sparc64: Fix FPU register corruption with AES crypto offload.
[sfrench/cifs-2.6.git] / arch / ia64 / sn / kernel / sn2 / sn2_smp.c
1 /*
2  * SN2 Platform specific SMP Support
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
9  */
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/threads.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/mmzone.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
22 #include <linux/nodemask.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25
26 #include <asm/processor.h>
27 #include <asm/irq.h>
28 #include <asm/sal.h>
29 #include <asm/delay.h>
30 #include <asm/io.h>
31 #include <asm/smp.h>
32 #include <asm/tlb.h>
33 #include <asm/numa.h>
34 #include <asm/hw_irq.h>
35 #include <asm/current.h>
36 #include <asm/sn/sn_cpuid.h>
37 #include <asm/sn/sn_sal.h>
38 #include <asm/sn/addrs.h>
39 #include <asm/sn/shub_mmr.h>
40 #include <asm/sn/nodepda.h>
41 #include <asm/sn/rw_mmr.h>
42 #include <asm/sn/sn_feature_sets.h>
43
44 DEFINE_PER_CPU(struct ptc_stats, ptcstats);
45 DECLARE_PER_CPU(struct ptc_stats, ptcstats);
46
47 static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
48
49 /* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
50 static int sn2_flush_opt = 0;
51
52 extern unsigned long
53 sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
54                                volatile unsigned long *, unsigned long,
55                                volatile unsigned long *, unsigned long);
56 void
57 sn2_ptc_deadlock_recovery(short *, short, short, int,
58                           volatile unsigned long *, unsigned long,
59                           volatile unsigned long *, unsigned long);
60
61 /*
62  * Note: some is the following is captured here to make degugging easier
63  * (the macros make more sense if you see the debug patch - not posted)
64  */
65 #define sn2_ptctest     0
66 #define local_node_uses_ptc_ga(sh1)     ((sh1) ? 1 : 0)
67 #define max_active_pio(sh1)             ((sh1) ? 32 : 7)
68 #define reset_max_active_on_deadlock()  1
69 #define PTC_LOCK(sh1)                   ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
70
71 struct ptc_stats {
72         unsigned long ptc_l;
73         unsigned long change_rid;
74         unsigned long shub_ptc_flushes;
75         unsigned long nodes_flushed;
76         unsigned long deadlocks;
77         unsigned long deadlocks2;
78         unsigned long lock_itc_clocks;
79         unsigned long shub_itc_clocks;
80         unsigned long shub_itc_clocks_max;
81         unsigned long shub_ptc_flushes_not_my_mm;
82         unsigned long shub_ipi_flushes;
83         unsigned long shub_ipi_flushes_itc_clocks;
84 };
85
86 #define sn2_ptctest     0
87
88 static inline unsigned long wait_piowc(void)
89 {
90         volatile unsigned long *piows;
91         unsigned long zeroval, ws;
92
93         piows = pda->pio_write_status_addr;
94         zeroval = pda->pio_write_status_val;
95         do {
96                 cpu_relax();
97         } while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
98         return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
99 }
100
101 /**
102  * sn_migrate - SN-specific task migration actions
103  * @task: Task being migrated to new CPU
104  *
105  * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
106  * Context switching user threads which have memory-mapped MMIO may cause
107  * PIOs to issue from separate CPUs, thus the PIO writes must be drained
108  * from the previous CPU's Shub before execution resumes on the new CPU.
109  */
110 void sn_migrate(struct task_struct *task)
111 {
112         pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
113         volatile unsigned long *adr = last_pda->pio_write_status_addr;
114         unsigned long val = last_pda->pio_write_status_val;
115
116         /* Drain PIO writes from old CPU's Shub */
117         while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
118                         != val))
119                 cpu_relax();
120 }
121
122 void sn_tlb_migrate_finish(struct mm_struct *mm)
123 {
124         /* flush_tlb_mm is inefficient if more than 1 users of mm */
125         if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
126                 flush_tlb_mm(mm);
127 }
128
129 static void
130 sn2_ipi_flush_all_tlb(struct mm_struct *mm)
131 {
132         unsigned long itc;
133
134         itc = ia64_get_itc();
135         smp_flush_tlb_cpumask(*mm_cpumask(mm));
136         itc = ia64_get_itc() - itc;
137         __get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc;
138         __get_cpu_var(ptcstats).shub_ipi_flushes++;
139 }
140
141 /**
142  * sn2_global_tlb_purge - globally purge translation cache of virtual address range
143  * @mm: mm_struct containing virtual address range
144  * @start: start of virtual address range
145  * @end: end of virtual address range
146  * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
147  *
148  * Purges the translation caches of all processors of the given virtual address
149  * range.
