfl_ena:
13513         lea             FP_SCR0(%a6),%a0        # pass: ptr to operand
13514         bsr.l           norm                    # normalize result
13515         neg.w           %d0                     # new exponent = -(shft val)
13516         addi.w          &0x6000,%d0             # add new bias to exponent
13517         mov.w           FP_SCR0_EX(%a6),%d1     # fetch old sign,exp
13518         andi.w          &0x8000,%d1             # keep old sign
13519         andi.w          &0x7fff,%d0             # clear sign position
13520         or.w            %d1,%d0                 # concat old sign, new exponent
13521         mov.w           %d0,FP_SCR0_EX(%a6)     # insert new exponent
13522         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
13523         rts
13524
13525 #
13526 # operand is either single or double
13527 #
13528 fabs_not_ext:
13529         cmpi.b          %d0,&s_mode*0x10        # separate sgl/dbl prec
13530         bne.b           fabs_dbl
13531
13532 #
13533 # operand is to be rounded to single precision
13534 #
13535 fabs_sgl:
13536         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
13537         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
13538         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
13539         bsr.l           scale_to_zero_src       # calculate scale factor
13540
13541         cmpi.l          %d0,&0x3fff-0x3f80      # will move in underflow?
13542         bge.w           fabs_sd_unfl            # yes; go handle underflow
13543         cmpi.l          %d0,&0x3fff-0x407e      # will move in overflow?
13544         beq.w           fabs_sd_may_ovfl        # maybe; go check
13545         blt.w           fabs_sd_ovfl            # yes; go handle overflow
13546
13547 #
13548 # operand will NOT overflow or underflow when moved in to the fp reg file
13549 #
13550 fabs_sd_normal:
13551         fmov.l          &0x0,%fpsr              # clear FPSR
13552         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
13553
13554         fabs.x          FP_SCR0(%a6),%fp0       # perform absolute
13555
13556         fmov.l          %fpsr,%d1               # save FPSR
13557         fmov.l          &0x0,%fpcr              # clear FPCR
13558
13559         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
13560
13561 fabs_sd_normal_exit:
13562         mov.l           %d2,-(%sp)              # save d2
13563         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
13564         mov.w           FP_SCR0_EX(%a6),%d1     # load sgn,exp
13565         mov.l           %d1,%d2                 # make a copy
13566         andi.l          &0x7fff,%d1             # strip sign
13567         sub.l           %d0,%d1                 # add scale factor
13568         andi.w          &0x8000,%d2             # keep old sign
13569         or.w            %d1,%d2                 # concat old sign,new exp
13570         mov.w           %d2,FP_SCR0_EX(%a6)     # insert new exponent
13571         mov.l           (%sp)+,%d2              # restore d2
13572         fmovm.x         FP_SCR0(%a6),&0x80      # return result in fp0
13573         rts
13574
13575 #
13576 # operand is to be rounded to double precision
13577 #
13578 fabs_dbl:
13579         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
13580         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
13581         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
13582         bsr.l           scale_to_zero_src       # calculate scale factor
13583
13584         cmpi.l          %d0,&0x3fff-0x3c00      # will move in underflow?
13585         bge.b           fabs_sd_unfl            # yes; go handle underflow
13586         cmpi.l          %d0,&0x3fff-0x43fe      # will move in overflow?
13587         beq.w           fabs_sd_may_ovfl        # maybe; go check
13588         blt.w           fabs_sd_ovfl            # yes; go handle overflow
13589         bra.w           fabs_sd_normal          # no; ho handle normalized op
13590
13591 #
13592 # operand WILL underflow when moved in to the fp register file
13593 #
13594 fabs_sd_unfl:
13595         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
13596
13597         bclr            &0x7,FP_SCR0_EX(%a6)    # force absolute value
13598
13599 # if underflow or inexact is enabled, go calculate EXOP first.
13600         mov.b           FPCR_ENABLE(%a6),%d1
13601         andi.b          &0x0b,%d1               # is UNFL or INEX enabled?
13602         bne.b           fabs_sd_unfl_ena        # yes
13603
13604 fabs_sd_unfl_dis:
13605         lea             FP_SCR0(%a6),%a0        # pass: result addr
13606         mov.l           L_SCR3(%a6),%d1         # pass: rnd prec,mode
13607         bsr.l           unf_res                 # calculate default result
13608         or.b            %d0,FPSR_CC(%a6)        # set possible 'Z' ccode
13609         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
13610         rts
13611
13612 #
13613 # operand will underflow AND underflow is enabled.
13614 # Therefore, we must return the result rounded to extended precision.
13615 #
13616 fabs_sd_unfl_ena:
13617         mov.l           FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
13618         mov.l           FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
13619         mov.w           FP_SCR0_EX(%a6),%d1     # load current exponent
13620
13621         mov.l           %d2,-(%sp)              # save d2
13622         mov.l           %d1,%d2                 # make a copy
13623         andi.l          &0x7fff,%d1             # strip sign
13624         andi.w          &0x8000,%d2             # keep old sign
13625         sub.l           %d0,%d1                 # subtract scale factor
13626         addi.l          &0x6000,%d1             # add new bias
13627         andi.w          &0x7fff,%d1
13628         or.w            %d2,%d1                 # concat new sign,new exp
13629         mov.w           %d1,FP_SCR1_EX(%a6)     # insert new exp
13630         fmovm.x         FP_SCR1(%a6),&0x40      # return EXOP in fp1
13631         mov.l           (%sp)+,%d2              # restore d2
13632         bra.b           fabs_sd_unfl_dis
13633
13634 #
13635 # operand WILL overflow.
13636 #
13637 fabs_sd_ovfl:
13638         fmov.l          &0x0,%fpsr              # clear FPSR
13639         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
13640
13641         fabs.x          FP_SCR0(%a6),%fp0       # perform absolute
13642
13643         fmov.l          &0x0,%fpcr              # clear FPCR
13644         fmov.l          %fpsr,%d1               # save FPSR
13645
13646         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
13647
13648 fabs_sd_ovfl_tst:
13649         or.l            &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
13650
13651         mov.b           FPCR_ENABLE(%a6),%d1
13652         andi.b          &0x13,%d1               # is OVFL or INEX enabled?
13653         bne.b           fabs_sd_ovfl_ena        # yes
13654
13655 #
13656 # OVFL is not enabled; therefore, we must create the default result by
13657 # calling ovf_res().
13658 #
13659 fabs_sd_ovfl_dis:
13660         btst            &neg_bit,FPSR_CC(%a6)   # is result negative?
13661         sne             %d1                     # set sign param accordingly
13662         mov.l           L_SCR3(%a6),%d0         # pass: prec,mode
13663         bsr.l           ovf_res                 # calculate default result
13664         or.b            %d0,FPSR_CC(%a6)        # set INF,N if applicable
13665         fmovm.x         (%a0),&0x80             # return default result in fp0
13666         rts
13667
13668 #
13669 # OVFL is enabled.
13670 # the INEX2 bit has already been updated by the round to the correct precision.
13671 # now, round to extended(and don't alter the FPSR).
13672 #
13673 fabs_sd_ovfl_ena:
13674         mov.l           %d2,-(%sp)              # save d2
13675         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
13676         mov.l           %d1,%d2                 # make a copy
13677         andi.l          &0x7fff,%d1             # strip sign
13678         andi.w          &0x8000,%d2             # keep old sign
13679         sub.l           %d0,%d1                 # add scale factor
13680         subi.l          &0x6000,%d1             # subtract bias
13681         andi.w          &0x7fff,%d1
13682         or.w            %d2,%d1                 # concat sign,exp
13683         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
13684         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
13685         mov.l           (%sp)+,%d2              # restore d2
13686         bra.b           fabs_sd_ovfl_dis
13687
13688 #
13689 # the move in MAY underflow. so...
13690 #
13691 fabs_sd_may_ovfl:
13692         fmov.l          &0x0,%fpsr              # clear FPSR
13693         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
13694
13695         fabs.x          FP_SCR0(%a6),%fp0       # perform absolute
13696
13697         fmov.l          %fpsr,%d1               # save status
13698         fmov.l          &0x0,%fpcr              # clear FPCR
13699
13700         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
13701
13702         fabs.x          %fp0,%fp1               # make a copy of result
13703         fcmp.b          %fp1,&0x2               # is |result| >= 2.b?
13704         fbge.w          fabs_sd_ovfl_tst        # yes; overflow has occurred
13705
13706 # no, it didn't overflow; we have correct result
13707         bra.w           fabs_sd_normal_exit
13708
13709 ##########################################################################
13710
13711 #
13712 # input is not normalized; what is it?
13713 #
13714 fabs_not_norm:
13715         cmpi.b          %d1,&DENORM             # weed out DENORM
13716         beq.w           fabs_denorm
13717         cmpi.b          %d1,&SNAN               # weed out SNAN
13718         beq.l           res_snan_1op
13719         cmpi.b          %d1,&QNAN               # weed out QNAN
13720         beq.l           res_qnan_1op
13721
13722         fabs.x          SRC(%a0),%fp0           # force absolute value
13723
13724         cmpi.b          %d1,&INF                # weed out INF
13725         beq.b           fabs_inf
13726 fabs_zero:
13727         mov.b           &z_bmask,FPSR_CC(%a6)   # set 'Z' ccode bit
13728         rts
13729 fabs_inf:
13730         mov.b           &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
13731         rts
13732
13733 #########################################################################
13734 # XDEF **************************************************************** #
13735 #       fcmp(): fp compare op routine                                   #
13736 #                                                                       #
13737 # XREF **************************************************************** #
13738 #       res_qnan() - return QNAN result                                 #
13739 #       res_snan() - return SNAN result                                 #
13740 #                                                                       #
13741 # INPUT *************************************************************** #
13742 #       a0 = pointer to extended precision source operand               #
13743 #       a1 = pointer to extended precision destination operand          #
13744 #       d0 = round prec/mode                                            #
13745 #                                                                       #
13746 # OUTPUT ************************************************************** #
13747 #       None                                                            #
13748 #                                                                       #
13749 # ALGORITHM *********************************************************** #
13750 #       Handle NANs and denorms as special cases. For everything else,  #
13751 # just use the actual fcmp instruction to produce the correct condition #
13752 # codes.                                                                #
13753 #                                                                       #
13754 #########################################################################
13755
13756         global          fcmp
13757 fcmp:
13758         clr.w           %d1
13759         mov.b           DTAG(%a6),%d1
13760         lsl.b           &0x3,%d1
13761         or.b            STAG(%a6),%d1
13762         bne.b           fcmp_not_norm           # optimize on non-norm input
13763
13764 #
13765 # COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs
13766 #
13767 fcmp_norm:
13768         fmovm.x         DST(%a1),&0x80          # load dst op
13769
13770         fcmp.x          %fp0,SRC(%a0)           # do compare
13771
13772         fmov.l          %fpsr,%d0               # save FPSR
13773         rol.l           &0x8,%d0                # extract ccode bits
13774         mov.b           %d0,FPSR_CC(%a6)        # set ccode bits(no exc bits are set)
13775
13776         rts
13777
13778 #
13779 # fcmp: inputs are not both normalized; what are they?
13780 #
13781 fcmp_not_norm:
13782         mov.w           (tbl_fcmp_op.b,%pc,%d1.w*2),%d1
13783         jmp             (tbl_fcmp_op.b,%pc,%d1.w*1)
13784
13785         swbeg           &48
13786 tbl_fcmp_op:
13787         short           fcmp_norm       - tbl_fcmp_op # NORM - NORM
13788         short           fcmp_norm       - tbl_fcmp_op # NORM - ZERO
13789         short           fcmp_norm       - tbl_fcmp_op # NORM - INF
13790         short           fcmp_res_qnan   - tbl_fcmp_op # NORM - QNAN
13791         short           fcmp_nrm_dnrm   - tbl_fcmp_op # NORM - DENORM
13792         short           fcmp_res_snan   - tbl_fcmp_op # NORM - SNAN
13793         short           tbl_fcmp_op     - tbl_fcmp_op #
13794         short           tbl_fcmp_op     - tbl_fcmp_op #
13795
13796         short           fcmp_norm       - tbl_fcmp_op # ZERO - NORM
13797         short           fcmp_norm       - tbl_fcmp_op # ZERO - ZERO
13798         short           fcmp_norm       - tbl_fcmp_op # ZERO - INF
13799         short           fcmp_res_qnan   - tbl_fcmp_op # ZERO - QNAN
13800         short           fcmp_dnrm_s     - tbl_fcmp_op # ZERO - DENORM
13801         short           fcmp_res_snan   - tbl_fcmp_op # ZERO - SNAN
13802         short           tbl_fcmp_op     - tbl_fcmp_op #
13803         short           tbl_fcmp_op     - tbl_fcmp_op #
13804
13805         short           fcmp_norm       - tbl_fcmp_op # INF - NORM
13806         short           fcmp_norm       - tbl_fcmp_op # INF - ZERO
13807         short           fcmp_norm       - tbl_fcmp_op # INF - INF
13808         short           fcmp_res_qnan   - tbl_fcmp_op # INF - QNAN
13809         short           fcmp_dnrm_s     - tbl_fcmp_op # INF - DENORM
13810         short           fcmp_res_snan   - tbl_fcmp_op # INF - SNAN
13811         short           tbl_fcmp_op     - tbl_fcmp_op #
13812         short           tbl_fcmp_op     - tbl_fcmp_op #
13813
13814         short           fcmp_res_qnan   - tbl_fcmp_op # QNAN - NORM
13815         short           fcmp_res_qnan   - tbl_fcmp_op # QNAN - ZERO
13816         short           fcmp_res_qnan   - tbl_fcmp_op # QNAN - INF
13817         short           fcmp_res_qnan   - tbl_fcmp_op # QNAN - QNAN
13818         short           fcmp_res_qnan   - tbl_fcmp_op # QNAN - DENORM
13819         short           fcmp_res_snan   - tbl_fcmp_op # QNAN - SNAN
13820         short           tbl_fcmp_op     - tbl_fcmp_op #
13821         short           tbl_fcmp_op     - tbl_fcmp_op #
13822
13823         short           fcmp_dnrm_nrm   - tbl_fcmp_op # DENORM - NORM
13824         short           fcmp_dnrm_d     - tbl_fcmp_op # DENORM - ZERO
13825         short           fcmp_dnrm_d     - tbl_fcmp_op # DENORM - INF
13826         short           fcmp_res_qnan   - tbl_fcmp_op # DENORM - QNAN
13827         short           fcmp_dnrm_sd    - tbl_fcmp_op # DENORM - DENORM
13828         short           fcmp_res_snan   - tbl_fcmp_op # DENORM - SNAN
13829         short           tbl_fcmp_op     - tbl_fcmp_op #
13830         short           tbl_fcmp_op     - tbl_fcmp_op #
13831
13832         short           fcmp_res_snan   - tbl_fcmp_op # SNAN - NORM
13833         short           fcmp_res_snan   - tbl_fcmp_op # SNAN - ZERO
13834         short           fcmp_res_snan   - tbl_fcmp_op # SNAN - INF
13835         short           fcmp_res_snan   - tbl_fcmp_op # SNAN - QNAN
13836         short           fcmp_res_snan   - tbl_fcmp_op # SNAN - DENORM
13837         short           fcmp_res_snan   - tbl_fcmp_op # SNAN - SNAN
13838         short           tbl_fcmp_op     - tbl_fcmp_op #
13839         short           tbl_fcmp_op     - tbl_fcmp_op #
13840
13841 # unlike all other functions for QNAN and SNAN, fcmp does NOT set the
13842 # 'N' bit for a negative QNAN or SNAN input so we must squelch it here.
13843 fcmp_res_qnan:
13844         bsr.l           res_qnan
13845         andi.b          &0xf7,FPSR_CC(%a6)
13846         rts
13847 fcmp_res_snan:
13848         bsr.l           res_snan
13849         andi.b          &0xf7,FPSR_CC(%a6)
13850         rts
13851
13852 #
13853 # DENORMs are a little more difficult.
13854 # If you have a 2 DENORMs, then you can just force the j-bit to a one
13855 # and use the fcmp_norm routine.
13856 # If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one
13857 # and use the fcmp_norm routine.
13858 # If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also.
13859 # But with a DENORM and a NORM of the same sign, the neg bit is set if the
13860 # (1) signs are (+) and the DENORM is the dst or
13861 # (2) signs are (-) and the DENORM is the src
13862 #
13863
13864 fcmp_dnrm_s:
13865         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
13866         mov.l           SRC_HI(%a0),%d0
13867         bset            &31,%d0                 # DENORM src; make into small norm
13868         mov.l           %d0,FP_SCR0_HI(%a6)
13869         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
13870         lea             FP_SCR0(%a6),%a0
13871         bra.w           fcmp_norm
13872
13873 fcmp_dnrm_d:
13874         mov.l           DST_EX(%a1),FP_SCR0_EX(%a6)
13875         mov.l           DST_HI(%a1),%d0
13876         bset            &31,%d0                 # DENORM src; make into small norm
13877         mov.l           %d0,FP_SCR0_HI(%a6)
13878         mov.l           DST_LO(%a1),FP_SCR0_LO(%a6)
13879         lea             FP_SCR0(%a6),%a1
13880         bra.w           fcmp_norm
13881
13882 fcmp_dnrm_sd:
13883         mov.w           DST_EX(%a1),FP_SCR1_EX(%a6)
13884         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
13885         mov.l           DST_HI(%a1),%d0
13886         bset            &31,%d0                 # DENORM dst; make into small norm
13887         mov.l           %d0,FP_SCR1_HI(%a6)
13888         mov.l           SRC_HI(%a0),%d0
13889         bset            &31,%d0                 # DENORM dst; make into small norm
13890         mov.l           %d0,FP_SCR0_HI(%a6)
13891         mov.l           DST_LO(%a1),FP_SCR1_LO(%a6)
13892         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
13893         lea             FP_SCR1(%a6),%a1
13894         lea             FP_SCR0(%a6),%a0
13895         bra.w           fcmp_norm
13896
13897 fcmp_nrm_dnrm:
13898         mov.b           SRC_EX(%a0),%d0         # determine if like signs
13899         mov.b           DST_EX(%a1),%d1
13900         eor.b           %d0,%d1
13901         bmi.w           fcmp_dnrm_s
13902
13903 # signs are the same, so must determine the answer ourselves.
13904         tst.b           %d0                     # is src op negative?
13905         bmi.b           fcmp_nrm_dnrm_m         # yes
13906         rts
13907 fcmp_nrm_dnrm_m:
13908         mov.b           &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
13909         rts
13910
13911 fcmp_dnrm_nrm:
13912         mov.b           SRC_EX(%a0),%d0         # determine if like signs
13913         mov.b           DST_EX(%a1),%d1
13914         eor.b           %d0,%d1
13915         bmi.w           fcmp_dnrm_d
13916
13917 # signs are the same, so must determine the answer ourselves.
13918         tst.b           %d0                     # is src op negative?
13919         bpl.b           fcmp_dnrm_nrm_m         # no
13920         rts
13921 fcmp_dnrm_nrm_m:
13922         mov.b           &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
13923         rts
13924
13925 #########################################################################
13926 # XDEF **************************************************************** #
13927 #       fsglmul(): emulates the fsglmul instruction                     #
13928 #                                                                       #
13929 # XREF **************************************************************** #
13930 #       scale_to_zero_src() - scale src exponent to zero                #
13931 #       scale_to_zero_dst() - scale dst exponent to zero                #
13932 #       unf_res4() - return default underflow result for sglop          #
13933 #       ovf_res() - return default overflow result                      #
13934 #       res_qnan() - return QNAN result                                 #
13935 #       res_snan() - return SNAN result                                 #
13936 #                                                                       #
13937 # INPUT *************************************************************** #
13938 #       a0 = pointer to extended precision source operand               #
13939 #       a1 = pointer to extended precision destination operand          #
13940 #       d0  rnd prec,mode                                               #
13941 #                                                                       #
13942 # OUTPUT ************************************************************** #
13943 #       fp0 = result                                                    #
13944 #       fp1 = EXOP (if exception occurred)                              #
13945 #                                                                       #
13946 # ALGORITHM *********************************************************** #
13947 #       Handle NANs, infinities, and zeroes as special cases. Divide    #
13948 # norms/denorms into ext/sgl/dbl precision.                             #
13949 #       For norms/denorms, scale the exponents such that a multiply     #
13950 # instruction won't cause an exception. Use the regular fsglmul to      #
13951 # compute a result. Check if the regular operands would have taken      #
13952 # an exception. If so, return the default overflow/underflow result     #
13953 # and return the EXOP if exceptions are enabled. Else, scale the        #
13954 # result operand to the proper exponent.                                #
13955 #                                                                       #
13956 #########################################################################
13957
13958         global          fsglmul
13959 fsglmul:
13960         mov.l           %d0,L_SCR3(%a6)         # store rnd info
13961
13962         clr.w           %d1
13963         mov.b           DTAG(%a6),%d1
13964         lsl.b           &0x3,%d1
13965         or.b            STAG(%a6),%d1
13966
13967         bne.w           fsglmul_not_norm        # optimize on non-norm input
13968
13969 fsglmul_norm:
13970         mov.w           DST_EX(%a1),FP_SCR1_EX(%a6)
13971         mov.l           DST_HI(%a1),FP_SCR1_HI(%a6)
13972         mov.l           DST_LO(%a1),FP_SCR1_LO(%a6)
13973
13974         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
13975         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
13976         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
13977
13978         bsr.l           scale_to_zero_src       # scale exponent
13979         mov.l           %d0,-(%sp)              # save scale factor 1
13980
13981         bsr.l           scale_to_zero_dst       # scale dst exponent
13982
13983         add.l           (%sp)+,%d0              # SCALE_FACTOR = scale1 + scale2
13984
13985         cmpi.l          %d0,&0x3fff-0x7ffe      # would result ovfl?
13986         beq.w           fsglmul_may_ovfl        # result may rnd to overflow
13987         blt.w           fsglmul_ovfl            # result will overflow
13988
13989         cmpi.l          %d0,&0x3fff+0x0001      # would result unfl?
13990         beq.w           fsglmul_may_unfl        # result may rnd to no unfl
13991         bgt.w           fsglmul_unfl            # result will underflow
13992
13993 fsglmul_normal:
13994         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
13995
13996         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
13997         fmov.l          &0x0,%fpsr              # clear FPSR
13998
13999         fsglmul.x       FP_SCR0(%a6),%fp0       # execute sgl multiply
14000
14001         fmov.l          %fpsr,%d1               # save status
14002         fmov.l          &0x0,%fpcr              # clear FPCR
14003
14004         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
14005
14006 fsglmul_normal_exit:
14007         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
14008         mov.l           %d2,-(%sp)              # save d2
14009         mov.w           FP_SCR0_EX(%a6),%d1     # load {sgn,exp}
14010         mov.l           %d1,%d2                 # make a copy
14011         andi.l          &0x7fff,%d1             # strip sign
14012         andi.w          &0x8000,%d2             # keep old sign
14013         sub.l           %d0,%d1                 # add scale factor
14014         or.w            %d2,%d1                 # concat old sign,new exp
14015         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
14016         mov.l           (%sp)+,%d2              # restore d2
14017         fmovm.x         FP_SCR0(%a6),&0x80      # return result in fp0
14018         rts
14019
14020 fsglmul_ovfl:
14021         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
14022
14023         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
14024         fmov.l          &0x0,%fpsr              # clear FPSR
14025
14026         fsglmul.x       FP_SCR0(%a6),%fp0       # execute sgl multiply
14027
14028         fmov.l          %fpsr,%d1               # save status
14029         fmov.l          &0x0,%fpcr              # clear FPCR
14030
14031         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
14032
14033 fsglmul_ovfl_tst:
14034
14035 # save setting this until now because this is where fsglmul_may_ovfl may jump in
14036         or.l            &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex
14037
14038         mov.b           FPCR_ENABLE(%a6),%d1
14039         andi.b          &0x13,%d1               # is OVFL or INEX enabled?
14040         bne.b           fsglmul_ovfl_ena        # yes
14041
14042 fsglmul_ovfl_dis:
14043         btst            &neg_bit,FPSR_CC(%a6)   # is result negative?
14044         sne             %d1                     # set sign param accordingly
14045         mov.l           L_SCR3(%a6),%d0         # pass prec:rnd
14046         andi.b          &0x30,%d0               # force prec = ext
14047         bsr.l           ovf_res                 # calculate default result
14048         or.b            %d0,FPSR_CC(%a6)        # set INF,N if applicable
14049         fmovm.x         (%a0),&0x80             # return default result in fp0
14050         rts
14051
14052 fsglmul_ovfl_ena:
14053         fmovm.x         &0x80,FP_SCR0(%a6)      # move result to stack
14054
14055         mov.l           %d2,-(%sp)              # save d2
14056         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
14057         mov.l           %d1,%d2                 # make a copy
14058         andi.l          &0x7fff,%d1             # strip sign
14059         sub.l           %d0,%d1                 # add scale factor
14060         subi.l          &0x6000,%d1             # subtract bias
14061         andi.w          &0x7fff,%d1
14062         andi.w          &0x8000,%d2             # keep old sign
14063         or.w            %d2,%d1                 # concat old sign,new exp
14064         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
14065         mov.l           (%sp)+,%d2              # restore d2
14066         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
14067         bra.b           fsglmul_ovfl_dis
14068
14069 fsglmul_may_ovfl:
14070         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
14071
14072         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
14073         fmov.l          &0x0,%fpsr              # clear FPSR
14074
14075         fsglmul.x       FP_SCR0(%a6),%fp0       # execute sgl multiply
14076
14077         fmov.l          %fpsr,%d1               # save status
14078         fmov.l          &0x0,%fpcr              # clear FPCR
14079
14080         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
14081
14082         fabs.x          %fp0,%fp1               # make a copy of result
14083         fcmp.b          %fp1,&0x2               # is |result| >= 2.b?
14084         fbge.w          fsglmul_ovfl_tst        # yes; overflow has occurred
14085
14086 # no, it didn't overflow; we have correct result
14087         bra.w           fsglmul_normal_exit
14088
14089 fsglmul_unfl:
14090         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
14091
14092         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
14093
14094         fmov.l          &rz_mode*0x10,%fpcr     # set FPCR
14095         fmov.l          &0x0,%fpsr              # clear FPSR
14096
14097         fsglmul.x       FP_SCR0(%a6),%fp0       # execute sgl multiply
14098
14099         fmov.l          %fpsr,%d1               # save status
14100         fmov.l          &0x0,%fpcr              # clear FPCR
14101
14102         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
14103
14104         mov.b           FPCR_ENABLE(%a6),%d1
14105         andi.b          &0x0b,%d1               # is UNFL or INEX enabled?
14106         bne.b           fsglmul_unfl_ena        # yes
14107
14108 fsglmul_unfl_dis:
14109         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
14110
14111         lea             FP_SCR0(%a6),%a0        # pass: result addr
14112         mov.l           L_SCR3(%a6),%d1         # pass: rnd prec,mode
14113         bsr.l           unf_res4                # calculate default result
14114         or.b            %d0,FPSR_CC(%a6)        # 'Z' bit may have been set
14115         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
14116         rts
14117
14118 #
14119 # UNFL is enabled.
14120 #
14121 fsglmul_unfl_ena:
14122         fmovm.x         FP_SCR1(%a6),&0x40      # load dst op
14123
14124         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
14125         fmov.l          &0x0,%fpsr              # clear FPSR
14126
14127         fsglmul.x       FP_SCR0(%a6),%fp1       # execute sgl multiply
14128
14129         fmov.l          &0x0,%fpcr              # clear FPCR
14130
14131         fmovm.x         &0x40,FP_SCR0(%a6)      # save result to stack
14132         mov.l           %d2,-(%sp)              # save d2
14133         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
14134         mov.l           %d1,%d2                 # make a copy
14135         andi.l          &0x7fff,%d1             # strip sign
14136         andi.w          &0x8000,%d2             # keep old sign
14137         sub.l           %d0,%d1                 # add scale factor
14138         addi.l          &0x6000,%d1             # add bias
14139         andi.w          &0x7fff,%d1
14140         or.w            %d2,%d1                 # concat old sign,new exp
14141         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
14142         mov.l           (%sp)+,%d2              # restore d2
14143         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
14144         bra.w           fsglmul_unfl_dis
14145
14146 fsglmul_may_unfl:
14147         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
14148
14149         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
14150         fmov.l          &0x0,%fpsr              # clear FPSR
14151
14152         fsglmul.x       FP_SCR0(%a6),%fp0       # execute sgl multiply
14153
14154         fmov.l          %fpsr,%d1               # save status
14155         fmov.l          &0x0,%fpcr              # clear FPCR
14156
14157         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
14158
14159         fabs.x          %fp0,%fp1               # make a copy of result
14160         fcmp.b          %fp1,&0x2               # is |result| > 2.b?
14161         fbgt.w          fsglmul_normal_exit     # no; no underflow occurred
14162         fblt.w          fsglmul_unfl            # yes; underflow occurred
14163
14164 #
14165 # we still don't know if underflow occurred. result is ~ equal to 2. but,
14166 # we don't know if the result was an underflow that rounded up to a 2 or
14167 # a normalized number that rounded down to a 2. so, redo the entire operation
14168 # using RZ as the rounding mode to see what the pre-rounded result is.
14169 # this case should be relatively rare.
14170 #
14171         fmovm.x         FP_SCR1(%a6),&0x40      # load dst op into fp1
14172
14173         mov.l           L_SCR3(%a6),%d1
14174         andi.b          &0xc0,%d1               # keep rnd prec
14175         ori.b           &rz_mode*0x10,%d1       # insert RZ
14176
14177         fmov.l          %d1,%fpcr               # set FPCR
14178         fmov.l          &0x0,%fpsr              # clear FPSR
14179
14180         fsglmul.x       FP_SCR0(%a6),%fp1       # execute sgl multiply
14181
14182         fmov.l          &0x0,%fpcr              # clear FPCR
14183         fabs.x          %fp1                    # make absolute value
14184         fcmp.b          %fp1,&0x2               # is |result| < 2.b?
14185         fbge.w          fsglmul_normal_exit     # no; no underflow occurred
14186         bra.w           fsglmul_unfl            # yes, underflow occurred
14187
14188 ##############################################################################
14189
14190 #
14191 # Single Precision Multiply: inputs are not both normalized; what are they?
14192 #
14193 fsglmul_not_norm:
14194         mov.w           (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1
14195         jmp             (tbl_fsglmul_op.b,%pc,%d1.w*1)
14196
14197         swbeg           &48
14198 tbl_fsglmul_op:
14199         short           fsglmul_norm            - tbl_fsglmul_op # NORM x NORM
14200         short           fsglmul_zero            - tbl_fsglmul_op # NORM x ZERO
14201         short           fsglmul_inf_src         - tbl_fsglmul_op # NORM x INF
14202         short           fsglmul_res_qnan        - tbl_fsglmul_op # NORM x QNAN
14203         short           fsglmul_norm            - tbl_fsglmul_op # NORM x DENORM
14204         short           fsglmul_res_snan        - tbl_fsglmul_op # NORM x SNAN
14205         short           tbl_fsglmul_op          - tbl_fsglmul_op #
14206         short           tbl_fsglmul_op          - tbl_fsglmul_op #
14207
14208         short           fsglmul_zero            - tbl_fsglmul_op # ZERO x NORM
14209         short           fsglmul_zero            - tbl_fsglmul_op # ZERO x ZERO
14210         short           fsglmul_res_operr       - tbl_fsglmul_op # ZERO x INF
14211         short           fsglmul_res_qnan        - tbl_fsglmul_op # ZERO x QNAN
14212         short           fsglmul_zero            - tbl_fsglmul_op # ZERO x DENORM
14213         short           fsglmul_res_snan        - tbl_fsglmul_op # ZERO x SNAN
14214         short           tbl_fsglmul_op          - tbl_fsglmul_op #
14215         short           tbl_fsglmul_op          - tbl_fsglmul_op #
14216
14217         short           fsglmul_inf_dst         - tbl_fsglmul_op # INF x NORM
14218         short           fsglmul_res_operr       - tbl_fsglmul_op # INF x ZERO
14219         short           fsglmul_inf_dst         - tbl_fsglmul_op # INF x INF
14220         short           fsglmul_res_qnan        - tbl_fsglmul_op # INF x QNAN
14221         short           fsglmul_inf_dst         - tbl_fsglmul_op # INF x DENORM
14222         short           fsglmul_res_snan        - tbl_fsglmul_op # INF x SNAN
14223         short           tbl_fsglmul_op          - tbl_fsglmul_op #
14224         short           tbl_fsglmul_op          - tbl_fsglmul_op #
14225
14226         short           fsglmul_res_qnan        - tbl_fsglmul_op # QNAN x NORM
14227         short           fsglmul_res_qnan        - tbl_fsglmul_op # QNAN x ZERO
14228         short           fsglmul_res_qnan        - tbl_fsglmul_op # QNAN x INF
14229         short           fsglmul_res_qnan        - tbl_fsglmul_op # QNAN x QNAN
14230         short           fsglmul_res_qnan        - tbl_fsglmul_op # QNAN x DENORM
14231         short           fsglmul_res_snan        - tbl_fsglmul_op # QNAN x SNAN
14232         short           tbl_fsglmul_op          - tbl_fsglmul_op #
14233         short           tbl_fsglmul_op          - tbl_fsglmul_op #
14234
14235         short           fsglmul_norm            - tbl_fsglmul_op # NORM x NORM
14236         short           fsglmul_zero            - tbl_fsglmul_op # NORM x ZERO
14237         short           fsglmul_inf_src         - tbl_fsglmul_op # NORM x INF
14238         short           fsglmul_res_qnan        - tbl_fsglmul_op # NORM x QNAN
14239         short           fsglmul_norm            - tbl_fsglmul_op # NORM x DENORM
14240         short           fsglmul_res_snan        - tbl_fsglmul_op # NORM x SNAN
14241         short           tbl_fsglmul_op          - tbl_fsglmul_op #
14242         short           tbl_fsglmul_op          - tbl_fsglmul_op #
14243
14244         short           fsglmul_res_snan        - tbl_fsglmul_op # SNAN x NORM
14245         short           fsglmul_res_snan        - tbl_fsglmul_op # SNAN x ZERO
14246         short           fsglmul_res_snan        - tbl_fsglmul_op # SNAN x INF
14247         short           fsglmul_res_snan        - tbl_fsglmul_op # SNAN x QNAN
14248         short           fsglmul_res_snan        - tbl_fsglmul_op # SNAN x DENORM
14249         short           fsglmul_res_snan        - tbl_fsglmul_op # SNAN x SNAN
14250         short           tbl_fsglmul_op          - tbl_fsglmul_op #
14251         short           tbl_fsglmul_op          - tbl_fsglmul_op #
14252
14253 fsglmul_res_operr:
14254         bra.l           res_operr
14255 fsglmul_res_snan:
14256         bra.l           res_snan
14257 fsglmul_res_qnan:
14258         bra.l           res_qnan
14259 fsglmul_zero:
14260         bra.l           fmul_zero
14261 fsglmul_inf_src:
14262         bra.l           fmul_inf_src
14263 fsglmul_inf_dst:
14264         bra.l           fmul_inf_dst
14265
14266 #########################################################################
14267 # XDEF **************************************************************** #
14268 #       fsgldiv(): emulates the fsgldiv instruction                     #
14269 #                                                                       #
14270 # XREF **************************************************************** #
14271 #       scale_to_zero_src() - scale src exponent to zero                #
14272 #       scale_to_zero_dst() - scale dst exponent to zero                #
14273 #       unf_res4() - return default underflow result for sglop          #
14274 #       ovf_res() - return default overflow result                      #
14275 #       res_qnan() - return QNAN result                                 #
14276 #       res_snan() - return SNAN result                                 #
14277 #                                                                       #
14278 # INPUT *************************************************************** #
14279 #       a0 = pointer to extended precision source operand               #
14280 #       a1 = pointer to extended precision destination operand          #
14281 #       d0  rnd prec,mode                                               #
14282 #                                                                       #
14283 # OUTPUT ************************************************************** #
14284 #       fp0 = result                                                    #
14285 #       fp1 = EXOP (if exception occurred)                              #
14286 #                                                                       #
14287 # ALGORITHM *********************************************************** #
14288 #       Handle NANs, infinities, and zeroes as special cases. Divide    #
14289 # norms/denorms into ext/sgl/dbl precision.                             #
14290 #       For norms/denorms, scale the exponents such that a divide       #
14291 # instruction won't cause an exception. Use the regular fsgldiv to      #
14292 # compute a result. Check if the regular operands would have taken      #
14293 # an exception. If so, return the default overflow/underflow result     #
14294 # and return the EXOP if exceptions are enabled. Else, scale the        #
14295 # result operand to the proper exponent.                                #
14296 #                                                                       #
14297 #########################################################################
14298
14299         global          fsgldiv
14300 fsgldiv:
14301         mov.l           %d0,L_SCR3(%a6)         # store rnd info
14302
14303         clr.w           %d1
14304         mov.b           DTAG(%a6),%d1
14305         lsl.b           &0x3,%d1
14306         or.b            STAG(%a6),%d1           # combine src tags
14307
14308         bne.w           fsgldiv_not_norm        # optimize on non-norm input
14309
14310 #
14311 # DIVIDE: NORMs and DENORMs ONLY!
14312 #
14313 fsgldiv_norm:
14314         mov.w           DST_EX(%a1),FP_SCR1_EX(%a6)
14315         mov.l           DST_HI(%a1),FP_SCR1_HI(%a6)
14316         mov.l           DST_LO(%a1),FP_SCR1_LO(%a6)
14317
14318         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
14319         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
14320         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
14321
14322         bsr.l           scale_to_zero_src       # calculate scale factor 1
14323         mov.l           %d0,-(%sp)              # save scale factor 1
14324
14325         bsr.l           scale_to_zero_dst       # calculate scale factor 2
14326
14327         neg.l           (%sp)                   # S.F. = scale1 - scale2
14328         add.l           %d0,(%sp)
14329
14330         mov.w           2+L_SCR3(%a6),%d1       # fetch precision,mode
14331         lsr.b           &0x6,%d1
14332         mov.l           (%sp)+,%d0
14333         cmpi.l          %d0,&0x3fff-0x7ffe
14334         ble.w           fsgldiv_may_ovfl
14335
14336         cmpi.l          %d0,&0x3fff-0x0000      # will result underflow?
14337         beq.w           fsgldiv_may_unfl        # maybe
14338         bgt.w           fsgldiv_unfl            # yes; go handle underflow
14339
14340 fsgldiv_normal:
14341         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
14342
14343         fmov.l          L_SCR3(%a6),%fpcr       # save FPCR
14344         fmov.l          &0x0,%fpsr              # clear FPSR
14345
14346         fsgldiv.x       FP_SCR0(%a6),%fp0       # perform sgl divide
14347
14348         fmov.l          %fpsr,%d1               # save FPSR
14349         fmov.l          &0x0,%fpcr              # clear FPCR
14350
14351         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
14352
14353 fsgldiv_normal_exit:
14354         fmovm.x         &0x80,FP_SCR0(%a6)      # store result on stack
14355         mov.l           %d2,-(%sp)              # save d2
14356         mov.w           FP_SCR0_EX(%a6),%d1     # load {sgn,exp}
14357         mov.l           %d1,%d2                 # make a copy
14358         andi.l          &0x7fff,%d1             # strip sign
14359         andi.w          &0x8000,%d2             # keep old sign
14360         sub.l           %d0,%d1                 # add scale factor
14361         or.w            %d2,%d1                 # concat old sign,new exp
14362         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
14363         mov.l           (%sp)+,%d2              # restore d2
14364         fmovm.x         FP_SCR0(%a6),&0x80      # return result in fp0
14365         rts
14366
14367 fsgldiv_may_ovfl:
14368         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
14369
14370         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
14371         fmov.l          &0x0,%fpsr              # set FPSR
14372
14373         fsgldiv.x       FP_SCR0(%a6),%fp0       # execute divide
14374
14375         fmov.l          %fpsr,%d1
14376         fmov.l          &0x0,%fpcr
14377
14378         or.l            %d1,USER_FPSR(%a6)      # save INEX,N
14379
14380         fmovm.x         &0x01,-(%sp)            # save result to stack
14381         mov.w           (%sp),%d1               # fetch new exponent
14382         add.l           &0xc,%sp                # clear result
14383         andi.l          &0x7fff,%d1             # strip sign
14384         sub.l           %d0,%d1                 # add scale factor
14385         cmp.l           %d1,&0x7fff             # did divide overflow?
14386         blt.b           fsgldiv_normal_exit
14387
14388 fsgldiv_ovfl_tst:
14389         or.w            &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
14390
14391         mov.b           FPCR_ENABLE(%a6),%d1
14392         andi.b          &0x13,%d1               # is OVFL or INEX enabled?
14393         bne.b           fsgldiv_ovfl_ena        # yes
14394
14395 fsgldiv_ovfl_dis:
14396         btst            &neg_bit,FPSR_CC(%a6)   # is result negative
14397         sne             %d1                     # set sign param accordingly
14398         mov.l           L_SCR3(%a6),%d0         # pass prec:rnd
14399         andi.b          &0x30,%d0               # kill precision
14400         bsr.l           ovf_res                 # calculate default result
14401         or.b            %d0,FPSR_CC(%a6)        # set INF if applicable
14402         fmovm.x         (%a0),&0x80             # return default result in fp0
14403         rts
14404
14405 fsgldiv_ovfl_ena:
14406         fmovm.x         &0x80,FP_SCR0(%a6)      # move result to stack
14407
14408         mov.l           %d2,-(%sp)              # save d2
14409         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
14410         mov.l           %d1,%d2                 # make a copy
14411         andi.l          &0x7fff,%d1             # strip sign
14412         andi.w          &0x8000,%d2             # keep old sign
14413         sub.l           %d0,%d1                 # add scale factor
14414         subi.l          &0x6000,%d1             # subtract new bias
14415         andi.w          &0x7fff,%d1             # clear ms bit
14416         or.w            %d2,%d1                 # concat old sign,new exp
14417         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
14418         mov.l           (%sp)+,%d2              # restore d2
14419         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
14420         bra.b           fsgldiv_ovfl_dis
14421
14422 fsgldiv_unfl:
14423         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
14424
14425         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
14426
14427         fmov.l          &rz_mode*0x10,%fpcr     # set FPCR
14428         fmov.l          &0x0,%fpsr              # clear FPSR
14429
14430         fsgldiv.x       FP_SCR0(%a6),%fp0       # execute sgl divide
14431
14432         fmov.l          %fpsr,%d1               # save status
14433         fmov.l          &0x0,%fpcr              # clear FPCR
14434
14435         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
14436
14437         mov.b           FPCR_ENABLE(%a6),%d1
14438         andi.b          &0x0b,%d1               # is UNFL or INEX enabled?
14439         bne.b           fsgldiv_unfl_ena        # yes
14440
14441 fsgldiv_unfl_dis:
14442         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
14443
14444         lea             FP_SCR0(%a6),%a0        # pass: result addr
14445         mov.l           L_SCR3(%a6),%d1         # pass: rnd prec,mode
14446         bsr.l           unf_res4                # calculate default result
14447         or.b            %d0,FPSR_CC(%a6)        # 'Z' bit may have been set
14448         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
14449         rts
14450
14451 #
14452 # UNFL is enabled.
14453 #
14454 fsgldiv_unfl_ena:
14455         fmovm.x         FP_SCR1(%a6),&0x40      # load dst op
14456
14457         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
14458         fmov.l          &0x0,%fpsr              # clear FPSR
14459
14460         fsgldiv.x       FP_SCR0(%a6),%fp1       # execute sgl divide
14461
14462         fmov.l          &0x0,%fpcr              # clear FPCR
14463
14464         fmovm.x         &0x40,FP_SCR0(%a6)      # save result to stack
14465         mov.l           %d2,-(%sp)              # save d2
14466         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
14467         mov.l           %d1,%d2                 # make a copy
14468         andi.l          &0x7fff,%d1             # strip sign
14469         andi.w          &0x8000,%d2             # keep old sign
14470         sub.l           %d0,%d1                 # add scale factor
14471         addi.l          &0x6000,%d1             # add bias
14472         andi.w          &0x7fff,%d1             # clear top bit
14473         or.w            %d2,%d1                 # concat old sign, new exp
14474         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
14475         mov.l           (%sp)+,%d2              # restore d2
14476         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
14477         bra.b           fsgldiv_unfl_dis
14478
14479 #
14480 # the divide operation MAY underflow:
14481 #
14482 fsgldiv_may_unfl:
14483         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
14484
14485         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
14486         fmov.l          &0x0,%fpsr              # clear FPSR
14487
14488         fsgldiv.x       FP_SCR0(%a6),%fp0       # execute sgl divide
14489
14490         fmov.l          %fpsr,%d1               # save status
14491         fmov.l          &0x0,%fpcr              # clear FPCR
14492
14493         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
14494
14495         fabs.x          %fp0,%fp1               # make a copy of result
14496         fcmp.b          %fp1,&0x1               # is |result| > 1.b?
14497         fbgt.w          fsgldiv_normal_exit     # no; no underflow occurred
14498         fblt.w          fsgldiv_unfl            # yes; underflow occurred
14499
14500 #
14501 # we still don't know if underflow occurred. result is ~ equal to 1. but,
14502 # we don't know if the result was an underflow that rounded up to a 1
14503 # or a normalized number that rounded down to a 1. so, redo the entire
14504 # operation using RZ as the rounding mode to see what the pre-rounded
14505 # result is. this case should be relatively rare.
14506 #
14507         fmovm.x         FP_SCR1(%a6),&0x40      # load dst op into %fp1
14508
14509         clr.l           %d1                     # clear scratch register
14510         ori.b           &rz_mode*0x10,%d1       # force RZ rnd mode
14511
14512         fmov.l          %d1,%fpcr               # set FPCR
14513         fmov.l          &0x0,%fpsr              # clear FPSR
14514
14515         fsgldiv.x       FP_SCR0(%a6),%fp1       # execute sgl divide
14516
14517         fmov.l          &0x0,%fpcr              # clear FPCR
14518         fabs.x          %fp1                    # make absolute value
14519         fcmp.b          %fp1,&0x1               # is |result| < 1.b?
14520         fbge.w          fsgldiv_normal_exit     # no; no underflow occurred
14521         bra.w           fsgldiv_unfl            # yes; underflow occurred
14522
14523 ############################################################################
14524
14525 #
14526 # Divide: inputs are not both normalized; what are they?
14527 #
14528 fsgldiv_not_norm:
14529         mov.w           (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1
14530         jmp             (tbl_fsgldiv_op.b,%pc,%d1.w*1)
14531
14532         swbeg           &48
14533 tbl_fsgldiv_op:
14534         short           fsgldiv_norm            - tbl_fsgldiv_op # NORM / NORM
14535         short           fsgldiv_inf_load        - tbl_fsgldiv_op # NORM / ZERO
14536         short           fsgldiv_zero_load       - tbl_fsgldiv_op # NORM / INF
14537         short           fsgldiv_res_qnan        - tbl_fsgldiv_op # NORM / QNAN
14538         short           fsgldiv_norm            - tbl_fsgldiv_op # NORM / DENORM
14539         short           fsgldiv_res_snan        - tbl_fsgldiv_op # NORM / SNAN
14540         short           tbl_fsgldiv_op          - tbl_fsgldiv_op #
14541         short           tbl_fsgldiv_op          - tbl_fsgldiv_op #
14542
14543         short           fsgldiv_zero_load       - tbl_fsgldiv_op # ZERO / NORM
14544         short           fsgldiv_res_operr       - tbl_fsgldiv_op # ZERO / ZERO
14545         short           fsgldiv_zero_load       - tbl_fsgldiv_op # ZERO / INF
14546         short           fsgldiv_res_qnan        - tbl_fsgldiv_op # ZERO / QNAN
14547         short           fsgldiv_zero_load       - tbl_fsgldiv_op # ZERO / DENORM
14548         short           fsgldiv_res_snan        - tbl_fsgldiv_op # ZERO / SNAN
14549         short           tbl_fsgldiv_op          - tbl_fsgldiv_op #
14550         short           tbl_fsgldiv_op          - tbl_fsgldiv_op #
14551
14552         short           fsgldiv_inf_dst         - tbl_fsgldiv_op # INF / NORM
14553         short           fsgldiv_inf_dst         - tbl_fsgldiv_op # INF / ZERO
14554         short           fsgldiv_res_operr       - tbl_fsgldiv_op # INF / INF
14555         short           fsgldiv_res_qnan        - tbl_fsgldiv_op # INF / QNAN
14556         short           fsgldiv_inf_dst         - tbl_fsgldiv_op # INF / DENORM
14557         short           fsgldiv_res_snan        - tbl_fsgldiv_op # INF / SNAN
14558         short           tbl_fsgldiv_op          - tbl_fsgldiv_op #
14559         short           tbl_fsgldiv_op          - tbl_fsgldiv_op #
14560
14561         short           fsgldiv_res_qnan        - tbl_fsgldiv_op # QNAN / NORM
14562         short           fsgldiv_res_qnan        - tbl_fsgldiv_op # QNAN / ZERO
14563         short           fsgldiv_res_qnan        - tbl_fsgldiv_op # QNAN / INF
14564         short           fsgldiv_res_qnan        - tbl_fsgldiv_op # QNAN / QNAN
14565         short           fsgldiv_res_qnan        - tbl_fsgldiv_op # QNAN / DENORM
14566         short           fsgldiv_res_snan        - tbl_fsgldiv_op # QNAN / SNAN
14567         short           tbl_fsgldiv_op          - tbl_fsgldiv_op #
14568         short           tbl_fsgldiv_op          - tbl_fsgldiv_op #
14569
14570         short           fsgldiv_norm            - tbl_fsgldiv_op # DENORM / NORM
14571         short           fsgldiv_inf_load        - tbl_fsgldiv_op # DENORM / ZERO
14572         short           fsgldiv_zero_load       - tbl_fsgldiv_op # DENORM / INF
14573         short           fsgldiv_res_qnan        - tbl_fsgldiv_op # DENORM / QNAN
14574         short           fsgldiv_norm            - tbl_fsgldiv_op # DENORM / DENORM
14575         short           fsgldiv_res_snan        - tbl_fsgldiv_op # DENORM / SNAN
14576         short           tbl_fsgldiv_op          - tbl_fsgldiv_op #
14577         short           tbl_fsgldiv_op          - tbl_fsgldiv_op #
14578
14579         short           fsgldiv_res_snan        - tbl_fsgldiv_op # SNAN / NORM
14580         short           fsgldiv_res_snan        - tbl_fsgldiv_op # SNAN / ZERO
14581         short           fsgldiv_res_snan        - tbl_fsgldiv_op # SNAN / INF
14582         short           fsgldiv_res_snan        - tbl_fsgldiv_op # SNAN / QNAN
14583         short           fsgldiv_res_snan        - tbl_fsgldiv_op # SNAN / DENORM
14584         short           fsgldiv_res_snan        - tbl_fsgldiv_op # SNAN / SNAN
14585         short           tbl_fsgldiv_op          - tbl_fsgldiv_op #
14586         short           tbl_fsgldiv_op          - tbl_fsgldiv_op #
14587
14588 fsgldiv_res_qnan:
14589         bra.l           res_qnan
14590 fsgldiv_res_snan:
14591         bra.l           res_snan
14592 fsgldiv_res_operr:
14593         bra.l           res_operr
14594 fsgldiv_inf_load:
14595         bra.l           fdiv_inf_load
14596 fsgldiv_zero_load:
14597         bra.l           fdiv_zero_load
14598 fsgldiv_inf_dst:
14599         bra.l           fdiv_inf_dst
14600
14601 #########################################################################
14602 # XDEF **************************************************************** #
14603 #       fadd(): emulates the fadd instruction                           #
14604 #       fsadd(): emulates the fadd instruction                          #
14605 #       fdadd(): emulates the fdadd instruction                         #
14606 #                                                                       #
14607 # XREF **************************************************************** #
14608 #       addsub_scaler2() - scale the operands so they won't take exc    #
14609 #       ovf_res() - return default overflow result                      #
14610 #       unf_res() - return default underflow result                     #
14611 #       res_qnan() - set QNAN result                                    #
14612 #       res_snan() - set SNAN result                                    #
14613 #       res_operr() - set OPERR result                                  #
14614 #       scale_to_zero_src() - set src operand exponent equal to zero    #
14615 #       scale_to_zero_dst() - set dst operand exponent equal to zero    #
14616 #                                                                       #
14617 # INPUT *************************************************************** #
14618 #       a0 = pointer to extended precision source operand               #
14619 #       a1 = pointer to extended precision destination operand          #
14620 #                                                                       #
14621 # OUTPUT ************************************************************** #
14622 #       fp0 = result                                                    #
14623 #       fp1 = EXOP (if exception occurred)                              #
14624 #                                                                       #
14625 # ALGORITHM *********************************************************** #
14626 #       Handle NANs, infinities, and zeroes as special cases. Divide    #
14627 # norms into extended, single, and double precision.                    #
14628 #       Do addition after scaling exponents such that exception won't   #
14629 # occur. Then, check result exponent to see if exception would have     #
14630 # occurred. If so, return default result and maybe EXOP. Else, insert   #
14631 # the correct result exponent and return. Set FPSR bits as appropriate. #
14632 #                                                                       #
14633 #########################################################################
14634
14635         global          fsadd
14636 fsadd:
14637         andi.b          &0x30,%d0               # clear rnd prec
14638         ori.b           &s_mode*0x10,%d0        # insert sgl prec
14639         bra.b           fadd
14640
14641         global          fdadd
14642 fdadd:
14643         andi.b          &0x30,%d0               # clear rnd prec
14644         ori.b           &d_mode*0x10,%d0        # insert dbl prec
14645
14646         global          fadd
14647 fadd:
14648         mov.l           %d0,L_SCR3(%a6)         # store rnd info
14649
14650         clr.w           %d1
14651         mov.b           DTAG(%a6),%d1
14652         lsl.b           &0x3,%d1
14653         or.b            STAG(%a6),%d1           # combine src tags
14654
14655         bne.w           fadd_not_norm           # optimize on non-norm input
14656
14657 #
14658 # ADD: norms and denorms
14659 #
14660 fadd_norm:
14661         bsr.l           addsub_scaler2          # scale exponents
14662
14663 fadd_zero_entry:
14664         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
14665
14666         fmov.l          &0x0,%fpsr              # clear FPSR
14667         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
14668
14669         fadd.x          FP_SCR0(%a6),%fp0       # execute add
14670
14671         fmov.l          &0x0,%fpcr              # clear FPCR
14672         fmov.l          %fpsr,%d1               # fetch INEX2,N,Z
14673
14674         or.l            %d1,USER_FPSR(%a6)      # save exc and ccode bits
14675
14676         fbeq.w          fadd_zero_exit          # if result is zero, end now
14677
14678         mov.l           %d2,-(%sp)              # save d2
14679
14680         fmovm.x         &0x01,-(%sp)            # save result to stack
14681
14682         mov.w           2+L_SCR3(%a6),%d1
14683         lsr.b           &0x6,%d1
14684
14685         mov.w           (%sp),%d2               # fetch new sign, exp
14686         andi.l          &0x7fff,%d2             # strip sign
14687         sub.l           %d0,%d2                 # add scale factor
14688
14689         cmp.l           %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow?
14690         bge.b           fadd_ovfl               # yes
14691
14692         cmp.l           %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow?
14693         blt.w           fadd_unfl               # yes
14694         beq.w           fadd_may_unfl           # maybe; go find out
14695
14696 fadd_normal:
14697         mov.w           (%sp),%d1
14698         andi.w          &0x8000,%d1             # keep sign
14699         or.w            %d2,%d1                 # concat sign,new exp
14700         mov.w           %d1,(%sp)               # insert new exponent
14701
14702         fmovm.x         (%sp)+,&0x80            # return result in fp0
14703
14704         mov.l           (%sp)+,%d2              # restore d2
14705         rts
14706
14707 fadd_zero_exit:
14708 #       fmov.s          &0x00000000,%fp0        # return zero in fp0
14709         rts
14710
14711 tbl_fadd_ovfl:
14712         long            0x7fff                  # ext ovfl
14713         long            0x407f                  # sgl ovfl
14714         long            0x43ff                  # dbl ovfl
14715
14716 tbl_fadd_unfl:
14717         long            0x0000                  # ext unfl
14718         long            0x3f81                  # sgl unfl
14719         long            0x3c01                  # dbl unfl
14720
14721 fadd_ovfl:
14722         or.l            &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
14723
14724         mov.b           FPCR_ENABLE(%a6),%d1
14725         andi.b          &0x13,%d1               # is OVFL or INEX enabled?
14726         bne.b           fadd_ovfl_ena           # yes
14727
14728         add.l           &0xc,%sp
14729 fadd_ovfl_dis:
14730         btst            &neg_bit,FPSR_CC(%a6)   # is result negative?
14731         sne             %d1                     # set sign param accordingly
14732         mov.l           L_SCR3(%a6),%d0         # pass prec:rnd
14733         bsr.l           ovf_res                 # calculate default result
14734         or.b            %d0,FPSR_CC(%a6)        # set INF,N if applicable
14735         fmovm.x         (%a0),&0x80             # return default result in fp0
14736         mov.l           (%sp)+,%d2              # restore d2
14737         rts
14738
14739 fadd_ovfl_ena:
14740         mov.b           L_SCR3(%a6),%d1
14741         andi.b          &0xc0,%d1               # is precision extended?
14742         bne.b           fadd_ovfl_ena_sd        # no; prec = sgl or dbl
14743
14744 fadd_ovfl_ena_cont:
14745         mov.w           (%sp),%d1
14746         andi.w          &0x8000,%d1             # keep sign
14747         subi.l          &0x6000,%d2             # add extra bias
14748         andi.w          &0x7fff,%d2
14749         or.w            %d2,%d1                 # concat sign,new exp
14750         mov.w           %d1,(%sp)               # insert new exponent
14751
14752         fmovm.x         (%sp)+,&0x40            # return EXOP in fp1
14753         bra.b           fadd_ovfl_dis
14754
14755 fadd_ovfl_ena_sd:
14756         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
14757
14758         mov.l           L_SCR3(%a6),%d1
14759         andi.b          &0x30,%d1               # keep rnd mode
14760         fmov.l          %d1,%fpcr               # set FPCR
14761
14762         fadd.x          FP_SCR0(%a6),%fp0       # execute add
14763
14764         fmov.l          &0x0,%fpcr              # clear FPCR
14765
14766         add.l           &0xc,%sp
14767         fmovm.x         &0x01,-(%sp)
14768         bra.b           fadd_ovfl_ena_cont
14769
14770 fadd_unfl:
14771         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
14772
14773         add.l           &0xc,%sp
14774
14775         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
14776
14777         fmov.l          &rz_mode*0x10,%fpcr     # set FPCR
14778         fmov.l          &0x0,%fpsr              # clear FPSR
14779
14780         fadd.x          FP_SCR0(%a6),%fp0       # execute add
14781
14782         fmov.l          &0x0,%fpcr              # clear FPCR
14783         fmov.l          %fpsr,%d1               # save status
14784
14785         or.l            %d1,USER_FPSR(%a6)      # save INEX,N
14786
14787         mov.b           FPCR_ENABLE(%a6),%d1
14788         andi.b          &0x0b,%d1               # is UNFL or INEX enabled?
14789         bne.b           fadd_unfl_ena           # yes
14790
14791 fadd_unfl_dis:
14792         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
14793
14794         lea             FP_SCR0(%a6),%a0        # pass: result addr
14795         mov.l           L_SCR3(%a6),%d1         # pass: rnd prec,mode
14796         bsr.l           unf_res                 # calculate default result
14797         or.b            %d0,FPSR_CC(%a6)        # 'Z' bit may have been set
14798         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
14799         mov.l           (%sp)+,%d2              # restore d2
14800         rts
14801
14802 fadd_unfl_ena:
14803         fmovm.x         FP_SCR1(%a6),&0x40      # load dst op
14804
14805         mov.l           L_SCR3(%a6),%d1
14806         andi.b          &0xc0,%d1               # is precision extended?
14807         bne.b           fadd_unfl_ena_sd        # no; sgl or dbl
14808
14809         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
14810
14811 fadd_unfl_ena_cont:
14812         fmov.l          &0x0,%fpsr              # clear FPSR
14813
14814         fadd.x          FP_SCR0(%a6),%fp1       # execute multiply
14815
14816         fmov.l          &0x0,%fpcr              # clear FPCR
14817
14818         fmovm.x         &0x40,FP_SCR0(%a6)      # save result to stack
14819         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
14820         mov.l           %d1,%d2                 # make a copy
14821         andi.l          &0x7fff,%d1             # strip sign
14822         andi.w          &0x8000,%d2             # keep old sign
14823         sub.l           %d0,%d1                 # add scale factor
14824         addi.l          &0x6000,%d1             # add new bias
14825         andi.w          &0x7fff,%d1             # clear top bit
14826         or.w            %d2,%d1                 # concat sign,new exp
14827         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
14828         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
14829         bra.w           fadd_unfl_dis
14830
14831 fadd_unfl_ena_sd:
14832         mov.l           L_SCR3(%a6),%d1
14833         andi.b          &0x30,%d1               # use only rnd mode
14834         fmov.l          %d1,%fpcr               # set FPCR
14835
14836         bra.b           fadd_unfl_ena_cont
14837
14838 #
14839 # result is equal to the smallest normalized number in the selected precision
14840 # if the precision is extended, this result could not have come from an
14841 # underflow that rounded up.
14842 #
14843 fadd_may_unfl:
14844         mov.l           L_SCR3(%a6),%d1
14845         andi.b          &0xc0,%d1
14846         beq.w           fadd_normal             # yes; no underflow occurred
14847
14848         mov.l           0x4(%sp),%d1            # extract hi(man)
14849         cmpi.l          %d1,&0x80000000         # is hi(man) = 0x80000000?
14850         bne.w           fadd_normal             # no; no underflow occurred
14851
14852         tst.l           0x8(%sp)                # is lo(man) = 0x0?
14853         bne.w           fadd_normal             # no; no underflow occurred
14854
14855         btst            &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
14856         beq.w           fadd_normal             # no; no underflow occurred
14857
14858 #
14859 # ok, so now the result has a exponent equal to the smallest normalized
14860 # exponent for the selected precision. also, the mantissa is equal to
14861 # 0x8000000000000000 and this mantissa is the result of rounding non-zero
14862 # g,r,s.
14863 # now, we must determine whether the pre-rounded result was an underflow
14864 # rounded "up" or a normalized number rounded "down".
14865 # so, we do this be re-executing the add using RZ as the rounding mode and
14866 # seeing if the new result is smaller or equal to the current result.
14867 #
14868         fmovm.x         FP_SCR1(%a6),&0x40      # load dst op into fp1
14869
14870         mov.l           L_SCR3(%a6),%d1
14871         andi.b          &0xc0,%d1               # keep rnd prec
14872         ori.b           &rz_mode*0x10,%d1       # insert rnd mode
14873         fmov.l          %d1,%fpcr               # set FPCR
14874         fmov.l          &0x0,%fpsr              # clear FPSR
14875
14876         fadd.x          FP_SCR0(%a6),%fp1       # execute add
14877
14878         fmov.l          &0x0,%fpcr              # clear FPCR
14879
14880         fabs.x          %fp0                    # compare absolute values
14881         fabs.x          %fp1
14882         fcmp.x          %fp0,%fp1               # is first result > second?
14883
14884         fbgt.w          fadd_unfl               # yes; it's an underflow
14885         bra.w           fadd_normal             # no; it's not an underflow
14886
14887 ##########################################################################
14888
14889 #
14890 # Add: inputs are not both normalized; what are they?
14891 #
14892 fadd_not_norm:
14893         mov.w           (tbl_fadd_op.b,%pc,%d1.w*2),%d1
14894         jmp             (tbl_fadd_op.b,%pc,%d1.w*1)
14895
14896         swbeg           &48
14897 tbl_fadd_op:
14898         short           fadd_norm       - tbl_fadd_op # NORM + NORM
14899         short           fadd_zero_src   - tbl_fadd_op # NORM + ZERO
14900         short           fadd_inf_src    - tbl_fadd_op # NORM + INF
14901         short           fadd_res_qnan   - tbl_fadd_op # NORM + QNAN
14902         short           fadd_norm       - tbl_fadd_op # NORM + DENORM
14903         short           fadd_res_snan   - tbl_fadd_op # NORM + SNAN
14904         short           tbl_fadd_op     - tbl_fadd_op #
14905         short           tbl_fadd_op     - tbl_fadd_op #
14906
14907         short           fadd_zero_dst   - tbl_fadd_op # ZERO + NORM
14908         short           fadd_zero_2     - tbl_fadd_op # ZERO + ZERO
14909         short           fadd_inf_src    - tbl_fadd_op # ZERO + INF
14910         short           fadd_res_qnan   - tbl_fadd_op # NORM + QNAN
14911         short           fadd_zero_dst   - tbl_fadd_op # ZERO + DENORM
14912         short           fadd_res_snan   - tbl_fadd_op # NORM + SNAN
14913         short           tbl_fadd_op     - tbl_fadd_op #
14914         short           tbl_fadd_op     - tbl_fadd_op #
14915
14916         short           fadd_inf_dst    - tbl_fadd_op # INF + NORM
14917         short           fadd_inf_dst    - tbl_fadd_op # INF + ZERO
14918         short           fadd_inf_2      - tbl_fadd_op # INF + INF
14919         short           fadd_res_qnan   - tbl_fadd_op # NORM + QNAN
14920         short           fadd_inf_dst    - tbl_fadd_op # INF + DENORM
14921         short           fadd_res_snan   - tbl_fadd_op # NORM + SNAN
14922         short           tbl_fadd_op     - tbl_fadd_op #
14923         short           tbl_fadd_op     - tbl_fadd_op #
14924
14925         short           fadd_res_qnan   - tbl_fadd_op # QNAN + NORM
14926         short           fadd_res_qnan   - tbl_fadd_op # QNAN + ZERO
14927         short           fadd_res_qnan   - tbl_fadd_op # QNAN + INF
14928         short           fadd_res_qnan   - tbl_fadd_op # QNAN + QNAN
14929         short           fadd_res_qnan   - tbl_fadd_op # QNAN + DENORM
14930         short           fadd_res_snan   - tbl_fadd_op # QNAN + SNAN
14931         short           tbl_fadd_op     - tbl_fadd_op #
14932         short           tbl_fadd_op     - tbl_fadd_op #
14933
14934         short           fadd_norm       - tbl_fadd_op # DENORM + NORM
14935         short           fadd_zero_src   - tbl_fadd_op # DENORM + ZERO
14936         short           fadd_inf_src    - tbl_fadd_op # DENORM + INF
14937         short           fadd_res_qnan   - tbl_fadd_op # NORM + QNAN
14938         short           fadd_norm       - tbl_fadd_op # DENORM + DENORM
14939         short           fadd_res_snan   - tbl_fadd_op # NORM + SNAN
14940         short           tbl_fadd_op     - tbl_fadd_op #
14941         short           tbl_fadd_op     - tbl_fadd_op #
14942
14943         short           fadd_res_snan   - tbl_fadd_op # SNAN + NORM
14944         short           fadd_res_snan   - tbl_fadd_op # SNAN + ZERO
14945         short           fadd_res_snan   - tbl_fadd_op # SNAN + INF
14946         short           fadd_res_snan   - tbl_fadd_op # SNAN + QNAN
14947         short           fadd_res_snan   - tbl_fadd_op # SNAN + DENORM
14948         short           fadd_res_snan   - tbl_fadd_op # SNAN + SNAN
14949         short           tbl_fadd_op     - tbl_fadd_op #
14950         short           tbl_fadd_op     - tbl_fadd_op #
14951
14952 fadd_res_qnan:
14953         bra.l           res_qnan
14954 fadd_res_snan:
14955         bra.l           res_snan
14956
14957 #
14958 # both operands are ZEROes
14959 #
14960 fadd_zero_2:
14961         mov.b           SRC_EX(%a0),%d0         # are the signs opposite
14962         mov.b           DST_EX(%a1),%d1
14963         eor.b           %d0,%d1
14964         bmi.w           fadd_zero_2_chk_rm      # weed out (-ZERO)+(+ZERO)
14965
14966 # the signs are the same. so determine whether they are positive or negative
14967 # and return the appropriately signed zero.
14968         tst.b           %d0                     # are ZEROes positive or negative?
14969         bmi.b           fadd_zero_rm            # negative
14970         fmov.s          &0x00000000,%fp0        # return +ZERO
14971         mov.b           &z_bmask,FPSR_CC(%a6)   # set Z
14972         rts
14973
14974 #
14975 # the ZEROes have opposite signs:
14976 # - Therefore, we return +ZERO if the rounding modes are RN,RZ, or RP.
14977 # - -ZERO is returned in the case of RM.
14978 #
14979 fadd_zero_2_chk_rm:
14980         mov.b           3+L_SCR3(%a6),%d1
14981         andi.b          &0x30,%d1               # extract rnd mode
14982         cmpi.b          %d1,&rm_mode*0x10       # is rnd mode == RM?
14983         beq.b           fadd_zero_rm            # yes
14984         fmov.s          &0x00000000,%fp0        # return +ZERO
14985         mov.b           &z_bmask,FPSR_CC(%a6)   # set Z
14986         rts
14987
14988 fadd_zero_rm:
14989         fmov.s          &0x80000000,%fp0        # return -ZERO
14990         mov.b           &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z
14991         rts
14992
14993 #
14994 # one operand is a ZERO and the other is a DENORM or NORM. scale
14995 # the DENORM or NORM and jump to the regular fadd routine.
14996 #
14997 fadd_zero_dst:
14998         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
14999         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
15000         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
15001         bsr.l           scale_to_zero_src       # scale the operand
15002         clr.w           FP_SCR1_EX(%a6)
15003         clr.l           FP_SCR1_HI(%a6)
15004         clr.l           FP_SCR1_LO(%a6)
15005         bra.w           fadd_zero_entry         # go execute fadd
15006
15007 fadd_zero_src:
15008         mov.w           DST_EX(%a1),FP_SCR1_EX(%a6)
15009         mov.l           DST_HI(%a1),FP_SCR1_HI(%a6)
15010         mov.l           DST_LO(%a1),FP_SCR1_LO(%a6)
15011         bsr.l           scale_to_zero_dst       # scale the operand
15012         clr.w           FP_SCR0_EX(%a6)
15013         clr.l           FP_SCR0_HI(%a6)
15014         clr.l           FP_SCR0_LO(%a6)
15015         bra.w           fadd_zero_entry         # go execute fadd
15016
15017 #
15018 # both operands are INFs. an OPERR will result if the INFs have
15019 # different signs. else, an INF of the same sign is returned
15020 #
15021 fadd_inf_2:
15022         mov.b           SRC_EX(%a0),%d0         # exclusive or the signs
15023         mov.b           DST_EX(%a1),%d1
15024         eor.b           %d1,%d0
15025         bmi.l           res_operr               # weed out (-INF)+(+INF)
15026
15027 # ok, so it's not an OPERR. but, we do have to remember to return the
15028 # src INF since that's where the 881/882 gets the j-bit from...
15029
15030 #
15031 # operands are INF and one of {ZERO, INF, DENORM, NORM}
15032 #
15033 fadd_inf_src:
15034         fmovm.x         SRC(%a0),&0x80          # return src INF
15035         tst.b           SRC_EX(%a0)             # is INF positive?
15036         bpl.b           fadd_inf_done           # yes; we're done
15037         mov.b           &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
15038         rts
15039
15040 #
15041 # operands are INF and one of {ZERO, INF, DENORM, NORM}
15042 #
15043 fadd_inf_dst:
15044         fmovm.x         DST(%a1),&0x80          # return dst INF
15045         tst.b           DST_EX(%a1)             # is INF positive?
15046         bpl.b           fadd_inf_done           # yes; we're done
15047         mov.b           &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
15048         rts
15049
15050 fadd_inf_done:
15051         mov.b           &inf_bmask,FPSR_CC(%a6) # set INF
15052         rts
15053
15054 #########################################################################
15055 # XDEF **************************************************************** #
15056 #       fsub(): emulates the fsub instruction                           #
15057 #       fssub(): emulates the fssub instruction                         #
15058 #       fdsub(): emulates the fdsub instruction                         #
15059 #                                                                       #
15060 # XREF **************************************************************** #
15061 #       addsub_scaler2() - scale the operands so they won't take exc    #
15062 #       ovf_res() - return default overflow result                      #
15063 #       unf_res() - return default underflow result                     #
15064 #       res_qnan() - set QNAN result                                    #
15065 #       res_snan() - set SNAN result                                    #
15066 #       res_operr() - set OPERR result                                  #
15067 #       scale_to_zero_src() - set src operand exponent equal to zero    #
15068 #       scale_to_zero_dst() - set dst operand exponent equal to zero    #
15069 #                                                                       #
15070 # INPUT *************************************************************** #
15071 #       a0 = pointer to extended precision source operand               #
15072 #       a1 = pointer to extended precision destination operand          #
15073 #                                                                       #
15074 # OUTPUT ************************************************************** #
15075 #       fp0 = result                                                    #
15076 #       fp1 = EXOP (if exception occurred)                              #
15077 #                                                                       #
15078 # ALGORITHM *********************************************************** #
15079 #       Handle NANs, infinities, and zeroes as special cases. Divide    #
15080 # norms into extended, single, and double precision.                    #
15081 #       Do subtraction after scaling exponents such that exception won't#
15082 # occur. Then, check result exponent to see if exception would have     #
15083 # occurred. If so, return default result and maybe EXOP. Else, insert   #
15084 # the correct result exponent and return. Set FPSR bits as appropriate. #
15085 #                                                                       #
15086 #########################################################################
15087
15088         global          fssub
15089 fssub:
15090         andi.b          &0x30,%d0               # clear rnd prec
15091         ori.b           &s_mode*0x10,%d0        # insert sgl prec
15092         bra.b           fsub
15093
15094         global          fdsub
15095 fdsub:
15096         andi.b          &0x30,%d0               # clear rnd prec
15097         ori.b           &d_mode*0x10,%d0        # insert dbl prec
15098
15099         global          fsub
15100 fsub:
15101         mov.l           %d0,L_SCR3(%a6)         # store rnd info
15102
15103         clr.w           %d1
15104         mov.b           DTAG(%a6),%d1
15105         lsl.b           &0x3,%d1
15106         or.b            STAG(%a6),%d1           # combine src tags
15107
15108         bne.w           fsub_not_norm           # optimize on non-norm input
15109
15110 #
15111 # SUB: norms and denorms
15112 #
15113 fsub_norm:
15114         bsr.l           addsub_scaler2          # scale exponents
15115
15116 fsub_zero_entry:
15117         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
15118
15119         fmov.l          &0x0,%fpsr              # clear FPSR
15120         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
15121
15122         fsub.x          FP_SCR0(%a6),%fp0       # execute subtract
15123
15124         fmov.l          &0x0,%fpcr              # clear FPCR
15125         fmov.l          %fpsr,%d1               # fetch INEX2, N, Z
15126
15127         or.l            %d1,USER_FPSR(%a6)      # save exc and ccode bits
15128
15129         fbeq.w          fsub_zero_exit          # if result zero, end now
15130
15131         mov.l           %d2,-(%sp)              # save d2
15132
15133         fmovm.x         &0x01,-(%sp)            # save result to stack
15134
15135         mov.w           2+L_SCR3(%a6),%d1
15136         lsr.b           &0x6,%d1
15137
15138         mov.w           (%sp),%d2               # fetch new exponent
15139         andi.l          &0x7fff,%d2             # strip sign
15140         sub.l           %d0,%d2                 # add scale factor
15141
15142         cmp.l           %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow?
15143         bge.b           fsub_ovfl               # yes
15144
15145         cmp.l           %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow?
15146         blt.w           fsub_unfl               # yes
15147         beq.w           fsub_may_unfl           # maybe; go find out
15148
15149 fsub_normal:
15150         mov.w           (%sp),%d1
15151         andi.w          &0x8000,%d1             # keep sign
15152         or.w            %d2,%d1                 # insert new exponent
15153         mov.w           %d1,(%sp)               # insert new exponent
15154
15155         fmovm.x         (%sp)+,&0x80            # return result in fp0
15156
15157         mov.l           (%sp)+,%d2              # restore d2
15158         rts
15159
15160 fsub_zero_exit:
15161 #       fmov.s          &0x00000000,%fp0        # return zero in fp0
15162         rts
15163
15164 tbl_fsub_ovfl:
15165         long            0x7fff                  # ext ovfl
15166         long            0x407f                  # sgl ovfl
15167         long            0x43ff                  # dbl ovfl
15168
15169 tbl_fsub_unfl:
15170         long            0x0000                  # ext unfl
15171         long            0x3f81                  # sgl unfl
15172         long            0x3c01                  # dbl unfl
15173
15174 fsub_ovfl:
15175         or.l            &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
15176
15177         mov.b           FPCR_ENABLE(%a6),%d1
15178         andi.b          &0x13,%d1               # is OVFL or INEX enabled?
15179         bne.b           fsub_ovfl_ena           # yes
15180
15181         add.l           &0xc,%sp
15182 fsub_ovfl_dis:
15183         btst            &neg_bit,FPSR_CC(%a6)   # is result negative?
15184         sne             %d1                     # set sign param accordingly
15185         mov.l           L_SCR3(%a6),%d0         # pass prec:rnd
15186         bsr.l           ovf_res                 # calculate default result
15187         or.b            %d0,FPSR_CC(%a6)        # set INF,N if applicable
15188         fmovm.x         (%a0),&0x80             # return default result in fp0
15189         mov.l           (%sp)+,%d2              # restore d2
15190         rts
15191
15192 fsub_ovfl_ena:
15193         mov.b           L_SCR3(%a6),%d1
15194         andi.b          &0xc0,%d1               # is precision extended?
15195         bne.b           fsub_ovfl_ena_sd        # no
15196
15197 fsub_ovfl_ena_cont:
15198         mov.w           (%sp),%d1               # fetch {sgn,exp}
15199         andi.w          &0x8000,%d1             # keep sign
15200         subi.l          &0x6000,%d2             # subtract new bias
15201         andi.w          &0x7fff,%d2             # clear top bit
15202         or.w            %d2,%d1                 # concat sign,exp
15203         mov.w           %d1,(%sp)               # insert new exponent
15204
15205         fmovm.x         (%sp)+,&0x40            # return EXOP in fp1
15206         bra.b           fsub_ovfl_dis
15207
15208 fsub_ovfl_ena_sd:
15209         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
15210
15211         mov.l           L_SCR3(%a6),%d1
15212         andi.b          &0x30,%d1               # clear rnd prec
15213         fmov.l          %d1,%fpcr               # set FPCR
15214
15215         fsub.x          FP_SCR0(%a6),%fp0       # execute subtract
15216
15217         fmov.l          &0x0,%fpcr              # clear FPCR
15218
15219         add.l           &0xc,%sp
15220         fmovm.x         &0x01,-(%sp)
15221         bra.b           fsub_ovfl_ena_cont
15222
15223 fsub_unfl:
15224         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
15225
15226         add.l           &0xc,%sp
15227
15228         fmovm.x         FP_SCR1(%a6),&0x80      # load dst op
15229
15230         fmov.l          &rz_mode*0x10,%fpcr     # set FPCR
15231         fmov.l          &0x0,%fpsr              # clear FPSR
15232
15233         fsub.x          FP_SCR0(%a6),%fp0       # execute subtract
15234
15235         fmov.l          &0x0,%fpcr              # clear FPCR
15236         fmov.l          %fpsr,%d1               # save status
15237
15238         or.l            %d1,USER_FPSR(%a6)
15239
15240         mov.b           FPCR_ENABLE(%a6),%d1
15241         andi.b          &0x0b,%d1               # is UNFL or INEX enabled?
15242         bne.b           fsub_unfl_ena           # yes
15243
15244 fsub_unfl_dis:
15245         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
15246
15247         lea             FP_SCR0(%a6),%a0        # pass: result addr
15248         mov.l           L_SCR3(%a6),%d1         # pass: rnd prec,mode
15249         bsr.l           unf_res                 # calculate default result
15250         or.b            %d0,FPSR_CC(%a6)        # 'Z' may have been set
15251         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
15252         mov.l           (%sp)+,%d2              # restore d2
15253         rts
15254
15255 fsub_unfl_ena:
15256         fmovm.x         FP_SCR1(%a6),&0x40
15257
15258         mov.l           L_SCR3(%a6),%d1
15259         andi.b          &0xc0,%d1               # is precision extended?
15260         bne.b           fsub_unfl_ena_sd        # no
15261
15262         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
15263
15264 fsub_unfl_ena_cont:
15265         fmov.l          &0x0,%fpsr              # clear FPSR
15266
15267         fsub.x          FP_SCR0(%a6),%fp1       # execute subtract
15268
15269         fmov.l          &0x0,%fpcr              # clear FPCR
15270
15271         fmovm.x         &0x40,FP_SCR0(%a6)      # store result to stack
15272         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
15273         mov.l           %d1,%d2                 # make a copy
15274         andi.l          &0x7fff,%d1             # strip sign
15275         andi.w          &0x8000,%d2             # keep old sign
15276         sub.l           %d0,%d1                 # add scale factor
15277         addi.l          &0x6000,%d1             # subtract new bias
15278         andi.w          &0x7fff,%d1             # clear top bit
15279         or.w            %d2,%d1                 # concat sgn,exp
15280         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
15281         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
15282         bra.w           fsub_unfl_dis
15283
15284 fsub_unfl_ena_sd:
15285         mov.l           L_SCR3(%a6),%d1
15286         andi.b          &0x30,%d1               # clear rnd prec
15287         fmov.l          %d1,%fpcr               # set FPCR
15288
15289         bra.b           fsub_unfl_ena_cont
15290
15291 #
15292 # result is equal to the smallest normalized number in the selected precision
15293 # if the precision is extended, this result could not have come from an
15294 # underflow that rounded up.
15295 #
15296 fsub_may_unfl:
15297         mov.l           L_SCR3(%a6),%d1
15298         andi.b          &0xc0,%d1               # fetch rnd prec
15299         beq.w           fsub_normal             # yes; no underflow occurred
15300
15301         mov.l           0x4(%sp),%d1
15302         cmpi.l          %d1,&0x80000000         # is hi(man) = 0x80000000?
15303         bne.w           fsub_normal             # no; no underflow occurred
15304
15305         tst.l           0x8(%sp)                # is lo(man) = 0x0?
15306         bne.w           fsub_normal             # no; no underflow occurred
15307
15308         btst            &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
15309         beq.w           fsub_normal             # no; no underflow occurred
15310
15311 #
15312 # ok, so now the result has a exponent equal to the smallest normalized
15313 # exponent for the selected precision. also, the mantissa is equal to
15314 # 0x8000000000000000 and this mantissa is the result of rounding non-zero
15315 # g,r,s.
15316 # now, we must determine whether the pre-rounded result was an underflow
15317 # rounded "up" or a normalized number rounded "down".
15318 # so, we do this be re-executing the add using RZ as the rounding mode and
15319 # seeing if the new result is smaller or equal to the current result.
15320 #
15321         fmovm.x         FP_SCR1(%a6),&0x40      # load dst op into fp1
15322
15323         mov.l           L_SCR3(%a6),%d1
15324         andi.b          &0xc0,%d1               # keep rnd prec
15325         ori.b           &rz_mode*0x10,%d1       # insert rnd mode
15326         fmov.l          %d1,%fpcr               # set FPCR
15327         fmov.l          &0x0,%fpsr              # clear FPSR
15328
15329         fsub.x          FP_SCR0(%a6),%fp1       # execute subtract
15330
15331         fmov.l          &0x0,%fpcr              # clear FPCR
15332
15333         fabs.x          %fp0                    # compare absolute values
15334         fabs.x          %fp1
15335         fcmp.x          %fp0,%fp1               # is first result > second?
15336
15337         fbgt.w          fsub_unfl               # yes; it's an underflow
15338         bra.w           fsub_normal             # no; it's not an underflow
15339
15340 ##########################################################################
15341
15342 #
15343 # Sub: inputs are not both normalized; what are they?
15344 #
15345 fsub_not_norm:
15346         mov.w           (tbl_fsub_op.b,%pc,%d1.w*2),%d1
15347         jmp             (tbl_fsub_op.b,%pc,%d1.w*1)
15348
15349         swbeg           &48
15350 tbl_fsub_op:
15351         short           fsub_norm       - tbl_fsub_op # NORM - NORM
15352         short           fsub_zero_src   - tbl_fsub_op # NORM - ZERO
15353         short           fsub_inf_src    - tbl_fsub_op # NORM - INF
15354         short           fsub_res_qnan   - tbl_fsub_op # NORM - QNAN
15355         short           fsub_norm       - tbl_fsub_op # NORM - DENORM
15356         short           fsub_res_snan   - tbl_fsub_op # NORM - SNAN
15357         short           tbl_fsub_op     - tbl_fsub_op #
15358         short           tbl_fsub_op     - tbl_fsub_op #
15359
15360         short           fsub_zero_dst   - tbl_fsub_op # ZERO - NORM
15361         short           fsub_zero_2     - tbl_fsub_op # ZERO - ZERO
15362         short           fsub_inf_src    - tbl_fsub_op # ZERO - INF
15363         short           fsub_res_qnan   - tbl_fsub_op # NORM - QNAN
15364         short           fsub_zero_dst   - tbl_fsub_op # ZERO - DENORM
15365         short           fsub_res_snan   - tbl_fsub_op # NORM - SNAN
15366         short           tbl_fsub_op     - tbl_fsub_op #
15367         short           tbl_fsub_op     - tbl_fsub_op #
15368
15369         short           fsub_inf_dst    - tbl_fsub_op # INF - NORM
15370         short           fsub_inf_dst    - tbl_fsub_op # INF - ZERO
15371         short           fsub_inf_2      - tbl_fsub_op # INF - INF
15372         short           fsub_res_qnan   - tbl_fsub_op # NORM - QNAN
15373         short           fsub_inf_dst    - tbl_fsub_op # INF - DENORM
15374         short           fsub_res_snan   - tbl_fsub_op # NORM - SNAN
15375         short           tbl_fsub_op     - tbl_fsub_op #
15376         short           tbl_fsub_op     - tbl_fsub_op #
15377
15378         short           fsub_res_qnan   - tbl_fsub_op # QNAN - NORM
15379         short           fsub_res_qnan   - tbl_fsub_op # QNAN - ZERO
15380         short           fsub_res_qnan   - tbl_fsub_op # QNAN - INF
15381         short           fsub_res_qnan   - tbl_fsub_op # QNAN - QNAN
15382         short           fsub_res_qnan   - tbl_fsub_op # QNAN - DENORM
15383         short           fsub_res_snan   - tbl_fsub_op # QNAN - SNAN
15384         short           tbl_fsub_op     - tbl_fsub_op #
15385         short           tbl_fsub_op     - tbl_fsub_op #
15386
15387         short           fsub_norm       - tbl_fsub_op # DENORM - NORM
15388         short           fsub_zero_src   - tbl_fsub_op # DENORM - ZERO
15389         short           fsub_inf_src    - tbl_fsub_op # DENORM - INF
15390         short           fsub_res_qnan   - tbl_fsub_op # NORM - QNAN
15391         short           fsub_norm       - tbl_fsub_op # DENORM - DENORM
15392         short           fsub_res_snan   - tbl_fsub_op # NORM - SNAN
15393         short           tbl_fsub_op     - tbl_fsub_op #
15394         short           tbl_fsub_op     - tbl_fsub_op #
15395
15396         short           fsub_res_snan   - tbl_fsub_op # SNAN - NORM
15397         short           fsub_res_snan   - tbl_fsub_op # SNAN - ZERO
15398         short           fsub_res_snan   - tbl_fsub_op # SNAN - INF
15399         short           fsub_res_snan   - tbl_fsub_op # SNAN - QNAN
15400         short           fsub_res_snan   - tbl_fsub_op # SNAN - DENORM
15401         short           fsub_res_snan   - tbl_fsub_op # SNAN - SNAN
15402         short           tbl_fsub_op     - tbl_fsub_op #
15403         short           tbl_fsub_op     - tbl_fsub_op #
15404
15405 fsub_res_qnan:
15406         bra.l           res_qnan
15407 fsub_res_snan:
15408         bra.l           res_snan
15409
15410 #
15411 # both operands are ZEROes
15412 #
15413 fsub_zero_2:
15414         mov.b           SRC_EX(%a0),%d0
15415         mov.b           DST_EX(%a1),%d1
15416         eor.b           %d1,%d0
15417         bpl.b           fsub_zero_2_chk_rm
15418
15419 # the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO
15420         tst.b           %d0                     # is dst negative?
15421         bmi.b           fsub_zero_2_rm          # yes
15422         fmov.s          &0x00000000,%fp0        # no; return +ZERO
15423         mov.b           &z_bmask,FPSR_CC(%a6)   # set Z
15424         rts
15425
15426 #
15427 # the ZEROes have the same signs:
15428 # - Therefore, we return +ZERO if the rounding mode is RN,RZ, or RP
15429 # - -ZERO is returned in the case of RM.
15430 #
15431 fsub_zero_2_chk_rm:
15432         mov.b           3+L_SCR3(%a6),%d1
15433         andi.b          &0x30,%d1               # extract rnd mode
15434         cmpi.b          %d1,&rm_mode*0x10       # is rnd mode = RM?
15435         beq.b           fsub_zero_2_rm          # yes
15436         fmov.s          &0x00000000,%fp0        # no; return +ZERO
15437         mov.b           &z_bmask,FPSR_CC(%a6)   # set Z
15438         rts
15439
15440 fsub_zero_2_rm:
15441         fmov.s          &0x80000000,%fp0        # return -ZERO
15442         mov.b           &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG
15443         rts
15444
15445 #
15446 # one operand is a ZERO and the other is a DENORM or a NORM.
15447 # scale the DENORM or NORM and jump to the regular fsub routine.
15448 #
15449 fsub_zero_dst:
15450         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
15451         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
15452         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
15453         bsr.l           scale_to_zero_src       # scale the operand
15454         clr.w           FP_SCR1_EX(%a6)
15455         clr.l           FP_SCR1_HI(%a6)
15456         clr.l           FP_SCR1_LO(%a6)
15457         bra.w           fsub_zero_entry         # go execute fsub
15458
15459 fsub_zero_src:
15460         mov.w           DST_EX(%a1),FP_SCR1_EX(%a6)
15461         mov.l           DST_HI(%a1),FP_SCR1_HI(%a6)
15462         mov.l           DST_LO(%a1),FP_SCR1_LO(%a6)
15463         bsr.l           scale_to_zero_dst       # scale the operand
15464         clr.w           FP_SCR0_EX(%a6)
15465         clr.l           FP_SCR0_HI(%a6)
15466         clr.l           FP_SCR0_LO(%a6)
15467         bra.w           fsub_zero_entry         # go execute fsub
15468
15469 #
15470 # both operands are INFs. an OPERR will result if the INFs have the
15471 # same signs. else,
15472 #
15473 fsub_inf_2:
15474         mov.b           SRC_EX(%a0),%d0         # exclusive or the signs
15475         mov.b           DST_EX(%a1),%d1
15476         eor.b           %d1,%d0
15477         bpl.l           res_operr               # weed out (-INF)+(+INF)
15478
15479 # ok, so it's not an OPERR. but we do have to remember to return
15480 # the src INF since that's where the 881/882 gets the j-bit.
15481
15482 fsub_inf_src:
15483         fmovm.x         SRC(%a0),&0x80          # return src INF
15484         fneg.x          %fp0                    # invert sign
15485         fbge.w          fsub_inf_done           # sign is now positive
15486         mov.b           &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
15487         rts
15488
15489 fsub_inf_dst:
15490         fmovm.x         DST(%a1),&0x80          # return dst INF
15491         tst.b           DST_EX(%a1)             # is INF negative?
15492         bpl.b           fsub_inf_done           # no
15493         mov.b           &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
15494         rts
15495
15496 fsub_inf_done:
15497         mov.b           &inf_bmask,FPSR_CC(%a6) # set INF
15498         rts
15499
15500 #########################################################################
15501 # XDEF **************************************************************** #
15502 #       fsqrt(): emulates the fsqrt instruction                         #
15503 #       fssqrt(): emulates the fssqrt instruction                       #
15504 #       fdsqrt(): emulates the fdsqrt instruction                       #
15505 #                                                                       #
15506 # XREF **************************************************************** #
15507 #       scale_sqrt() - scale the source operand                         #
15508 #       unf_res() - return default underflow result                     #
15509 #       ovf_res() - return default overflow result                      #
15510 #       res_qnan_1op() - return QNAN result                             #
15511 #       res_snan_1op() - return SNAN result                             #
15512 #                                                                       #
15513 # INPUT *************************************************************** #
15514 #       a0 = pointer to extended precision source operand               #
15515 #       d0  rnd prec,mode                                               #
15516 #                                                                       #
15517 # OUTPUT ************************************************************** #
15518 #       fp0 = result                                                    #
15519 #       fp1 = EXOP (if exception occurred)                              #
15520 #                                                                       #
15521 # ALGORITHM *********************************************************** #
15522 #       Handle NANs, infinities, and zeroes as special cases. Divide    #
15523 # norms/denorms into ext/sgl/dbl precision.                             #
15524 #       For norms/denorms, scale the exponents such that a sqrt         #
15525 # instruction won't cause an exception. Use the regular fsqrt to        #
15526 # compute a result. Check if the regular operands would have taken      #
15527 # an exception. If so, return the default overflow/underflow result     #
15528 # and return the EXOP if exceptions are enabled. Else, scale the        #
15529 # result operand to the proper exponent.                                #
15530 #                                                                       #
15531 #########################################################################
15532
15533         global          fssqrt
15534 fssqrt:
15535         andi.b          &0x30,%d0               # clear rnd prec
15536         ori.b           &s_mode*0x10,%d0        # insert sgl precision
15537         bra.b           fsqrt
15538
15539         global          fdsqrt
15540 fdsqrt:
15541         andi.b          &0x30,%d0               # clear rnd prec
15542         ori.b           &d_mode*0x10,%d0        # insert dbl precision
15543
15544         global          fsqrt
15545 fsqrt:
15546         mov.l           %d0,L_SCR3(%a6)         # store rnd info
15547         clr.w           %d1
15548         mov.b           STAG(%a6),%d1
15549         bne.w           fsqrt_not_norm          # optimize on non-norm input
15550
15551 #
15552 # SQUARE ROOT: norms and denorms ONLY!
15553 #
15554 fsqrt_norm:
15555         tst.b           SRC_EX(%a0)             # is operand negative?
15556         bmi.l           res_operr               # yes
15557
15558         andi.b          &0xc0,%d0               # is precision extended?
15559         bne.b           fsqrt_not_ext           # no; go handle sgl or dbl
15560
15561         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
15562         fmov.l          &0x0,%fpsr              # clear FPSR
15563
15564         fsqrt.x         (%a0),%fp0              # execute square root
15565
15566         fmov.l          %fpsr,%d1
15567         or.l            %d1,USER_FPSR(%a6)      # set N,INEX
15568
15569         rts
15570
15571 fsqrt_denorm:
15572         tst.b           SRC_EX(%a0)             # is operand negative?
15573         bmi.l           res_operr               # yes
15574
15575         andi.b          &0xc0,%d0               # is precision extended?
15576         bne.b           fsqrt_not_ext           # no; go handle sgl or dbl
15577
15578         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
15579         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
15580         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
15581
15582         bsr.l           scale_sqrt              # calculate scale factor
15583
15584         bra.w           fsqrt_sd_normal
15585
15586 #
15587 # operand is either single or double
15588 #
15589 fsqrt_not_ext:
15590         cmpi.b          %d0,&s_mode*0x10        # separate sgl/dbl prec
15591         bne.w           fsqrt_dbl
15592
15593 #
15594 # operand is to be rounded to single precision
15595 #
15596 fsqrt_sgl:
15597         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
15598         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
15599         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
15600
15601         bsr.l           scale_sqrt              # calculate scale factor
15602
15603         cmpi.l          %d0,&0x3fff-0x3f81      # will move in underflow?
15604         beq.w           fsqrt_sd_may_unfl
15605         bgt.w           fsqrt_sd_unfl           # yes; go handle underflow
15606         cmpi.l          %d0,&0x3fff-0x407f      # will move in overflow?
15607         beq.w           fsqrt_sd_may_ovfl       # maybe; go check
15608         blt.w           fsqrt_sd_ovfl           # yes; go handle overflow
15609
15610 #
15611 # operand will NOT overflow or underflow when moved in to the fp reg file
15612 #
15613 fsqrt_sd_normal:
15614         fmov.l          &0x0,%fpsr              # clear FPSR
15615         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
15616
15617         fsqrt.x         FP_SCR0(%a6),%fp0       # perform absolute
15618
15619         fmov.l          %fpsr,%d1               # save FPSR
15620         fmov.l          &0x0,%fpcr              # clear FPCR
15621
15622         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
15623
15624 fsqrt_sd_normal_exit:
15625         mov.l           %d2,-(%sp)              # save d2
15626         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
15627         mov.w           FP_SCR0_EX(%a6),%d1     # load sgn,exp
15628         mov.l           %d1,%d2                 # make a copy
15629         andi.l          &0x7fff,%d1             # strip sign
15630         sub.l           %d0,%d1                 # add scale factor
15631         andi.w          &0x8000,%d2             # keep old sign
15632         or.w            %d1,%d2                 # concat old sign,new exp
15633         mov.w           %d2,FP_SCR0_EX(%a6)     # insert new exponent
15634         mov.l           (%sp)+,%d2              # restore d2
15635         fmovm.x         FP_SCR0(%a6),&0x80      # return result in fp0
15636         rts
15637
15638 #
15639 # operand is to be rounded to double precision
15640 #
15641 fsqrt_dbl:
15642         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
15643         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
15644         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
15645
15646         bsr.l           scale_sqrt              # calculate scale factor
15647
15648         cmpi.l          %d0,&0x3fff-0x3c01      # will move in underflow?
15649         beq.w           fsqrt_sd_may_unfl
15650         bgt.b           fsqrt_sd_unfl           # yes; go handle underflow
15651         cmpi.l          %d0,&0x3fff-0x43ff      # will move in overflow?
15652         beq.w           fsqrt_sd_may_ovfl       # maybe; go check
15653         blt.w           fsqrt_sd_ovfl           # yes; go handle overflow
15654         bra.w           fsqrt_sd_normal         # no; ho handle normalized op
15655
15656 # we're on the line here and the distinguising characteristic is whether
15657 # the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number
15658 # elsewise fall through to underflow.
15659 fsqrt_sd_may_unfl:
15660         btst            &0x0,1+FP_SCR0_EX(%a6)  # is exponent 0x3fff?
15661         bne.w           fsqrt_sd_normal         # yes, so no underflow
15662
15663 #
15664 # operand WILL underflow when moved in to the fp register file
15665 #
15666 fsqrt_sd_unfl:
15667         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
15668
15669         fmov.l          &rz_mode*0x10,%fpcr     # set FPCR
15670         fmov.l          &0x0,%fpsr              # clear FPSR
15671
15672         fsqrt.x         FP_SCR0(%a6),%fp0       # execute square root
15673
15674         fmov.l          %fpsr,%d1               # save status
15675         fmov.l          &0x0,%fpcr              # clear FPCR
15676
15677         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
15678
15679 # if underflow or inexact is enabled, go calculate EXOP first.
15680         mov.b           FPCR_ENABLE(%a6),%d1
15681         andi.b          &0x0b,%d1               # is UNFL or INEX enabled?
15682         bne.b           fsqrt_sd_unfl_ena       # yes
15683
15684 fsqrt_sd_unfl_dis:
15685         fmovm.x         &0x80,FP_SCR0(%a6)      # store out result
15686
15687         lea             FP_SCR0(%a6),%a0        # pass: result addr
15688         mov.l           L_SCR3(%a6),%d1         # pass: rnd prec,mode
15689         bsr.l           unf_res                 # calculate default result
15690         or.b            %d0,FPSR_CC(%a6)        # set possible 'Z' ccode
15691         fmovm.x         FP_SCR0(%a6),&0x80      # return default result in fp0
15692         rts
15693
15694 #
15695 # operand will underflow AND underflow is enabled.
15696 # Therefore, we must return the result rounded to extended precision.
15697 #
15698 fsqrt_sd_unfl_ena:
15699         mov.l           FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
15700         mov.l           FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
15701         mov.w           FP_SCR0_EX(%a6),%d1     # load current exponent
15702
15703         mov.l           %d2,-(%sp)              # save d2
15704         mov.l           %d1,%d2                 # make a copy
15705         andi.l          &0x7fff,%d1             # strip sign
15706         andi.w          &0x8000,%d2             # keep old sign
15707         sub.l           %d0,%d1                 # subtract scale factor
15708         addi.l          &0x6000,%d1             # add new bias
15709         andi.w          &0x7fff,%d1
15710         or.w            %d2,%d1                 # concat new sign,new exp
15711         mov.w           %d1,FP_SCR1_EX(%a6)     # insert new exp
15712         fmovm.x         FP_SCR1(%a6),&0x40      # return EXOP in fp1
15713         mov.l           (%sp)+,%d2              # restore d2
15714         bra.b           fsqrt_sd_unfl_dis
15715
15716 #
15717 # operand WILL overflow.
15718 #
15719 fsqrt_sd_ovfl:
15720         fmov.l          &0x0,%fpsr              # clear FPSR
15721         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
15722
15723         fsqrt.x         FP_SCR0(%a6),%fp0       # perform square root
15724
15725         fmov.l          &0x0,%fpcr              # clear FPCR
15726         fmov.l          %fpsr,%d1               # save FPSR
15727
15728         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
15729
15730 fsqrt_sd_ovfl_tst:
15731         or.l            &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
15732
15733         mov.b           FPCR_ENABLE(%a6),%d1
15734         andi.b          &0x13,%d1               # is OVFL or INEX enabled?
15735         bne.b           fsqrt_sd_ovfl_ena       # yes
15736
15737 #
15738 # OVFL is not enabled; therefore, we must create the default result by
15739 # calling ovf_res().
15740 #
15741 fsqrt_sd_ovfl_dis:
15742         btst            &neg_bit,FPSR_CC(%a6)   # is result negative?
15743         sne             %d1                     # set sign param accordingly
15744         mov.l           L_SCR3(%a6),%d0         # pass: prec,mode
15745         bsr.l           ovf_res                 # calculate default result
15746         or.b            %d0,FPSR_CC(%a6)        # set INF,N if applicable
15747         fmovm.x         (%a0),&0x80             # return default result in fp0
15748         rts
15749
15750 #
15751 # OVFL is enabled.
15752 # the INEX2 bit has already been updated by the round to the correct precision.
15753 # now, round to extended(and don't alter the FPSR).
15754 #
15755 fsqrt_sd_ovfl_ena:
15756         mov.l           %d2,-(%sp)              # save d2
15757         mov.w           FP_SCR0_EX(%a6),%d1     # fetch {sgn,exp}
15758         mov.l           %d1,%d2                 # make a copy
15759         andi.l          &0x7fff,%d1             # strip sign
15760         andi.w          &0x8000,%d2             # keep old sign
15761         sub.l           %d0,%d1                 # add scale factor
15762         subi.l          &0x6000,%d1             # subtract bias
15763         andi.w          &0x7fff,%d1
15764         or.w            %d2,%d1                 # concat sign,exp
15765         mov.w           %d1,FP_SCR0_EX(%a6)     # insert new exponent
15766         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
15767         mov.l           (%sp)+,%d2              # restore d2
15768         bra.b           fsqrt_sd_ovfl_dis
15769
15770 #
15771 # the move in MAY underflow. so...
15772 #
15773 fsqrt_sd_may_ovfl:
15774         btst            &0x0,1+FP_SCR0_EX(%a6)  # is exponent 0x3fff?
15775         bne.w           fsqrt_sd_ovfl           # yes, so overflow
15776
15777         fmov.l          &0x0,%fpsr              # clear FPSR
15778         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
15779
15780         fsqrt.x         FP_SCR0(%a6),%fp0       # perform absolute
15781
15782         fmov.l          %fpsr,%d1               # save status
15783         fmov.l          &0x0,%fpcr              # clear FPCR
15784
15785         or.l            %d1,USER_FPSR(%a6)      # save INEX2,N
15786
15787         fmov.x          %fp0,%fp1               # make a copy of result
15788         fcmp.b          %fp1,&0x1               # is |result| >= 1.b?
15789         fbge.w          fsqrt_sd_ovfl_tst       # yes; overflow has occurred
15790
15791 # no, it didn't overflow; we have correct result
15792         bra.w           fsqrt_sd_normal_exit
15793
15794 ##########################################################################
15795
15796 #
15797 # input is not normalized; what is it?
15798 #
15799 fsqrt_not_norm:
15800         cmpi.b          %d1,&DENORM             # weed out DENORM
15801         beq.w           fsqrt_denorm
15802         cmpi.b          %d1,&ZERO               # weed out ZERO
15803         beq.b           fsqrt_zero
15804         cmpi.b          %d1,&INF                # weed out INF
15805         beq.b           fsqrt_inf
15806         cmpi.b          %d1,&SNAN               # weed out SNAN
15807         beq.l           res_snan_1op
15808         bra.l           res_qnan_1op
15809
15810 #
15811 #       fsqrt(+0) = +0
15812 #       fsqrt(-0) = -0
15813 #       fsqrt(+INF) = +INF
15814 #       fsqrt(-INF) = OPERR
15815 #
15816 fsqrt_zero:
15817         tst.b           SRC_EX(%a0)             # is ZERO positive or negative?
15818         bmi.b           fsqrt_zero_m            # negative
15819 fsqrt_zero_p:
15820         fmov.s          &0x00000000,%fp0        # return +ZERO
15821         mov.b           &z_bmask,FPSR_CC(%a6)   # set 'Z' ccode bit
15822         rts
15823 fsqrt_zero_m:
15824         fmov.s          &0x80000000,%fp0        # return -ZERO
15825         mov.b           &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
15826         rts
15827
15828 fsqrt_inf:
15829         tst.b           SRC_EX(%a0)             # is INF positive or negative?
15830         bmi.l           res_operr               # negative
15831 fsqrt_inf_p:
15832         fmovm.x         SRC(%a0),&0x80          # return +INF in fp0
15833         mov.b           &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
15834         rts
15835
15836 ##########################################################################
15837
15838 #########################################################################
15839 # XDEF **************************************************************** #
15840 #       addsub_scaler2(): scale inputs to fadd/fsub such that no        #
15841 #                         OVFL/UNFL exceptions will result              #
15842 #                                                                       #
15843 # XREF **************************************************************** #
15844 #       norm() - normalize mantissa after adjusting exponent            #
15845 #                                                                       #
15846 # INPUT *************************************************************** #
15847 #       FP_SRC(a6) = fp op1(src)                                        #
15848 #       FP_DST(a6) = fp op2(dst)                                        #
15849 #                                                                       #
15850 # OUTPUT ************************************************************** #
15851 #       FP_SRC(a6) = fp op1 scaled(src)                                 #
15852 #       FP_DST(a6) = fp op2 scaled(dst)                                 #
15853 #       d0         = scale amount                                       #
15854 #                                                                       #
15855 # ALGORITHM *********************************************************** #
15856 #       If the DST exponent is > the SRC exponent, set the DST exponent #
15857 # equal to 0x3fff and scale the SRC exponent by the value that the      #
15858 # DST exponent was scaled by. If the SRC exponent is greater or equal,  #
15859 # do the opposite. Return this scale factor in d0.                      #
15860 #       If the two exponents differ by > the number of mantissa bits    #
15861 # plus two, then set the smallest exponent to a very small value as a   #
15862 # quick shortcut.                                                       #
15863 #                                                                       #
15864 #########################################################################
15865
15866         global          addsub_scaler2
15867 addsub_scaler2:
15868         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
15869         mov.l           DST_HI(%a1),FP_SCR1_HI(%a6)
15870         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
15871         mov.l           DST_LO(%a1),FP_SCR1_LO(%a6)
15872         mov.w           SRC_EX(%a0),%d0
15873         mov.w           DST_EX(%a1),%d1
15874         mov.w           %d0,FP_SCR0_EX(%a6)
15875         mov.w           %d1,FP_SCR1_EX(%a6)
15876
15877         andi.w          &0x7fff,%d0
15878         andi.w          &0x7fff,%d1
15879         mov.w           %d0,L_SCR1(%a6)         # store src exponent
15880         mov.w           %d1,2+L_SCR1(%a6)       # store dst exponent
15881
15882         cmp.w           %d0, %d1                # is src exp >= dst exp?
15883         bge.l           src_exp_ge2
15884
15885 # dst exp is >  src exp; scale dst to exp = 0x3fff
15886 dst_exp_gt2:
15887         bsr.l           scale_to_zero_dst
15888         mov.l           %d0,-(%sp)              # save scale factor
15889
15890         cmpi.b          STAG(%a6),&DENORM       # is dst denormalized?
15891         bne.b           cmpexp12
15892
15893         lea             FP_SCR0(%a6),%a0
15894         bsr.l           norm                    # normalize the denorm; result is new exp
15895         neg.w           %d0                     # new exp = -(shft val)
15896         mov.w           %d0,L_SCR1(%a6)         # inset new exp
15897
15898 cmpexp12:
15899         mov.w           2+L_SCR1(%a6),%d0
15900         subi.w          &mantissalen+2,%d0      # subtract mantissalen+2 from larger exp
15901
15902         cmp.w           %d0,L_SCR1(%a6)         # is difference >= len(mantissa)+2?
15903         bge.b           quick_scale12
15904
15905         mov.w           L_SCR1(%a6),%d0
15906         add.w           0x2(%sp),%d0            # scale src exponent by scale factor
15907         mov.w           FP_SCR0_EX(%a6),%d1
15908         and.w           &0x8000,%d1
15909         or.w            %d1,%d0                 # concat {sgn,new exp}
15910         mov.w           %d0,FP_SCR0_EX(%a6)     # insert new dst exponent
15911
15912         mov.l           (%sp)+,%d0              # return SCALE factor
15913         rts
15914
15915 quick_scale12:
15916         andi.w          &0x8000,FP_SCR0_EX(%a6) # zero src exponent
15917         bset            &0x0,1+FP_SCR0_EX(%a6)  # set exp = 1
15918
15919         mov.l           (%sp)+,%d0              # return SCALE factor
15920         rts
15921
15922 # src exp is >= dst exp; scale src to exp = 0x3fff
15923 src_exp_ge2:
15924         bsr.l           scale_to_zero_src
15925         mov.l           %d0,-(%sp)              # save scale factor
15926
15927         cmpi.b          DTAG(%a6),&DENORM       # is dst denormalized?
15928         bne.b           cmpexp22
15929         lea             FP_SCR1(%a6),%a0
15930         bsr.l           norm                    # normalize the denorm; result is new exp
15931         neg.w           %d0                     # new exp = -(shft val)
15932         mov.w           %d0,2+L_SCR1(%a6)       # inset new exp
15933
15934 cmpexp22:
15935         mov.w           L_SCR1(%a6),%d0
15936         subi.w          &mantissalen+2,%d0      # subtract mantissalen+2 from larger exp
15937
15938         cmp.w           %d0,2+L_SCR1(%a6)       # is difference >= len(mantissa)+2?
15939         bge.b           quick_scale22
15940
15941         mov.w           2+L_SCR1(%a6),%d0
15942         add.w           0x2(%sp),%d0            # scale dst exponent by scale factor
15943         mov.w           FP_SCR1_EX(%a6),%d1
15944         andi.w          &0x8000,%d1
15945         or.w            %d1,%d0                 # concat {sgn,new exp}
15946         mov.w           %d0,FP_SCR1_EX(%a6)     # insert new dst exponent
15947
15948         mov.l           (%sp)+,%d0              # return SCALE factor
15949         rts
15950
15951 quick_scale22:
15952         andi.w          &0x8000,FP_SCR1_EX(%a6) # zero dst exponent
15953         bset            &0x0,1+FP_SCR1_EX(%a6)  # set exp = 1
15954
15955         mov.l           (%sp)+,%d0              # return SCALE factor
15956         rts
15957
15958 ##########################################################################
15959
15960 #########################################################################
15961 # XDEF **************************************************************** #
15962 #       scale_to_zero_src(): scale the exponent of extended precision   #
15963 #                            value at FP_SCR0(a6).                      #
15964 #                                                                       #
15965 # XREF **************************************************************** #
15966 #       norm() - normalize the mantissa if the operand was a DENORM     #
15967 #                                                                       #
15968 # INPUT *************************************************************** #
15969 #       FP_SCR0(a6) = extended precision operand to be scaled           #
15970 #                                                                       #
15971 # OUTPUT ************************************************************** #
15972 #       FP_SCR0(a6) = scaled extended precision operand                 #
15973 #       d0          = scale value                                       #
15974 #                                                                       #
15975 # ALGORITHM *********************************************************** #
15976 #       Set the exponent of the input operand to 0x3fff. Save the value #
15977 # of the difference between the original and new exponent. Then,        #
15978 # normalize the operand if it was a DENORM. Add this normalization      #
15979 # value to the previous value. Return the result.                       #
15980 #                                                                       #
15981 #########################################################################
15982
15983         global          scale_to_zero_src
15984 scale_to_zero_src:
15985         mov.w           FP_SCR0_EX(%a6),%d1     # extract operand's {sgn,exp}
15986         mov.w           %d1,%d0                 # make a copy
15987
15988         andi.l          &0x7fff,%d1             # extract operand's exponent
15989
15990         andi.w          &0x8000,%d0             # extract operand's sgn
15991         or.w            &0x3fff,%d0             # insert new operand's exponent(=0)
15992
15993         mov.w           %d0,FP_SCR0_EX(%a6)     # insert biased exponent
15994
15995         cmpi.b          STAG(%a6),&DENORM       # is operand normalized?
15996         beq.b           stzs_denorm             # normalize the DENORM
15997
15998 stzs_norm:
15999         mov.l           &0x3fff,%d0
16000         sub.l           %d1,%d0                 # scale = BIAS + (-exp)
16001
16002         rts
16003
16004 stzs_denorm:
16005         lea             FP_SCR0(%a6),%a0        # pass ptr to src op
16006         bsr.l           norm                    # normalize denorm
16007         neg.l           %d0                     # new exponent = -(shft val)
16008         mov.l           %d0,%d1                 # prepare for op_norm call
16009         bra.b           stzs_norm               # finish scaling
16010
16011 ###
16012
16013 #########################################################################
16014 # XDEF **************************************************************** #
16015 #       scale_sqrt(): scale the input operand exponent so a subsequent  #
16016 #                     fsqrt operation won't take an exception.          #
16017 #                                                                       #
16018 # XREF **************************************************************** #
16019 #       norm() - normalize the mantissa if the operand was a DENORM     #
16020 #                                                                       #
16021 # INPUT *************************************************************** #
16022 #       FP_SCR0(a6) = extended precision operand to be scaled           #
16023 #                                                                       #
16024 # OUTPUT ************************************************************** #
16025 #       FP_SCR0(a6) = scaled extended precision operand                 #
16026 #       d0          = scale value                                       #
16027 #                                                                       #
16028 # ALGORITHM *********************************************************** #
16029 #       If the input operand is a DENORM, normalize it.                 #
16030 #       If the exponent of the input operand is even, set the exponent  #
16031 # to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the       #
16032 # exponent of the input operand is off, set the exponent to ox3fff and  #
16033 # return a scale factor of "(exp-0x3fff)/2".                            #
16034 #                                                                       #
16035 #########################################################################
16036
16037         global          scale_sqrt
16038 scale_sqrt:
16039         cmpi.b          STAG(%a6),&DENORM       # is operand normalized?
16040         beq.b           ss_denorm               # normalize the DENORM
16041
16042         mov.w           FP_SCR0_EX(%a6),%d1     # extract operand's {sgn,exp}
16043         andi.l          &0x7fff,%d1             # extract operand's exponent
16044
16045         andi.w          &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn
16046
16047         btst            &0x0,%d1                # is exp even or odd?
16048         beq.b           ss_norm_even
16049
16050         ori.w           &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
16051
16052         mov.l           &0x3fff,%d0
16053         sub.l           %d1,%d0                 # scale = BIAS + (-exp)
16054         asr.l           &0x1,%d0                # divide scale factor by 2
16055         rts
16056
16057 ss_norm_even:
16058         ori.w           &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
16059
16060         mov.l           &0x3ffe,%d0
16061         sub.l           %d1,%d0                 # scale = BIAS + (-exp)
16062         asr.l           &0x1,%d0                # divide scale factor by 2
16063         rts
16064
16065 ss_denorm:
16066         lea             FP_SCR0(%a6),%a0        # pass ptr to src op
16067         bsr.l           norm                    # normalize denorm
16068
16069         btst            &0x0,%d0                # is exp even or odd?
16070         beq.b           ss_denorm_even
16071
16072         ori.w           &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
16073
16074         add.l           &0x3fff,%d0
16075         asr.l           &0x1,%d0                # divide scale factor by 2
16076         rts
16077
16078 ss_denorm_even:
16079         ori.w           &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
16080
16081         add.l           &0x3ffe,%d0
16082         asr.l           &0x1,%d0                # divide scale factor by 2
16083         rts
16084
16085 ###
16086
16087 #########################################################################
16088 # XDEF **************************************************************** #
16089 #       scale_to_zero_dst(): scale the exponent of extended precision   #
16090 #                            value at FP_SCR1(a6).                      #
16091 #                                                                       #
16092 # XREF **************************************************************** #
16093 #       norm() - normalize the mantissa if the operand was a DENORM     #
16094 #                                                                       #
16095 # INPUT *************************************************************** #
16096 #       FP_SCR1(a6) = extended precision operand to be scaled           #
16097 #                                                                       #
16098 # OUTPUT ************************************************************** #
16099 #       FP_SCR1(a6) = scaled extended precision operand                 #
16100 #       d0          = scale value                                       #
16101 #                                                                       #
16102 # ALGORITHM *********************************************************** #
16103 #       Set the exponent of the input operand to 0x3fff. Save the value #
16104 # of the difference between the original and new exponent. Then,        #
16105 # normalize the operand if it was a DENORM. Add this normalization      #
16106 # value to the previous value. Return the result.                       #
16107 #                                                                       #
16108 #########################################################################
16109
16110         global          scale_to_zero_dst
16111 scale_to_zero_dst:
16112         mov.w           FP_SCR1_EX(%a6),%d1     # extract operand's {sgn,exp}
16113         mov.w           %d1,%d0                 # make a copy
16114
16115         andi.l          &0x7fff,%d1             # extract operand's exponent
16116
16117         andi.w          &0x8000,%d0             # extract operand's sgn
16118         or.w            &0x3fff,%d0             # insert new operand's exponent(=0)
16119
16120         mov.w           %d0,FP_SCR1_EX(%a6)     # insert biased exponent
16121
16122         cmpi.b          DTAG(%a6),&DENORM       # is operand normalized?
16123         beq.b           stzd_denorm             # normalize the DENORM
16124
16125 stzd_norm:
16126         mov.l           &0x3fff,%d0
16127         sub.l           %d1,%d0                 # scale = BIAS + (-exp)
16128         rts
16129
16130 stzd_denorm:
16131         lea             FP_SCR1(%a6),%a0        # pass ptr to dst op
16132         bsr.l           norm                    # normalize denorm
16133         neg.l           %d0                     # new exponent = -(shft val)
16134         mov.l           %d0,%d1                 # prepare for op_norm call
16135         bra.b           stzd_norm               # finish scaling
16136
16137 ##########################################################################
16138
16139 #########################################################################
16140 # XDEF **************************************************************** #
16141 #       res_qnan(): return default result w/ QNAN operand for dyadic    #
16142 #       res_snan(): return default result w/ SNAN operand for dyadic    #
16143 #       res_qnan_1op(): return dflt result w/ QNAN operand for monadic  #
16144 #       res_snan_1op(): return dflt result w/ SNAN operand for monadic  #
16145 #                                                                       #
16146 # XREF **************************************************************** #
16147 #       None                                                            #
16148 #                                                                       #
16149 # INPUT *************************************************************** #
16150 #       FP_SRC(a6) = pointer to extended precision src operand          #
16151 #       FP_DST(a6) = pointer to extended precision dst operand          #
16152 #                                                                       #
16153 # OUTPUT ************************************************************** #
16154 #       fp0 = default result                                            #
16155 #                                                                       #
16156 # ALGORITHM *********************************************************** #
16157 #       If either operand (but not both operands) of an operation is a  #
16158 # nonsignalling NAN, then that NAN is returned as the result. If both   #
16159 # operands are nonsignalling NANs, then the destination operand         #
16160 # nonsignalling NAN is returned as the result.                          #
16161 #       If either operand to an operation is a signalling NAN (SNAN),   #
16162 # then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap      #
16163 # enable bit is set in the FPCR, then the trap is taken and the         #
16164 # destination is not modified. If the SNAN trap enable bit is not set,  #
16165 # then the SNAN is converted to a nonsignalling NAN (by setting the     #
16166 # SNAN bit in the operand to one), and the operation continues as       #
16167 # described in the preceding paragraph, for nonsignalling NANs.         #
16168 #       Make sure the appropriate FPSR bits are set before exiting.     #
16169 #                                                                       #
16170 #########################################################################
16171
16172         global          res_qnan
16173         global          res_snan
16174 res_qnan:
16175 res_snan:
16176         cmp.b           DTAG(%a6), &SNAN        # is the dst an SNAN?
16177         beq.b           dst_snan2
16178         cmp.b           DTAG(%a6), &QNAN        # is the dst a  QNAN?
16179         beq.b           dst_qnan2
16180 src_nan:
16181         cmp.b           STAG(%a6), &QNAN
16182         beq.b           src_qnan2
16183         global          res_snan_1op
16184 res_snan_1op:
16185 src_snan2:
16186         bset            &0x6, FP_SRC_HI(%a6)    # set SNAN bit
16187         or.l            &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6)
16188         lea             FP_SRC(%a6), %a0
16189         bra.b           nan_comp
16190         global          res_qnan_1op
16191 res_qnan_1op:
16192 src_qnan2:
16193         or.l            &nan_mask, USER_FPSR(%a6)
16194         lea             FP_SRC(%a6), %a0
16195         bra.b           nan_comp
16196 dst_snan2:
16197         or.l            &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6)
16198         bset            &0x6, FP_DST_HI(%a6)    # set SNAN bit
16199         lea             FP_DST(%a6), %a0
16200         bra.b           nan_comp
16201 dst_qnan2:
16202         lea             FP_DST(%a6), %a0
16203         cmp.b           STAG(%a6), &SNAN
16204         bne             nan_done
16205         or.l            &aiop_mask+snan_mask, USER_FPSR(%a6)
16206 nan_done:
16207         or.l            &nan_mask, USER_FPSR(%a6)
16208 nan_comp:
16209         btst            &0x7, FTEMP_EX(%a0)     # is NAN neg?
16210         beq.b           nan_not_neg
16211         or.l            &neg_mask, USER_FPSR(%a6)
16212 nan_not_neg:
16213         fmovm.x         (%a0), &0x80
16214         rts
16215
16216 #########################################################################
16217 # XDEF **************************************************************** #
16218 #       res_operr(): return default result during operand error         #
16219 #                                                                       #
16220 # XREF **************************************************************** #
16221 #       None                                                            #
16222 #                                                                       #
16223 # INPUT *************************************************************** #
16224 #       None                                                            #
16225 #                                                                       #
16226 # OUTPUT ************************************************************** #
16227 #       fp0 = default operand error result                              #
16228 #                                                                       #
16229 # ALGORITHM *********************************************************** #
16230 #       An nonsignalling NAN is returned as the default result when     #
16231 # an operand error occurs for the following cases:                      #
16232 #                                                                       #
16233 #       Multiply: (Infinity x Zero)                                     #
16234 #       Divide  : (Zero / Zero) || (Infinity / Infinity)                #
16235 #                                                                       #
16236 #########################################################################
16237
16238         global          res_operr
16239 res_operr:
16240         or.l            &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6)
16241         fmovm.x         nan_return(%pc), &0x80
16242         rts
16243
16244 nan_return:
16245         long            0x7fff0000, 0xffffffff, 0xffffffff
16246
16247 #########################################################################
16248 # fdbcc(): routine to emulate the fdbcc instruction                     #
16249 #                                                                       #
16250 # XDEF **************************************************************** #
16251 #       _fdbcc()                                                        #
16252 #                                                                       #
16253 # XREF **************************************************************** #
16254 #       fetch_dreg() - fetch Dn value                                   #
16255 #       store_dreg_l() - store updated Dn value                         #
16256 #                                                                       #
16257 # INPUT *************************************************************** #
16258 #       d0 = displacement                                               #
16259 #                                                                       #
16260 # OUTPUT ************************************************************** #
16261 #       none                                                            #
16262 #                                                                       #
16263 # ALGORITHM *********************************************************** #
16264 #       This routine checks which conditional predicate is specified by #
16265 # the stacked fdbcc instruction opcode and then branches to a routine   #
16266 # for that predicate. The corresponding fbcc instruction is then used   #
16267 # to see whether the condition (specified by the stacked FPSR) is true  #
16268 # or false.                                                             #
16269 #       If a BSUN exception should be indicated, the BSUN and ABSUN     #
16270 # bits are set in the stacked FPSR. If the BSUN exception is enabled,   #
16271 # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an   #
16272 # enabled BSUN should not be flagged and the predicate is true, then    #
16273 # Dn is fetched and decremented by one. If Dn is not equal to -1, add   #
16274 # the displacement value to the stacked PC so that when an "rte" is     #
16275 # finally executed, the branch occurs.                                  #
16276 #                                                                       #
16277 #########################################################################
16278         global          _fdbcc
16279 _fdbcc:
16280         mov.l           %d0,L_SCR1(%a6)         # save displacement
16281
16282         mov.w           EXC_CMDREG(%a6),%d0     # fetch predicate
16283
16284         clr.l           %d1                     # clear scratch reg
16285         mov.b           FPSR_CC(%a6),%d1        # fetch fp ccodes
16286         ror.l           &0x8,%d1                # rotate to top byte
16287         fmov.l          %d1,%fpsr               # insert into FPSR
16288
16289         mov.w           (tbl_fdbcc.b,%pc,%d0.w*2),%d1 # load table
16290         jmp             (tbl_fdbcc.b,%pc,%d1.w) # jump to fdbcc routine
16291
16292 tbl_fdbcc:
16293         short           fdbcc_f         -       tbl_fdbcc       # 00
16294         short           fdbcc_eq        -       tbl_fdbcc       # 01
16295         short           fdbcc_ogt       -       tbl_fdbcc       # 02
16296         short           fdbcc_oge       -       tbl_fdbcc       # 03
16297         short           fdbcc_olt       -       tbl_fdbcc       # 04
16298         short           fdbcc_ole       -       tbl_fdbcc       # 05
16299         short           fdbcc_ogl       -       tbl_fdbcc       # 06
16300         short           fdbcc_or        -       tbl_fdbcc       # 07
16301         short           fdbcc_un        -       tbl_fdbcc       # 08
16302         short           fdbcc_ueq       -       tbl_fdbcc       # 09
16303         short           fdbcc_ugt       -       tbl_fdbcc       # 10
16304         short           fdbcc_uge       -       tbl_fdbcc       # 11
16305         short           fdbcc_ult       -       tbl_fdbcc       # 12
16306         short           fdbcc_ule       -       tbl_fdbcc       # 13
16307         short           fdbcc_neq       -       tbl_fdbcc       # 14
16308         short           fdbcc_t         -       tbl_fdbcc       # 15
16309         short           fdbcc_sf        -       tbl_fdbcc       # 16
16310         short           fdbcc_seq       -       tbl_fdbcc       # 17
16311         short           fdbcc_gt        -       tbl_fdbcc       # 18
16312         short           fdbcc_ge        -       tbl_fdbcc       # 19
16313         short           fdbcc_lt        -       tbl_fdbcc       # 20
16314         short           fdbcc_le        -       tbl_fdbcc       # 21
16315         short           fdbcc_gl        -       tbl_fdbcc       # 22
16316         short           fdbcc_gle       -       tbl_fdbcc       # 23
16317         short           fdbcc_ngle      -       tbl_fdbcc       # 24
16318         short           fdbcc_ngl       -       tbl_fdbcc       # 25
16319         short           fdbcc_nle       -       tbl_fdbcc       # 26
16320         short           fdbcc_nlt       -       tbl_fdbcc       # 27
16321         short           fdbcc_nge       -       tbl_fdbcc       # 28
16322         short           fdbcc_ngt       -       tbl_fdbcc       # 29
16323         short           fdbcc_sneq      -       tbl_fdbcc       # 30
16324         short           fdbcc_st        -       tbl_fdbcc       # 31
16325
16326 #########################################################################
16327 #                                                                       #
16328 # IEEE Nonaware tests                                                   #
16329 #                                                                       #
16330 # For the IEEE nonaware tests, only the false branch changes the        #
16331 # counter. However, the true branch may set bsun so we check to see     #
16332 # if the NAN bit is set, in which case BSUN and AIOP will be set.       #
16333 #                                                                       #
16334 # The cases EQ and NE are shared by the Aware and Nonaware groups       #
16335 # and are incapable of setting the BSUN exception bit.                  #
16336 #                                                                       #
16337 # Typically, only one of the two possible branch directions could       #
16338 # have the NAN bit set.                                                 #
16339 # (This is assuming the mutual exclusiveness of FPSR cc bit groupings   #
16340 #  is preserved.)                                                       #
16341 #                                                                       #
16342 #########################################################################
16343
16344 #
16345 # equal:
16346 #
16347 #       Z
16348 #
16349 fdbcc_eq:
16350         fbeq.w          fdbcc_eq_yes            # equal?
16351 fdbcc_eq_no:
16352         bra.w           fdbcc_false             # no; go handle counter
16353 fdbcc_eq_yes:
16354         rts
16355
16356 #
16357 # not equal:
16358 #       _
16359 #       Z
16360 #
16361 fdbcc_neq:
16362         fbneq.w         fdbcc_neq_yes           # not equal?
16363 fdbcc_neq_no:
16364         bra.w           fdbcc_false             # no; go handle counter
16365 fdbcc_neq_yes:
16366         rts
16367
16368 #
16369 # greater than:
16370 #       _______
16371 #       NANvZvN
16372 #
16373 fdbcc_gt:
16374         fbgt.w          fdbcc_gt_yes            # greater than?
16375         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16376         beq.w           fdbcc_false             # no;go handle counter
16377         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16378         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16379         bne.w           fdbcc_bsun              # yes; we have an exception
16380         bra.w           fdbcc_false             # no; go handle counter
16381 fdbcc_gt_yes:
16382         rts                                     # do nothing
16383
16384 #
16385 # not greater than:
16386 #
16387 #       NANvZvN
16388 #
16389 fdbcc_ngt:
16390         fbngt.w         fdbcc_ngt_yes           # not greater than?
16391 fdbcc_ngt_no:
16392         bra.w           fdbcc_false             # no; go handle counter
16393 fdbcc_ngt_yes:
16394         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16395         beq.b           fdbcc_ngt_done          # no;go finish
16396         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16397         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16398         bne.w           fdbcc_bsun              # yes; we have an exception
16399 fdbcc_ngt_done:
16400         rts                                     # no; do nothing
16401
16402 #
16403 # greater than or equal:
16404 #          _____
16405 #       Zv(NANvN)
16406 #
16407 fdbcc_ge:
16408         fbge.w          fdbcc_ge_yes            # greater than or equal?
16409 fdbcc_ge_no:
16410         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16411         beq.w           fdbcc_false             # no;go handle counter
16412         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16413         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16414         bne.w           fdbcc_bsun              # yes; we have an exception
16415         bra.w           fdbcc_false             # no; go handle counter
16416 fdbcc_ge_yes:
16417         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16418         beq.b           fdbcc_ge_yes_done       # no;go do nothing
16419         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16420         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16421         bne.w           fdbcc_bsun              # yes; we have an exception
16422 fdbcc_ge_yes_done:
16423         rts                                     # do nothing
16424
16425 #
16426 # not (greater than or equal):
16427 #              _
16428 #       NANv(N^Z)
16429 #
16430 fdbcc_nge:
16431         fbnge.w         fdbcc_nge_yes           # not (greater than or equal)?
16432 fdbcc_nge_no:
16433         bra.w           fdbcc_false             # no; go handle counter
16434 fdbcc_nge_yes:
16435         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16436         beq.b           fdbcc_nge_done          # no;go finish
16437         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16438         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16439         bne.w           fdbcc_bsun              # yes; we have an exception
16440 fdbcc_nge_done:
16441         rts                                     # no; do nothing
16442
16443 #
16444 # less than:
16445 #          _____
16446 #       N^(NANvZ)
16447 #
16448 fdbcc_lt:
16449         fblt.w          fdbcc_lt_yes            # less than?
16450 fdbcc_lt_no:
16451         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16452         beq.w           fdbcc_false             # no; go handle counter
16453         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16454         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16455         bne.w           fdbcc_bsun              # yes; we have an exception
16456         bra.w           fdbcc_false             # no; go handle counter
16457 fdbcc_lt_yes:
16458         rts                                     # do nothing
16459
16460 #
16461 # not less than:
16462 #              _
16463 #       NANv(ZvN)
16464 #
16465 fdbcc_nlt:
16466         fbnlt.w         fdbcc_nlt_yes           # not less than?
16467 fdbcc_nlt_no:
16468         bra.w           fdbcc_false             # no; go handle counter
16469 fdbcc_nlt_yes:
16470         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16471         beq.b           fdbcc_nlt_done          # no;go finish
16472         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16473         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16474         bne.w           fdbcc_bsun              # yes; we have an exception
16475 fdbcc_nlt_done:
16476         rts                                     # no; do nothing
16477
16478 #
16479 # less than or equal:
16480 #            ___
16481 #       Zv(N^NAN)
16482 #
16483 fdbcc_le:
16484         fble.w          fdbcc_le_yes            # less than or equal?
16485 fdbcc_le_no:
16486         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16487         beq.w           fdbcc_false             # no; go handle counter
16488         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16489         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16490         bne.w           fdbcc_bsun              # yes; we have an exception
16491         bra.w           fdbcc_false             # no; go handle counter
16492 fdbcc_le_yes:
16493         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16494         beq.b           fdbcc_le_yes_done       # no; go do nothing
16495         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16496         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16497         bne.w           fdbcc_bsun              # yes; we have an exception
16498 fdbcc_le_yes_done:
16499         rts                                     # do nothing
16500
16501 #
16502 # not (less than or equal):
16503 #            ___
16504 #       NANv(NvZ)
16505 #
16506 fdbcc_nle:
16507         fbnle.w         fdbcc_nle_yes           # not (less than or equal)?
16508 fdbcc_nle_no:
16509         bra.w           fdbcc_false             # no; go handle counter
16510 fdbcc_nle_yes:
16511         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16512         beq.w           fdbcc_nle_done          # no; go finish
16513         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16514         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16515         bne.w           fdbcc_bsun              # yes; we have an exception
16516 fdbcc_nle_done:
16517         rts                                     # no; do nothing
16518
16519 #
16520 # greater or less than:
16521 #       _____
16522 #       NANvZ
16523 #
16524 fdbcc_gl:
16525         fbgl.w          fdbcc_gl_yes            # greater or less than?
16526 fdbcc_gl_no:
16527         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16528         beq.w           fdbcc_false             # no; handle counter
16529         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16530         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16531         bne.w           fdbcc_bsun              # yes; we have an exception
16532         bra.w           fdbcc_false             # no; go handle counter
16533 fdbcc_gl_yes:
16534         rts                                     # do nothing
16535
16536 #
16537 # not (greater or less than):
16538 #
16539 #       NANvZ
16540 #
16541 fdbcc_ngl:
16542         fbngl.w         fdbcc_ngl_yes           # not (greater or less than)?
16543 fdbcc_ngl_no:
16544         bra.w           fdbcc_false             # no; go handle counter
16545 fdbcc_ngl_yes:
16546         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16547         beq.b           fdbcc_ngl_done          # no; go finish
16548         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16549         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16550         bne.w           fdbcc_bsun              # yes; we have an exception
16551 fdbcc_ngl_done:
16552         rts                                     # no; do nothing
16553
16554 #
16555 # greater, less, or equal:
16556 #       ___
16557 #       NAN
16558 #
16559 fdbcc_gle:
16560         fbgle.w         fdbcc_gle_yes           # greater, less, or equal?
16561 fdbcc_gle_no:
16562         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16563         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16564         bne.w           fdbcc_bsun              # yes; we have an exception
16565         bra.w           fdbcc_false             # no; go handle counter
16566 fdbcc_gle_yes:
16567         rts                                     # do nothing
16568
16569 #
16570 # not (greater, less, or equal):
16571 #
16572 #       NAN
16573 #
16574 fdbcc_ngle:
16575         fbngle.w        fdbcc_ngle_yes          # not (greater, less, or equal)?
16576 fdbcc_ngle_no:
16577         bra.w           fdbcc_false             # no; go handle counter
16578 fdbcc_ngle_yes:
16579         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16580         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16581         bne.w           fdbcc_bsun              # yes; we have an exception
16582         rts                                     # no; do nothing
16583
16584 #########################################################################
16585 #                                                                       #
16586 # Miscellaneous tests                                                   #
16587 #                                                                       #
16588 # For the IEEE miscellaneous tests, all but fdbf and fdbt can set bsun. #
16589 #                                                                       #
16590 #########################################################################
16591
16592 #
16593 # false:
16594 #
16595 #       False
16596 #
16597 fdbcc_f:                                        # no bsun possible
16598         bra.w           fdbcc_false             # go handle counter
16599
16600 #
16601 # true:
16602 #
16603 #       True
16604 #
16605 fdbcc_t:                                        # no bsun possible
16606         rts                                     # do nothing
16607
16608 #
16609 # signalling false:
16610 #
16611 #       False
16612 #
16613 fdbcc_sf:
16614         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set?
16615         beq.w           fdbcc_false             # no;go handle counter
16616         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16617         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16618         bne.w           fdbcc_bsun              # yes; we have an exception
16619         bra.w           fdbcc_false             # go handle counter
16620
16621 #
16622 # signalling true:
16623 #
16624 #       True
16625 #
16626 fdbcc_st:
16627         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set?
16628         beq.b           fdbcc_st_done           # no;go finish
16629         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16630         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16631         bne.w           fdbcc_bsun              # yes; we have an exception
16632 fdbcc_st_done:
16633         rts
16634
16635 #
16636 # signalling equal:
16637 #
16638 #       Z
16639 #
16640 fdbcc_seq:
16641         fbseq.w         fdbcc_seq_yes           # signalling equal?
16642 fdbcc_seq_no:
16643         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set?
16644         beq.w           fdbcc_false             # no;go handle counter
16645         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16646         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16647         bne.w           fdbcc_bsun              # yes; we have an exception
16648         bra.w           fdbcc_false             # go handle counter
16649 fdbcc_seq_yes:
16650         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set?
16651         beq.b           fdbcc_seq_yes_done      # no;go do nothing
16652         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16653         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16654         bne.w           fdbcc_bsun              # yes; we have an exception
16655 fdbcc_seq_yes_done:
16656         rts                                     # yes; do nothing
16657
16658 #
16659 # signalling not equal:
16660 #       _
16661 #       Z
16662 #
16663 fdbcc_sneq:
16664         fbsneq.w        fdbcc_sneq_yes          # signalling not equal?
16665 fdbcc_sneq_no:
16666         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set?
16667         beq.w           fdbcc_false             # no;go handle counter
16668         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16669         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16670         bne.w           fdbcc_bsun              # yes; we have an exception
16671         bra.w           fdbcc_false             # go handle counter
16672 fdbcc_sneq_yes:
16673         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
16674         beq.w           fdbcc_sneq_done         # no;go finish
16675         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
16676         btst            &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
16677         bne.w           fdbcc_bsun              # yes; we have an exception
16678 fdbcc_sneq_done:
16679         rts
16680
16681 #########################################################################
16682 #                                                                       #
16683 # IEEE Aware tests                                                      #
16684 #                                                                       #
16685 # For the IEEE aware tests, action is only taken if the result is false.#
16686 # Therefore, the opposite branch type is used to jump to the decrement  #
16687 # routine.                                                              #
16688 # The BSUN exception will not be set for any of these tests.            #
16689 #                                                                       #
16690 #########################################################################
16691
16692 #
16693 # ordered greater than:
16694 #       _______
16695 #       NANvZvN
16696 #
16697 fdbcc_ogt:
16698         fbogt.w         fdbcc_ogt_yes           # ordered greater than?
16699 fdbcc_ogt_no:
16700         bra.w           fdbcc_false             # no; go handle counter
16701 fdbcc_ogt_yes:
16702         rts                                     # yes; do nothing
16703
16704 #
16705 # unordered or less or equal:
16706 #       _______
16707 #       NANvZvN
16708 #
16709 fdbcc_ule:
16710         fbule.w         fdbcc_ule_yes           # unordered or less or equal?
16711 fdbcc_ule_no:
16712         bra.w           fdbcc_false             # no; go handle counter
16713 fdbcc_ule_yes:
16714         rts                                     # yes; do nothing
16715
16716 #
16717 # ordered greater than or equal:
16718 #          _____
16719 #       Zv(NANvN)
16720 #
16721 fdbcc_oge:
16722         fboge.w         fdbcc_oge_yes           # ordered greater than or equal?
16723 fdbcc_oge_no:
16724         bra.w           fdbcc_false             # no; go handle counter
16725 fdbcc_oge_yes:
16726         rts                                     # yes; do nothing
16727
16728 #
16729 # unordered or less than:
16730 #              _
16731 #       NANv(N^Z)
16732 #
16733 fdbcc_ult:
16734         fbult.w         fdbcc_ult_yes           # unordered or less than?
16735 fdbcc_ult_no:
16736         bra.w           fdbcc_false             # no; go handle counter
16737 fdbcc_ult_yes:
16738         rts                                     # yes; do nothing
16739
16740 #
16741 # ordered less than:
16742 #          _____
16743 #       N^(NANvZ)
16744 #
16745 fdbcc_olt:
16746         fbolt.w         fdbcc_olt_yes           # ordered less than?
16747 fdbcc_olt_no:
16748         bra.w           fdbcc_false             # no; go handle counter
16749 fdbcc_olt_yes:
16750         rts                                     # yes; do nothing
16751
16752 #
16753 # unordered or greater or equal:
16754 #
16755 #       NANvZvN
16756 #
16757 fdbcc_uge:
16758         fbuge.w         fdbcc_uge_yes           # unordered or greater than?
16759 fdbcc_uge_no:
16760         bra.w           fdbcc_false             # no; go handle counter
16761 fdbcc_uge_yes:
16762         rts                                     # yes; do nothing
16763
16764 #
16765 # ordered less than or equal:
16766 #            ___
16767 #       Zv(N^NAN)
16768 #
16769 fdbcc_ole:
16770         fbole.w         fdbcc_ole_yes           # ordered greater or less than?
16771 fdbcc_ole_no:
16772         bra.w           fdbcc_false             # no; go handle counter
16773 fdbcc_ole_yes:
16774         rts                                     # yes; do nothing
16775
16776 #
16777 # unordered or greater than:
16778 #            ___
16779 #       NANv(NvZ)
16780 #
16781 fdbcc_ugt:
16782         fbugt.w         fdbcc_ugt_yes           # unordered or greater than?
16783 fdbcc_ugt_no:
16784         bra.w           fdbcc_false             # no; go handle counter
16785 fdbcc_ugt_yes:
16786         rts                                     # yes; do nothing
16787
16788 #
16789 # ordered greater or less than:
16790 #       _____
16791 #       NANvZ
16792 #
16793 fdbcc_ogl:
16794         fbogl.w         fdbcc_ogl_yes           # ordered greater or less than?
16795 fdbcc_ogl_no:
16796         bra.w           fdbcc_false             # no; go handle counter
16797 fdbcc_ogl_yes:
16798         rts                                     # yes; do nothing
16799
16800 #
16801 # unordered or equal:
16802 #
16803 #       NANvZ
16804 #
16805 fdbcc_ueq:
16806         fbueq.w         fdbcc_ueq_yes           # unordered or equal?
16807 fdbcc_ueq_no:
16808         bra.w           fdbcc_false             # no; go handle counter
16809 fdbcc_ueq_yes:
16810         rts                                     # yes; do nothing
16811
16812 #
16813 # ordered:
16814 #       ___
16815 #       NAN
16816 #
16817 fdbcc_or:
16818         fbor.w          fdbcc_or_yes            # ordered?
16819 fdbcc_or_no:
16820         bra.w           fdbcc_false             # no; go handle counter
16821 fdbcc_or_yes:
16822         rts                                     # yes; do nothing
16823
16824 #
16825 # unordered:
16826 #
16827 #       NAN
16828 #
16829 fdbcc_un:
16830         fbun.w          fdbcc_un_yes            # unordered?
16831 fdbcc_un_no:
16832         bra.w           fdbcc_false             # no; go handle counter
16833 fdbcc_un_yes:
16834         rts                                     # yes; do nothing
16835
16836 #######################################################################
16837
16838 #
16839 # the bsun exception bit was not set.
16840 #
16841 # (1) subtract 1 from the count register
16842 # (2) if (cr == -1) then
16843 #       pc = pc of next instruction
16844 #     else
16845 #       pc += sign_ext(16-bit displacement)
16846 #
16847 fdbcc_false:
16848         mov.b           1+EXC_OPWORD(%a6), %d1  # fetch lo opword
16849         andi.w          &0x7, %d1               # extract count register
16850
16851         bsr.l           fetch_dreg              # fetch count value
16852 # make sure that d0 isn't corrupted between calls...
16853
16854         subq.w          &0x1, %d0               # Dn - 1 -> Dn
16855
16856         bsr.l           store_dreg_l            # store new count value
16857
16858         cmpi.w          %d0, &-0x1              # is (Dn == -1)?
16859         bne.b           fdbcc_false_cont        # no;
16860         rts
16861
16862 fdbcc_false_cont:
16863         mov.l           L_SCR1(%a6),%d0         # fetch displacement
16864         add.l           USER_FPIAR(%a6),%d0     # add instruction PC
16865         addq.l          &0x4,%d0                # add instruction length
16866         mov.l           %d0,EXC_PC(%a6)         # set new PC
16867         rts
16868
16869 # the emulation routine set bsun and BSUN was enabled. have to
16870 # fix stack and jump to the bsun handler.
16871 # let the caller of this routine shift the stack frame up to
16872 # eliminate the effective address field.
16873 fdbcc_bsun:
16874         mov.b           &fbsun_flg,SPCOND_FLG(%a6)
16875         rts
16876
16877 #########################################################################
16878 # ftrapcc(): routine to emulate the ftrapcc instruction                 #
16879 #                                                                       #
16880 # XDEF **************************************************************** #
16881 #       _ftrapcc()                                                      #
16882 #                                                                       #
16883 # XREF **************************************************************** #
16884 #       none                                                            #
16885 #                                                                       #
16886 # INPUT *************************************************************** #
16887 #       none                                                            #
16888 #                                                                       #
16889 # OUTPUT ************************************************************** #
16890 #       none                                                            #
16891 #                                                                       #
16892 # ALGORITHM *********************************************************** #
16893 #       This routine checks which conditional predicate is specified by #
16894 # the stacked ftrapcc instruction opcode and then branches to a routine #
16895 # for that predicate. The corresponding fbcc instruction is then used   #
16896 # to see whether the condition (specified by the stacked FPSR) is true  #
16897 # or false.                                                             #
16898 #       If a BSUN exception should be indicated, the BSUN and ABSUN     #
16899 # bits are set in the stacked FPSR. If the BSUN exception is enabled,   #
16900 # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an   #
16901 # enabled BSUN should not be flagged and the predicate is true, then    #
16902 # the ftrapcc_flg is set in the SPCOND_FLG location. These special      #
16903 # flags indicate to the calling routine to emulate the exceptional      #
16904 # condition.                                                            #
16905 #                                                                       #
16906 #########################################################################
16907
16908         global          _ftrapcc
16909 _ftrapcc:
16910         mov.w           EXC_CMDREG(%a6),%d0     # fetch predicate
16911
16912         clr.l           %d1                     # clear scratch reg
16913         mov.b           FPSR_CC(%a6),%d1        # fetch fp ccodes
16914         ror.l           &0x8,%d1                # rotate to top byte
16915         fmov.l          %d1,%fpsr               # insert into FPSR
16916
16917         mov.w           (tbl_ftrapcc.b,%pc,%d0.w*2), %d1 # load table
16918         jmp             (tbl_ftrapcc.b,%pc,%d1.w) # jump to ftrapcc routine
16919
16920 tbl_ftrapcc:
16921         short           ftrapcc_f       -       tbl_ftrapcc     # 00
16922         short           ftrapcc_eq      -       tbl_ftrapcc     # 01
16923         short           ftrapcc_ogt     -       tbl_ftrapcc     # 02
16924         short           ftrapcc_oge     -       tbl_ftrapcc     # 03
16925         short           ftrapcc_olt     -       tbl_ftrapcc     # 04
16926         short           ftrapcc_ole     -       tbl_ftrapcc     # 05
16927         short           ftrapcc_ogl     -       tbl_ftrapcc     # 06
16928         short           ftrapcc_or      -       tbl_ftrapcc     # 07
16929         short           ftrapcc_un      -       tbl_ftrapcc     # 08
16930         short           ftrapcc_ueq     -       tbl_ftrapcc     # 09
16931         short           ftrapcc_ugt     -       tbl_ftrapcc     # 10
16932         short           ftrapcc_uge     -       tbl_ftrapcc     # 11
16933         short           ftrapcc_ult     -       tbl_ftrapcc     # 12
16934         short           ftrapcc_ule     -       tbl_ftrapcc     # 13
16935         short           ftrapcc_neq     -       tbl_ftrapcc     # 14
16936         short           ftrapcc_t       -       tbl_ftrapcc     # 15
16937         short           ftrapcc_sf      -       tbl_ftrapcc     # 16
16938         short           ftrapcc_seq     -       tbl_ftrapcc     # 17
16939         short           ftrapcc_gt      -       tbl_ftrapcc     # 18
16940         short           ftrapcc_ge      -       tbl_ftrapcc     # 19
16941         short           ftrapcc_lt      -       tbl_ftrapcc     # 20
16942         short           ftrapcc_le      -       tbl_ftrapcc     # 21
16943         short           ftrapcc_gl      -       tbl_ftrapcc     # 22
16944         short           ftrapcc_gle     -       tbl_ftrapcc     # 23
16945         short           ftrapcc_ngle    -       tbl_ftrapcc     # 24
16946         short           ftrapcc_ngl     -       tbl_ftrapcc     # 25
16947         short           ftrapcc_nle     -       tbl_ftrapcc     # 26
16948         short           ftrapcc_nlt     -       tbl_ftrapcc     # 27
16949         short           ftrapcc_nge     -       tbl_ftrapcc     # 28
16950         short           ftrapcc_ngt     -       tbl_ftrapcc     # 29
16951         short           ftrapcc_sneq    -       tbl_ftrapcc     # 30
16952         short           ftrapcc_st      -       tbl_ftrapcc     # 31
16953
16954 #########################################################################
16955 #                                                                       #
16956 # IEEE Nonaware tests                                                   #
16957 #                                                                       #
16958 # For the IEEE nonaware tests, we set the result based on the           #
16959 # floating point condition codes. In addition, we check to see          #
16960 # if the NAN bit is set, in which case BSUN and AIOP will be set.       #
16961 #                                                                       #
16962 # The cases EQ and NE are shared by the Aware and Nonaware groups       #
16963 # and are incapable of setting the BSUN exception bit.                  #
16964 #                                                                       #
16965 # Typically, only one of the two possible branch directions could       #
16966 # have the NAN bit set.                                                 #
16967 #                                                                       #
16968 #########################################################################
16969
16970 #
16971 # equal:
16972 #
16973 #       Z
16974 #
16975 ftrapcc_eq:
16976         fbeq.w          ftrapcc_trap            # equal?
16977 ftrapcc_eq_no:
16978         rts                                     # do nothing
16979
16980 #
16981 # not equal:
16982 #       _
16983 #       Z
16984 #
16985 ftrapcc_neq:
16986         fbneq.w         ftrapcc_trap            # not equal?
16987 ftrapcc_neq_no:
16988         rts                                     # do nothing
16989
16990 #
16991 # greater than:
16992 #       _______
16993 #       NANvZvN
16994 #
16995 ftrapcc_gt:
16996         fbgt.w          ftrapcc_trap            # greater than?
16997 ftrapcc_gt_no:
16998         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
16999         beq.b           ftrapcc_gt_done         # no
17000         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17001         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17002         bne.w           ftrapcc_bsun            # yes
17003 ftrapcc_gt_done:
17004         rts                                     # no; do nothing
17005
17006 #
17007 # not greater than:
17008 #
17009 #       NANvZvN
17010 #
17011 ftrapcc_ngt:
17012         fbngt.w         ftrapcc_ngt_yes         # not greater than?
17013 ftrapcc_ngt_no:
17014         rts                                     # do nothing
17015 ftrapcc_ngt_yes:
17016         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17017         beq.w           ftrapcc_trap            # no; go take trap
17018         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17019         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17020         bne.w           ftrapcc_bsun            # yes
17021         bra.w           ftrapcc_trap            # no; go take trap
17022
17023 #
17024 # greater than or equal:
17025 #          _____
17026 #       Zv(NANvN)
17027 #
17028 ftrapcc_ge:
17029         fbge.w          ftrapcc_ge_yes          # greater than or equal?
17030 ftrapcc_ge_no:
17031         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17032         beq.b           ftrapcc_ge_done         # no; go finish
17033         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17034         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17035         bne.w           ftrapcc_bsun            # yes
17036 ftrapcc_ge_done:
17037         rts                                     # no; do nothing
17038 ftrapcc_ge_yes:
17039         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17040         beq.w           ftrapcc_trap            # no; go take trap
17041         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17042         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17043         bne.w           ftrapcc_bsun            # yes
17044         bra.w           ftrapcc_trap            # no; go take trap
17045
17046 #
17047 # not (greater than or equal):
17048 #              _
17049 #       NANv(N^Z)
17050 #
17051 ftrapcc_nge:
17052         fbnge.w         ftrapcc_nge_yes         # not (greater than or equal)?
17053 ftrapcc_nge_no:
17054         rts                                     # do nothing
17055 ftrapcc_nge_yes:
17056         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17057         beq.w           ftrapcc_trap            # no; go take trap
17058         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17059         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17060         bne.w           ftrapcc_bsun            # yes
17061         bra.w           ftrapcc_trap            # no; go take trap
17062
17063 #
17064 # less than:
17065 #          _____
17066 #       N^(NANvZ)
17067 #
17068 ftrapcc_lt:
17069         fblt.w          ftrapcc_trap            # less than?
17070 ftrapcc_lt_no:
17071         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17072         beq.b           ftrapcc_lt_done         # no; go finish
17073         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17074         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17075         bne.w           ftrapcc_bsun            # yes
17076 ftrapcc_lt_done:
17077         rts                                     # no; do nothing
17078
17079 #
17080 # not less than:
17081 #              _
17082 #       NANv(ZvN)
17083 #
17084 ftrapcc_nlt:
17085         fbnlt.w         ftrapcc_nlt_yes         # not less than?
17086 ftrapcc_nlt_no:
17087         rts                                     # do nothing
17088 ftrapcc_nlt_yes:
17089         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17090         beq.w           ftrapcc_trap            # no; go take trap
17091         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17092         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17093         bne.w           ftrapcc_bsun            # yes
17094         bra.w           ftrapcc_trap            # no; go take trap
17095
17096 #
17097 # less than or equal:
17098 #            ___
17099 #       Zv(N^NAN)
17100 #
17101 ftrapcc_le:
17102         fble.w          ftrapcc_le_yes          # less than or equal?
17103 ftrapcc_le_no:
17104         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17105         beq.b           ftrapcc_le_done         # no; go finish
17106         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17107         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17108         bne.w           ftrapcc_bsun            # yes
17109 ftrapcc_le_done:
17110         rts                                     # no; do nothing
17111 ftrapcc_le_yes:
17112         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17113         beq.w           ftrapcc_trap            # no; go take trap
17114         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17115         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17116         bne.w           ftrapcc_bsun            # yes
17117         bra.w           ftrapcc_trap            # no; go take trap
17118
17119 #
17120 # not (less than or equal):
17121 #            ___
17122 #       NANv(NvZ)
17123 #
17124 ftrapcc_nle:
17125         fbnle.w         ftrapcc_nle_yes         # not (less than or equal)?
17126 ftrapcc_nle_no:
17127         rts                                     # do nothing
17128 ftrapcc_nle_yes:
17129         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17130         beq.w           ftrapcc_trap            # no; go take trap
17131         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17132         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17133         bne.w           ftrapcc_bsun            # yes
17134         bra.w           ftrapcc_trap            # no; go take trap
17135
17136 #
17137 # greater or less than:
17138 #       _____
17139 #       NANvZ
17140 #
17141 ftrapcc_gl:
17142         fbgl.w          ftrapcc_trap            # greater or less than?
17143 ftrapcc_gl_no:
17144         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17145         beq.b           ftrapcc_gl_done         # no; go finish
17146         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17147         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17148         bne.w           ftrapcc_bsun            # yes
17149 ftrapcc_gl_done:
17150         rts                                     # no; do nothing
17151
17152 #
17153 # not (greater or less than):
17154 #
17155 #       NANvZ
17156 #
17157 ftrapcc_ngl:
17158         fbngl.w         ftrapcc_ngl_yes         # not (greater or less than)?
17159 ftrapcc_ngl_no:
17160         rts                                     # do nothing
17161 ftrapcc_ngl_yes:
17162         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17163         beq.w           ftrapcc_trap            # no; go take trap
17164         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17165         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17166         bne.w           ftrapcc_bsun            # yes
17167         bra.w           ftrapcc_trap            # no; go take trap
17168
17169 #
17170 # greater, less, or equal:
17171 #       ___
17172 #       NAN
17173 #
17174 ftrapcc_gle:
17175         fbgle.w         ftrapcc_trap            # greater, less, or equal?
17176 ftrapcc_gle_no:
17177         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17178         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17179         bne.w           ftrapcc_bsun            # yes
17180         rts                                     # no; do nothing
17181
17182 #
17183 # not (greater, less, or equal):
17184 #
17185 #       NAN
17186 #
17187 ftrapcc_ngle:
17188         fbngle.w        ftrapcc_ngle_yes        # not (greater, less, or equal)?
17189 ftrapcc_ngle_no:
17190         rts                                     # do nothing
17191 ftrapcc_ngle_yes:
17192         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17193         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17194         bne.w           ftrapcc_bsun            # yes
17195         bra.w           ftrapcc_trap            # no; go take trap
17196
17197 #########################################################################
17198 #                                                                       #
17199 # Miscellaneous tests                                                   #
17200 #                                                                       #
17201 # For the IEEE aware tests, we only have to set the result based on the #
17202 # floating point condition codes. The BSUN exception will not be        #
17203 # set for any of these tests.                                           #
17204 #                                                                       #
17205 #########################################################################
17206
17207 #
17208 # false:
17209 #
17210 #       False
17211 #
17212 ftrapcc_f:
17213         rts                                     # do nothing
17214
17215 #
17216 # true:
17217 #
17218 #       True
17219 #
17220 ftrapcc_t:
17221         bra.w           ftrapcc_trap            # go take trap
17222
17223 #
17224 # signalling false:
17225 #
17226 #       False
17227 #
17228 ftrapcc_sf:
17229         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
17230         beq.b           ftrapcc_sf_done         # no; go finish
17231         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17232         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17233         bne.w           ftrapcc_bsun            # yes
17234 ftrapcc_sf_done:
17235         rts                                     # no; do nothing
17236
17237 #
17238 # signalling true:
17239 #
17240 #       True
17241 #
17242 ftrapcc_st:
17243         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
17244         beq.w           ftrapcc_trap            # no; go take trap
17245         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17246         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17247         bne.w           ftrapcc_bsun            # yes
17248         bra.w           ftrapcc_trap            # no; go take trap
17249
17250 #
17251 # signalling equal:
17252 #
17253 #       Z
17254 #
17255 ftrapcc_seq:
17256         fbseq.w         ftrapcc_seq_yes         # signalling equal?
17257 ftrapcc_seq_no:
17258         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
17259         beq.w           ftrapcc_seq_done        # no; go finish
17260         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17261         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17262         bne.w           ftrapcc_bsun            # yes
17263 ftrapcc_seq_done:
17264         rts                                     # no; do nothing
17265 ftrapcc_seq_yes:
17266         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
17267         beq.w           ftrapcc_trap            # no; go take trap
17268         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17269         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17270         bne.w           ftrapcc_bsun            # yes
17271         bra.w           ftrapcc_trap            # no; go take trap
17272
17273 #
17274 # signalling not equal:
17275 #       _
17276 #       Z
17277 #
17278 ftrapcc_sneq:
17279         fbsneq.w        ftrapcc_sneq_yes        # signalling equal?
17280 ftrapcc_sneq_no:
17281         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
17282         beq.w           ftrapcc_sneq_no_done    # no; go finish
17283         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17284         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17285         bne.w           ftrapcc_bsun            # yes
17286 ftrapcc_sneq_no_done:
17287         rts                                     # do nothing
17288 ftrapcc_sneq_yes:
17289         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
17290         beq.w           ftrapcc_trap            # no; go take trap
17291         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17292         btst            &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
17293         bne.w           ftrapcc_bsun            # yes
17294         bra.w           ftrapcc_trap            # no; go take trap
17295
17296 #########################################################################
17297 #                                                                       #
17298 # IEEE Aware tests                                                      #
17299 #                                                                       #
17300 # For the IEEE aware tests, we only have to set the result based on the #
17301 # floating point condition codes. The BSUN exception will not be        #
17302 # set for any of these tests.                                           #
17303 #                                                                       #
17304 #########################################################################
17305
17306 #
17307 # ordered greater than:
17308 #       _______
17309 #       NANvZvN
17310 #
17311 ftrapcc_ogt:
17312         fbogt.w         ftrapcc_trap            # ordered greater than?
17313 ftrapcc_ogt_no:
17314         rts                                     # do nothing
17315
17316 #
17317 # unordered or less or equal:
17318 #       _______
17319 #       NANvZvN
17320 #
17321 ftrapcc_ule:
17322         fbule.w         ftrapcc_trap            # unordered or less or equal?
17323 ftrapcc_ule_no:
17324         rts                                     # do nothing
17325
17326 #
17327 # ordered greater than or equal:
17328 #          _____
17329 #       Zv(NANvN)
17330 #
17331 ftrapcc_oge:
17332         fboge.w         ftrapcc_trap            # ordered greater than or equal?
17333 ftrapcc_oge_no:
17334         rts                                     # do nothing
17335
17336 #
17337 # unordered or less than:
17338 #              _
17339 #       NANv(N^Z)
17340 #
17341 ftrapcc_ult:
17342         fbult.w         ftrapcc_trap            # unordered or less than?
17343 ftrapcc_ult_no:
17344         rts                                     # do nothing
17345
17346 #
17347 # ordered less than:
17348 #          _____
17349 #       N^(NANvZ)
17350 #
17351 ftrapcc_olt:
17352         fbolt.w         ftrapcc_trap            # ordered less than?
17353 ftrapcc_olt_no:
17354         rts                                     # do nothing
17355
17356 #
17357 # unordered or greater or equal:
17358 #
17359 #       NANvZvN
17360 #
17361 ftrapcc_uge:
17362         fbuge.w         ftrapcc_trap            # unordered or greater than?
17363 ftrapcc_uge_no:
17364         rts                                     # do nothing
17365
17366 #
17367 # ordered less than or equal:
17368 #            ___
17369 #       Zv(N^NAN)
17370 #
17371 ftrapcc_ole:
17372         fbole.w         ftrapcc_trap            # ordered greater or less than?
17373 ftrapcc_ole_no:
17374         rts                                     # do nothing
17375
17376 #
17377 # unordered or greater than:
17378 #            ___
17379 #       NANv(NvZ)
17380 #
17381 ftrapcc_ugt:
17382         fbugt.w         ftrapcc_trap            # unordered or greater than?
17383 ftrapcc_ugt_no:
17384         rts                                     # do nothing
17385
17386 #
17387 # ordered greater or less than:
17388 #       _____
17389 #       NANvZ
17390 #
17391 ftrapcc_ogl:
17392         fbogl.w         ftrapcc_trap            # ordered greater or less than?
17393 ftrapcc_ogl_no:
17394         rts                                     # do nothing
17395
17396 #
17397 # unordered or equal:
17398 #
17399 #       NANvZ
17400 #
17401 ftrapcc_ueq:
17402         fbueq.w         ftrapcc_trap            # unordered or equal?
17403 ftrapcc_ueq_no:
17404         rts                                     # do nothing
17405
17406 #
17407 # ordered:
17408 #       ___
17409 #       NAN
17410 #
17411 ftrapcc_or:
17412         fbor.w          ftrapcc_trap            # ordered?
17413 ftrapcc_or_no:
17414         rts                                     # do nothing
17415
17416 #
17417 # unordered:
17418 #
17419 #       NAN
17420 #
17421 ftrapcc_un:
17422         fbun.w          ftrapcc_trap            # unordered?
17423 ftrapcc_un_no:
17424         rts                                     # do nothing
17425
17426 #######################################################################
17427
17428 # the bsun exception bit was not set.
17429 # we will need to jump to the ftrapcc vector. the stack frame
17430 # is the same size as that of the fp unimp instruction. the
17431 # only difference is that the <ea> field should hold the PC
17432 # of the ftrapcc instruction and the vector offset field
17433 # should denote the ftrapcc trap.
17434 ftrapcc_trap:
17435         mov.b           &ftrapcc_flg,SPCOND_FLG(%a6)
17436         rts
17437
17438 # the emulation routine set bsun and BSUN was enabled. have to
17439 # fix stack and jump to the bsun handler.
17440 # let the caller of this routine shift the stack frame up to
17441 # eliminate the effective address field.
17442 ftrapcc_bsun:
17443         mov.b           &fbsun_flg,SPCOND_FLG(%a6)
17444         rts
17445
17446 #########################################################################
17447 # fscc(): routine to emulate the fscc instruction                       #
17448 #                                                                       #
17449 # XDEF **************************************************************** #
17450 #       _fscc()                                                         #
17451 #                                                                       #
17452 # XREF **************************************************************** #
17453 #       store_dreg_b() - store result to data register file             #
17454 #       dec_areg() - decrement an areg for -(an) mode                   #
17455 #       inc_areg() - increment an areg for (an)+ mode                   #
17456 #       _dmem_write_byte() - store result to memory                     #
17457 #                                                                       #
17458 # INPUT *************************************************************** #
17459 #       none                                                            #
17460 #                                                                       #
17461 # OUTPUT ************************************************************** #
17462 #       none                                                            #
17463 #                                                                       #
17464 # ALGORITHM *********************************************************** #
17465 #       This routine checks which conditional predicate is specified by #
17466 # the stacked fscc instruction opcode and then branches to a routine    #
17467 # for that predicate. The corresponding fbcc instruction is then used   #
17468 # to see whether the condition (specified by the stacked FPSR) is true  #
17469 # or false.                                                             #
17470 #       If a BSUN exception should be indicated, the BSUN and ABSUN     #
17471 # bits are set in the stacked FPSR. If the BSUN exception is enabled,   #
17472 # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an   #
17473 # enabled BSUN should not be flagged and the predicate is true, then    #
17474 # the result is stored to the data register file or memory              #
17475 #                                                                       #
17476 #########################################################################
17477
17478         global          _fscc
17479 _fscc:
17480         mov.w           EXC_CMDREG(%a6),%d0     # fetch predicate
17481
17482         clr.l           %d1                     # clear scratch reg
17483         mov.b           FPSR_CC(%a6),%d1        # fetch fp ccodes
17484         ror.l           &0x8,%d1                # rotate to top byte
17485         fmov.l          %d1,%fpsr               # insert into FPSR
17486
17487         mov.w           (tbl_fscc.b,%pc,%d0.w*2),%d1 # load table
17488         jmp             (tbl_fscc.b,%pc,%d1.w)  # jump to fscc routine
17489
17490 tbl_fscc:
17491         short           fscc_f          -       tbl_fscc        # 00
17492         short           fscc_eq         -       tbl_fscc        # 01
17493         short           fscc_ogt        -       tbl_fscc        # 02
17494         short           fscc_oge        -       tbl_fscc        # 03
17495         short           fscc_olt        -       tbl_fscc        # 04
17496         short           fscc_ole        -       tbl_fscc        # 05
17497         short           fscc_ogl        -       tbl_fscc        # 06
17498         short           fscc_or         -       tbl_fscc        # 07
17499         short           fscc_un         -       tbl_fscc        # 08
17500         short           fscc_ueq        -       tbl_fscc        # 09
17501         short           fscc_ugt        -       tbl_fscc        # 10
17502         short           fscc_uge        -       tbl_fscc        # 11
17503         short           fscc_ult        -       tbl_fscc        # 12
17504         short           fscc_ule        -       tbl_fscc        # 13
17505         short           fscc_neq        -       tbl_fscc        # 14
17506         short           fscc_t          -       tbl_fscc        # 15
17507         short           fscc_sf         -       tbl_fscc        # 16
17508         short           fscc_seq        -       tbl_fscc        # 17
17509         short           fscc_gt         -       tbl_fscc        # 18
17510         short           fscc_ge         -       tbl_fscc        # 19
17511         short           fscc_lt         -       tbl_fscc        # 20
17512         short           fscc_le         -       tbl_fscc        # 21
17513         short           fscc_gl         -       tbl_fscc        # 22
17514         short           fscc_gle        -       tbl_fscc        # 23
17515         short           fscc_ngle       -       tbl_fscc        # 24
17516         short           fscc_ngl        -       tbl_fscc        # 25
17517         short           fscc_nle        -       tbl_fscc        # 26
17518         short           fscc_nlt        -       tbl_fscc        # 27
17519         short           fscc_nge        -       tbl_fscc        # 28
17520         short           fscc_ngt        -       tbl_fscc        # 29
17521         short           fscc_sneq       -       tbl_fscc        # 30
17522         short           fscc_st         -       tbl_fscc        # 31
17523
17524 #########################################################################
17525 #                                                                       #
17526 # IEEE Nonaware tests                                                   #
17527 #                                                                       #
17528 # For the IEEE nonaware tests, we set the result based on the           #
17529 # floating point condition codes. In addition, we check to see          #
17530 # if the NAN bit is set, in which case BSUN and AIOP will be set.       #
17531 #                                                                       #
17532 # The cases EQ and NE are shared by the Aware and Nonaware groups       #
17533 # and are incapable of setting the BSUN exception bit.                  #
17534 #                                                                       #
17535 # Typically, only one of the two possible branch directions could       #
17536 # have the NAN bit set.                                                 #
17537 #                                                                       #
17538 #########################################################################
17539
17540 #
17541 # equal:
17542 #
17543 #       Z
17544 #
17545 fscc_eq:
17546         fbeq.w          fscc_eq_yes             # equal?
17547 fscc_eq_no:
17548         clr.b           %d0                     # set false
17549         bra.w           fscc_done               # go finish
17550 fscc_eq_yes:
17551         st              %d0                     # set true
17552         bra.w           fscc_done               # go finish
17553
17554 #
17555 # not equal:
17556 #       _
17557 #       Z
17558 #
17559 fscc_neq:
17560         fbneq.w         fscc_neq_yes            # not equal?
17561 fscc_neq_no:
17562         clr.b           %d0                     # set false
17563         bra.w           fscc_done               # go finish
17564 fscc_neq_yes:
17565         st              %d0                     # set true
17566         bra.w           fscc_done               # go finish
17567
17568 #
17569 # greater than:
17570 #       _______
17571 #       NANvZvN
17572 #
17573 fscc_gt:
17574         fbgt.w          fscc_gt_yes             # greater than?
17575 fscc_gt_no:
17576         clr.b           %d0                     # set false
17577         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17578         beq.w           fscc_done               # no;go finish
17579         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17580         bra.w           fscc_chk_bsun           # go finish
17581 fscc_gt_yes:
17582         st              %d0                     # set true
17583         bra.w           fscc_done               # go finish
17584
17585 #
17586 # not greater than:
17587 #
17588 #       NANvZvN
17589 #
17590 fscc_ngt:
17591         fbngt.w         fscc_ngt_yes            # not greater than?
17592 fscc_ngt_no:
17593         clr.b           %d0                     # set false
17594         bra.w           fscc_done               # go finish
17595 fscc_ngt_yes:
17596         st              %d0                     # set true
17597         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17598         beq.w           fscc_done               # no;go finish
17599         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17600         bra.w           fscc_chk_bsun           # go finish
17601
17602 #
17603 # greater than or equal:
17604 #          _____
17605 #       Zv(NANvN)
17606 #
17607 fscc_ge:
17608         fbge.w          fscc_ge_yes             # greater than or equal?
17609 fscc_ge_no:
17610         clr.b           %d0                     # set false
17611         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17612         beq.w           fscc_done               # no;go finish
17613         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17614         bra.w           fscc_chk_bsun           # go finish
17615 fscc_ge_yes:
17616         st              %d0                     # set true
17617         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17618         beq.w           fscc_done               # no;go finish
17619         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17620         bra.w           fscc_chk_bsun           # go finish
17621
17622 #
17623 # not (greater than or equal):
17624 #              _
17625 #       NANv(N^Z)
17626 #
17627 fscc_nge:
17628         fbnge.w         fscc_nge_yes            # not (greater than or equal)?
17629 fscc_nge_no:
17630         clr.b           %d0                     # set false
17631         bra.w           fscc_done               # go finish
17632 fscc_nge_yes:
17633         st              %d0                     # set true
17634         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17635         beq.w           fscc_done               # no;go finish
17636         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17637         bra.w           fscc_chk_bsun           # go finish
17638
17639 #
17640 # less than:
17641 #          _____
17642 #       N^(NANvZ)
17643 #
17644 fscc_lt:
17645         fblt.w          fscc_lt_yes             # less than?
17646 fscc_lt_no:
17647         clr.b           %d0                     # set false
17648         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17649         beq.w           fscc_done               # no;go finish
17650         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17651         bra.w           fscc_chk_bsun           # go finish
17652 fscc_lt_yes:
17653         st              %d0                     # set true
17654         bra.w           fscc_done               # go finish
17655
17656 #
17657 # not less than:
17658 #              _
17659 #       NANv(ZvN)
17660 #
17661 fscc_nlt:
17662         fbnlt.w         fscc_nlt_yes            # not less than?
17663 fscc_nlt_no:
17664         clr.b           %d0                     # set false
17665         bra.w           fscc_done               # go finish
17666 fscc_nlt_yes:
17667         st              %d0                     # set true
17668         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17669         beq.w           fscc_done               # no;go finish
17670         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17671         bra.w           fscc_chk_bsun           # go finish
17672
17673 #
17674 # less than or equal:
17675 #            ___
17676 #       Zv(N^NAN)
17677 #
17678 fscc_le:
17679         fble.w          fscc_le_yes             # less than or equal?
17680 fscc_le_no:
17681         clr.b           %d0                     # set false
17682         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17683         beq.w           fscc_done               # no;go finish
17684         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17685         bra.w           fscc_chk_bsun           # go finish
17686 fscc_le_yes:
17687         st              %d0                     # set true
17688         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17689         beq.w           fscc_done               # no;go finish
17690         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17691         bra.w           fscc_chk_bsun           # go finish
17692
17693 #
17694 # not (less than or equal):
17695 #            ___
17696 #       NANv(NvZ)
17697 #
17698 fscc_nle:
17699         fbnle.w         fscc_nle_yes            # not (less than or equal)?
17700 fscc_nle_no:
17701         clr.b           %d0                     # set false
17702         bra.w           fscc_done               # go finish
17703 fscc_nle_yes:
17704         st              %d0                     # set true
17705         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17706         beq.w           fscc_done               # no;go finish
17707         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17708         bra.w           fscc_chk_bsun           # go finish
17709
17710 #
17711 # greater or less than:
17712 #       _____
17713 #       NANvZ
17714 #
17715 fscc_gl:
17716         fbgl.w          fscc_gl_yes             # greater or less than?
17717 fscc_gl_no:
17718         clr.b           %d0                     # set false
17719         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17720         beq.w           fscc_done               # no;go finish
17721         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17722         bra.w           fscc_chk_bsun           # go finish
17723 fscc_gl_yes:
17724         st              %d0                     # set true
17725         bra.w           fscc_done               # go finish
17726
17727 #
17728 # not (greater or less than):
17729 #
17730 #       NANvZ
17731 #
17732 fscc_ngl:
17733         fbngl.w         fscc_ngl_yes            # not (greater or less than)?
17734 fscc_ngl_no:
17735         clr.b           %d0                     # set false
17736         bra.w           fscc_done               # go finish
17737 fscc_ngl_yes:
17738         st              %d0                     # set true
17739         btst            &nan_bit, FPSR_CC(%a6)  # is NAN set in cc?
17740         beq.w           fscc_done               # no;go finish
17741         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17742         bra.w           fscc_chk_bsun           # go finish
17743
17744 #
17745 # greater, less, or equal:
17746 #       ___
17747 #       NAN
17748 #
17749 fscc_gle:
17750         fbgle.w         fscc_gle_yes            # greater, less, or equal?
17751 fscc_gle_no:
17752         clr.b           %d0                     # set false
17753         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17754         bra.w           fscc_chk_bsun           # go finish
17755 fscc_gle_yes:
17756         st              %d0                     # set true
17757         bra.w           fscc_done               # go finish
17758
17759 #
17760 # not (greater, less, or equal):
17761 #
17762 #       NAN
17763 #
17764 fscc_ngle:
17765         fbngle.w                fscc_ngle_yes   # not (greater, less, or equal)?
17766 fscc_ngle_no:
17767         clr.b           %d0                     # set false
17768         bra.w           fscc_done               # go finish
17769 fscc_ngle_yes:
17770         st              %d0                     # set true
17771         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17772         bra.w           fscc_chk_bsun           # go finish
17773
17774 #########################################################################
17775 #                                                                       #
17776 # Miscellaneous tests                                                   #
17777 #                                                                       #
17778 # For the IEEE aware tests, we only have to set the result based on the #
17779 # floating point condition codes. The BSUN exception will not be        #
17780 # set for any of these tests.                                           #
17781 #                                                                       #
17782 #########################################################################
17783
17784 #
17785 # false:
17786 #
17787 #       False
17788 #
17789 fscc_f:
17790         clr.b           %d0                     # set false
17791         bra.w           fscc_done               # go finish
17792
17793 #
17794 # true:
17795 #
17796 #       True
17797 #
17798 fscc_t:
17799         st              %d0                     # set true
17800         bra.w           fscc_done               # go finish
17801
17802 #
17803 # signalling false:
17804 #
17805 #       False
17806 #
17807 fscc_sf:
17808         clr.b           %d0                     # set false
17809         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
17810         beq.w           fscc_done               # no;go finish
17811         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17812         bra.w           fscc_chk_bsun           # go finish
17813
17814 #
17815 # signalling true:
17816 #
17817 #       True
17818 #
17819 fscc_st:
17820         st              %d0                     # set false
17821         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
17822         beq.w           fscc_done               # no;go finish
17823         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17824         bra.w           fscc_chk_bsun           # go finish
17825
17826 #
17827 # signalling equal:
17828 #
17829 #       Z
17830 #
17831 fscc_seq:
17832         fbseq.w         fscc_seq_yes            # signalling equal?
17833 fscc_seq_no:
17834         clr.b           %d0                     # set false
17835         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
17836         beq.w           fscc_done               # no;go finish
17837         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17838         bra.w           fscc_chk_bsun           # go finish
17839 fscc_seq_yes:
17840         st              %d0                     # set true
17841         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
17842         beq.w           fscc_done               # no;go finish
17843         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17844         bra.w           fscc_chk_bsun           # go finish
17845
17846 #
17847 # signalling not equal:
17848 #       _
17849 #       Z
17850 #
17851 fscc_sneq:
17852         fbsneq.w        fscc_sneq_yes           # signalling equal?
17853 fscc_sneq_no:
17854         clr.b           %d0                     # set false
17855         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
17856         beq.w           fscc_done               # no;go finish
17857         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17858         bra.w           fscc_chk_bsun           # go finish
17859 fscc_sneq_yes:
17860         st              %d0                     # set true
17861         btst            &nan_bit, FPSR_CC(%a6)  # set BSUN exc bit
17862         beq.w           fscc_done               # no;go finish
17863         ori.l           &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
17864         bra.w           fscc_chk_bsun           # go finish
17865
17866 #########################################################################
17867 #                                                                       #
17868 # IEEE Aware tests                                                      #
17869 #                                                                       #
17870 # For the IEEE aware tests, we only have to set the result based on the #
17871 # floating point condition codes. The BSUN exception will not be        #
17872 # set for any of these tests.                                           #
17873 #                                                                       #
17874 #########################################################################
17875
17876 #
17877 # ordered greater than:
17878 #       _______
17879 #       NANvZvN
17880 #
17881 fscc_ogt:
17882         fbogt.w         fscc_ogt_yes            # ordered greater than?
17883 fscc_ogt_no:
17884         clr.b           %d0                     # set false
17885         bra.w           fscc_done               # go finish
17886 fscc_ogt_yes:
17887         st              %d0                     # set true
17888         bra.w           fscc_done               # go finish
17889
17890 #
17891 # unordered or less or equal:
17892 #       _______
17893 #       NANvZvN
17894 #
17895 fscc_ule:
17896         fbule.w         fscc_ule_yes            # unordered or less or equal?
17897 fscc_ule_no:
17898         clr.b           %d0                     # set false
17899         bra.w           fscc_done               # go finish
17900 fscc_ule_yes:
17901         st              %d0                     # set true
17902         bra.w           fscc_done               # go finish
17903
17904 #
17905 # ordered greater than or equal:
17906 #          _____
17907 #       Zv(NANvN)
17908 #
17909 fscc_oge:
17910         fboge.w         fscc_oge_yes            # ordered greater than or equal?
17911 fscc_oge_no:
17912         clr.b           %d0                     # set false
17913         bra.w           fscc_done               # go finish
17914 fscc_oge_yes:
17915         st              %d0                     # set true
17916         bra.w           fscc_done               # go finish
17917
17918 #
17919 # unordered or less than:
17920 #              _
17921 #       NANv(N^Z)
17922 #
17923 fscc_ult:
17924         fbult.w         fscc_ult_yes            # unordered or less than?
17925 fscc_ult_no:
17926         clr.b           %d0                     # set false
17927         bra.w           fscc_done               # go finish
17928 fscc_ult_yes:
17929         st              %d0                     # set true
17930         bra.w           fscc_done               # go finish
17931
17932 #
17933 # ordered less than:
17934 #          _____
17935 #       N^(NANvZ)
17936 #
17937 fscc_olt:
17938         fbolt.w         fscc_olt_yes            # ordered less than?
17939 fscc_olt_no:
17940         clr.b           %d0                     # set false
17941         bra.w           fscc_done               # go finish
17942 fscc_olt_yes:
17943         st              %d0                     # set true
17944         bra.w           fscc_done               # go finish
17945
17946 #
17947 # unordered or greater or equal:
17948 #
17949 #       NANvZvN
17950 #
17951 fscc_uge:
17952         fbuge.w         fscc_uge_yes            # unordered or greater than?
17953 fscc_uge_no:
17954         clr.b           %d0                     # set false
17955         bra.w           fscc_done               # go finish
17956 fscc_uge_yes:
17957         st              %d0                     # set true
17958         bra.w           fscc_done               # go finish
17959
17960 #
17961 # ordered less than or equal:
17962 #            ___
17963 #       Zv(N^NAN)
17964 #
17965 fscc_ole:
17966         fbole.w         fscc_ole_yes            # ordered greater or less than?
17967 fscc_ole_no:
17968         clr.b           %d0                     # set false
17969         bra.w           fscc_done               # go finish
17970 fscc_ole_yes:
17971         st              %d0                     # set true
17972         bra.w           fscc_done               # go finish
17973
17974 #
17975 # unordered or greater than:
17976 #            ___
17977 #       NANv(NvZ)
17978 #
17979 fscc_ugt:
17980         fbugt.w         fscc_ugt_yes            # unordered or greater than?
17981 fscc_ugt_no:
17982         clr.b           %d0                     # set false
17983         bra.w           fscc_done               # go finish
17984 fscc_ugt_yes:
17985         st              %d0                     # set true
17986         bra.w           fscc_done               # go finish
17987
17988 #
17989 # ordered greater or less than:
17990 #       _____
17991 #       NANvZ
17992 #
17993 fscc_ogl:
17994         fbogl.w         fscc_ogl_yes            # ordered greater or less than?
17995 fscc_ogl_no:
17996         clr.b           %d0                     # set false
17997         bra.w           fscc_done               # go finish
17998 fscc_ogl_yes:
17999         st              %d0                     # set true
18000         bra.w           fscc_done               # go finish
18001
18002 #
18003 # unordered or equal:
18004 #
18005 #       NANvZ
18006 #
18007 fscc_ueq:
18008         fbueq.w         fscc_ueq_yes            # unordered or equal?
18009 fscc_ueq_no:
18010         clr.b           %d0                     # set false
18011         bra.w           fscc_done               # go finish
18012 fscc_ueq_yes:
18013         st              %d0                     # set true
18014         bra.w           fscc_done               # go finish
18015
18016 #
18017 # ordered:
18018 #       ___
18019 #       NAN
18020 #
18021 fscc_or:
18022         fbor.w          fscc_or_yes             # ordered?
18023 fscc_or_no:
18024         clr.b           %d0                     # set false
18025         bra.w           fscc_done               # go finish
18026 fscc_or_yes:
18027         st              %d0                     # set true
18028         bra.w           fscc_done               # go finish
18029
18030 #
18031 # unordered:
18032 #
18033 #       NAN
18034 #
18035 fscc_un:
18036         fbun.w          fscc_un_yes             # unordered?
18037 fscc_un_no:
18038         clr.b           %d0                     # set false
18039         bra.w           fscc_done               # go finish
18040 fscc_un_yes:
18041         st              %d0                     # set true
18042         bra.w           fscc_done               # go finish
18043
18044 #######################################################################
18045
18046 #
18047 # the bsun exception bit was set. now, check to see is BSUN
18048 # is enabled. if so, don't store result and correct stack frame
18049 # for a bsun exception.
18050 #
18051 fscc_chk_bsun:
18052         btst            &bsun_bit,FPCR_ENABLE(%a6) # was BSUN set?
18053         bne.w           fscc_bsun
18054
18055 #
18056 # the bsun exception bit was not set.
18057 # the result has been selected.
18058 # now, check to see if the result is to be stored in the data register
18059 # file or in memory.
18060 #
18061 fscc_done:
18062         mov.l           %d0,%a0                 # save result for a moment
18063
18064         mov.b           1+EXC_OPWORD(%a6),%d1   # fetch lo opword
18065         mov.l           %d1,%d0                 # make a copy
18066         andi.b          &0x38,%d1               # extract src mode
18067
18068         bne.b           fscc_mem_op             # it's a memory operation
18069
18070         mov.l           %d0,%d1
18071         andi.w          &0x7,%d1                # pass index in d1
18072         mov.l           %a0,%d0                 # pass result in d0
18073         bsr.l           store_dreg_b            # save result in regfile
18074         rts
18075
18076 #
18077 # the stacked <ea> is correct with the exception of:
18078 #       -> Dn : <ea> is garbage
18079 #
18080 # if the addressing mode is post-increment or pre-decrement,
18081 # then the address registers have not been updated.
18082 #
18083 fscc_mem_op:
18084         cmpi.b          %d1,&0x18               # is <ea> (An)+ ?
18085         beq.b           fscc_mem_inc            # yes
18086         cmpi.b          %d1,&0x20               # is <ea> -(An) ?
18087         beq.b           fscc_mem_dec            # yes
18088
18089         mov.l           %a0,%d0                 # pass result in d0
18090         mov.l           EXC_EA(%a6),%a0         # fetch <ea>
18091         bsr.l           _dmem_write_byte        # write result byte
18092
18093         tst.l           %d1                     # did dstore fail?
18094         bne.w           fscc_err                # yes
18095
18096         rts
18097
18098 # addresing mode is post-increment. write the result byte. if the write
18099 # fails then don't update the address register. if write passes then
18100 # call inc_areg() to update the address register.
18101 fscc_mem_inc:
18102         mov.l           %a0,%d0                 # pass result in d0
18103         mov.l           EXC_EA(%a6),%a0         # fetch <ea>
18104         bsr.l           _dmem_write_byte        # write result byte
18105
18106         tst.l           %d1                     # did dstore fail?
18107         bne.w           fscc_err                # yes
18108
18109         mov.b           0x1+EXC_OPWORD(%a6),%d1 # fetch opword
18110         andi.w          &0x7,%d1                # pass index in d1
18111         movq.l          &0x1,%d0                # pass amt to inc by
18112         bsr.l           inc_areg                # increment address register
18113
18114         rts
18115
18116 # addressing mode is pre-decrement. write the result byte. if the write
18117 # fails then don't update the address register. if the write passes then
18118 # call dec_areg() to update the address register.
18119 fscc_mem_dec:
18120         mov.l           %a0,%d0                 # pass result in d0
18121         mov.l           EXC_EA(%a6),%a0         # fetch <ea>
18122         bsr.l           _dmem_write_byte        # write result byte
18123
18124         tst.l           %d1                     # did dstore fail?
18125         bne.w           fscc_err                # yes
18126
18127         mov.b           0x1+EXC_OPWORD(%a6),%d1 # fetch opword
18128         andi.w          &0x7,%d1                # pass index in d1
18129         movq.l          &0x1,%d0                # pass amt to dec by
18130         bsr.l           dec_areg                # decrement address register
18131
18132         rts
18133
18134 # the emulation routine set bsun and BSUN was enabled. have to
18135 # fix stack and jump to the bsun handler.
18136 # let the caller of this routine shift the stack frame up to
18137 # eliminate the effective address field.
18138 fscc_bsun:
18139         mov.b           &fbsun_flg,SPCOND_FLG(%a6)
18140         rts
18141
18142 # the byte write to memory has failed. pass the failing effective address
18143 # and a FSLW to funimp_dacc().
18144 fscc_err:
18145         mov.w           &0x00a1,EXC_VOFF(%a6)
18146         bra.l           facc_finish
18147
18148 #########################################################################
18149 # XDEF **************************************************************** #
18150 #       fmovm_dynamic(): emulate "fmovm" dynamic instruction            #
18151 #                                                                       #
18152 # XREF **************************************************************** #
18153 #       fetch_dreg() - fetch data register                              #
18154 #       {i,d,}mem_read() - fetch data from memory                       #
18155 #       _mem_write() - write data to memory                             #
18156 #       iea_iacc() - instruction memory access error occurred           #
18157 #       iea_dacc() - data memory access error occurred                  #
18158 #       restore() - restore An index regs if access error occurred      #
18159 #                                                                       #
18160 # INPUT *************************************************************** #
18161 #       None                                                            #
18162 #                                                                       #
18163 # OUTPUT ************************************************************** #
18164 #       If instr is "fmovm Dn,-(A7)" from supervisor mode,              #
18165 #               d0 = size of dump                                       #
18166 #               d1 = Dn                                                 #
18167 #       Else if instruction access error,                               #
18168 #               d0 = FSLW                                               #
18169 #       Else if data access error,                                      #
18170 #               d0 = FSLW                                               #
18171 #               a0 = address of fault                                   #
18172 #       Else                                                            #
18173 #               none.                                                   #
18174 #                                                                       #
18175 # ALGORITHM *********************************************************** #
18176 #       The effective address must be calculated since this is entered  #
18177 # from an "Unimplemented Effective Address" exception handler. So, we   #
18178 # have our own fcalc_ea() routine here. If an access error is flagged   #
18179 # by a _{i,d,}mem_read() call, we must exit through the special         #
18180 # handler.                                                              #
18181 #       The data register is determined and its value loaded to get the #
18182 # string of FP registers affected. This value is used as an index into  #
18183 # a lookup table such that we can determine the number of bytes         #
18184 # involved.                                                             #
18185 #       If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used  #
18186 # to read in all FP values. Again, _mem_read() may fail and require a   #
18187 # special exit.                                                         #
18188 #       If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used #
18189 # to write all FP values. _mem_write() may also fail.                   #
18190 #       If the instruction is "fmovm.x DN,-(a7)" from supervisor mode,  #
18191 # then we return the size of the dump and the string to the caller      #
18192 # so that the move can occur outside of this routine. This special      #
18193 # case is required so that moves to the system stack are handled        #
18194 # correctly.                                                            #
18195 #                                                                       #
18196 # DYNAMIC:                                                              #
18197 #       fmovm.x dn, <ea>                                                #
18198 #       fmovm.x <ea>, dn                                                #
18199 #                                                                       #
18200 #             <WORD 1>                <WORD2>                           #
18201 #       1111 0010 00 |<ea>|     11@& 1000 0$$$ 0000                     #
18202 #                                                                       #
18203 #       & = (0): predecrement addressing mode                           #
18204 #           (1): postincrement or control addressing mode               #
18205 #       @ = (0): move listed regs from memory to the FPU                #
18206 #           (1): move listed regs from the FPU to memory                #
18207 #       $$$    : index of data register holding reg select mask         #
18208 #                                                                       #
18209 # NOTES:                                                                #
18210 #       If the data register holds a zero, then the                     #
18211 #       instruction is a nop.                                           #
18212 #                                                                       #
18213 #########################################################################
18214
18215         global          fmovm_dynamic
18216 fmovm_dynamic:
18217
18218 # extract the data register in which the bit string resides...
18219         mov.b           1+EXC_EXTWORD(%a6),%d1  # fetch extword
18220         andi.w          &0x70,%d1               # extract reg bits
18221         lsr.b           &0x4,%d1                # shift into lo bits
18222
18223 # fetch the bit string into d0...
18224         bsr.l           fetch_dreg              # fetch reg string
18225
18226         andi.l          &0x000000ff,%d0         # keep only lo byte
18227
18228         mov.l           %d0,-(%sp)              # save strg
18229         mov.b           (tbl_fmovm_size.w,%pc,%d0),%d0
18230         mov.l           %d0,-(%sp)              # save size
18231         bsr.l           fmovm_calc_ea           # calculate <ea>
18232         mov.l           (%sp)+,%d0              # restore size
18233         mov.l           (%sp)+,%d1              # restore strg
18234
18235 # if the bit string is a zero, then the operation is a no-op
18236 # but, make sure that we've calculated ea and advanced the opword pointer
18237         beq.w           fmovm_data_done
18238
18239 # separate move ins from move outs...
18240         btst            &0x5,EXC_EXTWORD(%a6)   # is it a move in or out?
18241         beq.w           fmovm_data_in           # it's a move out
18242
18243 #############
18244 # MOVE OUT: #
18245 #############
18246 fmovm_data_out:
18247         btst            &0x4,EXC_EXTWORD(%a6)   # control or predecrement?
18248         bne.w           fmovm_out_ctrl          # control
18249
18250 ############################
18251 fmovm_out_predec:
18252 # for predecrement mode, the bit string is the opposite of both control
18253 # operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0)
18254 # here, we convert it to be just like the others...
18255         mov.b           (tbl_fmovm_convert.w,%pc,%d1.w*1),%d1
18256
18257         btst            &0x5,EXC_SR(%a6)        # user or supervisor mode?
18258         beq.b           fmovm_out_ctrl          # user
18259
18260 fmovm_out_predec_s:
18261         cmpi.b          SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)?
18262         bne.b           fmovm_out_ctrl
18263
18264 # the operation was unfortunately an: fmovm.x dn,-(sp)
18265 # called from supervisor mode.
18266 # we're also passing "size" and "strg" back to the calling routine
18267         rts
18268
18269 ############################
18270 fmovm_out_ctrl:
18271         mov.l           %a0,%a1                 # move <ea> to a1
18272
18273         sub.l           %d0,%sp                 # subtract size of dump
18274         lea             (%sp),%a0
18275
18276         tst.b           %d1                     # should FP0 be moved?
18277         bpl.b           fmovm_out_ctrl_fp1      # no
18278
18279         mov.l           0x0+EXC_FP0(%a6),(%a0)+ # yes
18280         mov.l           0x4+EXC_FP0(%a6),(%a0)+
18281         mov.l           0x8+EXC_FP0(%a6),(%a0)+
18282
18283 fmovm_out_ctrl_fp1:
18284         lsl.b           &0x1,%d1                # should FP1 be moved?
18285         bpl.b           fmovm_out_ctrl_fp2      # no
18286
18287         mov.l           0x0+EXC_FP1(%a6),(%a0)+ # yes
18288         mov.l           0x4+EXC_FP1(%a6),(%a0)+
18289         mov.l           0x8+EXC_FP1(%a6),(%a0)+
18290
18291 fmovm_out_ctrl_fp2:
18292         lsl.b           &0x1,%d1                # should FP2 be moved?
18293         bpl.b           fmovm_out_ctrl_fp3      # no
18294
18295         fmovm.x         &0x20,(%a0)             # yes
18296         add.l           &0xc,%a0
18297
18298 fmovm_out_ctrl_fp3:
18299         lsl.b           &0x1,%d1                # should FP3 be moved?
18300         bpl.b           fmovm_out_ctrl_fp4      # no
18301
18302         fmovm.x         &0x10,(%a0)             # yes
18303         add.l           &0xc,%a0
18304
18305 fmovm_out_ctrl_fp4:
18306         lsl.b           &0x1,%d1                # should FP4 be moved?
18307         bpl.b           fmovm_out_ctrl_fp5      # no
18308
18309         fmovm.x         &0x08,(%a0)             # yes
18310         add.l           &0xc,%a0
18311
18312 fmovm_out_ctrl_fp5:
18313         lsl.b           &0x1,%d1                # should FP5 be moved?
18314         bpl.b           fmovm_out_ctrl_fp6      # no
18315
18316         fmovm.x         &0x04,(%a0)             # yes
18317         add.l           &0xc,%a0
18318
18319 fmovm_out_ctrl_fp6:
18320         lsl.b           &0x1,%d1                # should FP6 be moved?
18321         bpl.b           fmovm_out_ctrl_fp7      # no
18322
18323         fmovm.x         &0x02,(%a0)             # yes
18324         add.l           &0xc,%a0
18325
18326 fmovm_out_ctrl_fp7:
18327         lsl.b           &0x1,%d1                # should FP7 be moved?
18328         bpl.b           fmovm_out_ctrl_done     # no
18329
18330         fmovm.x         &0x01,(%a0)             # yes
18331         add.l           &0xc,%a0
18332
18333 fmovm_out_ctrl_done:
18334         mov.l           %a1,L_SCR1(%a6)
18335
18336         lea             (%sp),%a0               # pass: supervisor src
18337         mov.l           %d0,-(%sp)              # save size
18338         bsr.l           _dmem_write             # copy data to user mem
18339
18340         mov.l           (%sp)+,%d0
18341         add.l           %d0,%sp                 # clear fpreg data from stack
18342
18343         tst.l           %d1                     # did dstore err?
18344         bne.w           fmovm_out_err           # yes
18345
18346         rts
18347
18348 ############
18349 # MOVE IN: #
18350 ############
18351 fmovm_data_in:
18352         mov.l           %a0,L_SCR1(%a6)
18353
18354         sub.l           %d0,%sp                 # make room for fpregs
18355         lea             (%sp),%a1
18356
18357         mov.l           %d1,-(%sp)              # save bit string for later
18358         mov.l           %d0,-(%sp)              # save # of bytes
18359
18360         bsr.l           _dmem_read              # copy data from user mem
18361
18362         mov.l           (%sp)+,%d0              # retrieve # of bytes
18363
18364         tst.l           %d1                     # did dfetch fail?
18365         bne.w           fmovm_in_err            # yes
18366
18367         mov.l           (%sp)+,%d1              # load bit string
18368
18369         lea             (%sp),%a0               # addr of stack
18370
18371         tst.b           %d1                     # should FP0 be moved?
18372         bpl.b           fmovm_data_in_fp1       # no
18373
18374         mov.l           (%a0)+,0x0+EXC_FP0(%a6) # yes
18375         mov.l           (%a0)+,0x4+EXC_FP0(%a6)
18376         mov.l           (%a0)+,0x8+EXC_FP0(%a6)
18377
18378 fmovm_data_in_fp1:
18379         lsl.b           &0x1,%d1                # should FP1 be moved?
18380         bpl.b           fmovm_data_in_fp2       # no
18381
18382         mov.l           (%a0)+,0x0+EXC_FP1(%a6) # yes
18383         mov.l           (%a0)+,0x4+EXC_FP1(%a6)
18384         mov.l           (%a0)+,0x8+EXC_FP1(%a6)
18385
18386 fmovm_data_in_fp2:
18387         lsl.b           &0x1,%d1                # should FP2 be moved?
18388         bpl.b           fmovm_data_in_fp3       # no
18389
18390         fmovm.x         (%a0)+,&0x20            # yes
18391
18392 fmovm_data_in_fp3:
18393         lsl.b           &0x1,%d1                # should FP3 be moved?
18394         bpl.b           fmovm_data_in_fp4       # no
18395
18396         fmovm.x         (%a0)+,&0x10            # yes
18397
18398 fmovm_data_in_fp4:
18399         lsl.b           &0x1,%d1                # should FP4 be moved?
18400         bpl.b           fmovm_data_in_fp5       # no
18401
18402         fmovm.x         (%a0)+,&0x08            # yes
18403
18404 fmovm_data_in_fp5:
18405         lsl.b           &0x1,%d1                # should FP5 be moved?
18406         bpl.b           fmovm_data_in_fp6       # no
18407
18408         fmovm.x         (%a0)+,&0x04            # yes
18409
18410 fmovm_data_in_fp6:
18411         lsl.b           &0x1,%d1                # should FP6 be moved?
18412         bpl.b           fmovm_data_in_fp7       # no
18413
18414         fmovm.x         (%a0)+,&0x02            # yes
18415
18416 fmovm_data_in_fp7:
18417         lsl.b           &0x1,%d1                # should FP7 be moved?
18418         bpl.b           fmovm_data_in_done      # no
18419
18420         fmovm.x         (%a0)+,&0x01            # yes
18421
18422 fmovm_data_in_done:
18423         add.l           %d0,%sp                 # remove fpregs from stack
18424         rts
18425
18426 #####################################
18427
18428 fmovm_data_done:
18429         rts
18430
18431 ##############################################################################
18432
18433 #
18434 # table indexed by the operation's bit string that gives the number
18435 # of bytes that will be moved.
18436 #
18437 # number of bytes = (# of 1's in bit string) * 12(bytes/fpreg)
18438 #
18439 tbl_fmovm_size:
18440         byte    0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24
18441         byte    0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
18442         byte    0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
18443         byte    0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
18444         byte    0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
18445         byte    0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
18446         byte    0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
18447         byte    0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
18448         byte    0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
18449         byte    0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
18450         byte    0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
18451         byte    0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
18452         byte    0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
18453         byte    0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
18454         byte    0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
18455         byte    0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
18456         byte    0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
18457         byte    0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
18458         byte    0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
18459         byte    0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
18460         byte    0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
18461         byte    0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
18462         byte    0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
18463         byte    0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
18464         byte    0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
18465         byte    0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
18466         byte    0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
18467         byte    0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
18468         byte    0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
18469         byte    0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
18470         byte    0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
18471         byte    0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60
18472
18473 #
18474 # table to convert a pre-decrement bit string into a post-increment
18475 # or control bit string.
18476 # ex:   0x00    ==>     0x00
18477 #       0x01    ==>     0x80
18478 #       0x02    ==>     0x40
18479 #               .
18480 #               .
18481 #       0xfd    ==>     0xbf
18482 #       0xfe    ==>     0x7f
18483 #       0xff    ==>     0xff
18484 #
18485 tbl_fmovm_convert:
18486         byte    0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0
18487         byte    0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0
18488         byte    0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8
18489         byte    0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8
18490         byte    0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4
18491         byte    0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4
18492         byte    0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec
18493         byte    0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc
18494         byte    0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2
18495         byte    0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2
18496         byte    0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea
18497         byte    0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa
18498         byte    0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6
18499         byte    0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6
18500         byte    0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee
18501         byte    0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe
18502         byte    0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1
18503         byte    0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1
18504         byte    0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9
18505         byte    0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9
18506         byte    0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5
18507         byte    0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5
18508         byte    0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed
18509         byte    0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd
18510         byte    0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3
18511         byte    0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3
18512         byte    0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb
18513         byte    0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb
18514         byte    0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7
18515         byte    0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7
18516         byte    0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef
18517         byte    0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff
18518
18519         global          fmovm_calc_ea
18520 ###############################################
18521 # _fmovm_calc_ea: calculate effective address #
18522 ###############################################
18523 fmovm_calc_ea:
18524         mov.l           %d0,%a0                 # move # bytes to a0
18525
18526 # currently, MODE and REG are taken from the EXC_OPWORD. this could be
18527 # easily changed if they were inputs passed in registers.
18528         mov.w           EXC_OPWORD(%a6),%d0     # fetch opcode word
18529         mov.w           %d0,%d1                 # make a copy
18530
18531         andi.w          &0x3f,%d0               # extract mode field
18532         andi.l          &0x7,%d1                # extract reg  field
18533
18534 # jump to the corresponding function for each {MODE,REG} pair.
18535         mov.w           (tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance
18536         jmp             (tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode
18537
18538         swbeg           &64
18539 tbl_fea_mode:
18540         short           tbl_fea_mode    -       tbl_fea_mode
18541         short           tbl_fea_mode    -       tbl_fea_mode
18542         short           tbl_fea_mode    -       tbl_fea_mode
18543         short           tbl_fea_mode    -       tbl_fea_mode
18544         short           tbl_fea_mode    -       tbl_fea_mode
18545         short           tbl_fea_mode    -       tbl_fea_mode
18546         short           tbl_fea_mode    -       tbl_fea_mode
18547         short           tbl_fea_mode    -       tbl_fea_mode
18548
18549         short           tbl_fea_mode    -       tbl_fea_mode
18550         short           tbl_fea_mode    -       tbl_fea_mode
18551         short           tbl_fea_mode    -       tbl_fea_mode
18552         short           tbl_fea_mode    -       tbl_fea_mode
18553         short           tbl_fea_mode    -       tbl_fea_mode
18554         short           tbl_fea_mode    -       tbl_fea_mode
18555         short           tbl_fea_mode    -       tbl_fea_mode
18556         short           tbl_fea_mode    -       tbl_fea_mode
18557
18558         short           faddr_ind_a0    -       tbl_fea_mode
18559         short           faddr_ind_a1    -       tbl_fea_mode
18560         short           faddr_ind_a2    -       tbl_fea_mode
18561         short           faddr_ind_a3    -       tbl_fea_mode
18562         short           faddr_ind_a4    -       tbl_fea_mode
18563         short           faddr_ind_a5    -       tbl_fea_mode
18564         short           faddr_ind_a6    -       tbl_fea_mode
18565         short           faddr_ind_a7    -       tbl_fea_mode
18566
18567         short           faddr_ind_p_a0  -       tbl_fea_mode
18568         short           faddr_ind_p_a1  -       tbl_fea_mode
18569         short           faddr_ind_p_a2  -       tbl_fea_mode
18570         short           faddr_ind_p_a3  -       tbl_fea_mode
18571         short           faddr_ind_p_a4  -       tbl_fea_mode
18572         short           faddr_ind_p_a5  -       tbl_fea_mode
18573         short           faddr_ind_p_a6  -       tbl_fea_mode
18574         short           faddr_ind_p_a7  -       tbl_fea_mode
18575
18576         short           faddr_ind_m_a0  -       tbl_fea_mode
18577         short           faddr_ind_m_a1  -       tbl_fea_mode
18578         short           faddr_ind_m_a2  -       tbl_fea_mode
18579         short           faddr_ind_m_a3  -       tbl_fea_mode
18580         short           faddr_ind_m_a4  -       tbl_fea_mode
18581         short           faddr_ind_m_a5  -       tbl_fea_mode
18582         short           faddr_ind_m_a6  -       tbl_fea_mode
18583         short           faddr_ind_m_a7  -       tbl_fea_mode
18584
18585         short           faddr_ind_disp_a0       -       tbl_fea_mode
18586         short           faddr_ind_disp_a1       -       tbl_fea_mode
18587         short           faddr_ind_disp_a2       -       tbl_fea_mode
18588         short           faddr_ind_disp_a3       -       tbl_fea_mode
18589         short           faddr_ind_disp_a4       -       tbl_fea_mode
18590         short           faddr_ind_disp_a5       -       tbl_fea_mode
18591         short           faddr_ind_disp_a6       -       tbl_fea_mode
18592         short           faddr_ind_disp_a7       -       tbl_fea_mode
18593
18594         short           faddr_ind_ext   -       tbl_fea_mode
18595         short           faddr_ind_ext   -       tbl_fea_mode
18596         short           faddr_ind_ext   -       tbl_fea_mode
18597         short           faddr_ind_ext   -       tbl_fea_mode
18598         short           faddr_ind_ext   -       tbl_fea_mode
18599         short           faddr_ind_ext   -       tbl_fea_mode
18600         short           faddr_ind_ext   -       tbl_fea_mode
18601         short           faddr_ind_ext   -       tbl_fea_mode
18602
18603         short           fabs_short      -       tbl_fea_mode
18604         short           fabs_long       -       tbl_fea_mode
18605         short           fpc_ind         -       tbl_fea_mode
18606         short           fpc_ind_ext     -       tbl_fea_mode
18607         short           tbl_fea_mode    -       tbl_fea_mode
18608         short           tbl_fea_mode    -       tbl_fea_mode
18609         short           tbl_fea_mode    -       tbl_fea_mode
18610         short           tbl_fea_mode    -       tbl_fea_mode
18611
18612 ###################################
18613 # Address register indirect: (An) #
18614 ###################################
18615 faddr_ind_a0:
18616         mov.l           EXC_DREGS+0x8(%a6),%a0  # Get current a0
18617         rts
18618
18619 faddr_ind_a1:
18620         mov.l           EXC_DREGS+0xc(%a6),%a0  # Get current a1
18621         rts
18622
18623 faddr_ind_a2:
18624         mov.l           %a2,%a0                 # Get current a2
18625         rts
18626
18627 faddr_ind_a3:
18628         mov.l           %a3,%a0                 # Get current a3
18629         rts
18630
18631 faddr_ind_a4:
18632         mov.l           %a4,%a0                 # Get current a4
18633         rts
18634
18635 faddr_ind_a5:
18636         mov.l           %a5,%a0                 # Get current a5
18637         rts
18638
18639 faddr_ind_a6:
18640         mov.l           (%a6),%a0               # Get current a6
18641         rts
18642
18643 faddr_ind_a7:
18644         mov.l           EXC_A7(%a6),%a0         # Get current a7
18645         rts
18646
18647 #####################################################
18648 # Address register indirect w/ postincrement: (An)+ #
18649 #####################################################
18650 faddr_ind_p_a0:
18651         mov.l           EXC_DREGS+0x8(%a6),%d0  # Get current a0
18652         mov.l           %d0,%d1
18653         add.l           %a0,%d1                 # Increment
18654         mov.l           %d1,EXC_DREGS+0x8(%a6)  # Save incr value
18655         mov.l           %d0,%a0
18656         rts
18657
18658 faddr_ind_p_a1:
18659         mov.l           EXC_DREGS+0xc(%a6),%d0  # Get current a1
18660         mov.l           %d0,%d1
18661         add.l           %a0,%d1                 # Increment
18662         mov.l           %d1,EXC_DREGS+0xc(%a6)  # Save incr value
18663         mov.l           %d0,%a0
18664         rts
18665
18666 faddr_ind_p_a2:
18667         mov.l           %a2,%d0                 # Get current a2
18668         mov.l           %d0,%d1
18669         add.l           %a0,%d1                 # Increment
18670         mov.l           %d1,%a2                 # Save incr value
18671         mov.l           %d0,%a0
18672         rts
18673
18674 faddr_ind_p_a3:
18675         mov.l           %a3,%d0                 # Get current a3
18676         mov.l           %d0,%d1
18677         add.l           %a0,%d1                 # Increment
18678         mov.l           %d1,%a3                 # Save incr value
18679         mov.l           %d0,%a0
18680         rts
18681
18682 faddr_ind_p_a4:
18683         mov.l           %a4,%d0                 # Get current a4
18684         mov.l           %d0,%d1
18685         add.l           %a0,%d1                 # Increment
18686         mov.l           %d1,%a4                 # Save incr value
18687         mov.l           %d0,%a0
18688         rts
18689
18690 faddr_ind_p_a5:
18691         mov.l           %a5,%d0                 # Get current a5
18692         mov.l           %d0,%d1
18693         add.l           %a0,%d1                 # Increment
18694         mov.l           %d1,%a5                 # Save incr value
18695         mov.l           %d0,%a0
18696         rts
18697
18698 faddr_ind_p_a6:
18699         mov.l           (%a6),%d0               # Get current a6
18700         mov.l           %d0,%d1
18701         add.l           %a0,%d1                 # Increment
18702         mov.l           %d1,(%a6)               # Save incr value
18703         mov.l           %d0,%a0
18704         rts
18705
18706 faddr_ind_p_a7:
18707         mov.b           &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag
18708
18709         mov.l           EXC_A7(%a6),%d0         # Get current a7
18710         mov.l           %d0,%d1
18711         add.l           %a0,%d1                 # Increment
18712         mov.l           %d1,EXC_A7(%a6)         # Save incr value
18713         mov.l           %d0,%a0
18714         rts
18715
18716 ####################################################
18717 # Address register indirect w/ predecrement: -(An) #
18718 ####################################################
18719 faddr_ind_m_a0:
18720         mov.l           EXC_DREGS+0x8(%a6),%d0  # Get current a0
18721         sub.l           %a0,%d0                 # Decrement
18722         mov.l           %d0,EXC_DREGS+0x8(%a6)  # Save decr value
18723         mov.l           %d0,%a0
18724         rts
18725
18726 faddr_ind_m_a1:
18727         mov.l           EXC_DREGS+0xc(%a6),%d0  # Get current a1
18728         sub.l           %a0,%d0                 # Decrement
18729         mov.l           %d0,EXC_DREGS+0xc(%a6)  # Save decr value
18730         mov.l           %d0,%a0
18731         rts
18732
18733 faddr_ind_m_a2:
18734         mov.l           %a2,%d0                 # Get current a2
18735         sub.l           %a0,%d0                 # Decrement
18736         mov.l           %d0,%a2                 # Save decr value
18737         mov.l           %d0,%a0
18738         rts
18739
18740 faddr_ind_m_a3:
18741         mov.l           %a3,%d0                 # Get current a3
18742         sub.l           %a0,%d0                 # Decrement
18743         mov.l           %d0,%a3                 # Save decr value
18744         mov.l           %d0,%a0
18745         rts
18746
18747 faddr_ind_m_a4:
18748         mov.l           %a4,%d0                 # Get current a4
18749         sub.l           %a0,%d0                 # Decrement
18750         mov.l           %d0,%a4                 # Save decr value
18751         mov.l           %d0,%a0
18752         rts
18753
18754 faddr_ind_m_a5:
18755         mov.l           %a5,%d0                 # Get current a5
18756         sub.l           %a0,%d0                 # Decrement
18757         mov.l           %d0,%a5                 # Save decr value
18758         mov.l           %d0,%a0
18759         rts
18760
18761 faddr_ind_m_a6:
18762         mov.l           (%a6),%d0               # Get current a6
18763         sub.l           %a0,%d0                 # Decrement
18764         mov.l           %d0,(%a6)               # Save decr value
18765         mov.l           %d0,%a0
18766         rts
18767
18768 faddr_ind_m_a7:
18769         mov.b           &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag
18770
18771         mov.l           EXC_A7(%a6),%d0         # Get current a7
18772         sub.l           %a0,%d0                 # Decrement
18773         mov.l           %d0,EXC_A7(%a6)         # Save decr value
18774         mov.l           %d0,%a0
18775         rts
18776
18777 ########################################################
18778 # Address register indirect w/ displacement: (d16, An) #
18779 ########################################################
18780 faddr_ind_disp_a0:
18781         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18782         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
18783         bsr.l           _imem_read_word
18784
18785         tst.l           %d1                     # did ifetch fail?
18786         bne.l           iea_iacc                # yes
18787
18788         mov.w           %d0,%a0                 # sign extend displacement
18789
18790         add.l           EXC_DREGS+0x8(%a6),%a0  # a0 + d16
18791         rts
18792
18793 faddr_ind_disp_a1:
18794         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18795         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
18796         bsr.l           _imem_read_word
18797
18798         tst.l           %d1                     # did ifetch fail?
18799         bne.l           iea_iacc                # yes
18800
18801         mov.w           %d0,%a0                 # sign extend displacement
18802
18803         add.l           EXC_DREGS+0xc(%a6),%a0  # a1 + d16
18804         rts
18805
18806 faddr_ind_disp_a2:
18807         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18808         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
18809         bsr.l           _imem_read_word
18810
18811         tst.l           %d1                     # did ifetch fail?
18812         bne.l           iea_iacc                # yes
18813
18814         mov.w           %d0,%a0                 # sign extend displacement
18815
18816         add.l           %a2,%a0                 # a2 + d16
18817         rts
18818
18819 faddr_ind_disp_a3:
18820         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18821         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
18822         bsr.l           _imem_read_word
18823
18824         tst.l           %d1                     # did ifetch fail?
18825         bne.l           iea_iacc                # yes
18826
18827         mov.w           %d0,%a0                 # sign extend displacement
18828
18829         add.l           %a3,%a0                 # a3 + d16
18830         rts
18831
18832 faddr_ind_disp_a4:
18833         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18834         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
18835         bsr.l           _imem_read_word
18836
18837         tst.l           %d1                     # did ifetch fail?
18838         bne.l           iea_iacc                # yes
18839
18840         mov.w           %d0,%a0                 # sign extend displacement
18841
18842         add.l           %a4,%a0                 # a4 + d16
18843         rts
18844
18845 faddr_ind_disp_a5:
18846         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18847         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
18848         bsr.l           _imem_read_word
18849
18850         tst.l           %d1                     # did ifetch fail?
18851         bne.l           iea_iacc                # yes
18852
18853         mov.w           %d0,%a0                 # sign extend displacement
18854
18855         add.l           %a5,%a0                 # a5 + d16
18856         rts
18857
18858 faddr_ind_disp_a6:
18859         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18860         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
18861         bsr.l           _imem_read_word
18862
18863         tst.l           %d1                     # did ifetch fail?
18864         bne.l           iea_iacc                # yes
18865
18866         mov.w           %d0,%a0                 # sign extend displacement
18867
18868         add.l           (%a6),%a0               # a6 + d16
18869         rts
18870
18871 faddr_ind_disp_a7:
18872         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18873         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
18874         bsr.l           _imem_read_word
18875
18876         tst.l           %d1                     # did ifetch fail?
18877         bne.l           iea_iacc                # yes
18878
18879         mov.w           %d0,%a0                 # sign extend displacement
18880
18881         add.l           EXC_A7(%a6),%a0         # a7 + d16
18882         rts
18883
18884 ########################################################################
18885 # Address register indirect w/ index(8-bit displacement): (d8, An, Xn) #
18886 #    "       "         "    w/   "  (base displacement): (bd, An, Xn)  #
18887 # Memory indirect postindexed: ([bd, An], Xn, od)                      #
18888 # Memory indirect preindexed: ([bd, An, Xn], od)                       #
18889 ########################################################################
18890 faddr_ind_ext:
18891         addq.l          &0x8,%d1
18892         bsr.l           fetch_dreg              # fetch base areg
18893         mov.l           %d0,-(%sp)
18894
18895         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18896         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
18897         bsr.l           _imem_read_word         # fetch extword in d0
18898
18899         tst.l           %d1                     # did ifetch fail?
18900         bne.l           iea_iacc                # yes
18901
18902         mov.l           (%sp)+,%a0
18903
18904         btst            &0x8,%d0
18905         bne.w           fcalc_mem_ind
18906
18907         mov.l           %d0,L_SCR1(%a6)         # hold opword
18908
18909         mov.l           %d0,%d1
18910         rol.w           &0x4,%d1
18911         andi.w          &0xf,%d1                # extract index regno
18912
18913 # count on fetch_dreg() not to alter a0...
18914         bsr.l           fetch_dreg              # fetch index
18915
18916         mov.l           %d2,-(%sp)              # save d2
18917         mov.l           L_SCR1(%a6),%d2         # fetch opword
18918
18919         btst            &0xb,%d2                # is it word or long?
18920         bne.b           faii8_long
18921         ext.l           %d0                     # sign extend word index
18922 faii8_long:
18923         mov.l           %d2,%d1
18924         rol.w           &0x7,%d1
18925         andi.l          &0x3,%d1                # extract scale value
18926
18927         lsl.l           %d1,%d0                 # shift index by scale
18928
18929         extb.l          %d2                     # sign extend displacement
18930         add.l           %d2,%d0                 # index + disp
18931         add.l           %d0,%a0                 # An + (index + disp)
18932
18933         mov.l           (%sp)+,%d2              # restore old d2
18934         rts
18935
18936 ###########################
18937 # Absolute short: (XXX).W #
18938 ###########################
18939 fabs_short:
18940         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18941         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
18942         bsr.l           _imem_read_word         # fetch short address
18943
18944         tst.l           %d1                     # did ifetch fail?
18945         bne.l           iea_iacc                # yes
18946
18947         mov.w           %d0,%a0                 # return <ea> in a0
18948         rts
18949
18950 ##########################
18951 # Absolute long: (XXX).L #
18952 ##########################
18953 fabs_long:
18954         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18955         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
18956         bsr.l           _imem_read_long         # fetch long address
18957
18958         tst.l           %d1                     # did ifetch fail?
18959         bne.l           iea_iacc                # yes
18960
18961         mov.l           %d0,%a0                 # return <ea> in a0
18962         rts
18963
18964 #######################################################
18965 # Program counter indirect w/ displacement: (d16, PC) #
18966 #######################################################
18967 fpc_ind:
18968         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18969         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
18970         bsr.l           _imem_read_word         # fetch word displacement
18971
18972         tst.l           %d1                     # did ifetch fail?
18973         bne.l           iea_iacc                # yes
18974
18975         mov.w           %d0,%a0                 # sign extend displacement
18976
18977         add.l           EXC_EXTWPTR(%a6),%a0    # pc + d16
18978
18979 # _imem_read_word() increased the extwptr by 2. need to adjust here.
18980         subq.l          &0x2,%a0                # adjust <ea>
18981         rts
18982
18983 ##########################################################
18984 # PC indirect w/ index(8-bit displacement): (d8, PC, An) #
18985 # "     "     w/   "  (base displacement): (bd, PC, An)  #
18986 # PC memory indirect postindexed: ([bd, PC], Xn, od)     #
18987 # PC memory indirect preindexed: ([bd, PC, Xn], od)      #
18988 ##########################################################
18989 fpc_ind_ext:
18990         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
18991         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
18992         bsr.l           _imem_read_word         # fetch ext word
18993
18994         tst.l           %d1                     # did ifetch fail?
18995         bne.l           iea_iacc                # yes
18996
18997         mov.l           EXC_EXTWPTR(%a6),%a0    # put base in a0
18998         subq.l          &0x2,%a0                # adjust base
18999
19000         btst            &0x8,%d0                # is disp only 8 bits?
19001         bne.w           fcalc_mem_ind           # calc memory indirect
19002
19003         mov.l           %d0,L_SCR1(%a6)         # store opword
19004
19005         mov.l           %d0,%d1                 # make extword copy
19006         rol.w           &0x4,%d1                # rotate reg num into place
19007         andi.w          &0xf,%d1                # extract register number
19008
19009 # count on fetch_dreg() not to alter a0...
19010         bsr.l           fetch_dreg              # fetch index
19011
19012         mov.l           %d2,-(%sp)              # save d2
19013         mov.l           L_SCR1(%a6),%d2         # fetch opword
19014
19015         btst            &0xb,%d2                # is index word or long?
19016         bne.b           fpii8_long              # long
19017         ext.l           %d0                     # sign extend word index
19018 fpii8_long:
19019         mov.l           %d2,%d1
19020         rol.w           &0x7,%d1                # rotate scale value into place
19021         andi.l          &0x3,%d1                # extract scale value
19022
19023         lsl.l           %d1,%d0                 # shift index by scale
19024
19025         extb.l          %d2                     # sign extend displacement
19026         add.l           %d2,%d0                 # disp + index
19027         add.l           %d0,%a0                 # An + (index + disp)
19028
19029         mov.l           (%sp)+,%d2              # restore temp register
19030         rts
19031
19032 # d2 = index
19033 # d3 = base
19034 # d4 = od
19035 # d5 = extword
19036 fcalc_mem_ind:
19037         btst            &0x6,%d0                # is the index suppressed?
19038         beq.b           fcalc_index
19039
19040         movm.l          &0x3c00,-(%sp)          # save d2-d5
19041
19042         mov.l           %d0,%d5                 # put extword in d5
19043         mov.l           %a0,%d3                 # put base in d3
19044
19045         clr.l           %d2                     # yes, so index = 0
19046         bra.b           fbase_supp_ck
19047
19048 # index:
19049 fcalc_index:
19050         mov.l           %d0,L_SCR1(%a6)         # save d0 (opword)
19051         bfextu          %d0{&16:&4},%d1         # fetch dreg index
19052         bsr.l           fetch_dreg
19053
19054         movm.l          &0x3c00,-(%sp)          # save d2-d5
19055         mov.l           %d0,%d2                 # put index in d2
19056         mov.l           L_SCR1(%a6),%d5
19057         mov.l           %a0,%d3
19058
19059         btst            &0xb,%d5                # is index word or long?
19060         bne.b           fno_ext
19061         ext.l           %d2
19062
19063 fno_ext:
19064         bfextu          %d5{&21:&2},%d0
19065         lsl.l           %d0,%d2
19066
19067 # base address (passed as parameter in d3):
19068 # we clear the value here if it should actually be suppressed.
19069 fbase_supp_ck:
19070         btst            &0x7,%d5                # is the bd suppressed?
19071         beq.b           fno_base_sup
19072         clr.l           %d3
19073
19074 # base displacement:
19075 fno_base_sup:
19076         bfextu          %d5{&26:&2},%d0         # get bd size
19077 #       beq.l           fmovm_error             # if (size == 0) it's reserved
19078
19079         cmpi.b          %d0,&0x2
19080         blt.b           fno_bd
19081         beq.b           fget_word_bd
19082
19083         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19084         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
19085         bsr.l           _imem_read_long
19086
19087         tst.l           %d1                     # did ifetch fail?
19088         bne.l           fcea_iacc               # yes
19089
19090         bra.b           fchk_ind
19091
19092 fget_word_bd:
19093         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19094         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
19095         bsr.l           _imem_read_word
19096
19097         tst.l           %d1                     # did ifetch fail?
19098         bne.l           fcea_iacc               # yes
19099
19100         ext.l           %d0                     # sign extend bd
19101
19102 fchk_ind:
19103         add.l           %d0,%d3                 # base += bd
19104
19105 # outer displacement:
19106 fno_bd:
19107         bfextu          %d5{&30:&2},%d0         # is od suppressed?
19108         beq.w           faii_bd
19109
19110         cmpi.b          %d0,&0x2
19111         blt.b           fnull_od
19112         beq.b           fword_od
19113
19114         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19115         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
19116         bsr.l           _imem_read_long
19117
19118         tst.l           %d1                     # did ifetch fail?
19119         bne.l           fcea_iacc               # yes
19120
19121         bra.b           fadd_them
19122
19123 fword_od:
19124         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19125         addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
19126         bsr.l           _imem_read_word
19127
19128         tst.l           %d1                     # did ifetch fail?
19129         bne.l           fcea_iacc               # yes
19130
19131         ext.l           %d0                     # sign extend od
19132         bra.b           fadd_them
19133
19134 fnull_od:
19135         clr.l           %d0
19136
19137 fadd_them:
19138         mov.l           %d0,%d4
19139
19140         btst            &0x2,%d5                # pre or post indexing?
19141         beq.b           fpre_indexed
19142
19143         mov.l           %d3,%a0
19144         bsr.l           _dmem_read_long
19145
19146         tst.l           %d1                     # did dfetch fail?
19147         bne.w           fcea_err                # yes
19148
19149         add.l           %d2,%d0                 # <ea> += index
19150         add.l           %d4,%d0                 # <ea> += od
19151         bra.b           fdone_ea
19152
19153 fpre_indexed:
19154         add.l           %d2,%d3                 # preindexing
19155         mov.l           %d3,%a0
19156         bsr.l           _dmem_read_long
19157
19158         tst.l           %d1                     # did dfetch fail?
19159         bne.w           fcea_err                # yes
19160
19161         add.l           %d4,%d0                 # ea += od
19162         bra.b           fdone_ea
19163
19164 faii_bd:
19165         add.l           %d2,%d3                 # ea = (base + bd) + index
19166         mov.l           %d3,%d0
19167 fdone_ea:
19168         mov.l           %d0,%a0
19169
19170         movm.l          (%sp)+,&0x003c          # restore d2-d5
19171         rts
19172
19173 #########################################################
19174 fcea_err:
19175         mov.l           %d3,%a0
19176
19177         movm.l          (%sp)+,&0x003c          # restore d2-d5
19178         mov.w           &0x0101,%d0
19179         bra.l           iea_dacc
19180
19181 fcea_iacc:
19182         movm.l          (%sp)+,&0x003c          # restore d2-d5
19183         bra.l           iea_iacc
19184
19185 fmovm_out_err:
19186         bsr.l           restore
19187         mov.w           &0x00e1,%d0
19188         bra.b           fmovm_err
19189
19190 fmovm_in_err:
19191         bsr.l           restore
19192         mov.w           &0x0161,%d0
19193
19194 fmovm_err:
19195         mov.l           L_SCR1(%a6),%a0
19196         bra.l           iea_dacc
19197
19198 #########################################################################
19199 # XDEF **************************************************************** #
19200 #       fmovm_ctrl(): emulate fmovm.l of control registers instr        #
19201 #                                                                       #
19202 # XREF **************************************************************** #
19203 #       _imem_read_long() - read longword from memory                   #
19204 #       iea_iacc() - _imem_read_long() failed; error recovery           #
19205 #                                                                       #
19206 # INPUT *************************************************************** #
19207 #       None                                                            #
19208 #                                                                       #
19209 # OUTPUT ************************************************************** #
19210 #       If _imem_read_long() doesn't fail:                              #
19211 #               USER_FPCR(a6)  = new FPCR value                         #
19212 #               USER_FPSR(a6)  = new FPSR value                         #
19213 #               USER_FPIAR(a6) = new FPIAR value                        #
19214 #                                                                       #
19215 # ALGORITHM *********************************************************** #
19216 #       Decode the instruction type by looking at the extension word    #
19217 # in order to see how many control registers to fetch from memory.      #
19218 # Fetch them using _imem_read_long(). If this fetch fails, exit through #
19219 # the special access error exit handler iea_iacc().                     #
19220 #                                                                       #
19221 # Instruction word decoding:                                            #
19222 #                                                                       #
19223 #       fmovem.l #<data>, {FPIAR&|FPCR&|FPSR}                           #
19224 #                                                                       #
19225 #               WORD1                   WORD2                           #
19226 #       1111 0010 00 111100     100$ $$00 0000 0000                     #
19227 #                                                                       #
19228 #       $$$ (100): FPCR                                                 #
19229 #           (010): FPSR                                                 #
19230 #           (001): FPIAR                                                #
19231 #           (000): FPIAR                                                #
19232 #                                                                       #
19233 #########################################################################
19234
19235         global          fmovm_ctrl
19236 fmovm_ctrl:
19237         mov.b           EXC_EXTWORD(%a6),%d0    # fetch reg select bits
19238         cmpi.b          %d0,&0x9c               # fpcr & fpsr & fpiar ?
19239         beq.w           fctrl_in_7              # yes
19240         cmpi.b          %d0,&0x98               # fpcr & fpsr ?
19241         beq.w           fctrl_in_6              # yes
19242         cmpi.b          %d0,&0x94               # fpcr & fpiar ?
19243         beq.b           fctrl_in_5              # yes
19244
19245 # fmovem.l #<data>, fpsr/fpiar
19246 fctrl_in_3:
19247         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19248         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
19249         bsr.l           _imem_read_long         # fetch FPSR from mem
19250
19251         tst.l           %d1                     # did ifetch fail?
19252         bne.l           iea_iacc                # yes
19253
19254         mov.l           %d0,USER_FPSR(%a6)      # store new FPSR to stack
19255         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19256         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
19257         bsr.l           _imem_read_long         # fetch FPIAR from mem
19258
19259         tst.l           %d1                     # did ifetch fail?
19260         bne.l           iea_iacc                # yes
19261
19262         mov.l           %d0,USER_FPIAR(%a6)     # store new FPIAR to stack
19263         rts
19264
19265 # fmovem.l #<data>, fpcr/fpiar
19266 fctrl_in_5:
19267         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19268         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
19269         bsr.l           _imem_read_long         # fetch FPCR from mem
19270
19271         tst.l           %d1                     # did ifetch fail?
19272         bne.l           iea_iacc                # yes
19273
19274         mov.l           %d0,USER_FPCR(%a6)      # store new FPCR to stack
19275         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19276         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
19277         bsr.l           _imem_read_long         # fetch FPIAR from mem
19278
19279         tst.l           %d1                     # did ifetch fail?
19280         bne.l           iea_iacc                # yes
19281
19282         mov.l           %d0,USER_FPIAR(%a6)     # store new FPIAR to stack
19283         rts
19284
19285 # fmovem.l #<data>, fpcr/fpsr
19286 fctrl_in_6:
19287         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19288         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
19289         bsr.l           _imem_read_long         # fetch FPCR from mem
19290
19291         tst.l           %d1                     # did ifetch fail?
19292         bne.l           iea_iacc                # yes
19293
19294         mov.l           %d0,USER_FPCR(%a6)      # store new FPCR to mem
19295         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19296         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
19297         bsr.l           _imem_read_long         # fetch FPSR from mem
19298
19299         tst.l           %d1                     # did ifetch fail?
19300         bne.l           iea_iacc                # yes
19301
19302         mov.l           %d0,USER_FPSR(%a6)      # store new FPSR to mem
19303         rts
19304
19305 # fmovem.l #<data>, fpcr/fpsr/fpiar
19306 fctrl_in_7:
19307         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19308         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
19309         bsr.l           _imem_read_long         # fetch FPCR from mem
19310
19311         tst.l           %d1                     # did ifetch fail?
19312         bne.l           iea_iacc                # yes
19313
19314         mov.l           %d0,USER_FPCR(%a6)      # store new FPCR to mem
19315         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19316         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
19317         bsr.l           _imem_read_long         # fetch FPSR from mem
19318
19319         tst.l           %d1                     # did ifetch fail?
19320         bne.l           iea_iacc                # yes
19321
19322         mov.l           %d0,USER_FPSR(%a6)      # store new FPSR to mem
19323         mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
19324         addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
19325         bsr.l           _imem_read_long         # fetch FPIAR from mem
19326
19327         tst.l           %d1                     # did ifetch fail?
19328         bne.l           iea_iacc                # yes
19329
19330         mov.l           %d0,USER_FPIAR(%a6)     # store new FPIAR to mem
19331         rts
19332
19333 #########################################################################
19334 # XDEF **************************************************************** #
19335 #       _dcalc_ea(): calc correct <ea> from <ea> stacked on exception   #
19336 #                                                                       #
19337 # XREF **************************************************************** #
19338 #       inc_areg() - increment an address register                      #
19339 #       dec_areg() - decrement an address register                      #
19340 #                                                                       #
19341 # INPUT *************************************************************** #
19342 #       d0 = number of bytes to adjust <ea> by                          #
19343 #                                                                       #
19344 # OUTPUT ************************************************************** #
19345 #       None                                                            #
19346 #                                                                       #
19347 # ALGORITHM *********************************************************** #
19348 # "Dummy" CALCulate Effective Address:                                  #
19349 #       The stacked <ea> for FP unimplemented instructions and opclass  #
19350 #       two packed instructions is correct with the exception of...     #
19351 #                                                                       #
19352 #       1) -(An)   : The register is not updated regardless of size.    #
19353 #                    Also, for extended precision and packed, the       #
19354 #                    stacked <ea> value is 8 bytes too big              #
19355 #       2) (An)+   : The register is not updated.                       #
19356 #       3) #<data> : The upper longword of the immediate operand is     #
19357 #                    stacked b,w,l and s sizes are completely stacked.  #
19358 #                    d,x, and p are not.                                #
19359 #                                                                       #
19360 #########################################################################
19361
19362         global          _dcalc_ea
19363 _dcalc_ea:
19364         mov.l           %d0, %a0                # move # bytes to %a0
19365
19366         mov.b           1+EXC_OPWORD(%a6), %d0  # fetch opcode word
19367         mov.l           %d0, %d1                # make a copy
19368
19369         andi.w          &0x38, %d0              # extract mode field
19370         andi.l          &0x7, %d1               # extract reg  field
19371
19372         cmpi.b          %d0,&0x18               # is mode (An)+ ?
19373         beq.b           dcea_pi                 # yes
19374
19375         cmpi.b          %d0,&0x20               # is mode -(An) ?
19376         beq.b           dcea_pd                 # yes
19377
19378         or.w            %d1,%d0                 # concat mode,reg
19379         cmpi.b          %d0,&0x3c               # is mode #<data>?
19380
19381         beq.b           dcea_imm                # yes
19382
19383         mov.l           EXC_EA(%a6),%a0         # return <ea>
19384         rts
19385
19386 # need to set immediate data flag here since we'll need to do
19387 # an imem_read to fetch this later.
19388 dcea_imm:
19389         mov.b           &immed_flg,SPCOND_FLG(%a6)
19390         lea             ([USER_FPIAR,%a6],0x4),%a0 # no; return <ea>
19391         rts
19392
19393 # here, the <ea> is stacked correctly. however, we must update the
19394 # address register...
19395 dcea_pi:
19396         mov.l           %a0,%d0                 # pass amt to inc by
19397         bsr.l           inc_areg                # inc addr register
19398
19399         mov.l           EXC_EA(%a6),%a0         # stacked <ea> is correct
19400         rts
19401
19402 # the <ea> is stacked correctly for all but extended and packed which
19403 # the <ea>s are 8 bytes too large.
19404 # it would make no sense to have a pre-decrement to a7 in supervisor
19405 # mode so we don't even worry about this tricky case here : )
19406 dcea_pd:
19407         mov.l           %a0,%d0                 # pass amt to dec by
19408         bsr.l           dec_areg                # dec addr register
19409
19410         mov.l           EXC_EA(%a6),%a0         # stacked <ea> is correct
19411
19412         cmpi.b          %d0,&0xc                # is opsize ext or packed?
19413         beq.b           dcea_pd2                # yes
19414         rts
19415 dcea_pd2:
19416         sub.l           &0x8,%a0                # correct <ea>
19417         mov.l           %a0,EXC_EA(%a6)         # put correct <ea> on stack
19418         rts
19419
19420 #########################################################################
19421 # XDEF **************************************************************** #
19422 #       _calc_ea_fout(): calculate correct stacked <ea> for extended    #
19423 #                        and packed data opclass 3 operations.          #
19424 #                                                                       #
19425 # XREF **************************************************************** #
19426 #       None                                                            #
19427 #                                                                       #
19428 # INPUT *************************************************************** #
19429 #       None                                                            #
19430 #                                                                       #
19431 # OUTPUT ************************************************************** #
19432 #       a0 = return correct effective address                           #
19433 #                                                                       #
19434 # ALGORITHM *********************************************************** #
19435 #       For opclass 3 extended and packed data operations, the <ea>     #
19436 # stacked for the exception is incorrect for -(an) and (an)+ addressing #
19437 # modes. Also, while we're at it, the index register itself must get    #
19438 # updated.                                                              #
19439 #       So, for -(an), we must subtract 8 off of the stacked <ea> value #
19440 # and return that value as the correct <ea> and store that value in An. #
19441 # For (an)+, the stacked <ea> is correct but we must adjust An by +12.  #
19442 #                                                                       #
19443 #########################################################################
19444
19445 # This calc_ea is currently used to retrieve the correct <ea>
19446 # for fmove outs of type extended and packed.
19447         global          _calc_ea_fout
19448 _calc_ea_fout:
19449         mov.b           1+EXC_OPWORD(%a6),%d0   # fetch opcode word
19450         mov.l           %d0,%d1                 # make a copy
19451
19452         andi.w          &0x38,%d0               # extract mode field
19453         andi.l          &0x7,%d1                # extract reg  field
19454
19455         cmpi.b          %d0,&0x18               # is mode (An)+ ?
19456         beq.b           ceaf_pi                 # yes
19457
19458         cmpi.b          %d0,&0x20               # is mode -(An) ?
19459         beq.w           ceaf_pd                 # yes
19460
19461         mov.l           EXC_EA(%a6),%a0         # stacked <ea> is correct
19462         rts
19463
19464 # (An)+ : extended and packed fmove out
19465 #       : stacked <ea> is correct
19466 #       : "An" not updated
19467 ceaf_pi:
19468         mov.w           (tbl_ceaf_pi.b,%pc,%d1.w*2),%d1
19469         mov.l           EXC_EA(%a6),%a0
19470         jmp             (tbl_ceaf_pi.b,%pc,%d1.w*1)
19471
19472         swbeg           &0x8
19473 tbl_ceaf_pi:
19474         short           ceaf_pi0 - tbl_ceaf_pi
19475         short           ceaf_pi1 - tbl_ceaf_pi
19476         short           ceaf_pi2 - tbl_ceaf_pi
19477         short           ceaf_pi3 - tbl_ceaf_pi
19478         short           ceaf_pi4 - tbl_ceaf_pi
19479         short           ceaf_pi5 - tbl_ceaf_pi
19480         short           ceaf_pi6 - tbl_ceaf_pi
19481         short           ceaf_pi7 - tbl_ceaf_pi
19482
19483 ceaf_pi0:
19484         addi.l          &0xc,EXC_DREGS+0x8(%a6)
19485         rts
19486 ceaf_pi1:
19487         addi.l          &0xc,EXC_DREGS+0xc(%a6)
19488         rts
19489 ceaf_pi2:
19490         add.l           &0xc,%a2
19491         rts
19492 ceaf_pi3:
19493         add.l           &0xc,%a3
19494         rts
19495 ceaf_pi4:
19496         add.l           &0xc,%a4
19497         rts
19498 ceaf_pi5:
19499         add.l           &0xc,%a5
19500         rts
19501 ceaf_pi6:
19502         addi.l          &0xc,EXC_A6(%a6)
19503         rts
19504 ceaf_pi7:
19505         mov.b           &mia7_flg,SPCOND_FLG(%a6)
19506         addi.l          &0xc,EXC_A7(%a6)
19507         rts
19508
19509 # -(An) : extended and packed fmove out
19510 #       : stacked <ea> = actual <ea> + 8
19511 #       : "An" not updated
19512 ceaf_pd:
19513         mov.w           (tbl_ceaf_pd.b,%pc,%d1.w*2),%d1
19514         mov.l           EXC_EA(%a6),%a0
19515         sub.l           &0x8,%a0
19516         sub.l           &0x8,EXC_EA(%a6)
19517         jmp             (tbl_ceaf_pd.b,%pc,%d1.w*1)
19518
19519         swbeg           &0x8
19520 tbl_ceaf_pd:
19521         short           ceaf_pd0 - tbl_ceaf_pd
19522         short           ceaf_pd1 - tbl_ceaf_pd
19523         short           ceaf_pd2 - tbl_ceaf_pd
19524         short           ceaf_pd3 - tbl_ceaf_pd
19525         short           ceaf_pd4 - tbl_ceaf_pd
19526         short           ceaf_pd5 - tbl_ceaf_pd
19527         short           ceaf_pd6 - tbl_ceaf_pd
19528         short           ceaf_pd7 - tbl_ceaf_pd
19529
19530 ceaf_pd0:
19531         mov.l           %a0,EXC_DREGS+0x8(%a6)
19532         rts
19533 ceaf_pd1:
19534         mov.l           %a0,EXC_DREGS+0xc(%a6)
19535         rts
19536 ceaf_pd2:
19537         mov.l           %a0,%a2
19538         rts
19539 ceaf_pd3:
19540         mov.l           %a0,%a3
19541         rts
19542 ceaf_pd4:
19543         mov.l           %a0,%a4
19544         rts
19545 ceaf_pd5:
19546         mov.l           %a0,%a5
19547         rts
19548 ceaf_pd6:
19549         mov.l           %a0,EXC_A6(%a6)
19550         rts
19551 ceaf_pd7:
19552         mov.l           %a0,EXC_A7(%a6)
19553         mov.b           &mda7_flg,SPCOND_FLG(%a6)
19554         rts
19555
19556 #########################################################################
19557 # XDEF **************************************************************** #
19558 #       _load_fop(): load operand for unimplemented FP exception        #
19559 #                                                                       #
19560 # XREF **************************************************************** #
19561 #       set_tag_x() - determine ext prec optype tag                     #
19562 #       set_tag_s() - determine sgl prec optype tag                     #
19563 #       set_tag_d() - determine dbl prec optype tag                     #
19564 #       unnorm_fix() - convert normalized number to denorm or zero      #
19565 #       norm() - normalize a denormalized number                        #
19566 #       get_packed() - fetch a packed operand from memory               #
19567 #       _dcalc_ea() - calculate <ea>, fixing An in process              #
19568 #                                                                       #
19569 #       _imem_read_{word,long}() - read from instruction memory         #
19570 #       _dmem_read() - read from data memory                            #
19571 #       _dmem_read_{byte,word,long}() - read from data memory           #
19572 #                                                                       #
19573 #       facc_in_{b,w,l,d,x}() - mem read failed; special exit point     #
19574 #                                                                       #
19575 # INPUT *************************************************************** #
19576 #       None                                                            #
19577 #                                                                       #
19578 # OUTPUT ************************************************************** #
19579 #       If memory access doesn't fail:                                  #
19580 #               FP_SRC(a6) = source operand in extended precision       #
19581 #               FP_DST(a6) = destination operand in extended precision  #
19582 #                                                                       #
19583 # ALGORITHM *********************************************************** #
19584 #       This is called from the Unimplemented FP exception handler in   #
19585 # order to load the source and maybe destination operand into           #
19586 # FP_SRC(a6) and FP_DST(a6). If the instruction was opclass zero, load  #
19587 # the source and destination from the FP register file. Set the optype  #
19588 # tags for both if dyadic, one for monadic. If a number is an UNNORM,   #
19589 # convert it to a DENORM or a ZERO.                                     #
19590 #       If the instruction is opclass two (memory->reg), then fetch     #
19591 # the destination from the register file and the source operand from    #
19592 # memory. Tag and fix both as above w/ opclass zero instructions.       #
19593 #       If the source operand is byte,word,long, or single, it may be   #
19594 # in the data register file. If it's actually out in memory, use one of #
19595 # the mem_read() routines to fetch it. If the mem_read() access returns #
19596 # a failing value, exit through the special facc_in() routine which     #
19597 # will create an access error exception frame from the current exception #
19598 # frame.                                                                #
19599 #       Immediate data and regular data accesses are separated because  #
19600 # if an immediate data access fails, the resulting fault status         #
19601 # longword stacked for the access error exception must have the         #
19602 # instruction bit set.                                                  #
19603 #                                                                       #
19604 #########################################################################
19605
19606         global          _load_fop
19607 _load_fop:
19608
19609 #  15     13 12 10  9 7  6       0
19610 # /        \ /   \ /  \ /         \
19611 # ---------------------------------
19612 # | opclass | RX  | RY | EXTENSION |  (2nd word of general FP instruction)
19613 # ---------------------------------
19614 #
19615
19616 #       bfextu          EXC_CMDREG(%a6){&0:&3}, %d0 # extract opclass
19617 #       cmpi.b          %d0, &0x2               # which class is it? ('000,'010,'011)
19618 #       beq.w           op010                   # handle <ea> -> fpn
19619 #       bgt.w           op011                   # handle fpn -> <ea>
19620
19621 # we're not using op011 for now...
19622         btst            &0x6,EXC_CMDREG(%a6)
19623         bne.b           op010
19624
19625 ############################
19626 # OPCLASS '000: reg -> reg #
19627 ############################
19628 op000:
19629         mov.b           1+EXC_CMDREG(%a6),%d0   # fetch extension word lo
19630         btst            &0x5,%d0                # testing extension bits
19631         beq.b           op000_src               # (bit 5 == 0) => monadic
19632         btst            &0x4,%d0                # (bit 5 == 1)
19633         beq.b           op000_dst               # (bit 4 == 0) => dyadic
19634         and.w           &0x007f,%d0             # extract extension bits {6:0}
19635         cmpi.w          %d0,&0x0038             # is it an fcmp (dyadic) ?
19636         bne.b           op000_src               # it's an fcmp
19637
19638 op000_dst:
19639         bfextu          EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field
19640         bsr.l           load_fpn2               # fetch dst fpreg into FP_DST
19641
19642         bsr.l           set_tag_x               # get dst optype tag
19643
19644         cmpi.b          %d0, &UNNORM            # is dst fpreg an UNNORM?
19645         beq.b           op000_dst_unnorm        # yes
19646 op000_dst_cont:
19647         mov.b           %d0, DTAG(%a6)          # store the dst optype tag
19648
19649 op000_src:
19650         bfextu          EXC_CMDREG(%a6){&3:&3}, %d0 # extract src field
19651         bsr.l           load_fpn1               # fetch src fpreg into FP_SRC
19652
19653         bsr.l           set_tag_x               # get src optype tag
19654
19655         cmpi.b          %d0, &UNNORM            # is src fpreg an UNNORM?
19656         beq.b           op000_src_unnorm        # yes
19657 op000_src_cont:
19658         mov.b           %d0, STAG(%a6)          # store the src optype tag
19659         rts
19660
19661 op000_dst_unnorm:
19662         bsr.l           unnorm_fix              # fix the dst UNNORM
19663         bra.b           op000_dst_cont
19664 op000_src_unnorm:
19665         bsr.l           unnorm_fix              # fix the src UNNORM
19666         bra.b           op000_src_cont
19667
19668 #############################
19669 # OPCLASS '010: <ea> -> reg #
19670 #############################
19671 op010:
19672         mov.w           EXC_CMDREG(%a6),%d0     # fetch extension word
19673         btst            &0x5,%d0                # testing extension bits
19674         beq.b           op010_src               # (bit 5 == 0) => monadic
19675         btst            &0x4,%d0                # (bit 5 == 1)
19676         beq.b           op010_dst               # (bit 4 == 0) => dyadic
19677         and.w           &0x007f,%d0             # extract extension bits {6:0}
19678         cmpi.w          %d0,&0x0038             # is it an fcmp (dyadic) ?
19679         bne.b           op010_src               # it's an fcmp
19680
19681 op010_dst:
19682         bfextu          EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field
19683         bsr.l           load_fpn2               # fetch dst fpreg ptr
19684
19685         bsr.l           set_tag_x               # get dst type tag
19686
19687         cmpi.b          %d0, &UNNORM            # is dst fpreg an UNNORM?
19688         beq.b           op010_dst_unnorm        # yes
19689 op010_dst_cont:
19690         mov.b           %d0, DTAG(%a6)          # store the dst optype tag
19691
19692 op010_src:
19693         bfextu          EXC_CMDREG(%a6){&3:&3}, %d0 # extract src type field
19694
19695         bfextu          EXC_OPWORD(%a6){&10:&3}, %d1 # extract <ea> mode field
19696         bne.w           fetch_from_mem          # src op is in memory
19697
19698 op010_dreg:
19699         clr.b           STAG(%a6)               # either NORM or ZERO
19700         bfextu          EXC_OPWORD(%a6){&13:&3}, %d1 # extract src reg field
19701
19702         mov.w           (tbl_op010_dreg.b,%pc,%d0.w*2), %d0 # jmp based on optype
19703         jmp             (tbl_op010_dreg.b,%pc,%d0.w*1) # fetch src from dreg
19704
19705 op010_dst_unnorm:
19706         bsr.l           unnorm_fix              # fix the dst UNNORM
19707         bra.b           op010_dst_cont
19708
19709         swbeg           &0x8
19710 tbl_op010_dreg:
19711         short           opd_long        - tbl_op010_dreg
19712         short           opd_sgl         - tbl_op010_dreg
19713         short           tbl_op010_dreg  - tbl_op010_dreg
19714         short           tbl_op010_dreg  - tbl_op010_dreg
19715         short           opd_word        - tbl_op010_dreg
19716         short           tbl_op010_dreg  - tbl_op010_dreg
19717         short           opd_byte        - tbl_op010_dreg
19718         short           tbl_op010_dreg  - tbl_op010_dreg
19719
19720 #
19721 # LONG: can be either NORM or ZERO...
19722 #
19723 opd_long:
19724         bsr.l           fetch_dreg              # fetch long in d0
19725         fmov.l          %d0, %fp0               # load a long
19726         fmovm.x         &0x80, FP_SRC(%a6)      # return src op in FP_SRC
19727         fbeq.w          opd_long_zero           # long is a ZERO
19728         rts
19729 opd_long_zero:
19730         mov.b           &ZERO, STAG(%a6)        # set ZERO optype flag
19731         rts
19732
19733 #
19734 # WORD: can be either NORM or ZERO...
19735 #
19736 opd_word:
19737         bsr.l           fetch_dreg              # fetch word in d0
19738         fmov.w          %d0, %fp0               # load a word
19739         fmovm.x         &0x80, FP_SRC(%a6)      # return src op in FP_SRC
19740         fbeq.w          opd_word_zero           # WORD is a ZERO
19741         rts
19742 opd_word_zero:
19743         mov.b           &ZERO, STAG(%a6)        # set ZERO optype flag
19744         rts
19745
19746 #
19747 # BYTE: can be either NORM or ZERO...
19748 #
19749 opd_byte:
19750         bsr.l           fetch_dreg              # fetch word in d0
19751         fmov.b          %d0, %fp0               # load a byte
19752         fmovm.x         &0x80, FP_SRC(%a6)      # return src op in FP_SRC
19753         fbeq.w          opd_byte_zero           # byte is a ZERO
19754         rts
19755 opd_byte_zero:
19756         mov.b           &ZERO, STAG(%a6)        # set ZERO optype flag
19757         rts
19758
19759 #
19760 # SGL: can be either NORM, DENORM, ZERO, INF, QNAN or SNAN but not UNNORM
19761 #
19762 # separate SNANs and DENORMs so they can be loaded w/ special care.
19763 # all others can simply be moved "in" using fmove.
19764 #
19765 opd_sgl:
19766         bsr.l           fetch_dreg              # fetch sgl in d0
19767         mov.l           %d0,L_SCR1(%a6)
19768
19769         lea             L_SCR1(%a6), %a0        # pass: ptr to the sgl
19770         bsr.l           set_tag_s               # determine sgl type
19771         mov.b           %d0, STAG(%a6)          # save the src tag
19772
19773         cmpi.b          %d0, &SNAN              # is it an SNAN?
19774         beq.w           get_sgl_snan            # yes
19775
19776         cmpi.b          %d0, &DENORM            # is it a DENORM?
19777         beq.w           get_sgl_denorm          # yes
19778
19779         fmov.s          (%a0), %fp0             # no, so can load it regular
19780         fmovm.x         &0x80, FP_SRC(%a6)      # return src op in FP_SRC
19781         rts
19782
19783 ##############################################################################
19784
19785 #########################################################################
19786 # fetch_from_mem():                                                     #
19787 # - src is out in memory. must:                                         #
19788 #       (1) calc ea - must read AFTER you know the src type since       #
19789 #                     if the ea is -() or ()+, need to know # of bytes. #
19790 #       (2) read it in from either user or supervisor space             #
19791 #       (3) if (b || w || l) then simply read in                        #
19792 #           if (s || d || x) then check for SNAN,UNNORM,DENORM          #
19793 #           if (packed) then punt for now                               #
19794 # INPUT:                                                                #
19795 #       %d0 : src type field                                            #
19796 #########################################################################
19797 fetch_from_mem:
19798         clr.b           STAG(%a6)               # either NORM or ZERO
19799
19800         mov.w           (tbl_fp_type.b,%pc,%d0.w*2), %d0 # index by src type field
19801         jmp             (tbl_fp_type.b,%pc,%d0.w*1)
19802
19803         swbeg           &0x8
19804 tbl_fp_type:
19805         short           load_long       - tbl_fp_type
19806         short           load_sgl        - tbl_fp_type
19807         short           load_ext        - tbl_fp_type
19808         short           load_packed     - tbl_fp_type
19809         short           load_word       - tbl_fp_type
19810         short           load_dbl        - tbl_fp_type
19811         short           load_byte       - tbl_fp_type
19812         short           tbl_fp_type     - tbl_fp_type
19813
19814 #########################################
19815 # load a LONG into %fp0:                #
19816 #       -number can't fault             #
19817 #       (1) calc ea                     #
19818 #       (2) read 4 bytes into L_SCR1    #
19819 #       (3) fmov.l into %fp0            #
19820 #########################################
19821 load_long:
19822         movq.l          &0x4, %d0               # pass: 4 (bytes)
19823         bsr.l           _dcalc_ea               # calc <ea>; <ea> in %a0
19824
19825         cmpi.b          SPCOND_FLG(%a6),&immed_flg
19826         beq.b           load_long_immed
19827
19828         bsr.l           _dmem_read_long         # fetch src operand from memory
19829
19830         tst.l           %d1                     # did dfetch fail?
19831         bne.l           facc_in_l               # yes
19832
19833 load_long_cont:
19834         fmov.l          %d0, %fp0               # read into %fp0;convert to xprec
19835         fmovm.x         &0x80, FP_SRC(%a6)      # return src op in FP_SRC
19836
19837         fbeq.w          load_long_zero          # src op is a ZERO
19838         rts
19839 load_long_zero:
19840         mov.b           &ZERO, STAG(%a6)        # set optype tag to ZERO
19841         rts
19842
19843 load_long_immed:
19844         bsr.l           _imem_read_long         # fetch src operand immed data
19845
19846         tst.l           %d1                     # did ifetch fail?
19847         bne.l           funimp_iacc             # yes
19848         bra.b           load_long_cont
19849
19850 #########################################
19851 # load a WORD into %fp0:                #
19852 #       -number can't fault             #
19853 #       (1) calc ea                     #
19854 #       (2) read 2 bytes into L_SCR1    #
19855 #       (3) fmov.w into %fp0            #
19856 #########################################
19857 load_word:
19858         movq.l          &0x2, %d0               # pass: 2 (bytes)
19859         bsr.l           _dcalc_ea               # calc <ea>; <ea> in %a0
19860
19861         cmpi.b          SPCOND_FLG(%a6),&immed_flg
19862         beq.b           load_word_immed
19863
19864         bsr.l           _dmem_read_word         # fetch src operand from memory
19865
19866         tst.l           %d1                     # did dfetch fail?
19867         bne.l           facc_in_w               # yes
19868
19869 load_word_cont:
19870         fmov.w          %d0, %fp0               # read into %fp0;convert to xprec
19871         fmovm.x         &0x80, FP_SRC(%a6)      # return src op in FP_SRC
19872
19873         fbeq.w          load_word_zero          # src op is a ZERO
19874         rts
19875 load_word_zero:
19876         mov.b           &ZERO, STAG(%a6)        # set optype tag to ZERO
19877         rts
19878
19879 load_word_immed:
19880         bsr.l           _imem_read_word         # fetch src operand immed data
19881
19882         tst.l           %d1                     # did ifetch fail?
19883         bne.l           funimp_iacc             # yes
19884         bra.b           load_word_cont
19885
19886 #########################################
19887 # load a BYTE into %fp0:                #
19888 #       -number can't fault             #
19889 #       (1) calc ea                     #
19890 #       (2) read 1 byte into L_SCR1     #
19891 #       (3) fmov.b into %fp0            #
19892 #########################################
19893 load_byte:
19894         movq.l          &0x1, %d0               # pass: 1 (byte)
19895         bsr.l           _dcalc_ea               # calc <ea>; <ea> in %a0
19896
19897         cmpi.b          SPCOND_FLG(%a6),&immed_flg
19898         beq.b           load_byte_immed
19899
19900         bsr.l           _dmem_read_byte         # fetch src operand from memory
19901
19902         tst.l           %d1                     # did dfetch fail?
19903         bne.l           facc_in_b               # yes
19904
19905 load_byte_cont:
19906         fmov.b          %d0, %fp0               # read into %fp0;convert to xprec
19907         fmovm.x         &0x80, FP_SRC(%a6)      # return src op in FP_SRC
19908
19909         fbeq.w          load_byte_zero          # src op is a ZERO
19910         rts
19911 load_byte_zero:
19912         mov.b           &ZERO, STAG(%a6)        # set optype tag to ZERO
19913         rts
19914
19915 load_byte_immed:
19916         bsr.l           _imem_read_word         # fetch src operand immed data
19917
19918         tst.l           %d1                     # did ifetch fail?
19919         bne.l           funimp_iacc             # yes
19920         bra.b           load_byte_cont
19921
19922 #########################################
19923 # load a SGL into %fp0:                 #
19924 #       -number can't fault             #
19925 #       (1) calc ea                     #
19926 #       (2) read 4 bytes into L_SCR1    #
19927 #       (3) fmov.s into %fp0            #
19928 #########################################
19929 load_sgl:
19930         movq.l          &0x4, %d0               # pass: 4 (bytes)
19931         bsr.l           _dcalc_ea               # calc <ea>; <ea> in %a0
19932
19933         cmpi.b          SPCOND_FLG(%a6),&immed_flg
19934         beq.b           load_sgl_immed
19935
19936         bsr.l           _dmem_read_long         # fetch src operand from memory
19937         mov.l           %d0, L_SCR1(%a6)        # store src op on stack
19938
19939         tst.l           %d1                     # did dfetch fail?
19940         bne.l           facc_in_l               # yes
19941
19942 load_sgl_cont:
19943         lea             L_SCR1(%a6), %a0        # pass: ptr to sgl src op
19944         bsr.l           set_tag_s               # determine src type tag
19945         mov.b           %d0, STAG(%a6)          # save src optype tag on stack
19946
19947         cmpi.b          %d0, &DENORM            # is it a sgl DENORM?
19948         beq.w           get_sgl_denorm          # yes
19949
19950         cmpi.b          %d0, &SNAN              # is it a sgl SNAN?
19951         beq.w           get_sgl_snan            # yes
19952
19953         fmov.s          L_SCR1(%a6), %fp0       # read into %fp0;convert to xprec
19954         fmovm.x         &0x80, FP_SRC(%a6)      # return src op in FP_SRC
19955         rts
19956
19957 load_sgl_immed:
19958         bsr.l           _imem_read_long         # fetch src operand immed data
19959
19960         tst.l           %d1                     # did ifetch fail?
19961         bne.l           funimp_iacc             # yes
19962         bra.b           load_sgl_cont
19963
19964 # must convert sgl denorm format to an Xprec denorm fmt suitable for
19965 # normalization...
19966 # %a0 : points to sgl denorm
19967 get_sgl_denorm:
19968         clr.w           FP_SRC_EX(%a6)
19969         bfextu          (%a0){&9:&23}, %d0      # fetch sgl hi(_mantissa)
19970         lsl.l           &0x8, %d0
19971         mov.l           %d0, FP_SRC_HI(%a6)     # set ext hi(_mantissa)
19972         clr.l           FP_SRC_LO(%a6)          # set ext lo(_mantissa)
19973
19974         clr.w           FP_SRC_EX(%a6)
19975         btst            &0x7, (%a0)             # is sgn bit set?
19976         beq.b           sgl_dnrm_norm
19977         bset            &0x7, FP_SRC_EX(%a6)    # set sgn of xprec value
19978
19979 sgl_dnrm_norm:
19980         lea             FP_SRC(%a6), %a0
19981         bsr.l           norm                    # normalize number
19982         mov.w           &0x3f81, %d1            # xprec exp = 0x3f81
19983         sub.w           %d0, %d1                # exp = 0x3f81 - shft amt.
19984         or.w            %d1, FP_SRC_EX(%a6)     # {sgn,exp}
19985
19986         mov.b           &NORM, STAG(%a6)        # fix src type tag
19987         rts
19988
19989 # convert sgl to ext SNAN
19990 # %a0 : points to sgl SNAN
19991 get_sgl_snan:
19992         mov.w           &0x7fff, FP_SRC_EX(%a6) # set exp of SNAN
19993         bfextu          (%a0){&9:&23}, %d0
19994         lsl.l           &0x8, %d0               # extract and insert hi(man)
19995         mov.l           %d0, FP_SRC_HI(%a6)
19996         clr.l           FP_SRC_LO(%a6)
19997
19998         btst            &0x7, (%a0)             # see if sign of SNAN is set
19999         beq.b           no_sgl_snan_sgn
20000         bset            &0x7, FP_SRC_EX(%a6)
20001 no_sgl_snan_sgn:
20002         rts
20003
20004 #########################################
20005 # load a DBL into %fp0:                 #
20006 #       -number can't fault             #
20007 #       (1) calc ea                     #
20008 #       (2) read 8 bytes into L_SCR(1,2)#
20009 #       (3) fmov.d into %fp0            #
20010 #########################################
20011 load_dbl:
20012         movq.l          &0x8, %d0               # pass: 8 (bytes)
20013         bsr.l           _dcalc_ea               # calc <ea>; <ea> in %a0
20014
20015         cmpi.b          SPCOND_FLG(%a6),&immed_flg
20016         beq.b           load_dbl_immed
20017
20018         lea             L_SCR1(%a6), %a1        # pass: ptr to input dbl tmp space
20019         movq.l          &0x8, %d0               # pass: # bytes to read
20020         bsr.l           _dmem_read              # fetch src operand from memory
20021
20022         tst.l           %d1                     # did dfetch fail?
20023         bne.l           facc_in_d               # yes
20024
20025 load_dbl_cont:
20026         lea             L_SCR1(%a6), %a0        # pass: ptr to input dbl
20027         bsr.l           set_tag_d               # determine src type tag
20028         mov.b           %d0, STAG(%a6)          # set src optype tag
20029
20030         cmpi.b          %d0, &DENORM            # is it a dbl DENORM?
20031         beq.w           get_dbl_denorm          # yes
20032
20033         cmpi.b          %d0, &SNAN              # is it a dbl SNAN?
20034         beq.w           get_dbl_snan            # yes
20035
20036         fmov.d          L_SCR1(%a6), %fp0       # read into %fp0;convert to xprec
20037         fmovm.x         &0x80, FP_SRC(%a6)      # return src op in FP_SRC
20038         rts
20039
20040 load_dbl_immed:
20041         lea             L_SCR1(%a6), %a1        # pass: ptr to input dbl tmp space
20042         movq.l          &0x8, %d0               # pass: # bytes to read
20043         bsr.l           _imem_read              # fetch src operand from memory
20044
20045         tst.l           %d1                     # did ifetch fail?
20046         bne.l           funimp_iacc             # yes
20047         bra.b           load_dbl_cont
20048
20049 # must convert dbl denorm format to an Xprec denorm fmt suitable for
20050 # normalization...
20051 # %a0 : loc. of dbl denorm
20052 get_dbl_denorm:
20053         clr.w           FP_SRC_EX(%a6)
20054         bfextu          (%a0){&12:&31}, %d0     # fetch hi(_mantissa)
20055         mov.l           %d0, FP_SRC_HI(%a6)
20056         bfextu          4(%a0){&11:&21}, %d0    # fetch lo(_mantissa)
20057         mov.l           &0xb, %d1
20058         lsl.l           %d1, %d0
20059         mov.l           %d0, FP_SRC_LO(%a6)
20060
20061         btst            &0x7, (%a0)             # is sgn bit set?
20062         beq.b           dbl_dnrm_norm
20063         bset            &0x7, FP_SRC_EX(%a6)    # set sgn of xprec value
20064
20065 dbl_dnrm_norm:
20066         lea             FP_SRC(%a6), %a0
20067         bsr.l           norm                    # normalize number
20068         mov.w           &0x3c01, %d1            # xprec exp = 0x3c01
20069         sub.w           %d0, %d1                # exp = 0x3c01 - shft amt.
20070         or.w            %d1, FP_SRC_EX(%a6)     # {sgn,exp}
20071
20072         mov.b           &NORM, STAG(%a6)        # fix src type tag
20073         rts
20074
20075 # convert dbl to ext SNAN
20076 # %a0 : points to dbl SNAN
20077 get_dbl_snan:
20078         mov.w           &0x7fff, FP_SRC_EX(%a6) # set exp of SNAN
20079
20080         bfextu          (%a0){&12:&31}, %d0     # fetch hi(_mantissa)
20081         mov.l           %d0, FP_SRC_HI(%a6)
20082         bfextu          4(%a0){&11:&21}, %d0    # fetch lo(_mantissa)
20083         mov.l           &0xb, %d1
20084         lsl.l           %d1, %d0
20085         mov.l           %d0, FP_SRC_LO(%a6)
20086
20087         btst            &0x7, (%a0)             # see if sign of SNAN is set
20088         beq.b           no_dbl_snan_sgn
20089         bset            &0x7, FP_SRC_EX(%a6)
20090 no_dbl_snan_sgn:
20091         rts
20092
20093 #################################################
20094 # load a Xprec into %fp0:                       #
20095 #       -number can't fault                     #
20096 #       (1) calc ea                             #
20097 #       (2) read 12 bytes into L_SCR(1,2)       #
20098 #       (3) fmov.x into %fp0                    #
20099 #################################################
20100 load_ext:
20101         mov.l           &0xc, %d0               # pass: 12 (bytes)
20102         bsr.l           _dcalc_ea               # calc <ea>
20103
20104         lea             FP_SRC(%a6), %a1        # pass: ptr to input ext tmp space
20105         mov.l           &0xc, %d0               # pass: # of bytes to read
20106         bsr.l           _dmem_read              # fetch src operand from memory
20107
20108         tst.l           %d1                     # did dfetch fail?
20109         bne.l           facc_in_x               # yes
20110
20111         lea             FP_SRC(%a6), %a0        # pass: ptr to src op
20112         bsr.l           set_tag_x               # determine src type tag
20113
20114         cmpi.b          %d0, &UNNORM            # is the src op an UNNORM?
20115         beq.b           load_ext_unnorm         # yes
20116
20117         mov.b           %d0, STAG(%a6)          # store the src optype tag
20118         rts
20119
20120 load_ext_unnorm:
20121         bsr.l           unnorm_fix              # fix the src UNNORM
20122         mov.b           %d0, STAG(%a6)          # store the src optype tag
20123         rts
20124
20125 #################################################
20126 # load a packed into %fp0:                      #
20127 #       -number can't fault                     #
20128 #       (1) calc ea                             #
20129 #       (2) read 12 bytes into L_SCR(1,2,3)     #
20130 #       (3) fmov.x into %fp0                    #
20131 #################################################
20132 load_packed:
20133         bsr.l           get_packed
20134
20135         lea             FP_SRC(%a6),%a0         # pass ptr to src op
20136         bsr.l           set_tag_x               # determine src type tag
20137         cmpi.b          %d0,&UNNORM             # is the src op an UNNORM ZERO?
20138         beq.b           load_packed_unnorm      # yes
20139
20140         mov.b           %d0,STAG(%a6)           # store the src optype tag
20141         rts
20142
20143 load_packed_unnorm:
20144         bsr.l           unnorm_fix              # fix the UNNORM ZERO
20145         mov.b           %d0,STAG(%a6)           # store the src optype tag
20146         rts
20147
20148 #########################################################################
20149 # XDEF **************************************************************** #
20150 #       fout(): move from fp register to memory or data register        #
20151 #                                                                       #
20152 # XREF **************************************************************** #
20153 #       _round() - needed to create EXOP for sgl/dbl precision          #
20154 #       norm() - needed to create EXOP for extended precision           #
20155 #       ovf_res() - create default overflow result for sgl/dbl precision#
20156 #       unf_res() - create default underflow result for sgl/dbl prec.   #
20157 #       dst_dbl() - create rounded dbl precision result.                #
20158 #       dst_sgl() - create rounded sgl precision result.                #
20159 #       fetch_dreg() - fetch dynamic k-factor reg for packed.           #
20160 #       bindec() - convert FP binary number to packed number.           #
20161 #       _mem_write() - write data to memory.                            #
20162 #       _mem_write2() - write data to memory unless supv mode -(a7) exc.#
20163 #       _dmem_write_{byte,word,long}() - write data to memory.          #
20164 #       store_dreg_{b,w,l}() - store data to data register file.        #
20165 #       facc_out_{b,w,l,d,x}() - data access error occurred.            #
20166 #                                                                       #
20167 # INPUT *************************************************************** #
20168 #       a0 = pointer to extended precision source operand               #
20169 #       d0 = round prec,mode                                            #
20170 #                                                                       #
20171 # OUTPUT ************************************************************** #
20172 #       fp0 : intermediate underflow or overflow result if              #
20173 #             OVFL/UNFL occurred for a sgl or dbl operand               #
20174 #                                                                       #
20175 # ALGORITHM *********************************************************** #
20176 #       This routine is accessed by many handlers that need to do an    #
20177 # opclass three move of an operand out to memory.                       #
20178 #       Decode an fmove out (opclass 3) instruction to determine if     #
20179 # it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data  #
20180 # register or memory. The algorithm uses a standard "fmove" to create   #
20181 # the rounded result. Also, since exceptions are disabled, this also    #
20182 # create the correct OPERR default result if appropriate.               #
20183 #       For sgl or dbl precision, overflow or underflow can occur. If   #
20184 # either occurs and is enabled, the EXOP.                               #
20185 #       For extended precision, the stacked <ea> must be fixed along    #
20186 # w/ the address index register as appropriate w/ _calc_ea_fout(). If   #
20187 # the source is a denorm and if underflow is enabled, an EXOP must be   #
20188 # created.                                                              #
20189 #       For packed, the k-factor must be fetched from the instruction   #
20190 # word or a data register. The <ea> must be fixed as w/ extended        #
20191 # precision. Then, bindec() is called to create the appropriate         #
20192 # packed result.                                                        #
20193 #       If at any time an access error is flagged by one of the move-   #
20194 # to-memory routines, then a special exit must be made so that the      #
20195 # access error can be handled properly.                                 #
20196 #                                                                       #
20197 #########################################################################
20198
20199         global          fout
20200 fout:
20201         bfextu          EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt
20202         mov.w           (tbl_fout.b,%pc,%d1.w*2),%a1 # use as index
20203         jmp             (tbl_fout.b,%pc,%a1)    # jump to routine
20204
20205         swbeg           &0x8
20206 tbl_fout:
20207         short           fout_long       -       tbl_fout
20208         short           fout_sgl        -       tbl_fout
20209         short           fout_ext        -       tbl_fout
20210         short           fout_pack       -       tbl_fout
20211         short           fout_word       -       tbl_fout
20212         short           fout_dbl        -       tbl_fout
20213         short           fout_byte       -       tbl_fout
20214         short           fout_pack       -       tbl_fout
20215
20216 #################################################################
20217 # fmove.b out ###################################################
20218 #################################################################
20219
20220 # Only "Unimplemented Data Type" exceptions enter here. The operand
20221 # is either a DENORM or a NORM.
20222 fout_byte:
20223         tst.b           STAG(%a6)               # is operand normalized?
20224         bne.b           fout_byte_denorm        # no
20225
20226         fmovm.x         SRC(%a0),&0x80          # load value
20227
20228 fout_byte_norm:
20229         fmov.l          %d0,%fpcr               # insert rnd prec,mode
20230
20231         fmov.b          %fp0,%d0                # exec move out w/ correct rnd mode
20232
20233         fmov.l          &0x0,%fpcr              # clear FPCR
20234         fmov.l          %fpsr,%d1               # fetch FPSR
20235         or.w            %d1,2+USER_FPSR(%a6)    # save new exc,accrued bits
20236
20237         mov.b           1+EXC_OPWORD(%a6),%d1   # extract dst mode
20238         andi.b          &0x38,%d1               # is mode == 0? (Dreg dst)
20239         beq.b           fout_byte_dn            # must save to integer regfile
20240
20241         mov.l           EXC_EA(%a6),%a0         # stacked <ea> is correct
20242         bsr.l           _dmem_write_byte        # write byte
20243
20244         tst.l           %d1                     # did dstore fail?
20245         bne.l           facc_out_b              # yes
20246
20247         rts
20248
20249 fout_byte_dn:
20250         mov.b           1+EXC_OPWORD(%a6),%d1   # extract Dn
20251         andi.w          &0x7,%d1
20252         bsr.l           store_dreg_b
20253         rts
20254
20255 fout_byte_denorm:
20256         mov.l           SRC_EX(%a0),%d1
20257         andi.l          &0x80000000,%d1         # keep DENORM sign
20258         ori.l           &0x00800000,%d1         # make smallest sgl
20259         fmov.s          %d1,%fp0
20260         bra.b           fout_byte_norm
20261
20262 #################################################################
20263 # fmove.w out ###################################################
20264 #################################################################
20265
20266 # Only "Unimplemented Data Type" exceptions enter here. The operand
20267 # is either a DENORM or a NORM.
20268 fout_word:
20269         tst.b           STAG(%a6)               # is operand normalized?
20270         bne.b           fout_word_denorm        # no
20271
20272         fmovm.x         SRC(%a0),&0x80          # load value
20273
20274 fout_word_norm:
20275         fmov.l          %d0,%fpcr               # insert rnd prec:mode
20276
20277         fmov.w          %fp0,%d0                # exec move out w/ correct rnd mode
20278
20279         fmov.l          &0x0,%fpcr              # clear FPCR
20280         fmov.l          %fpsr,%d1               # fetch FPSR
20281         or.w            %d1,2+USER_FPSR(%a6)    # save new exc,accrued bits
20282
20283         mov.b           1+EXC_OPWORD(%a6),%d1   # extract dst mode
20284         andi.b          &0x38,%d1               # is mode == 0? (Dreg dst)
20285         beq.b           fout_word_dn            # must save to integer regfile
20286
20287         mov.l           EXC_EA(%a6),%a0         # stacked <ea> is correct
20288         bsr.l           _dmem_write_word        # write word
20289
20290         tst.l           %d1                     # did dstore fail?
20291         bne.l           facc_out_w              # yes
20292
20293         rts
20294
20295 fout_word_dn:
20296         mov.b           1+EXC_OPWORD(%a6),%d1   # extract Dn
20297         andi.w          &0x7,%d1
20298         bsr.l           store_dreg_w
20299         rts
20300
20301 fout_word_denorm:
20302         mov.l           SRC_EX(%a0),%d1
20303         andi.l          &0x80000000,%d1         # keep DENORM sign
20304         ori.l           &0x00800000,%d1         # make smallest sgl
20305         fmov.s          %d1,%fp0
20306         bra.b           fout_word_norm
20307
20308 #################################################################
20309 # fmove.l out ###################################################
20310 #################################################################
20311
20312 # Only "Unimplemented Data Type" exceptions enter here. The operand
20313 # is either a DENORM or a NORM.
20314 fout_long:
20315         tst.b           STAG(%a6)               # is operand normalized?
20316         bne.b           fout_long_denorm        # no
20317
20318         fmovm.x         SRC(%a0),&0x80          # load value
20319
20320 fout_long_norm:
20321         fmov.l          %d0,%fpcr               # insert rnd prec:mode
20322
20323         fmov.l          %fp0,%d0                # exec move out w/ correct rnd mode
20324
20325         fmov.l          &0x0,%fpcr              # clear FPCR
20326         fmov.l          %fpsr,%d1               # fetch FPSR
20327         or.w            %d1,2+USER_FPSR(%a6)    # save new exc,accrued bits
20328
20329 fout_long_write:
20330         mov.b           1+EXC_OPWORD(%a6),%d1   # extract dst mode
20331         andi.b          &0x38,%d1               # is mode == 0? (Dreg dst)
20332         beq.b           fout_long_dn            # must save to integer regfile
20333
20334         mov.l           EXC_EA(%a6),%a0         # stacked <ea> is correct
20335         bsr.l           _dmem_write_long        # write long
20336
20337         tst.l           %d1                     # did dstore fail?
20338         bne.l           facc_out_l              # yes
20339
20340         rts
20341
20342 fout_long_dn:
20343         mov.b           1+EXC_OPWORD(%a6),%d1   # extract Dn
20344         andi.w          &0x7,%d1
20345         bsr.l           store_dreg_l
20346         rts
20347
20348 fout_long_denorm:
20349         mov.l           SRC_EX(%a0),%d1
20350         andi.l          &0x80000000,%d1         # keep DENORM sign
20351         ori.l           &0x00800000,%d1         # make smallest sgl
20352         fmov.s          %d1,%fp0
20353         bra.b           fout_long_norm
20354
20355 #################################################################
20356 # fmove.x out ###################################################
20357 #################################################################
20358
20359 # Only "Unimplemented Data Type" exceptions enter here. The operand
20360 # is either a DENORM or a NORM.
20361 # The DENORM causes an Underflow exception.
20362 fout_ext:
20363
20364 # we copy the extended precision result to FP_SCR0 so that the reserved
20365 # 16-bit field gets zeroed. we do this since we promise not to disturb
20366 # what's at SRC(a0).
20367         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
20368         clr.w           2+FP_SCR0_EX(%a6)       # clear reserved field
20369         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
20370         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
20371
20372         fmovm.x         SRC(%a0),&0x80          # return result
20373
20374         bsr.l           _calc_ea_fout           # fix stacked <ea>
20375
20376         mov.l           %a0,%a1                 # pass: dst addr
20377         lea             FP_SCR0(%a6),%a0        # pass: src addr
20378         mov.l           &0xc,%d0                # pass: opsize is 12 bytes
20379
20380 # we must not yet write the extended precision data to the stack
20381 # in the pre-decrement case from supervisor mode or else we'll corrupt
20382 # the stack frame. so, leave it in FP_SRC for now and deal with it later...
20383         cmpi.b          SPCOND_FLG(%a6),&mda7_flg
20384         beq.b           fout_ext_a7
20385
20386         bsr.l           _dmem_write             # write ext prec number to memory
20387
20388         tst.l           %d1                     # did dstore fail?
20389         bne.w           fout_ext_err            # yes
20390
20391         tst.b           STAG(%a6)               # is operand normalized?
20392         bne.b           fout_ext_denorm         # no
20393         rts
20394
20395 # the number is a DENORM. must set the underflow exception bit
20396 fout_ext_denorm:
20397         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit
20398
20399         mov.b           FPCR_ENABLE(%a6),%d0
20400         andi.b          &0x0a,%d0               # is UNFL or INEX enabled?
20401         bne.b           fout_ext_exc            # yes
20402         rts
20403
20404 # we don't want to do the write if the exception occurred in supervisor mode
20405 # so _mem_write2() handles this for us.
20406 fout_ext_a7:
20407         bsr.l           _mem_write2             # write ext prec number to memory
20408
20409         tst.l           %d1                     # did dstore fail?
20410         bne.w           fout_ext_err            # yes
20411
20412         tst.b           STAG(%a6)               # is operand normalized?
20413         bne.b           fout_ext_denorm         # no
20414         rts
20415
20416 fout_ext_exc:
20417         lea             FP_SCR0(%a6),%a0
20418         bsr.l           norm                    # normalize the mantissa
20419         neg.w           %d0                     # new exp = -(shft amt)
20420         andi.w          &0x7fff,%d0
20421         andi.w          &0x8000,FP_SCR0_EX(%a6) # keep only old sign
20422         or.w            %d0,FP_SCR0_EX(%a6)     # insert new exponent
20423         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
20424         rts
20425
20426 fout_ext_err:
20427         mov.l           EXC_A6(%a6),(%a6)       # fix stacked a6
20428         bra.l           facc_out_x
20429
20430 #########################################################################
20431 # fmove.s out ###########################################################
20432 #########################################################################
20433 fout_sgl:
20434         andi.b          &0x30,%d0               # clear rnd prec
20435         ori.b           &s_mode*0x10,%d0        # insert sgl prec
20436         mov.l           %d0,L_SCR3(%a6)         # save rnd prec,mode on stack
20437
20438 #
20439 # operand is a normalized number. first, we check to see if the move out
20440 # would cause either an underflow or overflow. these cases are handled
20441 # separately. otherwise, set the FPCR to the proper rounding mode and
20442 # execute the move.
20443 #
20444         mov.w           SRC_EX(%a0),%d0         # extract exponent
20445         andi.w          &0x7fff,%d0             # strip sign
20446
20447         cmpi.w          %d0,&SGL_HI             # will operand overflow?
20448         bgt.w           fout_sgl_ovfl           # yes; go handle OVFL
20449         beq.w           fout_sgl_may_ovfl       # maybe; go handle possible OVFL
20450         cmpi.w          %d0,&SGL_LO             # will operand underflow?
20451         blt.w           fout_sgl_unfl           # yes; go handle underflow
20452
20453 #
20454 # NORMs(in range) can be stored out by a simple "fmov.s"
20455 # Unnormalized inputs can come through this point.
20456 #
20457 fout_sgl_exg:
20458         fmovm.x         SRC(%a0),&0x80          # fetch fop from stack
20459
20460         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
20461         fmov.l          &0x0,%fpsr              # clear FPSR
20462
20463         fmov.s          %fp0,%d0                # store does convert and round
20464
20465         fmov.l          &0x0,%fpcr              # clear FPCR
20466         fmov.l          %fpsr,%d1               # save FPSR
20467
20468         or.w            %d1,2+USER_FPSR(%a6)    # set possible inex2/ainex
20469
20470 fout_sgl_exg_write:
20471         mov.b           1+EXC_OPWORD(%a6),%d1   # extract dst mode
20472         andi.b          &0x38,%d1               # is mode == 0? (Dreg dst)
20473         beq.b           fout_sgl_exg_write_dn   # must save to integer regfile
20474
20475         mov.l           EXC_EA(%a6),%a0         # stacked <ea> is correct
20476         bsr.l           _dmem_write_long        # write long
20477
20478         tst.l           %d1                     # did dstore fail?
20479         bne.l           facc_out_l              # yes
20480
20481         rts
20482
20483 fout_sgl_exg_write_dn:
20484         mov.b           1+EXC_OPWORD(%a6),%d1   # extract Dn
20485         andi.w          &0x7,%d1
20486         bsr.l           store_dreg_l
20487         rts
20488
20489 #
20490 # here, we know that the operand would UNFL if moved out to single prec,
20491 # so, denorm and round and then use generic store single routine to
20492 # write the value to memory.
20493 #
20494 fout_sgl_unfl:
20495         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL
20496
20497         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
20498         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
20499         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
20500         mov.l           %a0,-(%sp)
20501
20502         clr.l           %d0                     # pass: S.F. = 0
20503
20504         cmpi.b          STAG(%a6),&DENORM       # fetch src optype tag
20505         bne.b           fout_sgl_unfl_cont      # let DENORMs fall through
20506
20507         lea             FP_SCR0(%a6),%a0
20508         bsr.l           norm                    # normalize the DENORM
20509
20510 fout_sgl_unfl_cont:
20511         lea             FP_SCR0(%a6),%a0        # pass: ptr to operand
20512         mov.l           L_SCR3(%a6),%d1         # pass: rnd prec,mode
20513         bsr.l           unf_res                 # calc default underflow result
20514
20515         lea             FP_SCR0(%a6),%a0        # pass: ptr to fop
20516         bsr.l           dst_sgl                 # convert to single prec
20517
20518         mov.b           1+EXC_OPWORD(%a6),%d1   # extract dst mode
20519         andi.b          &0x38,%d1               # is mode == 0? (Dreg dst)
20520         beq.b           fout_sgl_unfl_dn        # must save to integer regfile
20521
20522         mov.l           EXC_EA(%a6),%a0         # stacked <ea> is correct
20523         bsr.l           _dmem_write_long        # write long
20524
20525         tst.l           %d1                     # did dstore fail?
20526         bne.l           facc_out_l              # yes
20527
20528         bra.b           fout_sgl_unfl_chkexc
20529
20530 fout_sgl_unfl_dn:
20531         mov.b           1+EXC_OPWORD(%a6),%d1   # extract Dn
20532         andi.w          &0x7,%d1
20533         bsr.l           store_dreg_l
20534
20535 fout_sgl_unfl_chkexc:
20536         mov.b           FPCR_ENABLE(%a6),%d1
20537         andi.b          &0x0a,%d1               # is UNFL or INEX enabled?
20538         bne.w           fout_sd_exc_unfl        # yes
20539         addq.l          &0x4,%sp
20540         rts
20541
20542 #
20543 # it's definitely an overflow so call ovf_res to get the correct answer
20544 #
20545 fout_sgl_ovfl:
20546         tst.b           3+SRC_HI(%a0)           # is result inexact?
20547         bne.b           fout_sgl_ovfl_inex2
20548         tst.l           SRC_LO(%a0)             # is result inexact?
20549         bne.b           fout_sgl_ovfl_inex2
20550         ori.w           &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
20551         bra.b           fout_sgl_ovfl_cont
20552 fout_sgl_ovfl_inex2:
20553         ori.w           &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2
20554
20555 fout_sgl_ovfl_cont:
20556         mov.l           %a0,-(%sp)
20557
20558 # call ovf_res() w/ sgl prec and the correct rnd mode to create the default
20559 # overflow result. DON'T save the returned ccodes from ovf_res() since
20560 # fmove out doesn't alter them.
20561         tst.b           SRC_EX(%a0)             # is operand negative?
20562         smi             %d1                     # set if so
20563         mov.l           L_SCR3(%a6),%d0         # pass: sgl prec,rnd mode
20564         bsr.l           ovf_res                 # calc OVFL result
20565         fmovm.x         (%a0),&0x80             # load default overflow result
20566         fmov.s          %fp0,%d0                # store to single
20567
20568         mov.b           1+EXC_OPWORD(%a6),%d1   # extract dst mode
20569         andi.b          &0x38,%d1               # is mode == 0? (Dreg dst)
20570         beq.b           fout_sgl_ovfl_dn        # must save to integer regfile
20571
20572         mov.l           EXC_EA(%a6),%a0         # stacked <ea> is correct
20573         bsr.l           _dmem_write_long        # write long
20574
20575         tst.l           %d1                     # did dstore fail?
20576         bne.l           facc_out_l              # yes
20577
20578         bra.b           fout_sgl_ovfl_chkexc
20579
20580 fout_sgl_ovfl_dn:
20581         mov.b           1+EXC_OPWORD(%a6),%d1   # extract Dn
20582         andi.w          &0x7,%d1
20583         bsr.l           store_dreg_l
20584
20585 fout_sgl_ovfl_chkexc:
20586         mov.b           FPCR_ENABLE(%a6),%d1
20587         andi.b          &0x0a,%d1               # is UNFL or INEX enabled?
20588         bne.w           fout_sd_exc_ovfl        # yes
20589         addq.l          &0x4,%sp
20590         rts
20591
20592 #
20593 # move out MAY overflow:
20594 # (1) force the exp to 0x3fff
20595 # (2) do a move w/ appropriate rnd mode
20596 # (3) if exp still equals zero, then insert original exponent
20597 #       for the correct result.
20598 #     if exp now equals one, then it overflowed so call ovf_res.
20599 #
20600 fout_sgl_may_ovfl:
20601         mov.w           SRC_EX(%a0),%d1         # fetch current sign
20602         andi.w          &0x8000,%d1             # keep it,clear exp
20603         ori.w           &0x3fff,%d1             # insert exp = 0
20604         mov.w           %d1,FP_SCR0_EX(%a6)     # insert scaled exp
20605         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man)
20606         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man)
20607
20608         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
20609
20610         fmov.x          FP_SCR0(%a6),%fp0       # force fop to be rounded
20611         fmov.l          &0x0,%fpcr              # clear FPCR
20612
20613         fabs.x          %fp0                    # need absolute value
20614         fcmp.b          %fp0,&0x2               # did exponent increase?
20615         fblt.w          fout_sgl_exg            # no; go finish NORM
20616         bra.w           fout_sgl_ovfl           # yes; go handle overflow
20617
20618 ################
20619
20620 fout_sd_exc_unfl:
20621         mov.l           (%sp)+,%a0
20622
20623         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
20624         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
20625         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
20626
20627         cmpi.b          STAG(%a6),&DENORM       # was src a DENORM?
20628         bne.b           fout_sd_exc_cont        # no
20629
20630         lea             FP_SCR0(%a6),%a0
20631         bsr.l           norm
20632         neg.l           %d0
20633         andi.w          &0x7fff,%d0
20634         bfins           %d0,FP_SCR0_EX(%a6){&1:&15}
20635         bra.b           fout_sd_exc_cont
20636
20637 fout_sd_exc:
20638 fout_sd_exc_ovfl:
20639         mov.l           (%sp)+,%a0              # restore a0
20640
20641         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
20642         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
20643         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
20644
20645 fout_sd_exc_cont:
20646         bclr            &0x7,FP_SCR0_EX(%a6)    # clear sign bit
20647         sne.b           2+FP_SCR0_EX(%a6)       # set internal sign bit
20648         lea             FP_SCR0(%a6),%a0        # pass: ptr to DENORM
20649
20650         mov.b           3+L_SCR3(%a6),%d1
20651         lsr.b           &0x4,%d1
20652         andi.w          &0x0c,%d1
20653         swap            %d1
20654         mov.b           3+L_SCR3(%a6),%d1
20655         lsr.b           &0x4,%d1
20656         andi.w          &0x03,%d1
20657         clr.l           %d0                     # pass: zero g,r,s
20658         bsr.l           _round                  # round the DENORM
20659
20660         tst.b           2+FP_SCR0_EX(%a6)       # is EXOP negative?
20661         beq.b           fout_sd_exc_done        # no
20662         bset            &0x7,FP_SCR0_EX(%a6)    # yes
20663
20664 fout_sd_exc_done:
20665         fmovm.x         FP_SCR0(%a6),&0x40      # return EXOP in fp1
20666         rts
20667
20668 #################################################################
20669 # fmove.d out ###################################################
20670 #################################################################
20671 fout_dbl:
20672         andi.b          &0x30,%d0               # clear rnd prec
20673         ori.b           &d_mode*0x10,%d0        # insert dbl prec
20674         mov.l           %d0,L_SCR3(%a6)         # save rnd prec,mode on stack
20675
20676 #
20677 # operand is a normalized number. first, we check to see if the move out
20678 # would cause either an underflow or overflow. these cases are handled
20679 # separately. otherwise, set the FPCR to the proper rounding mode and
20680 # execute the move.
20681 #
20682         mov.w           SRC_EX(%a0),%d0         # extract exponent
20683         andi.w          &0x7fff,%d0             # strip sign
20684
20685         cmpi.w          %d0,&DBL_HI             # will operand overflow?
20686         bgt.w           fout_dbl_ovfl           # yes; go handle OVFL
20687         beq.w           fout_dbl_may_ovfl       # maybe; go handle possible OVFL
20688         cmpi.w          %d0,&DBL_LO             # will operand underflow?
20689         blt.w           fout_dbl_unfl           # yes; go handle underflow
20690
20691 #
20692 # NORMs(in range) can be stored out by a simple "fmov.d"
20693 # Unnormalized inputs can come through this point.
20694 #
20695 fout_dbl_exg:
20696         fmovm.x         SRC(%a0),&0x80          # fetch fop from stack
20697
20698         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
20699         fmov.l          &0x0,%fpsr              # clear FPSR
20700
20701         fmov.d          %fp0,L_SCR1(%a6)        # store does convert and round
20702
20703         fmov.l          &0x0,%fpcr              # clear FPCR
20704         fmov.l          %fpsr,%d0               # save FPSR
20705
20706         or.w            %d0,2+USER_FPSR(%a6)    # set possible inex2/ainex
20707
20708         mov.l           EXC_EA(%a6),%a1         # pass: dst addr
20709         lea             L_SCR1(%a6),%a0         # pass: src addr
20710         movq.l          &0x8,%d0                # pass: opsize is 8 bytes
20711         bsr.l           _dmem_write             # store dbl fop to memory
20712
20713         tst.l           %d1                     # did dstore fail?
20714         bne.l           facc_out_d              # yes
20715
20716         rts                                     # no; so we're finished
20717
20718 #
20719 # here, we know that the operand would UNFL if moved out to double prec,
20720 # so, denorm and round and then use generic store double routine to
20721 # write the value to memory.
20722 #
20723 fout_dbl_unfl:
20724         bset            &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL
20725
20726         mov.w           SRC_EX(%a0),FP_SCR0_EX(%a6)
20727         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6)
20728         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6)
20729         mov.l           %a0,-(%sp)
20730
20731         clr.l           %d0                     # pass: S.F. = 0
20732
20733         cmpi.b          STAG(%a6),&DENORM       # fetch src optype tag
20734         bne.b           fout_dbl_unfl_cont      # let DENORMs fall through
20735
20736         lea             FP_SCR0(%a6),%a0
20737         bsr.l           norm                    # normalize the DENORM
20738
20739 fout_dbl_unfl_cont:
20740         lea             FP_SCR0(%a6),%a0        # pass: ptr to operand
20741         mov.l           L_SCR3(%a6),%d1         # pass: rnd prec,mode
20742         bsr.l           unf_res                 # calc default underflow result
20743
20744         lea             FP_SCR0(%a6),%a0        # pass: ptr to fop
20745         bsr.l           dst_dbl                 # convert to single prec
20746         mov.l           %d0,L_SCR1(%a6)
20747         mov.l           %d1,L_SCR2(%a6)
20748
20749         mov.l           EXC_EA(%a6),%a1         # pass: dst addr
20750         lea             L_SCR1(%a6),%a0         # pass: src addr
20751         movq.l          &0x8,%d0                # pass: opsize is 8 bytes
20752         bsr.l           _dmem_write             # store dbl fop to memory
20753
20754         tst.l           %d1                     # did dstore fail?
20755         bne.l           facc_out_d              # yes
20756
20757         mov.b           FPCR_ENABLE(%a6),%d1
20758         andi.b          &0x0a,%d1               # is UNFL or INEX enabled?
20759         bne.w           fout_sd_exc_unfl        # yes
20760         addq.l          &0x4,%sp
20761         rts
20762
20763 #
20764 # it's definitely an overflow so call ovf_res to get the correct answer
20765 #
20766 fout_dbl_ovfl:
20767         mov.w           2+SRC_LO(%a0),%d0
20768         andi.w          &0x7ff,%d0
20769         bne.b           fout_dbl_ovfl_inex2
20770
20771         ori.w           &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
20772         bra.b           fout_dbl_ovfl_cont
20773 fout_dbl_ovfl_inex2:
20774         ori.w           &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2
20775
20776 fout_dbl_ovfl_cont:
20777         mov.l           %a0,-(%sp)
20778
20779 # call ovf_res() w/ dbl prec and the correct rnd mode to create the default
20780 # overflow result. DON'T save the returned ccodes from ovf_res() since
20781 # fmove out doesn't alter them.
20782         tst.b           SRC_EX(%a0)             # is operand negative?
20783         smi             %d1                     # set if so
20784         mov.l           L_SCR3(%a6),%d0         # pass: dbl prec,rnd mode
20785         bsr.l           ovf_res                 # calc OVFL result
20786         fmovm.x         (%a0),&0x80             # load default overflow result
20787         fmov.d          %fp0,L_SCR1(%a6)        # store to double
20788
20789         mov.l           EXC_EA(%a6),%a1         # pass: dst addr
20790         lea             L_SCR1(%a6),%a0         # pass: src addr
20791         movq.l          &0x8,%d0                # pass: opsize is 8 bytes
20792         bsr.l           _dmem_write             # store dbl fop to memory
20793
20794         tst.l           %d1                     # did dstore fail?
20795         bne.l           facc_out_d              # yes
20796
20797         mov.b           FPCR_ENABLE(%a6),%d1
20798         andi.b          &0x0a,%d1               # is UNFL or INEX enabled?
20799         bne.w           fout_sd_exc_ovfl        # yes
20800         addq.l          &0x4,%sp
20801         rts
20802
20803 #
20804 # move out MAY overflow:
20805 # (1) force the exp to 0x3fff
20806 # (2) do a move w/ appropriate rnd mode
20807 # (3) if exp still equals zero, then insert original exponent
20808 #       for the correct result.
20809 #     if exp now equals one, then it overflowed so call ovf_res.
20810 #
20811 fout_dbl_may_ovfl:
20812         mov.w           SRC_EX(%a0),%d1         # fetch current sign
20813         andi.w          &0x8000,%d1             # keep it,clear exp
20814         ori.w           &0x3fff,%d1             # insert exp = 0
20815         mov.w           %d1,FP_SCR0_EX(%a6)     # insert scaled exp
20816         mov.l           SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man)
20817         mov.l           SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man)
20818
20819         fmov.l          L_SCR3(%a6),%fpcr       # set FPCR
20820
20821         fmov.x          FP_SCR0(%a6),%fp0       # force fop to be rounded
20822         fmov.l          &0x0,%fpcr              # clear FPCR
20823
20824         fabs.x          %fp0                    # need absolute value
20825         fcmp.b          %fp0,&0x2               # did exponent increase?
20826         fblt.w          fout_dbl_exg            # no; go finish NORM
20827         bra.w           fout_dbl_ovfl           # yes; go handle overflow
20828
20829 #########################################################################
20830 # XDEF **************************************************************** #
20831 #       dst_dbl(): create double precision value from extended prec.    #
20832 #                                                                       #
20833 # XREF **************************************************************** #
20834 #       None                                                            #
20835 #                                                                       #
20836 # INPUT *************************************************************** #
20837 #       a0 = pointer to source operand in extended precision            #
20838 #                                                                       #
20839 # OUTPUT ************************************************************** #
20840 #       d0 = hi(double precision result)                                #
20841 #       d1 = lo(double precision result)                                #
20842 #                                                                       #
20843 # ALGORITHM *********************************************************** #
20844 #                                                                       #
20845 #  Changes extended precision to double precision.                      #
20846 #  Note: no attempt is made to round the extended value to double.      #
20847 #       dbl_sign = ext_sign                                             #
20848 #       dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias)            #
20849 #       get rid of ext integer bit                                      #
20850 #       dbl_mant = ext_mant{62:12}                                      #
20851 #                                                                       #
20852 #               ---------------   ---------------    ---------------    #
20853 #  extended ->  |s|    exp    |   |1| ms mant   |    | ls mant     |    #
20854 #               ---------------   ---------------    ---------------    #
20855 #                95         64    63 62       32      31     11   0     #
20856 #                                    |                       |          #
20857 #                                    |                       |          #
20858 #                                    |                       |          #
20859 #                                    v                       v          #
20860 #                             ---------------   ---------------         #
20861 #  double   ->                |s|exp| mant  |   |  mant       |         #
20862 #                             ---------------   ---------------         #
20863 #                             63     51   32   31              0        #
20864 #                                                                       #
20865 #########################################################################
20866
20867 dst_dbl:
20868         clr.l           %d0                     # clear d0
20869         mov.w           FTEMP_EX(%a0),%d0       # get exponent
20870         subi.w          &EXT_BIAS,%d0           # subtract extended precision bias
20871         addi.w          &DBL_BIAS,%d0           # add double precision bias
20872         tst.b           FTEMP_HI(%a0)           # is number a denorm?
20873         bmi.b           dst_get_dupper          # no
20874         subq.w          &0x1,%d0                # yes; denorm bias = DBL_BIAS - 1
20875 dst_get_dupper:
20876         swap            %d0                     # d0 now in upper word
20877         lsl.l           &0x4,%d0                # d0 in proper place for dbl prec exp
20878         tst.b           FTEMP_EX(%a0)           # test sign
20879         bpl.b           dst_get_dman            # if postive, go process mantissa
20880         bset            &0x1f,%d0               # if negative, set sign
20881 dst_get_dman:
20882         mov.l           FTEMP_HI(%a0),%d1       # get ms mantissa
20883         bfextu          %d1{&1:&20},%d1         # get upper 20 bits of ms
20884         or.l            %d1,%d0                 # put these bits in ms word of double
20885         mov.l           %d0,L_SCR1(%a6)         # put the new exp back on the stack
20886         mov.l           FTEMP_HI(%a0),%d1       # get ms mantissa
20887         mov.l           &21,%d0                 # load shift count
20888         lsl.l           %d0,%d1                 # put lower 11 bits in upper bits
20889         mov.l           %d1,L_SCR2(%a6)         # build lower lword in memory
20890         mov.l           FTEMP_LO(%a0),%d1       # get ls mantissa
20891         bfextu          %d1{&0:&21},%d0         # get ls 21 bits of double
20892         mov.l           L_SCR2(%a6),%d1
20893         or.l            %d0,%d1                 # put them in double result
20894         mov.l           L_SCR1(%a6),%d0
20895         rts
20896
20897 #########################################################################
20898 # XDEF **************************************************************** #
20899 #       dst_sgl(): create single precision value from extended prec     #
20900 #                                                                       #
20901 # XREF **************************************************************** #
20902 #                                                                       #
20903 # INPUT *************************************************************** #
20904 #       a0 = pointer to source operand in extended precision            #
20905 #                                                                       #
20906 # OUTPUT ************************************************************** #
20907 #       d0 = single precision result                                    #
20908 #                                                                       #
20909 # ALGORITHM *********************************************************** #
20910 #                                                                       #
20911 # Changes extended precision to single precision.                       #
20912 #       sgl_sign = ext_sign                                             #
20913 #       sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias)             #
20914 #       get rid of ext integer bit                                      #
20915 #       sgl_mant = ext_mant{62:12}                                      #
20916 #                                                                       #
20917 #               ---------------   ---------------    ---------------    #
20918 #  extended ->  |s|    exp    |   |1| ms mant   |    | ls mant     |    #
20919 #               ---------------   ---------------    ---------------    #
20920 #                95         64    63 62    40 32      31     12   0     #
20921 #                                    |     |                            #
20922 #                                    |     |                            #
20923 #                                    |     |                            #
20924 #                                    v     v                            #
20925 #                             ---------------                           #
20926 #  single   ->                |s|exp| mant  |                           #
20927 #                             ---------------                           #
20928 #                             31     22     0                           #
20929 #                                                                       #
20930 #########################################################################
20931
20932 dst_sgl:
20933         clr.l           %d0
20934         mov.w           FTEMP_EX(%a0),%d0       # get exponent
20935         subi.w          &EXT_BIAS,%d0           # subtract extended precision bias
20936         addi.w          &SGL_BIAS,%d0           # add single precision bias
20937         tst.b           FTEMP_HI(%a0)           # is number a denorm?
20938         bmi.b           dst_get_supper          # no
20939         subq.w          &0x1,%d0                # yes; denorm bias = SGL_BIAS - 1
20940 dst_get_supper:
20941         swap            %d0                     # put exp in upper word of d0
20942         lsl.l           &0x7,%d0                # shift it into single exp bits
20943         tst.b           FTEMP_EX(%a0)           # test sign
20944         bpl.b           dst_get_sman            # if positive, continue
20945         bset            &0x1f,%d0               # if negative, put in sign first
20946 dst_get_sman:
20947         mov.l           FTEMP_HI(%a0),%d1       # get ms mantissa
20948         andi.l          &0x7fffff00,%d1         # get upper 23 bits of ms
20949         lsr.l           &0x8,%d1                # and put them flush right
20950         or.l            %d1,%d0                 # put these bits in ms word of single
20951         rts
20952
20953 ##############################################################################
20954 fout_pack:
20955         bsr.l           _calc_ea_fout           # fetch the <ea>
20956         mov.l           %a0,-(%sp)
20957
20958         mov.b           STAG(%a6),%d0           # fetch input type
20959         bne.w           fout_pack_not_norm      # input is not NORM
20960
20961 fout_pack_norm:
20962         btst            &0x4,EXC_CMDREG(%a6)    # static or dynamic?
20963         beq.b           fout_pack_s             # static
20964
20965 fout_pack_d:
20966         mov.b           1+EXC_CMDREG(%a6),%d1   # fetch dynamic reg
20967         lsr.b           &0x4,%d1
20968         andi.w          &0x7,%d1
20969
20970         bsr.l           fetch_dreg              # fetch Dn w/ k-factor
20971
20972         bra.b           fout_pack_type
20973 fout_pack_s:
20974         mov.b           1+EXC_CMDREG(%a6),%d0   # fetch static field
20975
20976 fout_pack_type:
20977         bfexts          %d0{&25:&7},%d0         # extract k-factor
20978         mov.l   %d0,-(%sp)
20979
20980         lea             FP_SRC(%a6),%a0         # pass: ptr to input
20981
20982 # bindec is currently scrambling FP_SRC for denorm inputs.
20983 # we'll have to change this, but for now, tough luck!!!
20984         bsr.l           bindec                  # convert xprec to packed
20985
20986 #       andi.l          &0xcfff000f,FP_SCR0(%a6) # clear unused fields
20987         andi.l          &0xcffff00f,FP_SCR0(%a6) # clear unused fields
20988
20989         mov.l   (%sp)+,%d0
20990
20991         tst.b           3+FP_SCR0_EX(%a6)
20992         bne.b           fout_pack_set
20993         tst.l           FP_SCR0_HI(%a6)
20994         bne.b           fout_pack_set
20995         tst.l           FP_SCR0_LO(%a6)
20996         bne.b           fout_pack_set
20997
20998 # add the extra condition that only if the k-factor was zero, too, should
20999 # we zero the exponent
21000         tst.l           %d0
21001         bne.b           fout_pack_set
21002 # "mantissa" is all zero which means that the answer is zero. but, the '040
21003 # algorithm allows the exponent to be non-zero. the 881/2 do not. Therefore,
21004 # if the mantissa is zero, I will zero the exponent, too.
21005 # the question now is whether the exponents sign bit is allowed to be non-zero
21006 # for a zero, also...
21007         andi.w          &0xf000,FP_SCR0(%a6)
21008
21009 fout_pack_set:
21010
21011         lea             FP_SCR0(%a6),%a0        # pass: src addr
21012
21013 fout_pack_write:
21014         mov.l           (%sp)+,%a1              # pass: dst addr
21015         mov.l           &0xc,%d0                # pass: opsize is 12 bytes
21016
21017         cmpi.b          SPCOND_FLG(%a6),&mda7_flg
21018         beq.b           fout_pack_a7
21019
21020         bsr.l           _dmem_write             # write ext prec number to memory
21021
21022         tst.l           %d1                     # did dstore fail?
21023         bne.w           fout_ext_err            # yes
21024
21025         rts
21026
21027 # we don't want to do the write if the exception occurred in supervisor mode
21028 # so _mem_write2() handles this for us.
21029 fout_pack_a7:
21030         bsr.l           _mem_write2             # write ext prec number to memory
21031
21032         tst.l           %d1                     # did dstore fail?
21033         bne.w           fout_ext_err            # yes
21034
21035         rts
21036
21037 fout_pack_not_norm:
21038         cmpi.b          %d0,&DENORM             # is it a DENORM?
21039         beq.w           fout_pack_norm          # yes
21040         lea             FP_SRC(%a6),%a0
21041         clr.w           2+FP_SRC_EX(%a6)
21042         cmpi.b          %d0,&SNAN               # is it an SNAN?
21043         beq.b           fout_pack_snan          # yes
21044         bra.b           fout_pack_write         # no
21045
21046 fout_pack_snan:
21047         ori.w           &snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP
21048         bset            &0x6,FP_SRC_HI(%a6)     # set snan bit
21049         bra.b           fout_pack_write
21050
21051 #########################################################################
21052 # XDEF **************************************************************** #
21053 #       fetch_dreg(): fetch register according to index in d1           #
21054 #                                                                       #
21055 # XREF **************************************************************** #
21056 #       None                                                            #
21057 #                                                                       #
21058 # INPUT *************************************************************** #
21059 #       d1 = index of register to fetch from                            #
21060 #                                                                       #
21061 # OUTPUT ************************************************************** #
21062 #       d0 = value of register fetched                                  #
21063 #                                                                       #
21064 # ALGORITHM *********************************************************** #
21065 #       According to the index value in d1 which can range from zero    #
21066 # to fifteen, load the corresponding register file value (where         #
21067 # address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the    #
21068 # stack. The rest should still be in their original places.             #
21069 #                                                                       #
21070 #########################################################################
21071
21072 # this routine leaves d1 intact for subsequent store_dreg calls.
21073         global          fetch_dreg
21074 fetch_dreg:
21075         mov.w           (tbl_fdreg.b,%pc,%d1.w*2),%d0
21076         jmp             (tbl_fdreg.b,%pc,%d0.w*1)
21077
21078 tbl_fdreg:
21079         short           fdreg0 - tbl_fdreg
21080         short           fdreg1 - tbl_fdreg
21081         short           fdreg2 - tbl_fdreg
21082         short           fdreg3 - tbl_fdreg
21083         short           fdreg4 - tbl_fdreg
21084         short           fdreg5 - tbl_fdreg
21085         short           fdreg6 - tbl_fdreg
21086         short           fdreg7 - tbl_fdreg
21087         short           fdreg8 - tbl_fdreg
21088         short           fdreg9 - tbl_fdreg
21089         short           fdrega - tbl_fdreg
21090         short           fdregb - tbl_fdreg
21091         short           fdregc - tbl_fdreg
21092         short           fdregd - tbl_fdreg
21093         short           fdrege - tbl_fdreg
21094         short           fdregf - tbl_fdreg
21095
21096 fdreg0:
21097         mov.l           EXC_DREGS+0x0(%a6),%d0
21098         rts
21099 fdreg1:
21100         mov.l           EXC_DREGS+0x4(%a6),%d0
21101         rts
21102 fdreg2:
21103         mov.l           %d2,%d0
21104         rts
21105 fdreg3:
21106         mov.l           %d3,%d0
21107         rts
21108 fdreg4:
21109         mov.l           %d4,%d0
21110         rts
21111 fdreg5:
21112         mov.l           %d5,%d0
21113         rts
21114 fdreg6:
21115         mov.l           %d6,%d0
21116         rts
21117 fdreg7:
21118         mov.l           %d7,%d0
21119         rts
21120 fdreg8:
21121         mov.l           EXC_DREGS+0x8(%a6),%d0
21122         rts
21123 fdreg9:
21124         mov.l           EXC_DREGS+0xc(%a6),%d0
21125         rts
21126 fdrega:
21127         mov.l           %a2,%d0
21128         rts
21129 fdregb:
21130         mov.l           %a3,%d0
21131         rts
21132 fdregc:
21133         mov.l           %a4,%d0
21134         rts
21135 fdregd:
21136         mov.l           %a5,%d0
21137         rts
21138 fdrege:
21139         mov.l           (%a6),%d0
21140         rts
21141 fdregf:
21142         mov.l           EXC_A7(%a6),%d0
21143         rts
21144
21145 #########################################################################
21146 # XDEF **************************************************************** #
21147 #       store_dreg_l(): store longword to data register specified by d1 #
21148 #                                                                       #
21149 # XREF **************************************************************** #
21150 #       None                                                            #
21151 #                                                                       #
21152 # INPUT *************************************************************** #
21153 #       d0 = longowrd value to store                                    #
21154 #       d1 = index of register to fetch from                            #
21155 #                                                                       #
21156 # OUTPUT ************************************************************** #
21157 #       (data register is updated)                                      #
21158 #                                                                       #
21159 # ALGORITHM *********************************************************** #
21160 #       According to the index value in d1, store the longword value    #
21161 # in d0 to the corresponding data register. D0/D1 are on the stack      #
21162 # while the rest are in their initial places.                           #
21163 #                                                                       #
21164 #########################################################################
21165
21166         global          store_dreg_l
21167 store_dreg_l:
21168         mov.w           (tbl_sdregl.b,%pc,%d1.w*2),%d1
21169         jmp             (tbl_sdregl.b,%pc,%d1.w*1)
21170
21171 tbl_sdregl:
21172         short           sdregl0 - tbl_sdregl
21173         short           sdregl1 - tbl_sdregl
21174         short           sdregl2 - tbl_sdregl
21175         short           sdregl3 - tbl_sdregl
21176         short           sdregl4 - tbl_sdregl
21177         short           sdregl5 - tbl_sdregl
21178         short           sdregl6 - tbl_sdregl
21179         short           sdregl7 - tbl_sdregl
21180
21181 sdregl0:
21182         mov.l           %d0,EXC_DREGS+0x0(%a6)
21183         rts
21184 sdregl1:
21185         mov.l           %d0,EXC_DREGS+0x4(%a6)
21186         rts
21187 sdregl2:
21188         mov.l           %d0,%d2
21189         rts
21190 sdregl3:
21191         mov.l           %d0,%d3
21192         rts
21193 sdregl4:
21194         mov.l           %d0,%d4
21195         rts
21196 sdregl5:
21197         mov.l           %d0,%d5
21198         rts
21199 sdregl6:
21200         mov.l           %d0,%d6
21201         rts
21202 sdregl7:
21203         mov.l           %d0,%d7
21204         rts
21205
21206 #########################################################################
21207 # XDEF **************************************************************** #
21208 #       store_dreg_w(): store word to data register specified by d1     #
21209 #                                                                       #
21210 # XREF **************************************************************** #
21211 #       None                                                            #
21212 #                                                                       #
21213 # INPUT *************************************************************** #
21214 #       d0 = word value to store                                        #
21215 #       d1 = index of register to fetch from                            #
21216 #                                                                       #
21217 # OUTPUT ************************************************************** #
21218 #       (data register is updated)                                      #
21219 #                                                                       #
21220 # ALGORITHM *********************************************************** #
21221 #       According to the index value in d1, store the word value        #
21222 # in d0 to the corresponding data register. D0/D1 are on the stack      #
21223 # while the rest are in their initial places.                           #
21224 #                                                                       #
21225 #########################################################################
21226
21227         global          store_dreg_w
21228 store_dreg_w:
21229         mov.w           (tbl_sdregw.b,%pc,%d1.w*2),%d1
21230         jmp             (tbl_sdregw.b,%pc,%d1.w*1)
21231
21232 tbl_sdregw:
21233         short           sdregw0 - tbl_sdregw
21234         short           sdregw1 - tbl_sdregw
21235         short           sdregw2 - tbl_sdregw
21236         short           sdregw3 - tbl_sdregw
21237         short           sdregw4 - tbl_sdregw
21238         short           sdregw5 - tbl_sdregw
21239         short           sdregw6 - tbl_sdregw
21240         short           sdregw7 - tbl_sdregw
21241
21242 sdregw0:
21243         mov.w           %d0,2+EXC_DREGS+0x0(%a6)
21244         rts
21245 sdregw1:
21246         mov.w           %d0,2+EXC_DREGS+0x4(%a6)
21247         rts
21248 sdregw2:
21249         mov.w           %d0,%d2
21250         rts
21251 sdregw3:
21252         mov.w           %d0,%d3
21253         rts
21254 sdregw4:
21255         mov.w           %d0,%d4
21256         rts
21257 sdregw5:
21258         mov.w           %d0,%d5
21259         rts
21260 sdregw6:
21261         mov.w           %d0,%d6
21262         rts
21263 sdregw7:
21264         mov.w           %d0,%d7
21265         rts
21266
21267 #########################################################################
21268 # XDEF **************************************************************** #
21269 #       store_dreg_b(): store byte to data register specified by d1     #
21270 #                                                                       #
21271 # XREF **************************************************************** #
21272 #       None                                                            #
21273 #                                                                       #
21274 # INPUT *************************************************************** #
21275 #       d0 = byte value to store                                        #
21276 #       d1 = index of register to fetch from                            #
21277 #                                                                       #
21278 # OUTPUT ************************************************************** #
21279 #       (data register is updated)                                      #
21280 #                                                                       #
21281 # ALGORITHM *********************************************************** #
21282 #       According to the index value in d1, store the byte value        #
21283 # in d0 to the corresponding data register. D0/D1 are on the stack      #
21284 # while the rest are in their initial places.                           #
21285 #                                                                       #
21286 #########################################################################
21287
21288         global          store_dreg_b
21289 store_dreg_b:
21290         mov.w           (tbl_sdregb.b,%pc,%d1.w*2),%d1
21291         jmp             (tbl_sdregb.b,%pc,%d1.w*1)
21292
21293 tbl_sdregb:
21294         short           sdregb0 - tbl_sdregb
21295         short           sdregb1 - tbl_sdregb
21296         short           sdregb2 - tbl_sdregb
21297         short           sdregb3 - tbl_sdregb
21298         short           sdregb4 - tbl_sdregb
21299         short           sdregb5 - tbl_sdregb
21300         short           sdregb6 - tbl_sdregb
21301         short           sdregb7 - tbl_sdregb
21302
21303 sdregb0:
21304         mov.b           %d0,3+EXC_DREGS+0x0(%a6)
21305         rts
21306 sdregb1:
21307         mov.b           %d0,3+EXC_DREGS+0x4(%a6)
21308         rts
21309 sdregb2:
21310         mov.b           %d0,%d2
21311         rts
21312 sdregb3:
21313         mov.b           %d0,%d3
21314         rts
21315 sdregb4:
21316         mov.b           %d0,%d4
21317         rts
21318 sdregb5:
21319         mov.b           %d0,%d5
21320         rts
21321 sdregb6:
21322         mov.b           %d0,%d6
21323         rts
21324 sdregb7:
21325         mov.b           %d0,%d7
21326         rts
21327
21328 #########################################################################
21329 # XDEF **************************************************************** #
21330 #       inc_areg(): increment an address register by the value in d0    #
21331 #                                                                       #
21332 # XREF **************************************************************** #
21333 #       None                                                            #
21334 #                                                                       #
21335 # INPUT *************************************************************** #
21336 #       d0 = amount to increment by                                     #
21337 #       d1 = index of address register to increment                     #
21338 #                                                                       #
21339 # OUTPUT ************************************************************** #
21340 #       (address register is updated)                                   #
21341 #                                                                       #
21342 # ALGORITHM *********************************************************** #
21343 #       Typically used for an instruction w/ a post-increment <ea>,     #
21344 # this routine adds the increment value in d0 to the address register   #
21345 # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside     #
21346 # in their original places.                                             #
21347 #       For a7, if the increment amount is one, then we have to         #
21348 # increment by two. For any a7 update, set the mia7_flag so that if     #
21349 # an access error exception occurs later in emulation, this address     #
21350 # register update can be undone.                                        #
21351 #                                                                       #
21352 #########################################################################
21353
21354         global          inc_areg
21355 inc_areg:
21356         mov.w           (tbl_iareg.b,%pc,%d1.w*2),%d1
21357         jmp             (tbl_iareg.b,%pc,%d1.w*1)
21358
21359 tbl_iareg:
21360         short           iareg0 - tbl_iareg
21361         short           iareg1 - tbl_iareg
21362         short           iareg2 - tbl_iareg
21363         short           iareg3 - tbl_iareg
21364         short           iareg4 - tbl_iareg
21365         short           iareg5 - tbl_iareg
21366         short           iareg6 - tbl_iareg
21367         short           iareg7 - tbl_iareg
21368
21369 iareg0: add.l           %d0,EXC_DREGS+0x8(%a6)
21370         rts
21371 iareg1: add.l           %d0,EXC_DREGS+0xc(%a6)
21372         rts
21373 iareg2: add.l           %d0,%a2
21374         rts
21375 iareg3: add.l           %d0,%a3
21376         rts
21377 iareg4: add.l           %d0,%a4
21378         rts
21379 iareg5: add.l           %d0,%a5
21380         rts
21381 iareg6: add.l           %d0,(%a6)
21382         rts
21383 iareg7: mov.b           &mia7_flg,SPCOND_FLG(%a6)
21384         cmpi.b          %d0,&0x1
21385         beq.b           iareg7b
21386         add.l           %d0,EXC_A7(%a6)
21387         rts
21388 iareg7b:
21389         addq.l          &0x2,EXC_A7(%a6)
21390         rts
21391
21392 #########################################################################
21393 # XDEF **************************************************************** #
21394 #       dec_areg(): decrement an address register by the value in d0    #
21395 #                                                                       #
21396 # XREF **************************************************************** #
21397 #       None                                                            #
21398 #                                                                       #
21399 # INPUT *************************************************************** #
21400 #       d0 = amount to decrement by                                     #
21401 #       d1 = index of address register to decrement                     #
21402 #                                                                       #
21403 # OUTPUT ************************************************************** #
21404 #       (address register is updated)                                   #
21405 #                                                                       #
21406 # ALGORITHM *********************************************************** #
21407 #       Typically used for an instruction w/ a pre-decrement <ea>,      #
21408 # this routine adds the decrement value in d0 to the address register   #
21409 # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside     #
21410 # in their original places.                                             #
21411 #       For a7, if the decrement amount is one, then we have to         #
21412 # decrement by two. For any a7 update, set the mda7_flag so that if     #
21413 # an access error exception occurs later in emulation, this address     #
21414 # register update can be undone.                                        #
21415 #                                                                       #
21416 #########################################################################
21417
21418         global          dec_areg
21419 dec_areg:
21420         mov.w           (tbl_dareg.b,%pc,%d1.w*2),%d1
21421         jmp             (tbl_dareg.b,%pc,%d1.w*1)
21422
21423 tbl_dareg:
21424         short           dareg0 - tbl_dareg
21425         short           dareg1 - tbl_dareg
21426         short           dareg2 - tbl_dareg
21427         short           dareg3 - tbl_dareg
21428         short           dareg4 - tbl_dareg
21429         short           dareg5 - tbl_dareg
21430         short           dareg6 - tbl_dareg
21431         short           dareg7 - tbl_dareg
21432
21433 dareg0: sub.l           %d0,EXC_DREGS+0x8(%a6)
21434         rts
21435 dareg1: sub.l           %d0,EXC_DREGS+0xc(%a6)
21436         rts
21437 dareg2: sub.l           %d0,%a2
21438         rts
21439 dareg3: sub.l           %d0,%a3
21440         rts
21441 dareg4: sub.l           %d0,%a4
21442         rts
21443 dareg5: sub.l           %d0,%a5
21444         rts
21445 dareg6: sub.l           %d0,(%a6)
21446         rts
21447 dareg7: mov.b           &mda7_flg,SPCOND_FLG(%a6)
21448         cmpi.b          %d0,&0x1
21449         beq.b           dareg7b
21450         sub.l           %d0,EXC_A7(%a6)
21451         rts
21452 dareg7b:
21453         subq.l          &0x2,EXC_A7(%a6)
21454         rts
21455
21456 ##############################################################################
21457
21458 #########################################################################
21459 # XDEF **************************************************************** #
21460 #       load_fpn1(): load FP register value into FP_SRC(a6).            #
21461 #                                                                       #
21462 # XREF **************************************************************** #
21463 #       None                                                            #
21464 #                                                                       #
21465 # INPUT *************************************************************** #
21466 #       d0 = index of FP register to load                               #
21467 #                                                                       #
21468 # OUTPUT ************************************************************** #
21469 #       FP_SRC(a6) = value loaded from FP register file                 #
21470 #                                                                       #
21471 # ALGORITHM *********************************************************** #
21472 #       Using the index in d0, load FP_SRC(a6) with a number from the   #
21473 # FP register file.                                                     #
21474 #                                                                       #
21475 #########################################################################
21476
21477         global          load_fpn1
21478 load_fpn1:
21479         mov.w           (tbl_load_fpn1.b,%pc,%d0.w*2), %d0
21480         jmp             (tbl_load_fpn1.b,%pc,%d0.w*1)
21481
21482 tbl_load_fpn1:
21483         short           load_fpn1_0 - tbl_load_fpn1
21484         short           load_fpn1_1 - tbl_load_fpn1
21485         short           load_fpn1_2 - tbl_load_fpn1
21486         short           load_fpn1_3 - tbl_load_fpn1
21487         short           load_fpn1_4 - tbl_load_fpn1
21488         short           load_fpn1_5 - tbl_load_fpn1
21489         short           load_fpn1_6 - tbl_load_fpn1
21490         short           load_fpn1_7 - tbl_load_fpn1
21491
21492 load_fpn1_0:
21493         mov.l           0+EXC_FP0(%a6), 0+FP_SRC(%a6)
21494         mov.l           4+EXC_FP0(%a6), 4+FP_SRC(%a6)
21495         mov.l           8+EXC_FP0(%a6), 8+FP_SRC(%a6)
21496         lea             FP_SRC(%a6), %a0
21497         rts
21498 load_fpn1_1:
21499         mov.l           0+EXC_FP1(%a6), 0+FP_SRC(%a6)
21500         mov.l           4+EXC_FP1(%a6), 4+FP_SRC(%a6)
21501         mov.l           8+EXC_FP1(%a6), 8+FP_SRC(%a6)
21502         lea             FP_SRC(%a6), %a0
21503         rts
21504 load_fpn1_2:
21505         fmovm.x         &0x20, FP_SRC(%a6)
21506         lea             FP_SRC(%a6), %a0
21507         rts
21508 load_fpn1_3:
21509         fmovm.x         &0x10, FP_SRC(%a6)
21510         lea             FP_SRC(%a6), %a0
21511         rts
21512 load_fpn1_4:
21513         fmovm.x         &0x08, FP_SRC(%a6)
21514         lea             FP_SRC(%a6), %a0
21515         rts
21516 load_fpn1_5:
21517         fmovm.x         &0x04, FP_SRC(%a6)
21518         lea             FP_SRC(%a6), %a0
21519         rts
21520 load_fpn1_6:
21521         fmovm.x         &0x02, FP_SRC(%a6)
21522         lea             FP_SRC(%a6), %a0
21523         rts
21524 load_fpn1_7:
21525         fmovm.x         &0x01, FP_SRC(%a6)
21526         lea             FP_SRC(%a6), %a0
21527         rts
21528
21529 #############################################################################
21530
21531 #########################################################################
21532 # XDEF **************************************************************** #
21533 #       load_fpn2(): load FP register value into FP_DST(a6).            #
21534 #                                                                       #
21535 # XREF **************************************************************** #
21536 #       None                                                            #
21537 #                                                                       #
21538 # INPUT *************************************************************** #
21539 #       d0 = index of FP register to load                               #
21540 #                                                                       #
21541 # OUTPUT ************************************************************** #
21542 #       FP_DST(a6) = value loaded from FP register file                 #
21543 #                                                                       #
21544 # ALGORITHM *********************************************************** #
21545 #       Using the index in d0, load FP_DST(a6) with a number from the   #
21546 # FP register file.                                                     #
21547 #                                                                       #
21548 #########################################################################
21549
21550         global          load_fpn2
21551 load_fpn2:
21552         mov.w           (tbl_load_fpn2.b,%pc,%d0.w*2), %d0
21553         jmp             (tbl_load_fpn2.b,%pc,%d0.w*1)
21554
21555 tbl_load_fpn2:
21556         short           load_fpn2_0 - tbl_load_fpn2
21557         short           load_fpn2_1 - tbl_load_fpn2
21558         short           load_fpn2_2 - tbl_load_fpn2
21559         short           load_fpn2_3 - tbl_load_fpn2
21560         short           load_fpn2_4 - tbl_load_fpn2
21561         short           load_fpn2_5 - tbl_load_fpn2
21562         short           load_fpn2_6 - tbl_load_fpn2
21563         short           load_fpn2_7 - tbl_load_fpn2
21564
21565 load_fpn2_0:
21566         mov.l           0+EXC_FP0(%a6), 0+FP_DST(%a6)
21567         mov.l           4+EXC_FP0(%a6), 4+FP_DST(%a6)
21568         mov.l           8+EXC_FP0(%a6), 8+FP_DST(%a6)
21569         lea             FP_DST(%a6), %a0
21570         rts
21571 load_fpn2_1:
21572         mov.l           0+EXC_FP1(%a6), 0+FP_DST(%a6)
21573         mov.l           4+EXC_FP1(%a6), 4+FP_DST(%a6)
21574         mov.l           8+EXC_FP1(%a6), 8+FP_DST(%a6)
21575         lea             FP_DST(%a6), %a0
21576         rts
21577 load_fpn2_2:
21578         fmovm.x         &0x20, FP_DST(%a6)
21579         lea             FP_DST(%a6), %a0
21580         rts
21581 load_fpn2_3:
21582         fmovm.x         &0x10, FP_DST(%a6)
21583         lea             FP_DST(%a6), %a0
21584         rts
21585 load_fpn2_4:
21586         fmovm.x         &0x08, FP_DST(%a6)
21587         lea             FP_DST(%a6), %a0
21588         rts
21589 load_fpn2_5:
21590         fmovm.x         &0x04, FP_DST(%a6)
21591         lea             FP_DST(%a6), %a0
21592         rts
21593 load_fpn2_6:
21594         fmovm.x         &0x02, FP_DST(%a6)
21595         lea             FP_DST(%a6), %a0
21596         rts
21597 load_fpn2_7:
21598         fmovm.x         &0x01, FP_DST(%a6)
21599         lea             FP_DST(%a6), %a0
21600         rts
21601
21602 #############################################################################
21603
21604 #########################################################################
21605 # XDEF **************************************************************** #
21606 #       store_fpreg(): store an fp value to the fpreg designated d0.    #
21607 #                                                                       #
21608 # XREF **************************************************************** #
21609 #       None                                                            #
21610 #                                                                       #
21611 # INPUT *************************************************************** #
21612 #       fp0 = extended precision value to store                         #
21613 #       d0  = index of floating-point register                          #
21614 #                                                                       #
21615 # OUTPUT ************************************************************** #
21616 #       None                                                            #
21617 #                                                                       #
21618 # ALGORITHM *********************************************************** #
21619 #       Store the value in fp0 to the FP register designated by the     #
21620 # value in d0. The FP number can be DENORM or SNAN so we have to be     #
21621 # careful that we don't take an exception here.                         #
21622 #                                                                       #
21623 #########################################################################
21624
21625         global          store_fpreg
21626 store_fpreg:
21627         mov.w           (tbl_store_fpreg.b,%pc,%d0.w*2), %d0
21628         jmp             (tbl_store_fpreg.b,%pc,%d0.w*1)
21629
21630 tbl_store_fpreg:
21631         short           store_fpreg_0 - tbl_store_fpreg
21632         short           store_fpreg_1 - tbl_store_fpreg
21633         short           store_fpreg_2 - tbl_store_fpreg
21634         short           store_fpreg_3 - tbl_store_fpreg
21635         short           store_fpreg_4 - tbl_store_fpreg
21636         short           store_fpreg_5 - tbl_store_fpreg
21637         short           store_fpreg_6 - tbl_store_fpreg
21638         short           store_fpreg_7 - tbl_store_fpreg
21639
21640 store_fpreg_0:
21641         fmovm.x         &0x80, EXC_FP0(%a6)
21642         rts
21643 store_fpreg_1:
21644         fmovm.x         &0x80, EXC_FP1(%a6)
21645         rts
21646 store_fpreg_2:
21647         fmovm.x         &0x01, -(%sp)
21648         fmovm.x         (%sp)+, &0x20
21649         rts
21650 store_fpreg_3:
21651         fmovm.x         &0x01, -(%sp)
21652         fmovm.x         (%sp)+, &0x10
21653         rts
21654 store_fpreg_4:
21655         fmovm.x         &0x01, -(%sp)
21656         fmovm.x         (%sp)+, &0x08
21657         rts
21658 store_fpreg_5:
21659         fmovm.x         &0x01, -(%sp)
21660         fmovm.x         (%sp)+, &0x04
21661         rts
21662 store_fpreg_6:
21663         fmovm.x         &0x01, -(%sp)
21664         fmovm.x         (%sp)+, &0x02
21665         rts
21666 store_fpreg_7:
21667         fmovm.x         &0x01, -(%sp)
21668         fmovm.x         (%sp)+, &0x01
21669         rts
21670
21671 #########################################################################
21672 # XDEF **************************************************************** #
21673 #       _denorm(): denormalize an intermediate result                   #
21674 #                                                                       #
21675 # XREF **************************************************************** #
21676 #       None                                                            #
21677 #                                                                       #
21678 # INPUT *************************************************************** #
21679 #       a0 = points to the operand to be denormalized                   #
21680 #               (in the internal extended format)                       #
21681 #                                                                       #
21682 #       d0 = rounding precision                                         #
21683 #                                                                       #
21684 # OUTPUT ************************************************************** #
21685 #       a0 = pointer to the denormalized result                         #
21686 #               (in the internal extended format)                       #
21687 #                                                                       #
21688 #       d0 = guard,round,sticky                                         #
21689 #                                                                       #
21690 # ALGORITHM *********************************************************** #
21691 #       According to the exponent underflow threshold for the given     #
21692 # precision, shift the mantissa bits to the right in order raise the    #
21693 # exponent of the operand to the threshold value. While shifting the    #
21694 # mantissa bits right, maintain the value of the guard, round, and      #
21695 # sticky bits.                                                          #
21696 # other notes:                                                          #
21697 #       (1) _denorm() is called by the underflow routines               #
21698 #       (2) _denorm() does NOT affect the status register               #
21699 #                                                                       #
21700 #########################################################################
21701
21702 #
21703 # table of exponent threshold values for each precision
21704 #
21705 tbl_thresh:
21706         short           0x0
21707         short           sgl_thresh
21708         short           dbl_thresh
21709
21710         global          _denorm
21711 _denorm:
21712 #
21713 # Load the exponent threshold for the precision selected and check
21714 # to see if (threshold - exponent) is > 65 in which case we can
21715 # simply calculate the sticky bit and zero the mantissa. otherwise
21716 # we have to call the denormalization routine.
21717 #
21718         lsr.b           &0x2, %d0               # shift prec to lo bits
21719         mov.w           (tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold
21720         mov.w           %d1, %d0                # copy d1 into d0
21721         sub.w           FTEMP_EX(%a0), %d0      # diff = threshold - exp
21722         cmpi.w          %d0, &66                # is diff > 65? (mant + g,r bits)
21723         bpl.b           denorm_set_stky         # yes; just calc sticky
21724
21725         clr.l           %d0                     # clear g,r,s
21726         btst            &inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set?
21727         beq.b           denorm_call             # no; don't change anything
21728         bset            &29, %d0                # yes; set sticky bit
21729
21730 denorm_call:
21731         bsr.l           dnrm_lp                 # denormalize the number
21732         rts
21733
21734 #
21735 # all bit would have been shifted off during the denorm so simply
21736 # calculate if the sticky should be set and clear the entire mantissa.
21737 #
21738 denorm_set_stky:
21739         mov.l           &0x20000000, %d0        # set sticky bit in return value
21740         mov.w           %d1, FTEMP_EX(%a0)      # load exp with threshold
21741         clr.l           FTEMP_HI(%a0)           # set d1 = 0 (ms mantissa)
21742         clr.l           FTEMP_LO(%a0)           # set d2 = 0 (ms mantissa)
21743         rts
21744
21745 #                                                                       #
21746 # dnrm_lp(): normalize exponent/mantissa to specified threshold         #
21747 #                                                                       #
21748 # INPUT:                                                                #
21749 #       %a0        : points to the operand to be denormalized           #
21750 #       %d0{31:29} : initial guard,round,sticky                         #
21751 #       %d1{15:0}  : denormalization threshold                          #
21752 # OUTPUT:                                                               #
21753 #       %a0        : points to the denormalized operand                 #
21754 #       %d0{31:29} : final guard,round,sticky                           #
21755 #                                                                       #
21756
21757 # *** Local Equates *** #
21758 set     GRS,            L_SCR2                  # g,r,s temp storage
21759 set     FTEMP_LO2,      L_SCR1                  # FTEMP_LO copy
21760
21761         global          dnrm_lp
21762 dnrm_lp:
21763
21764 #
21765 # make a copy of FTEMP_LO and place the g,r,s bits directly after it
21766 # in memory so as to make the bitfield extraction for denormalization easier.
21767 #
21768         mov.l           FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy
21769         mov.l           %d0, GRS(%a6)           # place g,r,s after it
21770
21771 #
21772 # check to see how much less than the underflow threshold the operand
21773 # exponent is.
21774 #
21775         mov.l           %d1, %d0                # copy the denorm threshold
21776         sub.w           FTEMP_EX(%a0), %d1      # d1 = threshold - uns exponent
21777         ble.b           dnrm_no_lp              # d1 <= 0
21778         cmpi.w          %d1, &0x20              # is ( 0 <= d1 < 32) ?
21779         blt.b           case_1                  # yes
21780         cmpi.w          %d1, &0x40              # is (32 <= d1 < 64) ?
21781         blt.b           case_2                  # yes
21782         bra.w           case_3                  # (d1 >= 64)
21783
21784 #
21785 # No normalization necessary
21786 #
21787 dnrm_no_lp:
21788         mov.l           GRS(%a6), %d0           # restore original g,r,s
21789         rts
21790
21791 #
21792 # case (0<d1<32)
21793 #
21794 # %d0 = denorm threshold
21795 # %d1 = "n" = amt to shift
21796 #
21797 #       ---------------------------------------------------------
21798 #       |     FTEMP_HI    |     FTEMP_LO     |grs000.........000|
21799 #       ---------------------------------------------------------
21800 #       <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)->
21801 #       \          \                  \                  \
21802 #        \          \                  \                  \
21803 #         \          \                  \                  \
21804 #          \          \                  \                  \
21805 #           \          \                  \                  \
21806 #            \          \                  \                  \
21807 #             \          \                  \                  \
21808 #              \          \                  \                  \
21809 #       <-(n)-><-(32 - n)-><------(32)-------><------(32)------->
21810 #       ---------------------------------------------------------
21811 #       |0.....0| NEW_HI  |  NEW_FTEMP_LO     |grs              |
21812 #       ---------------------------------------------------------
21813 #
21814 case_1:
21815         mov.l           %d2, -(%sp)             # create temp storage
21816
21817         mov.w           %d0, FTEMP_EX(%a0)      # exponent = denorm threshold
21818         mov.l           &32, %d0
21819         sub.w           %d1, %d0                # %d0 = 32 - %d1
21820
21821         cmpi.w          %d1, &29                # is shft amt >= 29
21822         blt.b           case1_extract           # no; no fix needed
21823         mov.b           GRS(%a6), %d2
21824         or.b            %d2, 3+FTEMP_LO2(%a6)
21825
21826 case1_extract:
21827         bfextu          FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI
21828         bfextu          FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO
21829         bfextu          FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S
21830
21831         mov.l           %d2, FTEMP_HI(%a0)      # store new FTEMP_HI
21832         mov.l           %d1, FTEMP_LO(%a0)      # store new FTEMP_LO
21833
21834         bftst           %d0{&2:&30}             # were bits shifted off?
21835         beq.b           case1_sticky_clear      # no; go finish
21836         bset            &rnd_stky_bit, %d0      # yes; set sticky bit
21837
21838 case1_sticky_clear:
21839         and.l           &0xe0000000, %d0        # clear all but G,R,S
21840         mov.l           (%sp)+, %d2             # restore temp register
21841         rts
21842
21843 #
21844 # case (32<=d1<64)
21845 #
21846 # %d0 = denorm threshold
21847 # %d1 = "n" = amt to shift
21848 #
21849 #       ---------------------------------------------------------
21850 #       |     FTEMP_HI    |     FTEMP_LO     |grs000.........000|
21851 #       ---------------------------------------------------------
21852 #       <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)->
21853 #       \          \                  \
21854 #        \          \                  \
21855 #         \          \                  -------------------
21856 #          \          --------------------                 \
21857 #           -------------------           \                 \
21858 #                              \           \                 \
21859 #                               \           \                 \
21860 #                                \           \                 \
21861 #       <-------(32)------><-(n)-><-(32 - n)-><------(32)------->
21862 #       ---------------------------------------------------------
21863 #       |0...............0|0....0| NEW_LO     |grs              |
21864 #       ---------------------------------------------------------
21865 #
21866 case_2:
21867         mov.l           %d2, -(%sp)             # create temp storage
21868
21869         mov.w           %d0, FTEMP_EX(%a0)      # exponent = denorm threshold
21870         subi.w          &0x20, %d1              # %d1 now between 0 and 32
21871         mov.l           &0x20, %d0
21872         sub.w           %d1, %d0                # %d0 = 32 - %d1
21873
21874 # subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize
21875 # the number of bits to check for the sticky detect.
21876 # it only plays a role in shift amounts of 61-63.
21877         mov.b           GRS(%a6), %d2
21878         or.b            %d2, 3+FTEMP_LO2(%a6)
21879
21880         bfextu          FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO
21881         bfextu          FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S
21882
21883         bftst           %d1{&2:&30}             # were any bits shifted off?
21884         bne.b           case2_set_sticky        # yes; set sticky bit
21885         bftst           FTEMP_LO2(%a6){%d0:&31} # were any bits shifted off?
21886         bne.b           case2_set_sticky        # yes; set sticky bit
21887
21888         mov.l           %d1, %d0                # move new G,R,S to %d0
21889         bra.b           case2_end
21890
21891 case2_set_sticky:
21892         mov.l           %d1, %d0                # move new G,R,S to %d0
21893         bset            &rnd_stky_bit, %d0      # set sticky bit
21894
21895 case2_end:
21896         clr.l           FTEMP_HI(%a0)           # store FTEMP_HI = 0
21897         mov.l           %d2, FTEMP_LO(%a0)      # store FTEMP_LO
21898         and.l           &0xe0000000, %d0        # clear all but G,R,S
21899
21900         mov.l           (%sp)+,%d2              # restore temp register
21901         rts
21902
21903 #
21904 # case (d1>=64)
21905 #
21906 # %d0 = denorm threshold
21907 # %d1 = amt to shift
21908 #
21909 case_3:
21910         mov.w           %d0, FTEMP_EX(%a0)      # insert denorm threshold
21911
21912         cmpi.w          %d1, &65                # is shift amt > 65?
21913         blt.b           case3_64                # no; it's == 64
21914         beq.b           case3_65                # no; it's == 65
21915
21916 #
21917 # case (d1>65)
21918 #
21919 # Shift value is > 65 and out of range. All bits are shifted off.
21920 # Return a zero mantissa with the sticky bit set
21921 #
21922         clr.l           FTEMP_HI(%a0)           # clear hi(mantissa)
21923         clr.l           FTEMP_LO(%a0)           # clear lo(mantissa)
21924         mov.l           &0x20000000, %d0        # set sticky bit
21925         rts
21926
21927 #
21928 # case (d1 == 64)
21929 #
21930 #       ---------------------------------------------------------
21931 #       |     FTEMP_HI    |     FTEMP_LO     |grs000.........000|
21932 #       ---------------------------------------------------------
21933 #       <-------(32)------>
21934 #       \                  \
21935 #        \                  \
21936 #         \                  \
21937 #          \                  ------------------------------
21938 #           -------------------------------                 \
21939 #                                          \                 \
21940 #                                           \                 \
21941 #                                            \                 \
21942 #                                             <-------(32)------>
21943 #       ---------------------------------------------------------
21944 #       |0...............0|0................0|grs               |
21945 #       ---------------------------------------------------------
21946 #
21947 case3_64:
21948         mov.l           FTEMP_HI(%a0), %d0      # fetch hi(mantissa)
21949         mov.l           %d0, %d1                # make a copy
21950         and.l           &0xc0000000, %d0        # extract G,R
21951         and.l           &0x3fffffff, %d1        # extract other bits
21952
21953         bra.b           case3_complete
21954
21955 #
21956 # case (d1 == 65)
21957 #
21958 #       ---------------------------------------------------------
21959 #       |     FTEMP_HI    |     FTEMP_LO     |grs000.........000|
21960 #       ---------------------------------------------------------
21961 #       <-------(32)------>
21962 #       \                  \
21963 #        \                  \
21964 #         \                  \
21965 #          \                  ------------------------------
21966 #           --------------------------------                \
21967 #                                           \                \
21968 #                                            \                \
21969 #                                             \                \
21970 #                                              <-------(31)----->
21971 #       ---------------------------------------------------------
21972 #       |0...............0|0................0|0rs               |
21973 #       ---------------------------------------------------------
21974 #
21975 case3_65:
21976         mov.l           FTEMP_HI(%a0), %d0      # fetch hi(mantissa)
21977         and.l           &0x80000000, %d0        # extract R bit
21978         lsr.l           &0x1, %d0               # shift high bit into R bit
21979         and.l           &0x7fffffff, %d1        # extract other bits
21980
21981 case3_complete:
21982 # last operation done was an "and" of the bits shifted off so the condition
21983 # codes are already set so branch accordingly.
21984         bne.b           case3_set_sticky        # yes; go set new sticky
21985         tst.l           FTEMP_LO(%a0)           # were any bits shifted off?
21986         bne.b           case3_set_sticky        # yes; go set new sticky
21987         tst.b           GRS(%a6)                # were any bits shifted off?
21988         bne.b           case3_set_sticky        # yes; go set new sticky
21989
21990 #
21991 # no bits were shifted off so don't set the sticky bit.
21992 # the guard and
21993 # the entire mantissa is zero.
21994 #
21995         clr.l           FTEMP_HI(%a0)           # clear hi(mantissa)
21996         clr.l           FTEMP_LO(%a0)           # clear lo(mantissa)
21997         rts
21998
21999 #
22000 # some bits were shifted off so set the sticky bit.
22001 # the entire mantissa is zero.
22002 #
22003 case3_set_sticky:
22004         bset            &rnd_stky_bit,%d0       # set new sticky bit
22005         clr.l           FTEMP_HI(%a0)           # clear hi(mantissa)
22006         clr.l           FTEMP_LO(%a0)           # clear lo(mantissa)
22007         rts
22008
22009 #########################################################################
22010 # XDEF **************************************************************** #
22011 #       _round(): round result according to precision/mode              #
22012 #                                                                       #
22013 # XREF **************************************************************** #
22014 #       None                                                            #
22015 #                                                                       #
22016 # INPUT *************************************************************** #
22017 #       a0        = ptr to input operand in internal extended format    #
22018 #       d1(hi)    = contains rounding precision:                        #
22019 #                       ext = $0000xxxx                                 #
22020 #                       sgl = $0004xxxx                                 #
22021 #                       dbl = $0008xxxx                                 #
22022 #       d1(lo)    = contains rounding mode:                             #
22023 #                       RN  = $xxxx0000                                 #
22024 #                       RZ  = $xxxx0001                                 #
22025 #                       RM  = $xxxx0002                                 #
22026 #                       RP  = $xxxx0003                                 #
22027 #       d0{31:29} = contains the g,r,s bits (extended)                  #
22028 #                                                                       #
22029 # OUTPUT ************************************************************** #
22030 #       a0 = pointer to rounded result                                  #
22031 #                                                                       #
22032 # ALGORITHM *********************************************************** #
22033 #       On return the value pointed to by a0 is correctly rounded,      #
22034 #       a0 is preserved and the g-r-s bits in d0 are cleared.           #
22035 #       The result is not typed - the tag field is invalid.  The        #
22036 #       result is still in the internal extended format.                #
22037 #                                                                       #
22038 #       The INEX bit of USER_FPSR will be set if the rounded result was #
22039 #       inexact (i.e. if any of the g-r-s bits were set).               #
22040 #                                                                       #
22041 #########################################################################
22042
22043         global          _round
22044 _round:
22045 #
22046 # ext_grs() looks at the rounding precision and sets the appropriate
22047 # G,R,S bits.
22048 # If (G,R,S == 0) then result is exact and round is done, else set
22049 # the inex flag in status reg and continue.
22050 #
22051         bsr.l           ext_grs                 # extract G,R,S
22052
22053         tst.l           %d0                     # are G,R,S zero?
22054         beq.w           truncate                # yes; round is complete
22055
22056         or.w            &inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex
22057
22058 #
22059 # Use rounding mode as an index into a jump table for these modes.
22060 # All of the following assumes grs != 0.
22061 #
22062         mov.w           (tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset
22063         jmp             (tbl_mode.b,%pc,%a1)    # jmp to rnd mode handler
22064
22065 tbl_mode:
22066         short           rnd_near - tbl_mode
22067         short           truncate - tbl_mode     # RZ always truncates
22068         short           rnd_mnus - tbl_mode
22069         short           rnd_plus - tbl_mode
22070
22071 #################################################################
22072 #       ROUND PLUS INFINITY                                     #
22073 #                                                               #
22074 #       If sign of fp number = 0 (positive), then add 1 to l.   #
22075 #################################################################
22076 rnd_plus:
22077         tst.b           FTEMP_SGN(%a0)          # check for sign
22078         bmi.w           truncate                # if positive then truncate
22079
22080         mov.l           &0xffffffff, %d0        # force g,r,s to be all f's
22081         swap            %d1                     # set up d1 for round prec.
22082
22083         cmpi.b          %d1, &s_mode            # is prec = sgl?
22084         beq.w           add_sgl                 # yes
22085         bgt.w           add_dbl                 # no; it's dbl
22086         bra.w           add_ext                 # no; it's ext
22087
22088 #################################################################
22089 #       ROUND MINUS INFINITY                                    #
22090 #                                                               #
22091 #       If sign of fp number = 1 (negative), then add 1 to l.   #
22092 #################################################################
22093 rnd_mnus:
22094         tst.b           FTEMP_SGN(%a0)          # check for sign
22095         bpl.w           truncate                # if negative then truncate
22096
22097         mov.l           &0xffffffff, %d0        # force g,r,s to be all f's
22098         swap            %d1                     # set up d1 for round prec.
22099
22100         cmpi.b          %d1, &s_mode            # is prec = sgl?
22101         beq.w           add_sgl                 # yes
22102         bgt.w           add_dbl                 # no; it's dbl
22103         bra.w           add_ext                 # no; it's ext
22104
22105 #################################################################
22106 #       ROUND NEAREST                                           #
22107 #                                                               #
22108 #       If (g=1), then add 1 to l and if (r=s=0), then clear l  #
22109 #       Note that this will round to even in case of a tie.     #
22110 #################################################################
22111 rnd_near:
22112         asl.l           &0x1, %d0               # shift g-bit to c-bit
22113         bcc.w           truncate                # if (g=1) then
22114
22115         swap            %d1                     # set up d1 for round prec.
22116
22117         cmpi.b          %d1, &s_mode            # is prec = sgl?
22118         beq.w           add_sgl                 # yes
22119         bgt.w           add_dbl                 # no; it's dbl
22120         bra.w           add_ext                 # no; it's ext
22121
22122 # *** LOCAL EQUATES ***
22123 set     ad_1_sgl,       0x00000100      # constant to add 1 to l-bit in sgl prec
22124 set     ad_1_dbl,       0x00000800      # constant to add 1 to l-bit in dbl prec
22125
22126 #########################
22127 #       ADD SINGLE      #
22128 #########################
22129 add_sgl:
22130         add.l           &ad_1_sgl, FTEMP_HI(%a0)
22131         bcc.b           scc_clr                 # no mantissa overflow
22132         roxr.w          FTEMP_HI(%a0)           # shift v-bit back in
22133         roxr.w          FTEMP_HI+2(%a0)         # shift v-bit back in
22134         add.w           &0x1, FTEMP_EX(%a0)     # and incr exponent
22135 scc_clr:
22136         tst.l           %d0                     # test for rs = 0
22137         bne.b           sgl_done
22138         and.w           &0xfe00, FTEMP_HI+2(%a0) # clear the l-bit
22139 sgl_done:
22140         and.l           &0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit
22141         clr.l           FTEMP_LO(%a0)           # clear d2
22142         rts
22143
22144 #########################
22145 #       ADD EXTENDED    #
22146 #########################
22147 add_ext:
22148         addq.l          &1,FTEMP_LO(%a0)        # add 1 to l-bit
22149         bcc.b           xcc_clr                 # test for carry out
22150         addq.l          &1,FTEMP_HI(%a0)        # propagate carry
22151         bcc.b           xcc_clr
22152         roxr.w          FTEMP_HI(%a0)           # mant is 0 so restore v-bit
22153         roxr.w          FTEMP_HI+2(%a0)         # mant is 0 so restore v-bit
22154         roxr.w          FTEMP_LO(%a0)
22155         roxr.w          FTEMP_LO+2(%a0)
22156         add.w           &0x1,FTEMP_EX(%a0)      # and inc exp
22157 xcc_clr:
22158         tst.l           %d0                     # test rs = 0
22159         bne.b           add_ext_done
22160         and.b           &0xfe,FTEMP_LO+3(%a0)   # clear the l bit
22161 add_ext_done:
22162         rts
22163
22164 #########################
22165 #       ADD DOUBLE      #
22166 #########################
22167 add_dbl:
22168         add.l           &ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb
22169         bcc.b           dcc_clr                 # no carry
22170         addq.l          &0x1, FTEMP_HI(%a0)     # propagate carry
22171         bcc.b           dcc_clr                 # no carry
22172
22173         roxr.w          FTEMP_HI(%a0)           # mant is 0 so restore v-bit
22174         roxr.w          FTEMP_HI+2(%a0)         # mant is 0 so restore v-bit
22175         roxr.w          FTEMP_LO(%a0)
22176         roxr.w          FTEMP_LO+2(%a0)
22177         addq.w          &0x1, FTEMP_EX(%a0)     # incr exponent
22178 dcc_clr:
22179         tst.l           %d0                     # test for rs = 0
22180         bne.b           dbl_done
22181         and.w           &0xf000, FTEMP_LO+2(%a0) # clear the l-bit
22182
22183 dbl_done:
22184         and.l           &0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit
22185         rts
22186
22187 ###########################
22188 # Truncate all other bits #
22189 ###########################
22190 truncate:
22191         swap            %d1                     # select rnd prec
22192
22193         cmpi.b          %d1, &s_mode            # is prec sgl?
22194         beq.w           sgl_done                # yes
22195         bgt.b           dbl_done                # no; it's dbl
22196         rts                                     # no; it's ext
22197
22198
22199 #
22200 # ext_grs(): extract guard, round and sticky bits according to
22201 #            rounding precision.
22202 #
22203 # INPUT
22204 #       d0         = extended precision g,r,s (in d0{31:29})
22205 #       d1         = {PREC,ROUND}
22206 # OUTPUT
22207 #       d0{31:29}  = guard, round, sticky
22208 #
22209 # The ext_grs extract the guard/round/sticky bits according to the
22210 # selected rounding precision. It is called by the round subroutine
22211 # only.  All registers except d0 are kept intact. d0 becomes an
22212 # updated guard,round,sticky in d0{31:29}
22213 #
22214 # Notes: the ext_grs uses the round PREC, and therefore has to swap d1
22215 #        prior to usage, and needs to restore d1 to original. this
22216 #        routine is tightly tied to the round routine and not meant to
22217 #        uphold standard subroutine calling practices.
22218 #
22219
22220 ext_grs:
22221         swap            %d1                     # have d1.w point to round precision
22222         tst.b           %d1                     # is rnd prec = extended?
22223         bne.b           ext_grs_not_ext         # no; go handle sgl or dbl
22224
22225 #
22226 # %d0 actually already hold g,r,s since _round() had it before calling
22227 # this function. so, as long as we don't disturb it, we are "returning" it.
22228 #
22229 ext_grs_ext:
22230         swap            %d1                     # yes; return to correct positions
22231         rts
22232
22233 ext_grs_not_ext:
22234         movm.l          &0x3000, -(%sp)         # make some temp registers {d2/d3}
22235
22236         cmpi.b          %d1, &s_mode            # is rnd prec = sgl?
22237         bne.b           ext_grs_dbl             # no; go handle dbl
22238
22239 #
22240 # sgl:
22241 #       96              64        40    32              0
22242 #       -----------------------------------------------------
22243 #       | EXP   |XXXXXXX|         |xx   |               |grs|
22244 #       -----------------------------------------------------
22245 #                       <--(24)--->nn\                     /
22246 #                                  ee ---------------------
22247 #                                  ww           |
22248 #                                               v
22249 #                                  gr      new sticky
22250 #
22251 ext_grs_sgl:
22252         bfextu          FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right
22253         mov.l           &30, %d2                # of the sgl prec. limits
22254         lsl.l           %d2, %d3                # shift g-r bits to MSB of d3
22255         mov.l           FTEMP_HI(%a0), %d2      # get word 2 for s-bit test
22256         and.l           &0x0000003f, %d2        # s bit is the or of all other
22257         bne.b           ext_grs_st_stky         # bits to the right of g-r
22258         tst.l           FTEMP_LO(%a0)           # test lower mantissa
22259         bne.b           ext_grs_st_stky         # if any are set, set sticky
22260         tst.l           %d0                     # test original g,r,s
22261         bne.b           ext_grs_st_stky         # if any are set, set sticky
22262         bra.b           ext_grs_end_sd          # if words 3 and 4 are clr, exit
22263
22264 #
22265 # dbl:
22266 #       96              64              32       11     0
22267 #       -----------------------------------------------------
22268 #       | EXP   |XXXXXXX|               |        |xx    |grs|
22269 #       -----------------------------------------------------
22270 #                                                 nn\       /
22271 #                                                 ee -------
22272 #                                                 ww    |
22273 #                                                       v
22274 #                                                 gr    new sticky
22275 #
22276 ext_grs_dbl:
22277         bfextu          FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right
22278         mov.l           &30, %d2                # of the dbl prec. limits
22279         lsl.l           %d2, %d3                # shift g-r bits to the MSB of d3
22280         mov.l           FTEMP_LO(%a0), %d2      # get lower mantissa  for s-bit test
22281         and.l           &0x000001ff, %d2        # s bit is the or-ing of all
22282         bne.b           ext_grs_st_stky         # other bits to the right of g-r
22283         tst.l           %d0                     # test word original g,r,s
22284         bne.b           ext_grs_st_stky         # if any are set, set sticky
22285         bra.b           ext_grs_end_sd          # if clear, exit
22286
22287 ext_grs_st_stky:
22288         bset            &rnd_stky_bit, %d3      # set sticky bit
22289 ext_grs_end_sd:
22290         mov.l           %d3, %d0                # return grs to d0
22291
22292         movm.l          (%sp)+, &0xc            # restore scratch registers {d2/d3}
22293
22294         swap            %d1                     # restore d1 to original
22295         rts
22296
22297 #########################################################################
22298 # norm(): normalize the mantissa of an extended precision input. the    #
22299 #         input operand should not be normalized already.               #
22300 #                                                                       #
22301 # XDEF **************************************************************** #
22302 #       norm()                                                          #
22303 #                                                                       #
22304 # XREF **************************************************************** #
22305 #       none                                                            #
22306 #                                                                       #
22307 # INPUT *************************************************************** #
22308 #       a0 = pointer fp extended precision operand to normalize         #
22309 #                                                                       #
22310 # OUTPUT ************************************************************** #
22311 #       d0 = number of bit positions the mantissa was shifted           #
22312 #       a0 = the input operand's mantissa is normalized; the exponent   #
22313 #            is unchanged.                                              #
22314 #                                                                       #
22315 #########################################################################
22316         global          norm
22317 norm:
22318         mov.l           %d2, -(%sp)             # create some temp regs
22319         mov.l           %d3, -(%sp)
22320
22321         mov.l           FTEMP_HI(%a0), %d0      # load hi(mantissa)
22322         mov.l           FTEMP_LO(%a0), %d1      # load lo(mantissa)
22323
22324         bfffo           %d0{&0:&32}, %d2        # how many places to shift?
22325         beq.b           norm_lo                 # hi(man) is all zeroes!
22326
22327 norm_hi:
22328         lsl.l           %d2, %d0                # left shift hi(man)
22329         bfextu          %d1{&0:%d2}, %d3        # extract lo bits
22330
22331         or.l            %d3, %d0                # create hi(man)
22332         lsl.l           %d2, %d1                # create lo(man)
22333
22334         mov.l           %d0, FTEMP_HI(%a0)      # store new hi(man)
22335         mov.l           %d1, FTEMP_LO(%a0)      # store new lo(man)
22336
22337         mov.l           %d2, %d0                # return shift amount
22338
22339         mov.l           (%sp)+, %d3             # restore temp regs
22340         mov.l           (%sp)+, %d2
22341
22342         rts
22343
22344 norm_lo:
22345         bfffo           %d1{&0:&32}, %d2        # how many places to shift?
22346         lsl.l           %d2, %d1                # shift lo(man)
22347         add.l           &32, %d2                # add 32 to shft amount
22348
22349         mov.l           %d1, FTEMP_HI(%a0)      # store hi(man)
22350         clr.l           FTEMP_LO(%a0)           # lo(man) is now zero
22351
22352         mov.l           %d2, %d0                # return shift amount
22353
22354         mov.l           (%sp)+, %d3             # restore temp regs
22355         mov.l           (%sp)+, %d2
22356
22357         rts
22358
22359 #########################################################################
22360 # unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO     #
22361 #               - returns corresponding optype tag                      #
22362 #                                                                       #
22363 # XDEF **************************************************************** #
22364 #       unnorm_fix()                                                    #
22365 #                                                                       #
22366 # XREF **************************************************************** #
22367 #       norm() - normalize the mantissa                                 #
22368 #                                                                       #
22369 # INPUT *************************************************************** #
22370 #       a0 = pointer to unnormalized extended precision number          #
22371 #                                                                       #
22372 # OUTPUT ************************************************************** #
22373 #       d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO  #
22374 #       a0 = input operand has been converted to a norm, denorm, or     #
22375 #            zero; both the exponent and mantissa are changed.          #
22376 #                                                                       #
22377 #########################################################################
22378
22379         global          unnorm_fix
22380 unnorm_fix:
22381         bfffo           FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed?
22382         bne.b           unnorm_shift            # hi(man) is not all zeroes
22383
22384 #
22385 # hi(man) is all zeroes so see if any bits in lo(man) are set
22386 #
22387 unnorm_chk_lo:
22388         bfffo           FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero?
22389         beq.w           unnorm_zero             # yes
22390
22391         add.w           &32, %d0                # no; fix shift distance
22392
22393 #
22394 # d0 = # shifts needed for complete normalization
22395 #
22396 unnorm_shift:
22397         clr.l           %d1                     # clear top word
22398         mov.w           FTEMP_EX(%a0), %d1      # extract exponent
22399         and.w           &0x7fff, %d1            # strip off sgn
22400
22401         cmp.w           %d0, %d1                # will denorm push exp < 0?
22402         bgt.b           unnorm_nrm_zero         # yes; denorm only until exp = 0
22403
22404 #
22405 # exponent would not go < 0. Therefore, number stays normalized
22406 #
22407         sub.w           %d0, %d1                # shift exponent value
22408         mov.w           FTEMP_EX(%a0), %d0      # load old exponent
22409         and.w           &0x8000, %d0            # save old sign
22410         or.w            %d0, %d1                # {sgn,new exp}
22411         mov.w           %d1, FTEMP_EX(%a0)      # insert new exponent
22412
22413         bsr.l           norm                    # normalize UNNORM
22414
22415         mov.b           &NORM, %d0              # return new optype tag
22416         rts
22417
22418 #
22419 # exponent would go < 0, so only denormalize until exp = 0
22420 #
22421 unnorm_nrm_zero:
22422         cmp.b           %d1, &32                # is exp <= 32?
22423         bgt.b           unnorm_nrm_zero_lrg     # no; go handle large exponent
22424
22425         bfextu          FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man)
22426         mov.l           %d0, FTEMP_HI(%a0)      # save new hi(man)
22427
22428         mov.l           FTEMP_LO(%a0), %d0      # fetch old lo(man)
22429         lsl.l           %d1, %d0                # extract new lo(man)
22430         mov.l           %d0, FTEMP_LO(%a0)      # save new lo(man)
22431
22432         and.w           &0x8000, FTEMP_EX(%a0)  # set exp = 0
22433
22434         mov.b           &DENORM, %d0            # return new optype tag
22435         rts
22436
22437 #
22438 # only mantissa bits set are in lo(man)
22439 #
22440 unnorm_nrm_zero_lrg:
22441         sub.w           &32, %d1                # adjust shft amt by 32
22442
22443         mov.l           FTEMP_LO(%a0), %d0      # fetch old lo(man)
22444         lsl.l           %d1, %d0                # left shift lo(man)
22445
22446         mov.l           %d0, FTEMP_HI(%a0)      # store new hi(man)
22447         clr.l           FTEMP_LO(%a0)           # lo(man) = 0
22448
22449         and.w           &0x8000, FTEMP_EX(%a0)  # set exp = 0
22450
22451         mov.b           &DENORM, %d0            # return new optype tag
22452         rts
22453
22454 #
22455 # whole mantissa is zero so this UNNORM is actually a zero
22456 #
22457 unnorm_zero:
22458         and.w           &0x8000, FTEMP_EX(%a0)  # force exponent to zero
22459
22460         mov.b           &ZERO, %d0              # fix optype tag
22461         rts
22462
22463 #########################################################################
22464 # XDEF **************************************************************** #
22465 #       set_tag_x(): return the optype of the input ext fp number       #
22466 #                                                                       #
22467 # XREF **************************************************************** #
22468 #       None                                                            #
22469 #                                                                       #
22470 # INPUT *************************************************************** #
22471 #       a0 = pointer to extended precision operand                      #
22472 #                                                                       #
22473 # OUTPUT ************************************************************** #
22474 #       d0 = value of type tag                                          #
22475 #               one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO     #
22476 #                                                                       #
22477 # ALGORITHM *********************************************************** #
22478 #       Simply test the exponent, j-bit, and mantissa values to         #
22479 # determine the type of operand.                                        #
22480 #       If it's an unnormalized zero, alter the operand and force it    #
22481 # to be a normal zero.                                                  #
22482 #                                                                       #
22483 #########################################################################
22484
22485         global          set_tag_x
22486 set_tag_x:
22487         mov.w           FTEMP_EX(%a0), %d0      # extract exponent
22488         andi.w          &0x7fff, %d0            # strip off sign
22489         cmpi.w          %d0, &0x7fff            # is (EXP == MAX)?
22490         beq.b           inf_or_nan_x
22491 not_inf_or_nan_x:
22492         btst            &0x7,FTEMP_HI(%a0)
22493         beq.b           not_norm_x
22494 is_norm_x:
22495         mov.b           &NORM, %d0
22496         rts
22497 not_norm_x:
22498         tst.w           %d0                     # is exponent = 0?
22499         bne.b           is_unnorm_x
22500 not_unnorm_x:
22501         tst.l           FTEMP_HI(%a0)
22502         bne.b           is_denorm_x
22503         tst.l           FTEMP_LO(%a0)
22504         bne.b           is_denorm_x
22505 is_zero_x:
22506         mov.b           &ZERO, %d0
22507         rts
22508 is_denorm_x:
22509         mov.b           &DENORM, %d0
22510         rts
22511 # must distinguish now "Unnormalized zeroes" which we
22512 # must convert to zero.
22513 is_unnorm_x:
22514         tst.l           FTEMP_HI(%a0)
22515         bne.b           is_unnorm_reg_x
22516         tst.l           FTEMP_LO(%a0)
22517         bne.b           is_unnorm_reg_x
22518 # it's an "unnormalized zero". let's convert it to an actual zero...
22519         andi.w          &0x8000,FTEMP_EX(%a0)   # clear exponent
22520         mov.b           &ZERO, %d0
22521         rts
22522 is_unnorm_reg_x:
22523         mov.b           &UNNORM, %d0
22524         rts
22525 inf_or_nan_x:
22526         tst.l           FTEMP_LO(%a0)
22527         bne.b           is_nan_x
22528         mov.l           FTEMP_HI(%a0), %d0
22529         and.l           &0x7fffffff, %d0        # msb is a don't care!
22530         bne.b           is_nan_x
22531 is_inf_x:
22532         mov.b           &INF, %d0
22533         rts
22534 is_nan_x:
22535         btst            &0x6, FTEMP_HI(%a0)
22536         beq.b           is_snan_x
22537         mov.b           &QNAN, %d0
22538         rts
22539 is_snan_x:
22540         mov.b           &SNAN, %d0
22541         rts
22542
22543 #########################################################################
22544 # XDEF **************************************************************** #
22545 #       set_tag_d(): return the optype of the input dbl fp number       #
22546 #                                                                       #
22547 # XREF **************************************************************** #
22548 #       None                                                            #
22549 #                                                                       #
22550 # INPUT *************************************************************** #
22551 #       a0 = points to double precision operand                         #
22552 #                                                                       #
22553 # OUTPUT ************************************************************** #
22554 #       d0 = value of type tag                                          #
22555 #               one of: NORM, INF, QNAN, SNAN, DENORM, ZERO             #
22556 #                                                                       #
22557 # ALGORITHM *********************************************************** #
22558 #       Simply test the exponent, j-bit, and mantissa values to         #
22559 # determine the type of operand.                                        #
22560 #                                                                       #
22561 #########################################################################
22562
22563         global          set_tag_d
22564 set_tag_d:
22565         mov.l           FTEMP(%a0), %d0
22566         mov.l           %d0, %d1
22567
22568         andi.l          &0x7ff00000, %d0
22569         beq.b           zero_or_denorm_d
22570
22571         cmpi.l          %d0, &0x7ff00000
22572         beq.b           inf_or_nan_d
22573
22574 is_norm_d:
22575         mov.b           &NORM, %d0
22576         rts
22577 zero_or_denorm_d:
22578         and.l           &0x000fffff, %d1
22579         bne             is_denorm_d
22580         tst.l           4+FTEMP(%a0)
22581         bne             is_denorm_d
22582 is_zero_d:
22583         mov.b           &ZERO, %d0
22584         rts
22585 is_denorm_d:
22586         mov.b           &DENORM, %d0
22587         rts
22588 inf_or_nan_d:
22589         and.l           &0x000fffff, %d1
22590         bne             is_nan_d
22591         tst.l           4+FTEMP(%a0)
22592         bne             is_nan_d
22593 is_inf_d:
22594         mov.b           &INF, %d0
22595         rts
22596 is_nan_d:
22597         btst            &19, %d1
22598         bne             is_qnan_d
22599 is_snan_d:
22600         mov.b           &SNAN, %d0
22601         rts
22602 is_qnan_d:
22603         mov.b           &QNAN, %d0
22604         rts
22605
22606 #########################################################################
22607 # XDEF **************************************************************** #
22608 #       set_tag_s(): return the optype of the input sgl fp number       #
22609 #                                                                       #
22610 # XREF **************************************************************** #
22611 #       None                                                            #
22612 #                                                                       #
22613 # INPUT *************************************************************** #
22614 #       a0 = pointer to single precision operand                        #
22615 #                                                                       #
22616 # OUTPUT ************************************************************** #
22617 #       d0 = value of type tag                                          #
22618 #               one of: NORM, INF, QNAN, SNAN, DENORM, ZERO             #
22619 #                                                                       #
22620 # ALGORITHM *********************************************************** #
22621 #       Simply test the exponent, j-bit, and mantissa values to         #
22622 # determine the type of operand.                                        #
22623 #                                                                       #
22624 #########################################################################
22625
22626         global          set_tag_s
22627 set_tag_s:
22628         mov.l           FTEMP(%a0), %d0
22629         mov.l           %d0, %d1
22630
22631         andi.l          &0x7f800000, %d0
22632         beq.b           zero_or_denorm_s
22633
22634         cmpi.l          %d0, &0x7f800000
22635         beq.b           inf_or_nan_s
22636
22637 is_norm_s:
22638         mov.b           &NORM, %d0
22639         rts
22640 zero_or_denorm_s:
22641         and.l           &0x007fffff, %d1
22642         bne             is_denorm_s
22643 is_zero_s:
22644         mov.b           &ZERO, %d0
22645         rts
22646 is_denorm_s:
22647         mov.b           &DENORM, %d0
22648         rts
22649 inf_or_nan_s:
22650         and.l           &0x007fffff, %d1
22651         bne             is_nan_s
22652 is_inf_s:
22653         mov.b           &INF, %d0
22654         rts
22655 is_nan_s:
22656         btst            &22, %d1
22657         bne             is_qnan_s
22658 is_snan_s:
22659         mov.b           &SNAN, %d0
22660         rts
22661 is_qnan_s:
22662         mov.b           &QNAN, %d0
22663         rts
22664
22665 #########################################################################
22666 # XDEF **************************************************************** #
22667 #       unf_res(): routine to produce default underflow result of a     #
22668 #                  scaled extended precision number; this is used by    #
22669 #                  fadd/fdiv/fmul/etc. emulation routines.              #
22670 #       unf_res4(): same as above but for fsglmul/fsgldiv which use     #
22671 #                   single round prec and extended prec mode.           #
22672 #                                                                       #
22673 # XREF **************************************************************** #
22674 #       _denorm() - denormalize according to scale factor               #
22675 #       _round() - round denormalized number according to rnd prec      #
22676 #                                                                       #
22677 # INPUT *************************************************************** #
22678 #       a0 = pointer to extended precison operand                       #
22679 #       d0 = scale factor                                               #
22680 #       d1 = rounding precision/mode                                    #
22681 #                                                                       #
22682 # OUTPUT ************************************************************** #
22683 #       a0 = pointer to default underflow result in extended precision  #
22684 #       d0.b = result FPSR_cc which caller may or may not want to save  #
22685 #                                                                       #
22686 # ALGORITHM *********************************************************** #
22687 #       Convert the input operand to "internal format" which means the  #
22688 # exponent is extended to 16 bits and the sign is stored in the unused  #
22689 # portion of the extended precison operand. Denormalize the number      #
22690 # according to the scale factor passed in d0. Then, round the           #
22691 # denormalized result.                                                  #
22692 #       Set the FPSR_exc bits as appropriate but return the cc bits in  #
22693 # d0 in case the caller doesn't want to save them (as is the case for   #
22694 # fmove out).                                                           #
22695 #       unf_res4() for fsglmul/fsgldiv forces the denorm to extended    #
22696 # precision and the rounding mode to single.                            #
22697 #                                                                       #
22698 #########################################################################
22699         global          unf_res
22700 unf_res:
22701         mov.l           %d1, -(%sp)             # save rnd prec,mode on stack
22702
22703         btst            &0x7, FTEMP_EX(%a0)     # make "internal" format
22704         sne             FTEMP_SGN(%a0)
22705
22706         mov.w           FTEMP_EX(%a0), %d1      # extract exponent
22707         and.w           &0x7fff, %d1
22708         sub.w           %d0, %d1
22709         mov.w           %d1, FTEMP_EX(%a0)      # insert 16 bit exponent
22710
22711         mov.l           %a0, -(%sp)             # save operand ptr during calls
22712
22713         mov.l           0x4(%sp),%d0            # pass rnd prec.
22714         andi.w          &0x00c0,%d0
22715         lsr.w           &0x4,%d0
22716         bsr.l           _denorm                 # denorm result
22717
22718         mov.l           (%sp),%a0
22719         mov.w           0x6(%sp),%d1            # load prec:mode into %d1
22720         andi.w          &0xc0,%d1               # extract rnd prec
22721         lsr.w           &0x4,%d1
22722         swap            %d1
22723         mov.w           0x6(%sp),%d1
22724         andi.w          &0x30,%d1
22725         lsr.w           &0x4,%d1
22726         bsr.l           _round                  # round the denorm
22727
22728         mov.l           (%sp)+, %a0
22729
22730 # result is now rounded properly. convert back to normal format
22731         bclr            &0x7, FTEMP_EX(%a0)     # clear sgn first; may have residue
22732         tst.b           FTEMP_SGN(%a0)          # is "internal result" sign set?
22733         beq.b           unf_res_chkifzero       # no; result is positive
22734         bset            &0x7, FTEMP_EX(%a0)     # set result sgn
22735         clr.b           FTEMP_SGN(%a0)          # clear temp sign
22736
22737 # the number may have become zero after rounding. set ccodes accordingly.
22738 unf_res_chkifzero:
22739         clr.l           %d0
22740         tst.l           FTEMP_HI(%a0)           # is value now a zero?
22741         bne.b           unf_res_cont            # no
22742         tst.l           FTEMP_LO(%a0)
22743         bne.b           unf_res_cont            # no
22744 #       bset            &z_bit, FPSR_CC(%a6)    # yes; set zero ccode bit
22745         bset            &z_bit, %d0             # yes; set zero ccode bit
22746
22747 unf_res_cont:
22748
22749 #
22750 # can inex1 also be set along with unfl and inex2???
22751 #
22752 # we know that underflow has occurred. aunfl should be set if INEX2 is also set.
22753 #
22754         btst            &inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set?
22755         beq.b           unf_res_end             # no
22756         bset            &aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl
22757
22758 unf_res_end:
22759         add.l           &0x4, %sp               # clear stack
22760         rts
22761
22762 # unf_res() for fsglmul() and fsgldiv().
22763         global          unf_res4
22764 unf_res4:
22765         mov.l           %d1,-(%sp)              # save rnd prec,mode on stack
22766
22767         btst            &0x7,FTEMP_EX(%a0)      # make "internal" format
22768         sne             FTEMP_SGN(%a0)
22769
22770         mov.w           FTEMP_EX(%a0),%d1       # extract exponent
22771         and.w           &0x7fff,%d1
22772         sub.w           %d0,%d1
22773         mov.w           %d1,FTEMP_EX(%a0)       # insert 16 bit exponent
22774
22775         mov.l           %a0,-(%sp)              # save operand ptr during calls
22776
22777         clr.l           %d0                     # force rnd prec = ext
22778         bsr.l           _denorm                 # denorm result
22779
22780         mov.l           (%sp),%a0
22781         mov.w           &s_mode,%d1             # force rnd prec = sgl
22782         swap            %d1
22783         mov.w           0x6(%sp),%d1            # load rnd mode
22784         andi.w          &0x30,%d1               # extract rnd prec
22785         lsr.w           &0x4,%d1
22786         bsr.l           _round                  # round the denorm
22787
22788         mov.l           (%sp)+,%a0
22789
22790 # result is now rounded properly. convert back to normal format
22791         bclr            &0x7,FTEMP_EX(%a0)      # clear sgn first; may have residue
22792         tst.b           FTEMP_SGN(%a0)          # is "internal result" sign set?
22793         beq.b           unf_res4_chkifzero      # no; result is positive
22794         bset            &0x7,FTEMP_EX(%a0)      # set result sgn
22795         clr.b           FTEMP_SGN(%a0)          # clear temp sign
22796
22797 # the number may have become zero after rounding. set ccodes accordingly.
22798 unf_res4_chkifzero:
22799         clr.l           %d0
22800         tst.l           FTEMP_HI(%a0)           # is value now a zero?
22801         bne.b           unf_res4_cont           # no
22802         tst.l           FTEMP_LO(%a0)
22803         bne.b           unf_res4_cont           # no
22804 #       bset            &z_bit,FPSR_CC(%a6)     # yes; set zero ccode bit
22805         bset            &z_bit,%d0              # yes; set zero ccode bit
22806
22807 unf_res4_cont:
22808
22809 #
22810 # can inex1 also be set along with unfl and inex2???
22811 #
22812 # we know that underflow has occurred. aunfl should be set if INEX2 is also set.
22813 #
22814         btst            &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
22815         beq.b           unf_res4_end            # no
22816         bset            &aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl
22817
22818 unf_res4_end:
22819         add.l           &0x4,%sp                # clear stack
22820         rts
22821
22822 #########################################################################
22823 # XDEF **************************************************************** #
22824 #       ovf_res(): routine to produce the default overflow result of    #
22825 #                  an overflowing number.                               #
22826 #       ovf_res2(): same as above but the rnd mode/prec are passed      #
22827 #                   differently.                                        #
22828 #                                                                       #
22829 # XREF **************************************************************** #
22830 #       none                                                            #
22831 #                                                                       #
22832 # INPUT *************************************************************** #
22833 #       d1.b    = '-1' => (-); '0' => (+)                               #
22834 #   ovf_res():                                                          #
22835 #       d0      = rnd mode/prec                                         #
22836 #   ovf_res2():                                                         #
22837 #       hi(d0)  = rnd prec                                              #
22838 #       lo(d0)  = rnd mode                                              #
22839 #                                                                       #
22840 # OUTPUT ************************************************************** #
22841 #       a0      = points to extended precision result                   #
22842 #       d0.b    = condition code bits                                   #
22843 #                                                                       #
22844 # ALGORITHM *********************************************************** #
22845 #       The default overflow result can be determined by the sign of    #
22846 # the result and the rounding mode/prec in effect. These bits are       #
22847 # concatenated together to create an index into the default result      #
22848 # table. A pointer to the correct result is returned in a0. The         #
22849 # resulting condition codes are returned in d0 in case the caller       #
22850 # doesn't want FPSR_cc altered (as is the case for fmove out).          #
22851 #                                                                       #
22852 #########################################################################
22853
22854         global          ovf_res
22855 ovf_res:
22856         andi.w          &0x10,%d1               # keep result sign
22857         lsr.b           &0x4,%d0                # shift prec/mode
22858         or.b            %d0,%d1                 # concat the two
22859         mov.w           %d1,%d0                 # make a copy
22860         lsl.b           &0x1,%d1                # multiply d1 by 2
22861         bra.b           ovf_res_load
22862
22863         global          ovf_res2
22864 ovf_res2:
22865         and.w           &0x10, %d1              # keep result sign
22866         or.b            %d0, %d1                # insert rnd mode
22867         swap            %d0
22868         or.b            %d0, %d1                # insert rnd prec
22869         mov.w           %d1, %d0                # make a copy
22870         lsl.b           &0x1, %d1               # shift left by 1
22871
22872 #
22873 # use the rounding mode, precision, and result sign as in index into the
22874 # two tables below to fetch the default result and the result ccodes.
22875 #
22876 ovf_res_load:
22877         mov.b           (tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes
22878         lea             (tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr
22879
22880         rts
22881
22882 tbl_ovfl_cc:
22883         byte            0x2, 0x0, 0x0, 0x2
22884         byte            0x2, 0x0, 0x0, 0x2
22885         byte            0x2, 0x0, 0x0, 0x2
22886         byte            0x0, 0x0, 0x0, 0x0
22887         byte            0x2+0x8, 0x8, 0x2+0x8, 0x8
22888         byte            0x2+0x8, 0x8, 0x2+0x8, 0x8
22889         byte            0x2+0x8, 0x8, 0x2+0x8, 0x8
22890
22891 tbl_ovfl_result:
22892         long            0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
22893         long            0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ
22894         long            0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM
22895         long            0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
22896
22897         long            0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
22898         long            0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ
22899         long            0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM
22900         long            0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
22901
22902         long            0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
22903         long            0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ
22904         long            0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM
22905         long            0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
22906
22907         long            0x00000000,0x00000000,0x00000000,0x00000000
22908         long            0x00000000,0x00000000,0x00000000,0x00000000
22909         long            0x00000000,0x00000000,0x00000000,0x00000000
22910         long            0x00000000,0x00000000,0x00000000,0x00000000
22911
22912         long            0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
22913         long            0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ
22914         long            0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
22915         long            0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP
22916
22917         long            0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
22918         long            0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ
22919         long            0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
22920         long            0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP
22921
22922         long            0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
22923         long            0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ
22924         long            0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
22925         long            0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP
22926
22927 #########################################################################
22928 # XDEF **************************************************************** #
22929 #       get_packed(): fetch a packed operand from memory and then       #
22930 #                     convert it to a floating-point binary number.     #
22931 #                                                                       #
22932 # XREF **************************************************************** #
22933 #       _dcalc_ea() - calculate the correct <ea>                        #
22934 #       _mem_read() - fetch the packed operand from memory              #
22935 #       facc_in_x() - the fetch failed so jump to special exit code     #
22936 #       decbin()    - convert packed to binary extended precision       #
22937 #                                                                       #
22938 # INPUT *************************************************************** #
22939 #       None                                                            #
22940 #                                                                       #
22941 # OUTPUT ************************************************************** #
22942 #       If no failure on _mem_read():                                   #
22943 #       FP_SRC(a6) = packed operand now as a binary FP number           #
22944 #                                                                       #
22945 # ALGORITHM *********************************************************** #
22946 #       Get the correct <ea> whihc is the value on the exception stack  #
22947 # frame w/ maybe a correction factor if the <ea> is -(an) or (an)+.     #
22948 # Then, fetch the operand from memory. If the fetch fails, exit         #
22949 # through facc_in_x().                                                  #
22950 #       If the packed operand is a ZERO,NAN, or INF, convert it to      #
22951 # its binary representation here. Else, call decbin() which will        #
22952 # convert the packed value to an extended precision binary value.       #
22953 #                                                                       #
22954 #########################################################################
22955
22956 # the stacked <ea> for packed is correct except for -(An).
22957 # the base reg must be updated for both -(An) and (An)+.
22958         global          get_packed
22959 get_packed:
22960         mov.l           &0xc,%d0                # packed is 12 bytes
22961         bsr.l           _dcalc_ea               # fetch <ea>; correct An
22962
22963         lea             FP_SRC(%a6),%a1         # pass: ptr to super dst
22964         mov.l           &0xc,%d0                # pass: 12 bytes
22965         bsr.l           _dmem_read              # read packed operand
22966
22967         tst.l           %d1                     # did dfetch fail?
22968         bne.l           facc_in_x               # yes
22969
22970 # The packed operand is an INF or a NAN if the exponent field is all ones.
22971         bfextu          FP_SRC(%a6){&1:&15},%d0 # get exp
22972         cmpi.w          %d0,&0x7fff             # INF or NAN?
22973         bne.b           gp_try_zero             # no
22974         rts                                     # operand is an INF or NAN
22975
22976 # The packed operand is a zero if the mantissa is all zero, else it's
22977 # a normal packed op.
22978 gp_try_zero:
22979         mov.b           3+FP_SRC(%a6),%d0       # get byte 4
22980         andi.b          &0x0f,%d0               # clear all but last nybble
22981         bne.b           gp_not_spec             # not a zero
22982         tst.l           FP_SRC_HI(%a6)          # is lw 2 zero?
22983         bne.b           gp_not_spec             # not a zero
22984         tst.l           FP_SRC_LO(%a6)          # is lw 3 zero?
22985         bne.b           gp_not_spec             # not a zero
22986         rts                                     # operand is a ZERO
22987 gp_not_spec:
22988         lea             FP_SRC(%a6),%a0         # pass: ptr to packed op
22989         bsr.l           decbin                  # convert to extended
22990         fmovm.x         &0x80,FP_SRC(%a6)       # make this the srcop
22991         rts
22992
22993 #########################################################################
22994 # decbin(): Converts normalized packed bcd value pointed to by register #
22995 #           a0 to extended-precision value in fp0.                      #
22996 #                                                                       #
22997 # INPUT *************************************************************** #
22998 #       a0 = pointer to normalized packed bcd value                     #
22999 #                                                                       #
23000 # OUTPUT ************************************************************** #
23001 #       fp0 = exact fp representation of the packed bcd value.          #
23002 #                                                                       #
23003 # ALGORITHM *********************************************************** #
23004 #       Expected is a normal bcd (i.e. non-exceptional; all inf, zero,  #
23005 #       and NaN operands are dispatched without entering this routine)  #
23006 #       value in 68881/882 format at location (a0).                     #
23007 #                                                                       #
23008 #       A1. Convert the bcd exponent to binary by successive adds and   #
23009 #       muls. Set the sign according to SE. Subtract 16 to compensate   #
23010 #       for the mantissa which is to be interpreted as 17 integer       #
23011 #       digits, rather than 1 integer and 16 fraction digits.           #
23012 #       Note: this operation can never overflow.                        #
23013 #                                                                       #
23014 #       A2. Convert the bcd mantissa to binary by successive            #
23015 #       adds and muls in FP0. Set the sign according to SM.             #
23016 #       The mantissa digits will be converted with the decimal point    #
23017 #       assumed following the least-significant digit.                  #
23018 #       Note: this operation can never overflow.                        #
23019 #                                                                       #
23020 #       A3. Count the number of leading/trailing zeros in the           #
23021 #       bcd string.  If SE is positive, count the leading zeros;        #
23022 #       if negative, count the trailing zeros.  Set the adjusted        #
23023 #       exponent equal to the exponent from A1 and the zero count       #
23024 #       added if SM = 1 and subtracted if SM = 0.  Scale the            #
23025 #       mantissa the equivalent of forcing in the bcd value:            #
23026 #                                                                       #
23027 #       SM = 0  a non-zero digit in the integer position                #
23028 #       SM = 1  a non-zero digit in Mant0, lsd of the fraction          #
23029 #                                                                       #
23030 #       this will insure that any value, regardless of its              #
23031 #       representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted     #
23032 #       consistently.                                                   #
23033 #                                                                       #
23034 #       A4. Calculate the factor 10^exp in FP1 using a table of         #
23035 #       10^(2^n) values.  To reduce the error in forming factors        #
23036 #       greater than 10^27, a directed rounding scheme is used with     #
23037 #       tables rounded to RN, RM, and RP, according to the table        #
23038 #       in the comments of the pwrten section.                          #
23039 #                                                                       #
23040 #       A5. Form the final binary number by scaling the mantissa by     #
23041 #       the exponent factor.  This is done by multiplying the           #
23042 #       mantissa in FP0 by the factor in FP1 if the adjusted            #
23043 #       exponent sign is positive, and dividing FP0 by FP1 if           #
23044 #       it is negative.                                                 #
23045 #                                                                       #
23046 #       Clean up and return. Check if the final mul or div was inexact. #
23047 #       If so, set INEX1 in USER_FPSR.                                  #
23048 #                                                                       #
23049 #########################################################################
23050
23051 #
23052 #       PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
23053 #       to nearest, minus, and plus, respectively.  The tables include
23054 #       10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding
23055 #       is required until the power is greater than 27, however, all
23056 #       tables include the first 5 for ease of indexing.
23057 #
23058 RTABLE:
23059         byte            0,0,0,0
23060         byte            2,3,2,3
23061         byte            2,3,3,2
23062         byte            3,2,2,3
23063
23064         set             FNIBS,7
23065         set             FSTRT,0
23066
23067         set             ESTRT,4
23068         set             EDIGITS,2
23069
23070         global          decbin
23071 decbin:
23072         mov.l           0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input
23073         mov.l           0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it
23074         mov.l           0x8(%a0),FP_SCR0_LO(%a6)
23075
23076         lea             FP_SCR0(%a6),%a0
23077
23078         movm.l          &0x3c00,-(%sp)          # save d2-d5
23079         fmovm.x         &0x1,-(%sp)             # save fp1
23080 #
23081 # Calculate exponent:
23082 #  1. Copy bcd value in memory for use as a working copy.
23083 #  2. Calculate absolute value of exponent in d1 by mul and add.
23084 #  3. Correct for exponent sign.
23085 #  4. Subtract 16 to compensate for interpreting the mant as all integer digits.
23086 #     (i.e., all digits assumed left of the decimal point.)
23087 #
23088 # Register usage:
23089 #
23090 #  calc_e:
23091 #       (*)  d0: temp digit storage
23092 #       (*)  d1: accumulator for binary exponent
23093 #       (*)  d2: digit count
23094 #       (*)  d3: offset pointer
23095 #       ( )  d4: first word of bcd
23096 #       ( )  a0: pointer to working bcd value
23097 #       ( )  a6: pointer to original bcd value
23098 #       (*)  FP_SCR1: working copy of original bcd value
23099 #       (*)  L_SCR1: copy of original exponent word
23100 #
23101 calc_e:
23102         mov.l           &EDIGITS,%d2            # # of nibbles (digits) in fraction part
23103         mov.l           &ESTRT,%d3              # counter to pick up digits
23104         mov.l           (%a0),%d4               # get first word of bcd
23105         clr.l           %d1                     # zero d1 for accumulator
23106 e_gd:
23107         mulu.l          &0xa,%d1                # mul partial product by one digit place
23108         bfextu          %d4{%d3:&4},%d0         # get the digit and zero extend into d0
23109         add.l           %d0,%d1                 # d1 = d1 + d0
23110         addq.b          &4,%d3                  # advance d3 to the next digit
23111         dbf.w           %d2,e_gd                # if we have used all 3 digits, exit loop
23112         btst            &30,%d4                 # get SE
23113         beq.b           e_pos                   # don't negate if pos
23114         neg.l           %d1                     # negate before subtracting
23115 e_pos:
23116         sub.l           &16,%d1                 # sub to compensate for shift of mant
23117         bge.b           e_save                  # if still pos, do not neg
23118         neg.l           %d1                     # now negative, make pos and set SE
23119         or.l            &0x40000000,%d4         # set SE in d4,
23120         or.l            &0x40000000,(%a0)       # and in working bcd
23121 e_save:
23122         mov.l           %d1,-(%sp)              # save exp on stack
23123 #
23124 #
23125 # Calculate mantissa:
23126 #  1. Calculate absolute value of mantissa in fp0 by mul and add.
23127 #  2. Correct for mantissa sign.
23128 #     (i.e., all digits assumed left of the decimal point.)
23129 #
23130 # Register usage:
23131 #
23132 #  calc_m:
23133 #       (*)  d0: temp digit storage
23134 #       (*)  d1: lword counter
23135 #       (*)  d2: digit count
23136 #       (*)  d3: offset pointer
23137 #       ( )  d4: words 2 and 3 of bcd
23138 #       ( )  a0: pointer to working bcd value
23139 #       ( )  a6: pointer to original bcd value
23140 #       (*) fp0: mantissa accumulator
23141 #       ( )  FP_SCR1: working copy of original bcd value
23142 #       ( )  L_SCR1: copy of original exponent word
23143 #
23144 calc_m:
23145         mov.l           &1,%d1                  # word counter, init to 1
23146         fmov.s          &0x00000000,%fp0        # accumulator
23147 #
23148 #
23149 #  Since the packed number has a long word between the first & second parts,
23150 #  get the integer digit then skip down & get the rest of the
23151 #  mantissa.  We will unroll the loop once.
23152 #
23153         bfextu          (%a0){&28:&4},%d0       # integer part is ls digit in long word
23154         fadd.b          %d0,%fp0                # add digit to sum in fp0
23155 #
23156 #
23157 #  Get the rest of the mantissa.
23158 #
23159 loadlw:
23160         mov.l           (%a0,%d1.L*4),%d4       # load mantissa lonqword into d4
23161         mov.l           &FSTRT,%d3              # counter to pick up digits
23162         mov.l           &FNIBS,%d2              # reset number of digits per a0 ptr
23163 md2b:
23164         fmul.s          &0x41200000,%fp0        # fp0 = fp0 * 10
23165         bfextu          %d4{%d3:&4},%d0         # get the digit and zero extend
23166         fadd.b          %d0,%fp0                # fp0 = fp0 + digit
23167 #
23168 #
23169 #  If all the digits (8) in that long word have been converted (d2=0),
23170 #  then inc d1 (=2) to point to the next long word and reset d3 to 0
23171 #  to initialize the digit offset, and set d2 to 7 for the digit count;
23172 #  else continue with this long word.
23173 #
23174         addq.b          &4,%d3                  # advance d3 to the next digit
23175         dbf.w           %d2,md2b                # check for last digit in this lw
23176 nextlw:
23177         addq.l          &1,%d1                  # inc lw pointer in mantissa
23178         cmp.l           %d1,&2                  # test for last lw
23179         ble.b           loadlw                  # if not, get last one
23180 #
23181 #  Check the sign of the mant and make the value in fp0 the same sign.
23182 #
23183 m_sign:
23184         btst            &31,(%a0)               # test sign of the mantissa
23185         beq.b           ap_st_z                 # if clear, go to append/strip zeros
23186         fneg.x          %fp0                    # if set, negate fp0
23187 #
23188 # Append/strip zeros:
23189 #
23190 #  For adjusted exponents which have an absolute value greater than 27*,
23191 #  this routine calculates the amount needed to normalize the mantissa
23192 #  for the adjusted exponent.  That number is subtracted from the exp
23193 #  if the exp was positive, and added if it was negative.  The purpose
23194 #  of this is to reduce the value of the exponent and the possibility
23195 #  of error in calculation of pwrten.
23196 #
23197 #  1. Branch on the sign of the adjusted exponent.
23198 #  2p.(positive exp)
23199 #   2. Check M16 and the digits in lwords 2 and 3 in decending order.
23200 #   3. Add one for each zero encountered until a non-zero digit.
23201 #   4. Subtract the count from the exp.
23202 #   5. Check if the exp has crossed zero in #3 above; make the exp abs
23203 #          and set SE.
23204 #       6. Multiply the mantissa by 10**count.
23205 #  2n.(negative exp)
23206 #   2. Check the digits in lwords 3 and 2 in decending order.
23207 #   3. Add one for each zero encountered until a non-zero digit.
23208 #   4. Add the count to the exp.
23209 #   5. Check if the exp has crossed zero in #3 above; clear SE.
23210 #   6. Divide the mantissa by 10**count.
23211 #
23212 #  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than
23213 #   any adjustment due to append/strip zeros will drive the resultane
23214 #   exponent towards zero.  Since all pwrten constants with a power
23215 #   of 27 or less are exact, there is no need to use this routine to
23216 #   attempt to lessen the resultant exponent.
23217 #
23218 # Register usage:
23219 #
23220 #  ap_st_z:
23221 #       (*)  d0: temp digit storage
23222 #       (*)  d1: zero count
23223 #       (*)  d2: digit count
23224 #       (*)  d3: offset pointer
23225 #       ( )  d4: first word of bcd
23226 #       (*)  d5: lword counter
23227 #       ( )  a0: pointer to working bcd value
23228 #       ( )  FP_SCR1: working copy of original bcd value
23229 #       ( )  L_SCR1: copy of original exponent word
23230 #
23231 #
23232 # First check the absolute value of the exponent to see if this
23233 # routine is necessary.  If so, then check the sign of the exponent
23234 # and do append (+) or strip (-) zeros accordingly.
23235 # This section handles a positive adjusted exponent.
23236 #
23237 ap_st_z:
23238         mov.l           (%sp),%d1               # load expA for range test
23239         cmp.l           %d1,&27                 # test is with 27
23240         ble.w           pwrten                  # if abs(expA) <28, skip ap/st zeros
23241         btst            &30,(%a0)               # check sign of exp
23242         bne.b           ap_st_n                 # if neg, go to neg side
23243         clr.l           %d1                     # zero count reg
23244         mov.l           (%a0),%d4               # load lword 1 to d4
23245         bfextu          %d4{&28:&4},%d0         # get M16 in d0
23246         bne.b           ap_p_fx                 # if M16 is non-zero, go fix exp
23247         addq.l          &1,%d1                  # inc zero count
23248         mov.l           &1,%d5                  # init lword counter
23249         mov.l           (%a0,%d5.L*4),%d4       # get lword 2 to d4
23250         bne.b           ap_p_cl                 # if lw 2 is zero, skip it
23251         addq.l          &8,%d1                  # and inc count by 8
23252         addq.l          &1,%d5                  # inc lword counter
23253         mov.l           (%a0,%d5.L*4),%d4       # get lword 3 to d4
23254 ap_p_cl:
23255         clr.l           %d3                     # init offset reg
23256         mov.l           &7,%d2                  # init digit counter
23257 ap_p_gd:
23258         bfextu          %d4{%d3:&4},%d0         # get digit
23259         bne.b           ap_p_fx                 # if non-zero, go to fix exp
23260         addq.l          &4,%d3                  # point to next digit
23261         addq.l          &1,%d1                  # inc digit counter
23262         dbf.w           %d2,ap_p_gd             # get next digit
23263 ap_p_fx:
23264         mov.l           %d1,%d0                 # copy counter to d2
23265         mov.l           (%sp),%d1               # get adjusted exp from memory
23266         sub.l           %d0,%d1                 # subtract count from exp
23267         bge.b           ap_p_fm                 # if still pos, go to pwrten
23268         neg.l           %d1                     # now its neg; get abs
23269         mov.l           (%a0),%d4               # load lword 1 to d4
23270         or.l            &0x40000000,%d4         # and set SE in d4
23271         or.l            &0x40000000,(%a0)       # and in memory
23272 #
23273 # Calculate the mantissa multiplier to compensate for the striping of
23274 # zeros from the mantissa.
23275 #
23276 ap_p_fm:
23277         lea.l           PTENRN(%pc),%a1         # get address of power-of-ten table
23278         clr.l           %d3                     # init table index
23279         fmov.s          &0x3f800000,%fp1        # init fp1 to 1
23280         mov.l           &3,%d2                  # init d2 to count bits in counter
23281 ap_p_el:
23282         asr.l           &1,%d0                  # shift lsb into carry
23283         bcc.b           ap_p_en                 # if 1, mul fp1 by pwrten factor
23284         fmul.x          (%a1,%d3),%fp1          # mul by 10**(d3_bit_no)
23285 ap_p_en:
23286         add.l           &12,%d3                 # inc d3 to next rtable entry
23287         tst.l           %d0                     # check if d0 is zero
23288         bne.b           ap_p_el                 # if not, get next bit
23289         fmul.x          %fp1,%fp0               # mul mantissa by 10**(no_bits_shifted)
23290         bra.b           pwrten                  # go calc pwrten
23291 #
23292 # This section handles a negative adjusted exponent.
23293 #
23294 ap_st_n:
23295         clr.l           %d1                     # clr counter
23296         mov.l           &2,%d5                  # set up d5 to point to lword 3
23297         mov.l           (%a0,%d5.L*4),%d4       # get lword 3
23298         bne.b           ap_n_cl                 # if not zero, check digits
23299         sub.l           &1,%d5                  # dec d5 to point to lword 2
23300         addq.l          &8,%d1                  # inc counter by 8
23301         mov.l           (%a0,%d5.L*4),%d4       # get lword 2
23302 ap_n_cl:
23303         mov.l           &28,%d3                 # point to last digit
23304         mov.l           &7,%d2                  # init digit counter
23305 ap_n_gd:
23306         bfextu          %d4{%d3:&4},%d0         # get digit
23307         bne.b           ap_n_fx                 # if non-zero, go to exp fix
23308         subq.l          &4,%d3                  # point to previous digit
23309         addq.l          &1,%d1                  # inc digit counter
23310         dbf.w           %d2,ap_n_gd             # get next digit
23311 ap_n_fx:
23312         mov.l           %d1,%d0                 # copy counter to d0
23313         mov.l           (%sp),%d1               # get adjusted exp from memory
23314         sub.l           %d0,%d1                 # subtract count from exp
23315         bgt.b           ap_n_fm                 # if still pos, go fix mantissa
23316         neg.l           %d1                     # take abs of exp and clr SE
23317         mov.l           (%a0),%d4               # load lword 1 to d4
23318         and.l           &0xbfffffff,%d4         # and clr SE in d4
23319         and.l           &0xbfffffff,(%a0)       # and in memory
23320 #
23321 # Calculate the mantissa multiplier to compensate for the appending of
23322 # zeros to the mantissa.
23323 #
23324 ap_n_fm:
23325         lea.l           PTENRN(%pc),%a1         # get address of power-of-ten table
23326         clr.l           %d3                     # init table index
23327         fmov.s          &0x3f800000,%fp1        # init fp1 to 1
23328         mov.l           &3,%d2                  # init d2 to count bits in counter
23329 ap_n_el:
23330         asr.l           &1,%d0                  # shift lsb into carry
23331         bcc.b           ap_n_en                 # if 1, mul fp1 by pwrten factor
23332         fmul.x          (%a1,%d3),%fp1          # mul by 10**(d3_bit_no)
23333 ap_n_en:
23334         add.l           &12,%d3                 # inc d3 to next rtable entry
23335         tst.l           %d0                     # check if d0 is zero
23336         bne.b           ap_n_el                 # if not, get next bit
23337         fdiv.x          %fp1,%fp0               # div mantissa by 10**(no_bits_shifted)
23338 #
23339 #
23340 # Calculate power-of-ten factor from adjusted and shifted exponent.
23341 #
23342 # Register usage:
23343 #
23344 #  pwrten:
23345 #       (*)  d0: temp
23346 #       ( )  d1: exponent
23347 #       (*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
23348 #       (*)  d3: FPCR work copy
23349 #       ( )  d4: first word of bcd
23350 #       (*)  a1: RTABLE pointer
23351 #  calc_p:
23352 #       (*)  d0: temp
23353 #       ( )  d1: exponent
23354 #       (*)  d3: PWRTxx table index
23355 #       ( )  a0: pointer to working copy of bcd
23356 #       (*)  a1: PWRTxx pointer
23357 #       (*) fp1: power-of-ten accumulator
23358 #
23359 # Pwrten calculates the exponent factor in the selected rounding mode
23360 # according to the following table:
23361 #
23362 #       Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode
23363 #
23364 #       ANY       ANY   RN      RN
23365 #
23366 #        +         +    RP      RP
23367 #        -         +    RP      RM
23368 #        +         -    RP      RM
23369 #        -         -    RP      RP
23370 #
23371 #        +         +    RM      RM
23372 #        -         +    RM      RP
23373 #        +         -    RM      RP
23374 #        -         -    RM      RM
23375 #
23376 #        +         +    RZ      RM
23377 #        -         +    RZ      RM
23378 #        +         -    RZ      RP
23379 #        -         -    RZ      RP
23380 #
23381 #
23382 pwrten:
23383         mov.l           USER_FPCR(%a6),%d3      # get user's FPCR
23384         bfextu          %d3{&26:&2},%d2         # isolate rounding mode bits
23385         mov.l           (%a0),%d4               # reload 1st bcd word to d4
23386         asl.l           &2,%d2                  # format d2 to be
23387         bfextu          %d4{&0:&2},%d0          # {FPCR[6],FPCR[5],SM,SE}
23388         add.l           %d0,%d2                 # in d2 as index into RTABLE
23389         lea.l           RTABLE(%pc),%a1         # load rtable base
23390         mov.b           (%a1,%d2),%d0           # load new rounding bits from table
23391         clr.l           %d3                     # clear d3 to force no exc and extended
23392         bfins           %d0,%d3{&26:&2}         # stuff new rounding bits in FPCR
23393         fmov.l          %d3,%fpcr               # write new FPCR
23394         asr.l           &1,%d0                  # write correct PTENxx table
23395         bcc.b           not_rp                  # to a1
23396         lea.l           PTENRP(%pc),%a1         # it is RP
23397         bra.b           calc_p                  # go to init section
23398 not_rp:
23399         asr.l           &1,%d0                  # keep checking
23400         bcc.b           not_rm
23401         lea.l           PTENRM(%pc),%a1         # it is RM
23402         bra.b           calc_p                  # go to init section
23403 not_rm:
23404         lea.l           PTENRN(%pc),%a1         # it is RN
23405 calc_p:
23406         mov.l           %d1,%d0                 # copy exp to d0;use d0
23407         bpl.b           no_neg                  # if exp is negative,
23408         neg.l           %d0                     # invert it
23409         or.l            &0x40000000,(%a0)       # and set SE bit
23410 no_neg:
23411         clr.l           %d3                     # table index
23412         fmov.s          &0x3f800000,%fp1        # init fp1 to 1
23413 e_loop:
23414         asr.l           &1,%d0                  # shift next bit into carry
23415         bcc.b           e_next                  # if zero, skip the mul
23416         fmul.x          (%a1,%d3),%fp1          # mul by 10**(d3_bit_no)
23417 e_next:
23418         add.l           &12,%d3                 # inc d3 to next rtable entry
23419         tst.l           %d0                     # check if d0 is zero
23420         bne.b           e_loop                  # not zero, continue shifting
23421 #
23422 #
23423 #  Check the sign of the adjusted exp and make the value in fp0 the
23424 #  same sign. If the exp was pos then multiply fp1*fp0;
23425 #  else divide fp0/fp1.
23426 #
23427 # Register Usage:
23428 #  norm:
23429 #       ( )  a0: pointer to working bcd value
23430 #       (*) fp0: mantissa accumulator
23431 #       ( ) fp1: scaling factor - 10**(abs(exp))
23432 #
23433 pnorm:
23434         btst            &30,(%a0)               # test the sign of the exponent
23435         beq.b           mul                     # if clear, go to multiply
23436 div:
23437         fdiv.x          %fp1,%fp0               # exp is negative, so divide mant by exp
23438         bra.b           end_dec
23439 mul:
23440         fmul.x          %fp1,%fp0               # exp is positive, so multiply by exp
23441 #
23442 #
23443 # Clean up and return with result in fp0.
23444 #
23445 # If the final mul/div in decbin incurred an inex exception,
23446 # it will be inex2, but will be reported as inex1 by get_op.
23447 #
23448 end_dec:
23449         fmov.l          %fpsr,%d0               # get status register
23450         bclr            &inex2_bit+8,%d0        # test for inex2 and clear it
23451         beq.b           no_exc                  # skip this if no exc
23452         ori.w           &inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX
23453 no_exc:
23454         add.l           &0x4,%sp                # clear 1 lw param
23455         fmovm.x         (%sp)+,&0x40            # restore fp1
23456         movm.l          (%sp)+,&0x3c            # restore d2-d5
23457         fmov.l          &0x0,%fpcr
23458         fmov.l          &0x0,%fpsr
23459         rts
23460
23461 #########################################################################
23462 # bindec(): Converts an input in extended precision format to bcd format#
23463 #                                                                       #
23464 # INPUT *************************************************************** #
23465 #       a0 = pointer to the input extended precision value in memory.   #
23466 #            the input may be either normalized, unnormalized, or       #
23467 #            denormalized.                                              #
23468 #       d0 = contains the k-factor sign-extended to 32-bits.            #
23469 #                                                                       #
23470 # OUTPUT ************************************************************** #
23471 #       FP_SCR0(a6) = bcd format result on the stack.                   #
23472 #                                                                       #
23473 # ALGORITHM *********************************************************** #
23474 #                                                                       #
23475 #       A1.     Set RM and size ext;  Set SIGMA = sign of input.        #
23476 #               The k-factor is saved for use in d7. Clear the          #
23477 #               BINDEC_FLG for separating normalized/denormalized       #
23478 #               input.  If input is unnormalized or denormalized,       #
23479 #               normalize it.                                           #
23480 #                                                                       #
23481 #       A2.     Set X = abs(input).                                     #
23482 #                                                                       #
23483 #       A3.     Compute ILOG.                                           #
23484 #               ILOG is the log base 10 of the input value.  It is      #
23485 #               approximated by adding e + 0.f when the original        #
23486 #               value is viewed as 2^^e * 1.f in extended precision.    #
23487 #               This value is stored in d6.                             #
23488 #                                                                       #
23489 #       A4.     Clr INEX bit.                                           #
23490 #               The operation in A3 above may have set INEX2.           #
23491 #                                                                       #
23492 #       A5.     Set ICTR = 0;                                           #
23493 #               ICTR is a flag used in A13.  It must be set before the  #
23494 #               loop entry A6.                                          #
23495 #                                                                       #
23496 #       A6.     Calculate LEN.                                          #
23497 #               LEN is the number of digits to be displayed.  The       #
23498 #               k-factor can dictate either the total number of digits, #
23499 #               if it is a positive number, or the number of digits     #
23500 #               after the decimal point which are to be included as     #
23501 #               significant.  See the 68882 manual for examples.        #
23502 #               If LEN is computed to be greater than 17, set OPERR in  #
23503 #               USER_FPSR.  LEN is stored in d4.                        #
23504 #                                                                       #
23505 #       A7.     Calculate SCALE.                                        #
23506 #               SCALE is equal to 10^ISCALE, where ISCALE is the number #
23507 #               of decimal places needed to insure LEN integer digits   #
23508 #               in the output before conversion to bcd. LAMBDA is the   #
23509 #               sign of ISCALE, used in A9. Fp1 contains                #
23510 #               10^^(abs(ISCALE)) using a rounding mode which is a      #
23511 #               function of the original rounding mode and the signs    #
23512 #               of ISCALE and X.  A table is given in the code.         #
23513 #                                                                       #
23514 #       A8.     Clr INEX; Force RZ.                                     #
23515 #               The operation in A3 above may have set INEX2.           #
23516 #               RZ mode is forced for the scaling operation to insure   #
23517 #               only one rounding error.  The grs bits are collected in #
23518 #               the INEX flag for use in A10.                           #
23519 #                                                                       #
23520 #       A9.     Scale X -> Y.                                           #
23521 #               The mantissa is scaled to the desired number of         #
23522 #               significant digits.  The excess digits are collected    #
23523 #               in INEX2.                                               #
23524 #                                                                       #
23525 #       A10.    Or in INEX.                                             #
23526 #               If INEX is set, round error occurred.  This is          #
23527 #               compensated for by 'or-ing' in the INEX2 flag to        #
23528 #               the lsb of Y.                                           #
23529 #                                                                       #
23530 #       A11.    Restore original FPCR; set size ext.                    #
23531 #               Perform FINT operation in the user's rounding mode.     #
23532 #               Keep the size to extended.                              #
23533 #                                                                       #
23534 #       A12.    Calculate YINT = FINT(Y) according to user's rounding   #
23535 #               mode.  The FPSP routine sintd0 is used.  The output     #
23536 #               is in fp0.                                              #
23537 #                                                                       #
23538 #       A13.    Check for LEN digits.                                   #
23539 #               If the int operation results in more than LEN digits,   #
23540 #               or less than LEN -1 digits, adjust ILOG and repeat from #
23541 #               A6.  This test occurs only on the first pass.  If the   #
23542 #               result is exactly 10^LEN, decrement ILOG and divide     #
23543 #               the mantissa by 10.                                     #
23544 #                                                                       #
23545 #       A14.    Convert the mantissa to bcd.                            #
23546 #               The binstr routine is used to convert the LEN digit     #
23547 #               mantissa to bcd in memory.  The input to binstr is      #
23548 #               to be a fraction; i.e. (mantissa)/10^LEN and adjusted   #
23549 #               such that the decimal point is to the left of bit 63.   #
23550 #               The bcd digits are stored in the correct position in    #
23551 #               the final string area in memory.                        #
23552 #                                                                       #
23553 #       A15.    Convert the exponent to bcd.                            #
23554 #               As in A14 above, the exp is converted to bcd and the    #
23555 #               digits are stored in the final string.                  #
23556 #               Test the length of the final exponent string.  If the   #
23557 #               length is 4, set operr.                                 #
23558 #                                                                       #
23559 #       A16.    Write sign bits to final string.                        #
23560 #                                                                       #
23561 #########################################################################
23562
23563 set     BINDEC_FLG,     EXC_TEMP        # DENORM flag
23564
23565 # Constants in extended precision
23566 PLOG2:
23567         long            0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
23568 PLOG2UP1:
23569         long            0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
23570
23571 # Constants in single precision
23572 FONE:
23573         long            0x3F800000,0x00000000,0x00000000,0x00000000
23574 FTWO:
23575         long            0x40000000,0x00000000,0x00000000,0x00000000
23576 FTEN:
23577         long            0x41200000,0x00000000,0x00000000,0x00000000
23578 F4933:
23579         long            0x459A2800,0x00000000,0x00000000,0x00000000
23580
23581 RBDTBL:
23582         byte            0,0,0,0
23583         byte            3,3,2,2
23584         byte            3,2,2,3
23585         byte            2,3,3,2
23586
23587 #       Implementation Notes:
23588 #
23589 #       The registers are used as follows:
23590 #
23591 #               d0: scratch; LEN input to binstr
23592 #               d1: scratch
23593 #               d2: upper 32-bits of mantissa for binstr
23594 #               d3: scratch;lower 32-bits of mantissa for binstr
23595 #               d4: LEN
23596 #               d5: LAMBDA/ICTR
23597 #               d6: ILOG
23598 #               d7: k-factor
23599 #               a0: ptr for original operand/final result
23600 #               a1: scratch pointer
23601 #               a2: pointer to FP_X; abs(original value) in ext
23602 #               fp0: scratch
23603 #               fp1: scratch
23604 #               fp2: scratch
23605 #               F_SCR1:
23606 #               F_SCR2:
23607 #               L_SCR1:
23608 #               L_SCR2:
23609
23610         global          bindec
23611 bindec:
23612         movm.l          &0x3f20,-(%sp)  #  {%d2-%d7/%a2}
23613         fmovm.x         &0x7,-(%sp)     #  {%fp0-%fp2}
23614
23615 # A1. Set RM and size ext. Set SIGMA = sign input;
23616 #     The k-factor is saved for use in d7.  Clear BINDEC_FLG for
23617 #     separating  normalized/denormalized input.  If the input
23618 #     is a denormalized number, set the BINDEC_FLG memory word
23619 #     to signal denorm.  If the input is unnormalized, normalize
23620 #     the input and test for denormalized result.
23621 #
23622         fmov.l          &rm_mode*0x10,%fpcr     # set RM and ext
23623         mov.l           (%a0),L_SCR2(%a6)       # save exponent for sign check
23624         mov.l           %d0,%d7         # move k-factor to d7
23625
23626         clr.b           BINDEC_FLG(%a6) # clr norm/denorm flag
23627         cmpi.b          STAG(%a6),&DENORM # is input a DENORM?
23628         bne.w           A2_str          # no; input is a NORM
23629
23630 #
23631 # Normalize the denorm
23632 #
23633 un_de_norm:
23634         mov.w           (%a0),%d0
23635         and.w           &0x7fff,%d0     # strip sign of normalized exp
23636         mov.l           4(%a0),%d1
23637         mov.l           8(%a0),%d2
23638 norm_loop:
23639         sub.w           &1,%d0
23640         lsl.l           &1,%d2
23641         roxl.l          &1,%d1
23642         tst.l           %d1
23643         bge.b           norm_loop
23644 #
23645 # Test if the normalized input is denormalized
23646 #
23647         tst.w           %d0
23648         bgt.b           pos_exp         # if greater than zero, it is a norm
23649         st              BINDEC_FLG(%a6) # set flag for denorm
23650 pos_exp:
23651         and.w           &0x7fff,%d0     # strip sign of normalized exp
23652         mov.w           %d0,(%a0)
23653         mov.l           %d1,4(%a0)
23654         mov.l           %d2,8(%a0)
23655
23656 # A2. Set X = abs(input).
23657 #
23658 A2_str:
23659         mov.l           (%a0),FP_SCR1(%a6)      # move input to work space
23660         mov.l           4(%a0),FP_SCR1+4(%a6)   # move input to work space
23661         mov.l           8(%a0),FP_SCR1+8(%a6)   # move input to work space
23662         and.l           &0x7fffffff,FP_SCR1(%a6)        # create abs(X)
23663
23664 # A3. Compute ILOG.
23665 #     ILOG is the log base 10 of the input value.  It is approx-
23666 #     imated by adding e + 0.f when the original value is viewed
23667 #     as 2^^e * 1.f in extended precision.  This value is stored
23668 #     in d6.
23669 #
23670 # Register usage:
23671 #       Input/Output
23672 #       d0: k-factor/exponent
23673 #       d2: x/x
23674 #       d3: x/x
23675 #       d4: x/x
23676 #       d5: x/x
23677 #       d6: x/ILOG
23678 #       d7: k-factor/Unchanged
23679 #       a0: ptr for original operand/final result
23680 #       a1: x/x
23681 #       a2: x/x
23682 #       fp0: x/float(ILOG)
23683 #       fp1: x/x
23684 #       fp2: x/x
23685 #       F_SCR1:x/x
23686 #       F_SCR2:Abs(X)/Abs(X) with $3fff exponent
23687 #       L_SCR1:x/x
23688 #       L_SCR2:first word of X packed/Unchanged
23689
23690         tst.b           BINDEC_FLG(%a6) # check for denorm
23691         beq.b           A3_cont         # if clr, continue with norm
23692         mov.l           &-4933,%d6      # force ILOG = -4933
23693         bra.b           A4_str
23694 A3_cont:
23695         mov.w           FP_SCR1(%a6),%d0        # move exp to d0
23696         mov.w           &0x3fff,FP_SCR1(%a6)    # replace exponent with 0x3fff
23697         fmov.x          FP_SCR1(%a6),%fp0       # now fp0 has 1.f
23698         sub.w           &0x3fff,%d0     # strip off bias
23699         fadd.w          %d0,%fp0        # add in exp
23700         fsub.s          FONE(%pc),%fp0  # subtract off 1.0
23701         fbge.w          pos_res         # if pos, branch
23702         fmul.x          PLOG2UP1(%pc),%fp0      # if neg, mul by LOG2UP1
23703         fmov.l          %fp0,%d6        # put ILOG in d6 as a lword
23704         bra.b           A4_str          # go move out ILOG
23705 pos_res:
23706         fmul.x          PLOG2(%pc),%fp0 # if pos, mul by LOG2
23707         fmov.l          %fp0,%d6        # put ILOG in d6 as a lword
23708
23709
23710 # A4. Clr INEX bit.
23711 #     The operation in A3 above may have set INEX2.
23712
23713 A4_str:
23714         fmov.l          &0,%fpsr        # zero all of fpsr - nothing needed
23715
23716
23717 # A5. Set ICTR = 0;
23718 #     ICTR is a flag used in A13.  It must be set before the
23719 #     loop entry A6. The lower word of d5 is used for ICTR.
23720
23721         clr.w           %d5             # clear ICTR
23722
23723 # A6. Calculate LEN.
23724 #     LEN is the number of digits to be displayed.  The k-factor
23725 #     can dictate either the total number of digits, if it is
23726 #     a positive number, or the number of digits after the
23727 #     original decimal point which are to be included as
23728 #     significant.  See the 68882 manual for examples.
23729 #     If LEN is computed to be greater than 17, set OPERR in
23730 #     USER_FPSR.  LEN is stored in d4.
23731 #
23732 # Register usage:
23733 #       Input/Output
23734 #       d0: exponent/Unchanged
23735 #       d2: x/x/scratch
23736 #       d3: x/x
23737 #       d4: exc picture/LEN
23738 #       d5: ICTR/Unchanged
23739 #       d6: ILOG/Unchanged
23740 #       d7: k-factor/Unchanged
23741 #       a0: ptr for original operand/final result
23742 #       a1: x/x
23743 #       a2: x/x
23744 #       fp0: float(ILOG)/Unchanged
23745 #       fp1: x/x
23746 #       fp2: x/x
23747 #       F_SCR1:x/x
23748 #       F_SCR2:Abs(X) with $3fff exponent/Unchanged
23749 #       L_SCR1:x/x
23750 #       L_SCR2:first word of X packed/Unchanged
23751
23752 A6_str:
23753         tst.l           %d7             # branch on sign of k
23754         ble.b           k_neg           # if k <= 0, LEN = ILOG + 1 - k
23755         mov.l           %d7,%d4         # if k > 0, LEN = k
23756         bra.b           len_ck          # skip to LEN check
23757 k_neg:
23758         mov.l           %d6,%d4         # first load ILOG to d4
23759         sub.l           %d7,%d4         # subtract off k
23760         addq.l          &1,%d4          # add in the 1
23761 len_ck:
23762         tst.l           %d4             # LEN check: branch on sign of LEN
23763         ble.b           LEN_ng          # if neg, set LEN = 1
23764         cmp.l           %d4,&17         # test if LEN > 17
23765         ble.b           A7_str          # if not, forget it
23766         mov.l           &17,%d4         # set max LEN = 17
23767         tst.l           %d7             # if negative, never set OPERR
23768         ble.b           A7_str          # if positive, continue
23769         or.l            &opaop_mask,USER_FPSR(%a6)      # set OPERR & AIOP in USER_FPSR
23770         bra.b           A7_str          # finished here
23771 LEN_ng:
23772         mov.l           &1,%d4          # min LEN is 1
23773
23774
23775 # A7. Calculate SCALE.
23776 #     SCALE is equal to 10^ISCALE, where ISCALE is the number
23777 #     of decimal places needed to insure LEN integer digits
23778 #     in the output before conversion to bcd. LAMBDA is the sign
23779 #     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using
23780 #     the rounding mode as given in the following table (see
23781 #     Coonen, p. 7.23 as ref.; however, the SCALE variable is
23782 #     of opposite sign in bindec.sa from Coonen).
23783 #
23784 #       Initial                                 USE
23785 #       FPCR[6:5]       LAMBDA  SIGN(X)         FPCR[6:5]
23786 #       ----------------------------------------------
23787 #        RN     00         0       0            00/0    RN
23788 #        RN     00         0       1            00/0    RN
23789 #        RN     00         1       0            00/0    RN
23790 #        RN     00         1       1            00/0    RN
23791 #        RZ     01         0       0            11/3    RP
23792 #        RZ     01         0       1            11/3    RP
23793 #        RZ     01         1       0            10/2    RM
23794 #        RZ     01         1       1            10/2    RM
23795 #        RM     10         0       0            11/3    RP
23796 #        RM     10         0       1            10/2    RM
23797 #        RM     10         1       0            10/2    RM
23798 #        RM     10         1       1            11/3    RP
23799 #        RP     11         0       0            10/2    RM
23800 #        RP     11         0       1            11/3    RP
23801 #        RP     11         1       0            11/3    RP
23802 #        RP     11         1       1            10/2    RM
23803 #
23804 # Register usage:
23805 #       Input/Output
23806 #       d0: exponent/scratch - final is 0
23807 #       d2: x/0 or 24 for A9
23808 #       d3: x/scratch - offset ptr into PTENRM array
23809 #       d4: LEN/Unchanged
23810 #       d5: 0/ICTR:LAMBDA
23811 #       d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
23812 #       d7: k-factor/Unchanged
23813 #       a0: ptr for original operand/final result
23814 #       a1: x/ptr to PTENRM array
23815 #       a2: x/x
23816 #       fp0: float(ILOG)/Unchanged
23817 #       fp1: x/10^ISCALE
23818 #       fp2: x/x
23819 #       F_SCR1:x/x
23820 #       F_SCR2:Abs(X) with $3fff exponent/Unchanged
23821 #       L_SCR1:x/x
23822 #       L_SCR2:first word of X packed/Unchanged
23823
23824 A7_str:
23825         tst.l           %d7             # test sign of k
23826         bgt.b           k_pos           # if pos and > 0, skip this
23827         cmp.l           %d7,%d6         # test k - ILOG
23828         blt.b           k_pos           # if ILOG >= k, skip this
23829         mov.l           %d7,%d6         # if ((k<0) & (ILOG < k)) ILOG = k
23830 k_pos:
23831         mov.l           %d6,%d0         # calc ILOG + 1 - LEN in d0
23832         addq.l          &1,%d0          # add the 1
23833         sub.l           %d4,%d0         # sub off LEN
23834         swap            %d5             # use upper word of d5 for LAMBDA
23835         clr.w           %d5             # set it zero initially
23836         clr.w           %d2             # set up d2 for very small case
23837         tst.l           %d0             # test sign of ISCALE
23838         bge.b           iscale          # if pos, skip next inst
23839         addq.w          &1,%d5          # if neg, set LAMBDA true
23840         cmp.l           %d0,&0xffffecd4 # test iscale <= -4908
23841         bgt.b           no_inf          # if false, skip rest
23842         add.l           &24,%d0         # add in 24 to iscale
23843         mov.l           &24,%d2         # put 24 in d2 for A9
23844 no_inf:
23845         neg.l           %d0             # and take abs of ISCALE
23846 iscale:
23847         fmov.s          FONE(%pc),%fp1  # init fp1 to 1
23848         bfextu          USER_FPCR(%a6){&26:&2},%d1      # get initial rmode bits
23849         lsl.w           &1,%d1          # put them in bits 2:1
23850         add.w           %d5,%d1         # add in LAMBDA
23851         lsl.w           &1,%d1          # put them in bits 3:1
23852         tst.l           L_SCR2(%a6)     # test sign of original x
23853         bge.b           x_pos           # if pos, don't set bit 0
23854         addq.l          &1,%d1          # if neg, set bit 0
23855 x_pos:
23856         lea.l           RBDTBL(%pc),%a2 # load rbdtbl base
23857         mov.b           (%a2,%d1),%d3   # load d3 with new rmode
23858         lsl.l           &4,%d3          # put bits in proper position
23859         fmov.l          %d3,%fpcr       # load bits into fpu
23860         lsr.l           &4,%d3          # put bits in proper position
23861         tst.b           %d3             # decode new rmode for pten table
23862         bne.b           not_rn          # if zero, it is RN
23863         lea.l           PTENRN(%pc),%a1 # load a1 with RN table base
23864         bra.b           rmode           # exit decode
23865 not_rn:
23866         lsr.b           &1,%d3          # get lsb in carry
23867         bcc.b           not_rp2         # if carry clear, it is RM
23868         lea.l           PTENRP(%pc),%a1 # load a1 with RP table base
23869         bra.b           rmode           # exit decode
23870 not_rp2:
23871         lea.l           PTENRM(%pc),%a1 # load a1 with RM table base
23872 rmode:
23873         clr.l           %d3             # clr table index
23874 e_loop2:
23875         lsr.l           &1,%d0          # shift next bit into carry
23876         bcc.b           e_next2         # if zero, skip the mul
23877         fmul.x          (%a1,%d3),%fp1  # mul by 10**(d3_bit_no)
23878 e_next2:
23879         add.l           &12,%d3         # inc d3 to next pwrten table entry
23880         tst.l           %d0             # test if ISCALE is zero
23881         bne.b           e_loop2         # if not, loop
23882
23883 # A8. Clr INEX; Force RZ.
23884 #     The operation in A3 above may have set INEX2.
23885 #     RZ mode is forced for the scaling operation to insure
23886 #     only one rounding error.  The grs bits are collected in
23887 #     the INEX flag for use in A10.
23888 #
23889 # Register usage:
23890 #       Input/Output
23891
23892         fmov.l          &0,%fpsr        # clr INEX
23893         fmov.l          &rz_mode*0x10,%fpcr     # set RZ rounding mode
23894
23895 # A9. Scale X -> Y.
23896 #     The mantissa is scaled to the desired number of significant
23897 #     digits.  The excess digits are collected in INEX2. If mul,
23898 #     Check d2 for excess 10 exponential value.  If not zero,
23899 #     the iscale value would have caused the pwrten calculation
23900 #     to overflow.  Only a negative iscale can cause this, so
23901 #     multiply by 10^(d2), which is now only allowed to be 24,
23902 #     with a multiply by 10^8 and 10^16, which is exact since
23903 #     10^24 is exact.  If the input was denormalized, we must
23904 #     create a busy stack frame with the mul command and the
23905 #     two operands, and allow the fpu to complete the multiply.
23906 #
23907 # Register usage:
23908 #       Input/Output
23909 #       d0: FPCR with RZ mode/Unchanged
23910 #       d2: 0 or 24/unchanged
23911 #       d3: x/x
23912 #       d4: LEN/Unchanged
23913 #       d5: ICTR:LAMBDA
23914 #       d6: ILOG/Unchanged
23915 #       d7: k-factor/Unchanged
23916 #       a0: ptr for original operand/final result
23917 #       a1: ptr to PTENRM array/Unchanged
23918 #       a2: x/x
23919 #       fp0: float(ILOG)/X adjusted for SCALE (Y)
23920 #       fp1: 10^ISCALE/Unchanged
23921 #       fp2: x/x
23922 #       F_SCR1:x/x
23923 #       F_SCR2:Abs(X) with $3fff exponent/Unchanged
23924 #       L_SCR1:x/x
23925 #       L_SCR2:first word of X packed/Unchanged
23926
23927 A9_str:
23928         fmov.x          (%a0),%fp0      # load X from memory
23929         fabs.x          %fp0            # use abs(X)
23930         tst.w           %d5             # LAMBDA is in lower word of d5
23931         bne.b           sc_mul          # if neg (LAMBDA = 1), scale by mul
23932         fdiv.x          %fp1,%fp0       # calculate X / SCALE -> Y to fp0
23933         bra.w           A10_st          # branch to A10
23934
23935 sc_mul:
23936         tst.b           BINDEC_FLG(%a6) # check for denorm
23937         beq.w           A9_norm         # if norm, continue with mul
23938
23939 # for DENORM, we must calculate:
23940 #       fp0 = input_op * 10^ISCALE * 10^24
23941 # since the input operand is a DENORM, we can't multiply it directly.
23942 # so, we do the multiplication of the exponents and mantissas separately.
23943 # in this way, we avoid underflow on intermediate stages of the
23944 # multiplication and guarantee a result without exception.
23945         fmovm.x         &0x2,-(%sp)     # save 10^ISCALE to stack
23946
23947         mov.w           (%sp),%d3       # grab exponent
23948         andi.w          &0x7fff,%d3     # clear sign
23949         ori.w           &0x8000,(%a0)   # make DENORM exp negative
23950         add.w           (%a0),%d3       # add DENORM exp to 10^ISCALE exp
23951         subi.w          &0x3fff,%d3     # subtract BIAS
23952         add.w           36(%a1),%d3
23953         subi.w          &0x3fff,%d3     # subtract BIAS
23954         add.w           48(%a1),%d3
23955         subi.w          &0x3fff,%d3     # subtract BIAS
23956
23957         bmi.w           sc_mul_err      # is result is DENORM, punt!!!
23958
23959         andi.w          &0x8000,(%sp)   # keep sign
23960         or.w            %d3,(%sp)       # insert new exponent
23961         andi.w          &0x7fff,(%a0)   # clear sign bit on DENORM again
23962         mov.l           0x8(%a0),-(%sp) # put input op mantissa on stk
23963         mov.l           0x4(%a0),-(%sp)
23964         mov.l           &0x3fff0000,-(%sp) # force exp to zero
23965         fmovm.x         (%sp)+,&0x80    # load normalized DENORM into fp0
23966         fmul.x          (%sp)+,%fp0
23967
23968 #       fmul.x  36(%a1),%fp0    # multiply fp0 by 10^8
23969 #       fmul.x  48(%a1),%fp0    # multiply fp0 by 10^16
23970         mov.l           36+8(%a1),-(%sp) # get 10^8 mantissa
23971         mov.l           36+4(%a1),-(%sp)
23972         mov.l           &0x3fff0000,-(%sp) # force exp to zero
23973         mov.l           48+8(%a1),-(%sp) # get 10^16 mantissa
23974         mov.l           48+4(%a1),-(%sp)
23975         mov.l           &0x3fff0000,-(%sp)# force exp to zero
23976         fmul.x          (%sp)+,%fp0     # multiply fp0 by 10^8
23977         fmul.x          (%sp)+,%fp0     # multiply fp0 by 10^16
23978         bra.b           A10_st
23979
23980 sc_mul_err:
23981         bra.b           sc_mul_err
23982
23983 A9_norm:
23984         tst.w           %d2             # test for small exp case
23985         beq.b           A9_con          # if zero, continue as normal
23986         fmul.x          36(%a1),%fp0    # multiply fp0 by 10^8
23987         fmul.x          48(%a1),%fp0    # multiply fp0 by 10^16
23988 A9_con:
23989         fmul.x          %fp1,%fp0       # calculate X * SCALE -> Y to fp0
23990
23991 # A10. Or in INEX.
23992 #      If INEX is set, round error occurred.  This is compensated
23993 #      for by 'or-ing' in the INEX2 flag to the lsb of Y.
23994 #
23995 # Register usage:
23996 #       Input/Output
23997 #       d0: FPCR with RZ mode/FPSR with INEX2 isolated
23998 #       d2: x/x
23999 #       d3: x/x
24000 #       d4: LEN/Unchanged
24001 #       d5: ICTR:LAMBDA
24002 #       d6: ILOG/Unchanged
24003 #       d7: k-factor/Unchanged
24004 #       a0: ptr for original operand/final result
24005 #       a1: ptr to PTENxx array/Unchanged
24006 #       a2: x/ptr to FP_SCR1(a6)
24007 #       fp0: Y/Y with lsb adjusted
24008 #       fp1: 10^ISCALE/Unchanged
24009 #       fp2: x/x
24010
24011 A10_st:
24012         fmov.l          %fpsr,%d0       # get FPSR
24013         fmov.x          %fp0,FP_SCR1(%a6)       # move Y to memory
24014         lea.l           FP_SCR1(%a6),%a2        # load a2 with ptr to FP_SCR1
24015         btst            &9,%d0          # check if INEX2 set
24016         beq.b           A11_st          # if clear, skip rest
24017         or.l            &1,8(%a2)       # or in 1 to lsb of mantissa
24018         fmov.x          FP_SCR1(%a6),%fp0       # write adjusted Y back to fpu
24019
24020
24021 # A11. Restore original FPCR; set size ext.
24022 #      Perform FINT operation in the user's rounding mode.  Keep
24023 #      the size to extended.  The sintdo entry point in the sint
24024 #      routine expects the FPCR value to be in USER_FPCR for
24025 #      mode and precision.  The original FPCR is saved in L_SCR1.
24026
24027 A11_st:
24028         mov.l           USER_FPCR(%a6),L_SCR1(%a6)      # save it for later
24029         and.l           &0x00000030,USER_FPCR(%a6)      # set size to ext,
24030 #                                       ;block exceptions
24031
24032
24033 # A12. Calculate YINT = FINT(Y) according to user's rounding mode.
24034 #      The FPSP routine sintd0 is used.  The output is in fp0.
24035 #
24036 # Register usage:
24037 #       Input/Output
24038 #       d0: FPSR with AINEX cleared/FPCR with size set to ext
24039 #       d2: x/x/scratch
24040 #       d3: x/x
24041 #       d4: LEN/Unchanged
24042 #       d5: ICTR:LAMBDA/Unchanged
24043 #       d6: ILOG/Unchanged
24044 #       d7: k-factor/Unchanged
24045 #       a0: ptr for original operand/src ptr for sintdo
24046 #       a1: ptr to PTENxx array/Unchanged
24047 #       a2: ptr to FP_SCR1(a6)/Unchanged
24048 #       a6: temp pointer to FP_SCR1(a6) - orig value saved and restored
24049 #       fp0: Y/YINT
24050 #       fp1: 10^ISCALE/Unchanged
24051 #       fp2: x/x
24052 #       F_SCR1:x/x
24053 #       F_SCR2:Y adjusted for inex/Y with original exponent
24054 #       L_SCR1:x/original USER_FPCR
24055 #       L_SCR2:first word of X packed/Unchanged
24056
24057 A12_st:
24058         movm.l  &0xc0c0,-(%sp)  # save regs used by sintd0       {%d0-%d1/%a0-%a1}
24059         mov.l   L_SCR1(%a6),-(%sp)
24060         mov.l   L_SCR2(%a6),-(%sp)
24061
24062         lea.l           FP_SCR1(%a6),%a0        # a0 is ptr to FP_SCR1(a6)
24063         fmov.x          %fp0,(%a0)      # move Y to memory at FP_SCR1(a6)
24064         tst.l           L_SCR2(%a6)     # test sign of original operand
24065         bge.b           do_fint12               # if pos, use Y
24066         or.l            &0x80000000,(%a0)       # if neg, use -Y
24067 do_fint12:
24068         mov.l   USER_FPSR(%a6),-(%sp)
24069 #       bsr     sintdo          # sint routine returns int in fp0
24070
24071         fmov.l  USER_FPCR(%a6),%fpcr
24072         fmov.l  &0x0,%fpsr                      # clear the AEXC bits!!!
24073 ##      mov.l           USER_FPCR(%a6),%d0      # ext prec/keep rnd mode
24074 ##      andi.l          &0x00000030,%d0
24075 ##      fmov.l          %d0,%fpcr
24076         fint.x          FP_SCR1(%a6),%fp0       # do fint()
24077         fmov.l  %fpsr,%d0
24078         or.w    %d0,FPSR_EXCEPT(%a6)
24079 ##      fmov.l          &0x0,%fpcr
24080 ##      fmov.l          %fpsr,%d0               # don't keep ccodes
24081 ##      or.w            %d0,FPSR_EXCEPT(%a6)
24082
24083         mov.b   (%sp),USER_FPSR(%a6)
24084         add.l   &4,%sp
24085
24086         mov.l   (%sp)+,L_SCR2(%a6)
24087         mov.l   (%sp)+,L_SCR1(%a6)
24088         movm.l  (%sp)+,&0x303   # restore regs used by sint      {%d0-%d1/%a0-%a1}
24089
24090         mov.l   L_SCR2(%a6),FP_SCR1(%a6)        # restore original exponent
24091         mov.l   L_SCR1(%a6),USER_FPCR(%a6)      # restore user's FPCR
24092
24093 # A13. Check for LEN digits.
24094 #      If the int operation results in more than LEN digits,
24095 #      or less than LEN -1 digits, adjust ILOG and repeat from
24096 #      A6.  This test occurs only on the first pass.  If the
24097 #      result is exactly 10^LEN, decrement ILOG and divide
24098 #      the mantissa by 10.  The calculation of 10^LEN cannot
24099 #      be inexact, since all powers of ten upto 10^27 are exact
24100 #      in extended precision, so the use of a previous power-of-ten
24101 #      table will introduce no error.
24102 #
24103 #
24104 # Register usage:
24105 #       Input/Output
24106 #       d0: FPCR with size set to ext/scratch final = 0
24107 #       d2: x/x
24108 #       d3: x/scratch final = x
24109 #       d4: LEN/LEN adjusted
24110 #       d5: ICTR:LAMBDA/LAMBDA:ICTR
24111 #       d6: ILOG/ILOG adjusted
24112 #       d7: k-factor/Unchanged
24113 #       a0: pointer into memory for packed bcd string formation
24114 #       a1: ptr to PTENxx array/Unchanged
24115 #       a2: ptr to FP_SCR1(a6)/Unchanged
24116 #       fp0: int portion of Y/abs(YINT) adjusted
24117 #       fp1: 10^ISCALE/Unchanged
24118 #       fp2: x/10^LEN
24119 #       F_SCR1:x/x
24120 #       F_SCR2:Y with original exponent/Unchanged
24121 #       L_SCR1:original USER_FPCR/Unchanged
24122 #       L_SCR2:first word of X packed/Unchanged
24123
24124 A13_st:
24125         swap            %d5             # put ICTR in lower word of d5
24126         tst.w           %d5             # check if ICTR = 0
24127         bne             not_zr          # if non-zero, go to second test
24128 #
24129 # Compute 10^(LEN-1)
24130 #
24131         fmov.s          FONE(%pc),%fp2  # init fp2 to 1.0
24132         mov.l           %d4,%d0         # put LEN in d0
24133         subq.l          &1,%d0          # d0 = LEN -1
24134         clr.l           %d3             # clr table index
24135 l_loop:
24136         lsr.l           &1,%d0          # shift next bit into carry
24137         bcc.b           l_next          # if zero, skip the mul
24138         fmul.x          (%a1,%d3),%fp2  # mul by 10**(d3_bit_no)
24139 l_next:
24140         add.l           &12,%d3         # inc d3 to next pwrten table entry
24141         tst.l           %d0             # test if LEN is zero
24142         bne.b           l_loop          # if not, loop
24143 #
24144 # 10^LEN-1 is computed for this test and A14.  If the input was
24145 # denormalized, check only the case in which YINT > 10^LEN.
24146 #
24147         tst.b           BINDEC_FLG(%a6) # check if input was norm
24148         beq.b           A13_con         # if norm, continue with checking
24149         fabs.x          %fp0            # take abs of YINT
24150         bra             test_2
24151 #
24152 # Compare abs(YINT) to 10^(LEN-1) and 10^LEN
24153 #
24154 A13_con:
24155         fabs.x          %fp0            # take abs of YINT
24156         fcmp.x          %fp0,%fp2       # compare abs(YINT) with 10^(LEN-1)
24157         fbge.w          test_2          # if greater, do next test
24158         subq.l          &1,%d6          # subtract 1 from ILOG
24159         mov.w           &1,%d5          # set ICTR
24160         fmov.l          &rm_mode*0x10,%fpcr     # set rmode to RM
24161         fmul.s          FTEN(%pc),%fp2  # compute 10^LEN
24162         bra.w           A6_str          # return to A6 and recompute YINT
24163 test_2:
24164         fmul.s          FTEN(%pc),%fp2  # compute 10^LEN
24165         fcmp.x          %fp0,%fp2       # compare abs(YINT) with 10^LEN
24166         fblt.w          A14_st          # if less, all is ok, go to A14
24167         fbgt.w          fix_ex          # if greater, fix and redo
24168         fdiv.s          FTEN(%pc),%fp0  # if equal, divide by 10
24169         addq.l          &1,%d6          # and inc ILOG
24170         bra.b           A14_st          # and continue elsewhere
24171 fix_ex:
24172         addq.l          &1,%d6          # increment ILOG by 1
24173         mov.w           &1,%d5          # set ICTR
24174         fmov.l          &rm_mode*0x10,%fpcr     # set rmode to RM
24175         bra.w           A6_str          # return to A6 and recompute YINT
24176 #
24177 # Since ICTR <> 0, we have already been through one adjustment,
24178 # and shouldn't have another; this is to check if abs(YINT) = 10^LEN
24179 # 10^LEN is again computed using whatever table is in a1 since the
24180 # value calculated cannot be inexact.
24181 #
24182 not_zr:
24183         fmov.s          FONE(%pc),%fp2  # init fp2 to 1.0
24184         mov.l           %d4,%d0         # put LEN in d0
24185         clr.l           %d3             # clr table index
24186 z_loop:
24187         lsr.l           &1,%d0          # shift next bit into carry
24188         bcc.b           z_next          # if zero, skip the mul
24189         fmul.x          (%a1,%d3),%fp2  # mul by 10**(d3_bit_no)
24190 z_next:
24191         add.l           &12,%d3         # inc d3 to next pwrten table entry
24192         tst.l           %d0             # test if LEN is zero
24193         bne.b           z_loop          # if not, loop
24194         fabs.x          %fp0            # get abs(YINT)
24195         fcmp.x          %fp0,%fp2       # check if abs(YINT) = 10^LEN
24196         fbneq.w         A14_st          # if not, skip this
24197         fdiv.s          FTEN(%pc),%fp0  # divide abs(YINT) by 10
24198         addq.l          &1,%d6          # and inc ILOG by 1
24199         addq.l          &1,%d4          # and inc LEN
24200         fmul.s          FTEN(%pc),%fp2  # if LEN++, the get 10^^LEN
24201
24202 # A14. Convert the mantissa to bcd.
24203 #      The binstr routine is used to convert the LEN digit
24204 #      mantissa to bcd in memory.  The input to binstr is
24205 #      to be a fraction; i.e. (mantissa)/10^LEN and adjusted
24206 #      such that the decimal point is to the left of bit 63.
24207 #      The bcd digits are stored in the correct position in
24208 #      the final string area in memory.
24209 #
24210 #
24211 # Register usage:
24212 #       Input/Output
24213 #       d0: x/LEN call to binstr - final is 0
24214 #       d1: x/0
24215 #       d2: x/ms 32-bits of mant of abs(YINT)
24216 #       d3: x/ls 32-bits of mant of abs(YINT)
24217 #       d4: LEN/Unchanged
24218 #       d5: ICTR:LAMBDA/LAMBDA:ICTR
24219 #       d6: ILOG
24220 #       d7: k-factor/Unchanged
24221 #       a0: pointer into memory for packed bcd string formation
24222 #           /ptr to first mantissa byte in result string
24223 #       a1: ptr to PTENxx array/Unchanged
24224 #       a2: ptr to FP_SCR1(a6)/Unchanged
24225 #       fp0: int portion of Y/abs(YINT) adjusted
24226 #       fp1: 10^ISCALE/Unchanged
24227 #       fp2: 10^LEN/Unchanged
24228 #       F_SCR1:x/Work area for final result
24229 #       F_SCR2:Y with original exponent/Unchanged
24230 #       L_SCR1:original USER_FPCR/Unchanged
24231 #       L_SCR2:first word of X packed/Unchanged
24232
24233 A14_st:
24234         fmov.l          &rz_mode*0x10,%fpcr     # force rz for conversion
24235         fdiv.x          %fp2,%fp0       # divide abs(YINT) by 10^LEN
24236         lea.l           FP_SCR0(%a6),%a0
24237         fmov.x          %fp0,(%a0)      # move abs(YINT)/10^LEN to memory
24238         mov.l           4(%a0),%d2      # move 2nd word of FP_RES to d2
24239         mov.l           8(%a0),%d3      # move 3rd word of FP_RES to d3
24240         clr.l           4(%a0)          # zero word 2 of FP_RES
24241         clr.l           8(%a0)          # zero word 3 of FP_RES
24242         mov.l           (%a0),%d0       # move exponent to d0
24243         swap            %d0             # put exponent in lower word
24244         beq.b           no_sft          # if zero, don't shift
24245         sub.l           &0x3ffd,%d0     # sub bias less 2 to make fract
24246         tst.l           %d0             # check if > 1
24247         bgt.b           no_sft          # if so, don't shift
24248         neg.l           %d0             # make exp positive
24249 m_loop:
24250         lsr.l           &1,%d2          # shift d2:d3 right, add 0s
24251         roxr.l          &1,%d3          # the number of places
24252         dbf.w           %d0,m_loop      # given in d0
24253 no_sft:
24254         tst.l           %d2             # check for mantissa of zero
24255         bne.b           no_zr           # if not, go on
24256         tst.l           %d3             # continue zero check
24257         beq.b           zer_m           # if zero, go directly to binstr
24258 no_zr:
24259         clr.l           %d1             # put zero in d1 for addx
24260         add.l           &0x00000080,%d3 # inc at bit 7
24261         addx.l          %d1,%d2         # continue inc
24262         and.l           &0xffffff80,%d3 # strip off lsb not used by 882
24263 zer_m:
24264         mov.l           %d4,%d0         # put LEN in d0 for binstr call
24265         addq.l          &3,%a0          # a0 points to M16 byte in result
24266         bsr             binstr          # call binstr to convert mant
24267
24268
24269 # A15. Convert the exponent to bcd.
24270 #      As in A14 above, the exp is converted to bcd and the
24271 #      digits are stored in the final string.
24272 #
24273 #      Digits are stored in L_SCR1(a6) on return from BINDEC as:
24274 #
24275 #        32               16 15                0
24276 #       -----------------------------------------
24277 #       |  0 | e3 | e2 | e1 | e4 |  X |  X |  X |
24278 #       -----------------------------------------
24279 #
24280 # And are moved into their proper places in FP_SCR0.  If digit e4
24281 # is non-zero, OPERR is signaled.  In all cases, all 4 digits are
24282 # written as specified in the 881/882 manual for packed decimal.
24283 #
24284 # Register usage:
24285 #       Input/Output
24286 #       d0: x/LEN call to binstr - final is 0
24287 #       d1: x/scratch (0);shift count for final exponent packing
24288 #       d2: x/ms 32-bits of exp fraction/scratch
24289 #       d3: x/ls 32-bits of exp fraction
24290 #       d4: LEN/Unchanged
24291 #       d5: ICTR:LAMBDA/LAMBDA:ICTR
24292 #       d6: ILOG
24293 #       d7: k-factor/Unchanged
24294 #       a0: ptr to result string/ptr to L_SCR1(a6)
24295 #       a1: ptr to PTENxx array/Unchanged
24296 #       a2: ptr to FP_SCR1(a6)/Unchanged
24297 #       fp0: abs(YINT) adjusted/float(ILOG)
24298 #       fp1: 10^ISCALE/Unchanged
24299 #       fp2: 10^LEN/Unchanged
24300 #       F_SCR1:Work area for final result/BCD result
24301 #       F_SCR2:Y with original exponent/ILOG/10^4
24302 #       L_SCR1:original USER_FPCR/Exponent digits on return from binstr
24303 #       L_SCR2:first word of X packed/Unchanged
24304
24305 A15_st:
24306         tst.b           BINDEC_FLG(%a6) # check for denorm
24307         beq.b           not_denorm
24308         ftest.x         %fp0            # test for zero
24309         fbeq.w          den_zero        # if zero, use k-factor or 4933
24310         fmov.l          %d6,%fp0        # float ILOG
24311         fabs.x          %fp0            # get abs of ILOG
24312         bra.b           convrt
24313 den_zero:
24314         tst.l           %d7             # check sign of the k-factor
24315         blt.b           use_ilog        # if negative, use ILOG
24316         fmov.s          F4933(%pc),%fp0 # force exponent to 4933
24317         bra.b           convrt          # do it
24318 use_ilog:
24319         fmov.l          %d6,%fp0        # float ILOG
24320         fabs.x          %fp0            # get abs of ILOG
24321         bra.b           convrt
24322 not_denorm:
24323         ftest.x         %fp0            # test for zero
24324         fbneq.w         not_zero        # if zero, force exponent
24325         fmov.s          FONE(%pc),%fp0  # force exponent to 1
24326         bra.b           convrt          # do it
24327 not_zero:
24328         fmov.l          %d6,%fp0        # float ILOG
24329         fabs.x          %fp0            # get abs of ILOG
24330 convrt:
24331         fdiv.x          24(%a1),%fp0    # compute ILOG/10^4
24332         fmov.x          %fp0,FP_SCR1(%a6)       # store fp0 in memory
24333         mov.l           4(%a2),%d2      # move word 2 to d2
24334         mov.l           8(%a2),%d3      # move word 3 to d3
24335         mov.w           (%a2),%d0       # move exp to d0
24336         beq.b           x_loop_fin      # if zero, skip the shift
24337         sub.w           &0x3ffd,%d0     # subtract off bias
24338         neg.w           %d0             # make exp positive
24339 x_loop:
24340         lsr.l           &1,%d2          # shift d2:d3 right
24341         roxr.l          &1,%d3          # the number of places
24342         dbf.w           %d0,x_loop      # given in d0
24343 x_loop_fin:
24344         clr.l           %d1             # put zero in d1 for addx
24345         add.l           &0x00000080,%d3 # inc at bit 6
24346         addx.l          %d1,%d2         # continue inc
24347         and.l           &0xffffff80,%d3 # strip off lsb not used by 882
24348         mov.l           &4,%d0          # put 4 in d0 for binstr call
24349         lea.l           L_SCR1(%a6),%a0 # a0 is ptr to L_SCR1 for exp digits
24350         bsr             binstr          # call binstr to convert exp
24351         mov.l           L_SCR1(%a6),%d0 # load L_SCR1 lword to d0
24352         mov.l           &12,%d1         # use d1 for shift count
24353         lsr.l           %d1,%d0         # shift d0 right by 12
24354         bfins           %d0,FP_SCR0(%a6){&4:&12}        # put e3:e2:e1 in FP_SCR0
24355         lsr.l           %d1,%d0         # shift d0 right by 12
24356         bfins           %d0,FP_SCR0(%a6){&16:&4}        # put e4 in FP_SCR0
24357         tst.b           %d0             # check if e4 is zero
24358         beq.b           A16_st          # if zero, skip rest
24359         or.l            &opaop_mask,USER_FPSR(%a6)      # set OPERR & AIOP in USER_FPSR
24360
24361
24362 # A16. Write sign bits to final string.
24363 #          Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
24364 #
24365 # Register usage:
24366 #       Input/Output
24367 #       d0: x/scratch - final is x
24368 #       d2: x/x
24369 #       d3: x/x
24370 #       d4: LEN/Unchanged
24371 #       d5: ICTR:LAMBDA/LAMBDA:ICTR
24372 #       d6: ILOG/ILOG adjusted
24373 #       d7: k-factor/Unchanged
24374 #       a0: ptr to L_SCR1(a6)/Unchanged
24375 #       a1: ptr to PTENxx array/Unchanged
24376 #       a2: ptr to FP_SCR1(a6)/Unchanged
24377 #       fp0: float(ILOG)/Unchanged
24378 #       fp1: 10^ISCALE/Unchanged
24379 #       fp2: 10^LEN/Unchanged
24380 #       F_SCR1:BCD result with correct signs
24381 #       F_SCR2:ILOG/10^4
24382 #       L_SCR1:Exponent digits on return from binstr
24383 #       L_SCR2:first word of X packed/Unchanged
24384
24385 A16_st:
24386         clr.l           %d0             # clr d0 for collection of signs
24387         and.b           &0x0f,FP_SCR0(%a6)      # clear first nibble of FP_SCR0
24388         tst.l           L_SCR2(%a6)     # check sign of original mantissa
24389         bge.b           mant_p          # if pos, don't set SM
24390         mov.l           &2,%d0          # move 2 in to d0 for SM
24391 mant_p:
24392         tst.l           %d6             # check sign of ILOG
24393         bge.b           wr_sgn          # if pos, don't set SE
24394         addq.l          &1,%d0          # set bit 0 in d0 for SE
24395 wr_sgn:
24396         bfins           %d0,FP_SCR0(%a6){&0:&2} # insert SM and SE into FP_SCR0
24397
24398 # Clean up and restore all registers used.
24399
24400         fmov.l          &0,%fpsr        # clear possible inex2/ainex bits
24401         fmovm.x         (%sp)+,&0xe0    #  {%fp0-%fp2}
24402         movm.l          (%sp)+,&0x4fc   #  {%d2-%d7/%a2}
24403         rts
24404
24405         global          PTENRN
24406 PTENRN:
24407         long            0x40020000,0xA0000000,0x00000000        # 10 ^ 1
24408         long            0x40050000,0xC8000000,0x00000000        # 10 ^ 2
24409         long            0x400C0000,0x9C400000,0x00000000        # 10 ^ 4
24410         long            0x40190000,0xBEBC2000,0x00000000        # 10 ^ 8
24411         long            0x40340000,0x8E1BC9BF,0x04000000        # 10 ^ 16
24412         long            0x40690000,0x9DC5ADA8,0x2B70B59E        # 10 ^ 32
24413         long            0x40D30000,0xC2781F49,0xFFCFA6D5        # 10 ^ 64
24414         long            0x41A80000,0x93BA47C9,0x80E98CE0        # 10 ^ 128
24415         long            0x43510000,0xAA7EEBFB,0x9DF9DE8E        # 10 ^ 256
24416         long            0x46A30000,0xE319A0AE,0xA60E91C7        # 10 ^ 512
24417         long            0x4D480000,0xC9767586,0x81750C17        # 10 ^ 1024
24418         long            0x5A920000,0x9E8B3B5D,0xC53D5DE5        # 10 ^ 2048
24419         long            0x75250000,0xC4605202,0x8A20979B        # 10 ^ 4096
24420
24421         global          PTENRP
24422 PTENRP:
24423         long            0x40020000,0xA0000000,0x00000000        # 10 ^ 1
24424         long            0x40050000,0xC8000000,0x00000000        # 10 ^ 2
24425         long            0x400C0000,0x9C400000,0x00000000        # 10 ^ 4
24426         long            0x40190000,0xBEBC2000,0x00000000        # 10 ^ 8
24427         long            0x40340000,0x8E1BC9BF,0x04000000        # 10 ^ 16
24428         long            0x40690000,0x9DC5ADA8,0x2B70B59E        # 10 ^ 32
24429         long            0x40D30000,0xC2781F49,0xFFCFA6D6        # 10 ^ 64
24430         long            0x41A80000,0x93BA47C9,0x80E98CE0        # 10 ^ 128
24431         long            0x43510000,0xAA7EEBFB,0x9DF9DE8E        # 10 ^ 256
24432         long            0x46A30000,0xE319A0AE,0xA60E91C7        # 10 ^ 512
24433         long            0x4D480000,0xC9767586,0x81750C18        # 10 ^ 1024
24434         long            0x5A920000,0x9E8B3B5D,0xC53D5DE5        # 10 ^ 2048
24435         long            0x75250000,0xC4605202,0x8A20979B        # 10 ^ 4096
24436
24437         global          PTENRM
24438 PTENRM:
24439         long            0x40020000,0xA0000000,0x00000000        # 10 ^ 1
24440         long            0x40050000,0xC8000000,0x00000000        # 10 ^ 2
24441         long            0x400C0000,0x9C400000,0x00000000        # 10 ^ 4
24442         long            0x40190000,0xBEBC2000,0x00000000        # 10 ^ 8
24443         long            0x40340000,0x8E1BC9BF,0x04000000        # 10 ^ 16
24444         long            0x40690000,0x9DC5ADA8,0x2B70B59D        # 10 ^ 32
24445         long            0x40D30000,0xC2781F49,0xFFCFA6D5        # 10 ^ 64
24446         long            0x41A80000,0x93BA47C9,0x80E98CDF        # 10 ^ 128
24447         long            0x43510000,0xAA7EEBFB,0x9DF9DE8D        # 10 ^ 256
24448         long            0x46A30000,0xE319A0AE,0xA60E91C6        # 10 ^ 512
24449         long            0x4D480000,0xC9767586,0x81750C17        # 10 ^ 1024
24450         long            0x5A920000,0x9E8B3B5D,0xC53D5DE4        # 10 ^ 2048
24451         long            0x75250000,0xC4605202,0x8A20979A        # 10 ^ 4096
24452
24453 #########################################################################
24454 # binstr(): Converts a 64-bit binary integer to bcd.                    #
24455 #                                                                       #
24456 # INPUT *************************************************************** #
24457 #       d2:d3 = 64-bit binary integer                                   #
24458 #       d0    = desired length (LEN)                                    #
24459 #       a0    = pointer to start in memory for bcd characters           #
24460 #               (This pointer must point to byte 4 of the first         #
24461 #                lword of the packed decimal memory string.)            #
24462 #                                                                       #
24463 # OUTPUT ************************************************************** #
24464 #       a0 = pointer to LEN bcd digits representing the 64-bit integer. #
24465 #                                                                       #
24466 # ALGORITHM *********************************************************** #
24467 #       The 64-bit binary is assumed to have a decimal point before     #
24468 #       bit 63.  The fraction is multiplied by 10 using a mul by 2      #
24469 #       shift and a mul by 8 shift.  The bits shifted out of the        #
24470 #       msb form a decimal digit.  This process is iterated until       #
24471 #       LEN digits are formed.                                          #
24472 #                                                                       #
24473 # A1. Init d7 to 1.  D7 is the byte digit counter, and if 1, the        #
24474 #     digit formed will be assumed the least significant.  This is      #
24475 #     to force the first byte formed to have a 0 in the upper 4 bits.   #
24476 #                                                                       #
24477 # A2. Beginning of the loop:                                            #
24478 #     Copy the fraction in d2:d3 to d4:d5.                              #
24479 #                                                                       #
24480 # A3. Multiply the fraction in d2:d3 by 8 using bit-field               #
24481 #     extracts and shifts.  The three msbs from d2 will go into d1.     #
24482 #                                                                       #
24483 # A4. Multiply the fraction in d4:d5 by 2 using shifts.  The msb        #
24484 #     will be collected by the carry.                                   #
24485 #                                                                       #
24486 # A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5      #
24487 #     into d2:d3.  D1 will contain the bcd digit formed.                #
24488 #                                                                       #
24489 # A6. Test d7.  If zero, the digit formed is the ms digit.  If non-     #
24490 #     zero, it is the ls digit.  Put the digit in its place in the      #
24491 #     upper word of d0.  If it is the ls digit, write the word          #
24492 #     from d0 to memory.                                                #
24493 #                                                                       #
24494 # A7. Decrement d6 (LEN counter) and repeat the loop until zero.        #
24495 #                                                                       #
24496 #########################################################################
24497
24498 #       Implementation Notes:
24499 #
24500 #       The registers are used as follows:
24501 #
24502 #               d0: LEN counter
24503 #               d1: temp used to form the digit
24504 #               d2: upper 32-bits of fraction for mul by 8
24505 #               d3: lower 32-bits of fraction for mul by 8
24506 #               d4: upper 32-bits of fraction for mul by 2
24507 #               d5: lower 32-bits of fraction for mul by 2
24508 #               d6: temp for bit-field extracts
24509 #               d7: byte digit formation word;digit count {0,1}
24510 #               a0: pointer into memory for packed bcd string formation
24511 #
24512
24513         global          binstr
24514 binstr:
24515         movm.l          &0xff00,-(%sp)  #  {%d0-%d7}
24516
24517 #
24518 # A1: Init d7
24519 #
24520         mov.l           &1,%d7          # init d7 for second digit
24521         subq.l          &1,%d0          # for dbf d0 would have LEN+1 passes
24522 #
24523 # A2. Copy d2:d3 to d4:d5.  Start loop.
24524 #
24525 loop:
24526         mov.l           %d2,%d4         # copy the fraction before muls
24527         mov.l           %d3,%d5         # to d4:d5
24528 #
24529 # A3. Multiply d2:d3 by 8; extract msbs into d1.
24530 #
24531         bfextu          %d2{&0:&3},%d1  # copy 3 msbs of d2 into d1
24532         asl.l           &3,%d2          # shift d2 left by 3 places
24533         bfextu          %d3{&0:&3},%d6  # copy 3 msbs of d3 into d6
24534         asl.l           &3,%d3          # shift d3 left by 3 places
24535         or.l            %d6,%d2         # or in msbs from d3 into d2
24536 #
24537 # A4. Multiply d4:d5 by 2; add carry out to d1.
24538 #
24539         asl.l           &1,%d5          # mul d5 by 2
24540         roxl.l          &1,%d4          # mul d4 by 2
24541         swap            %d6             # put 0 in d6 lower word
24542         addx.w          %d6,%d1         # add in extend from mul by 2
24543 #
24544 # A5. Add mul by 8 to mul by 2.  D1 contains the digit formed.
24545 #
24546         add.l           %d5,%d3         # add lower 32 bits
24547         nop                             # ERRATA FIX #13 (Rev. 1.2 6/6/90)
24548         addx.l          %d4,%d2         # add with extend upper 32 bits
24549         nop                             # ERRATA FIX #13 (Rev. 1.2 6/6/90)
24550         addx.w          %d6,%d1         # add in extend from add to d1
24551         swap            %d6             # with d6 = 0; put 0 in upper word
24552 #
24553 # A6. Test d7 and branch.
24554 #
24555         tst.w           %d7             # if zero, store digit & to loop
24556         beq.b           first_d         # if non-zero, form byte & write
24557 sec_d:
24558         swap            %d7             # bring first digit to word d7b
24559         asl.w           &4,%d7          # first digit in upper 4 bits d7b
24560         add.w           %d1,%d7         # add in ls digit to d7b
24561         mov.b           %d7,(%a0)+      # store d7b byte in memory
24562         swap            %d7             # put LEN counter in word d7a
24563         clr.w           %d7             # set d7a to signal no digits done
24564         dbf.w           %d0,loop        # do loop some more!
24565         bra.b           end_bstr        # finished, so exit
24566 first_d:
24567         swap            %d7             # put digit word in d7b
24568         mov.w           %d1,%d7         # put new digit in d7b
24569         swap            %d7             # put LEN counter in word d7a
24570         addq.w          &1,%d7          # set d7a to signal first digit done
24571         dbf.w           %d0,loop        # do loop some more!
24572         swap            %d7             # put last digit in string
24573         lsl.w           &4,%d7          # move it to upper 4 bits
24574         mov.b           %d7,(%a0)+      # store it in memory string
24575 #
24576 # Clean up and return with result in fp0.
24577 #
24578 end_bstr:
24579         movm.l          (%sp)+,&0xff    #  {%d0-%d7}
24580         rts
24581
24582 #########################################################################
24583 # XDEF **************************************************************** #
24584 #       facc_in_b(): dmem_read_byte failed                              #
24585 #       facc_in_w(): dmem_read_word failed                              #
24586 #       facc_in_l(): dmem_read_long failed                              #
24587 #       facc_in_d(): dmem_read of dbl prec failed                       #
24588 #       facc_in_x(): dmem_read of ext prec failed                       #
24589 #                                                                       #
24590 #       facc_out_b(): dmem_write_byte failed                            #
24591 #       facc_out_w(): dmem_write_word failed                            #
24592 #       facc_out_l(): dmem_write_long failed                            #
24593 #       facc_out_d(): dmem_write of dbl prec failed                     #
24594 #       facc_out_x(): dmem_write of ext prec failed                     #
24595 #                                                                       #
24596 # XREF **************************************************************** #
24597 #       _real_access() - exit through access error handler              #
24598 #                                                                       #
24599 # INPUT *************************************************************** #
24600 #       None                                                            #
24601 #                                                                       #
24602 # OUTPUT ************************************************************** #
24603 #       None                                                            #
24604 #                                                                       #
24605 # ALGORITHM *********************************************************** #
24606 #       Flow jumps here when an FP data fetch call gets an error        #
24607 # result. This means the operating system wants an access error frame   #
24608 # made out of the current exception stack frame.                        #
24609 #       So, we first call restore() which makes sure that any updated   #
24610 # -(an)+ register gets returned to its pre-exception value and then     #
24611 # we change the stack to an access error stack frame.                   #
24612 #                                                                       #
24613 #########################################################################
24614
24615 facc_in_b:
24616         movq.l          &0x1,%d0                        # one byte
24617         bsr.w           restore                         # fix An
24618
24619         mov.w           &0x0121,EXC_VOFF(%a6)           # set FSLW
24620         bra.w           facc_finish
24621
24622 facc_in_w:
24623         movq.l          &0x2,%d0                        # two bytes
24624         bsr.w           restore                         # fix An
24625
24626         mov.w           &0x0141,EXC_VOFF(%a6)           # set FSLW
24627         bra.b           facc_finish
24628
24629 facc_in_l:
24630         movq.l          &0x4,%d0                        # four bytes
24631         bsr.w           restore                         # fix An
24632
24633         mov.w           &0x0101,EXC_VOFF(%a6)           # set FSLW
24634         bra.b           facc_finish
24635
24636 facc_in_d:
24637         movq.l          &0x8,%d0                        # eight bytes
24638         bsr.w           restore                         # fix An
24639
24640         mov.w           &0x0161,EXC_VOFF(%a6)           # set FSLW
24641         bra.b           facc_finish
24642
24643 facc_in_x:
24644         movq.l          &0xc,%d0                        # twelve bytes
24645         bsr.w           restore                         # fix An
24646
24647         mov.w           &0x0161,EXC_VOFF(%a6)           # set FSLW
24648         bra.b           facc_finish
24649
24650 ################################################################
24651
24652 facc_out_b:
24653         movq.l          &0x1,%d0                        # one byte
24654         bsr.w           restore                         # restore An
24655
24656         mov.w           &0x00a1,EXC_VOFF(%a6)           # set FSLW
24657         bra.b           facc_finish
24658
24659 facc_out_w:
24660         movq.l          &0x2,%d0                        # two bytes
24661         bsr.w           restore                         # restore An
24662
24663         mov.w           &0x00c1,EXC_VOFF(%a6)           # set FSLW
24664         bra.b           facc_finish
24665
24666 facc_out_l:
24667         movq.l          &0x4,%d0                        # four bytes
24668         bsr.w           restore                         # restore An
24669
24670         mov.w           &0x0081,EXC_VOFF(%a6)           # set FSLW
24671         bra.b           facc_finish
24672
24673 facc_out_d:
24674         movq.l          &0x8,%d0                        # eight bytes
24675         bsr.w           restore                         # restore An
24676
24677         mov.w           &0x00e1,EXC_VOFF(%a6)           # set FSLW
24678         bra.b           facc_finish
24679
24680 facc_out_x:
24681         mov.l           &0xc,%d0                        # twelve bytes
24682         bsr.w           restore                         # restore An
24683
24684         mov.w           &0x00e1,EXC_VOFF(%a6)           # set FSLW
24685
24686 # here's where we actually create the access error frame from the
24687 # current exception stack frame.
24688 facc_finish:
24689         mov.l           USER_FPIAR(%a6),EXC_PC(%a6) # store current PC
24690
24691         fmovm.x         EXC_FPREGS(%a6),&0xc0   # restore fp0-fp1
24692         fmovm.l         USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
24693         movm.l          EXC_DREGS(%a6),&0x0303  # restore d0-d1/a0-a1
24694
24695         unlk            %a6
24696
24697         mov.l           (%sp),-(%sp)            # store SR, hi(PC)
24698         mov.l           0x8(%sp),0x4(%sp)       # store lo(PC)
24699         mov.l           0xc(%sp),0x8(%sp)       # store EA
24700         mov.l           &0x00000001,0xc(%sp)    # store FSLW
24701         mov.w           0x6(%sp),0xc(%sp)       # fix FSLW (size)
24702         mov.w           &0x4008,0x6(%sp)        # store voff
24703
24704         btst            &0x5,(%sp)              # supervisor or user mode?
24705         beq.b           facc_out2               # user
24706         bset            &0x2,0xd(%sp)           # set supervisor TM bit
24707
24708 facc_out2:
24709         bra.l           _real_access
24710
24711 ##################################################################
24712
24713 # if the effective addressing mode was predecrement or postincrement,
24714 # the emulation has already changed its value to the correct post-
24715 # instruction value. but since we're exiting to the access error
24716 # handler, then AN must be returned to its pre-instruction value.
24717 # we do that here.
24718 restore:
24719         mov.b           EXC_OPWORD+0x1(%a6),%d1
24720         andi.b          &0x38,%d1               # extract opmode
24721         cmpi.b          %d1,&0x18               # postinc?
24722         beq.w           rest_inc
24723         cmpi.b          %d1,&0x20               # predec?
24724         beq.w           rest_dec
24725         rts
24726
24727 rest_inc:
24728         mov.b           EXC_OPWORD+0x1(%a6),%d1
24729         andi.w          &0x0007,%d1             # fetch An
24730
24731         mov.w           (tbl_rest_inc.b,%pc,%d1.w*2),%d1
24732         jmp             (tbl_rest_inc.b,%pc,%d1.w*1)
24733
24734 tbl_rest_inc:
24735         short           ri_a0 - tbl_rest_inc
24736         short           ri_a1 - tbl_rest_inc
24737         short           ri_a2 - tbl_rest_inc
24738         short           ri_a3 - tbl_rest_inc
24739         short           ri_a4 - tbl_rest_inc
24740         short           ri_a5 - tbl_rest_inc
24741         short           ri_a6 - tbl_rest_inc
24742         short           ri_a7 - tbl_rest_inc
24743
24744 ri_a0:
24745         sub.l           %d0,EXC_DREGS+0x8(%a6)  # fix stacked a0
24746         rts
24747 ri_a1:
24748         sub.l           %d0,EXC_DREGS+0xc(%a6)  # fix stacked a1
24749         rts
24750 ri_a2:
24751         sub.l           %d0,%a2                 # fix a2
24752         rts
24753 ri_a3:
24754         sub.l           %d0,%a3                 # fix a3
24755         rts
24756 ri_a4:
24757         sub.l           %d0,%a4                 # fix a4
24758         rts
24759 ri_a5:
24760         sub.l           %d0,%a5                 # fix a5
24761         rts
24762 ri_a6:
24763         sub.l           %d0,(%a6)               # fix stacked a6
24764         rts
24765 # if it's a fmove out instruction, we don't have to fix a7
24766 # because we hadn't changed it yet. if it's an opclass two
24767 # instruction (data moved in) and the exception was in supervisor
24768 # mode, then also also wasn't updated. if it was user mode, then
24769 # restore the correct a7 which is in the USP currently.
24770 ri_a7:
24771         cmpi.b          EXC_VOFF(%a6),&0x30     # move in or out?
24772         bne.b           ri_a7_done              # out
24773
24774         btst            &0x5,EXC_SR(%a6)        # user or supervisor?
24775         bne.b           ri_a7_done              # supervisor
24776         movc            %usp,%a0                # restore USP
24777         sub.l           %d0,%a0
24778         movc            %a0,%usp
24779 ri_a7_done:
24780         rts
24781
24782 # need to invert adjustment value if the <ea> was predec
24783 rest_dec:
24784         neg.l           %d0
24785         bra.b           rest_inc