150  *
151  * Note:
152  *      - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
153  *      - cpu_vm_mask is converted into a nodemask of the nodes containing the
154  *        cpus in cpu_vm_mask.
155  *      - if only one bit is set in cpu_vm_mask & it is the current cpu & the
156  *        process is purging its own virtual address range, then only the
157  *        local TLB needs to be flushed. This flushing can be done using
158  *        ptc.l. This is the common case & avoids the global spinlock.
159  *      - if multiple cpus have loaded the context, then flushing has to be
160  *        done with ptc.g/MMRs under protection of the global ptc_lock.
161  */
162
163 void
164 sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
165                      unsigned long end, unsigned long nbits)
166 {
167         int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
168         int mymm = (mm == current->active_mm && mm == current->mm);
169         int use_cpu_ptcga;
170         volatile unsigned long *ptc0, *ptc1;
171         unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
172         short nasids[MAX_NUMNODES], nix;
173         nodemask_t nodes_flushed;
174         int active, max_active, deadlock, flush_opt = sn2_flush_opt;
175
176         if (flush_opt > 2) {
177                 sn2_ipi_flush_all_tlb(mm);
178                 return;
179         }
180
181         nodes_clear(nodes_flushed);
182         i = 0;
183
184         for_each_cpu(cpu, mm_cpumask(mm)) {
185                 cnode = cpu_to_node(cpu);
186                 node_set(cnode, nodes_flushed);
187                 lcpu = cpu;
188                 i++;
189         }
190
191         if (i == 0)
192                 return;
193
194         preempt_disable();
195
196         if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
197                 do {
198                         ia64_ptcl(start, nbits << 2);
199                         start += (1UL << nbits);
200                 } while (start < end);
201                 ia64_srlz_i();
202                 __get_cpu_var(ptcstats).ptc_l++;
203                 preempt_enable();
204                 return;
205         }
206
207         if (atomic_read(&mm->mm_users) == 1 && mymm) {
208                 flush_tlb_mm(mm);
209                 __get_cpu_var(ptcstats).change_rid++;
210                 preempt_enable();
211                 return;
212         }
213
214         if (flush_opt == 2) {
215                 sn2_ipi_flush_all_tlb(mm);
216                 preempt_enable();
217                 return;
218         }
219
220         itc = ia64_get_itc();
221         nix = 0;
222         for_each_node_mask(cnode, nodes_flushed)
223                 nasids[nix++] = cnodeid_to_nasid(cnode);
224
225         rr_value = (mm->context << 3) | REGION_NUMBER(start);
226
227         shub1 = is_shub1();
228         if (shub1) {
229                 data0 = (1UL << SH1_PTC_0_A_SHFT) |
230                         (nbits << SH1_PTC_0_PS_SHFT) |
231                         (rr_value << SH1_PTC_0_RID_SHFT) |
232                         (1UL << SH1_PTC_0_START_SHFT);
233                 ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
234                 ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
235         } else {
236                 data0 = (1UL << SH2_PTC_A_SHFT) |
237                         (nbits << SH2_PTC_PS_SHFT) |
238                         (1UL << SH2_PTC_START_SHFT);
239                 ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC + 
240                         (rr_value << SH2_PTC_RID_SHFT));
241                 ptc1 = NULL;
242         }
243         
244
245         mynasid = get_nasid();
246         use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
247         max_active = max_active_pio(shub1);
248
249         itc = ia64_get_itc();
250         spin_lock_irqsave(PTC_LOCK(shub1), flags);
251         itc2 = ia64_get_itc();
252
253         __get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
254         __get_cpu_var(ptcstats).shub_ptc_flushes++;
255         __get_cpu_var(ptcstats).nodes_flushed += nix;
256         if (!mymm)
257                  __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;
258
259         if (use_cpu_ptcga && !mymm) {
260                 old_rr = ia64_get_rr(start);
261                 ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
262                 ia64_srlz_d();
263         }
264
265         wait_piowc();
266         do {
267                 if (shub1)
268                         data1 = start | (1UL << SH1_PTC_1_START_SHFT);
269                 else
270                         data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
271                 deadlock = 0;
272                 active = 0;
273                 for (ibegin = 0, i = 0; i < nix; i++) {
274                         nasid = nasids[i];
275                         if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
276                                 ia64_ptcga(start, nbits << 2);
277                                 ia64_srlz_i();
278                         } else {
279                                 ptc0 = CHANGE_NASID(nasid, ptc0);
280                                 if (ptc1)
281                                         ptc1 = CHANGE_NASID(nasid, ptc1);
282                                 pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
283                                 active++;
284                         }
285                         if (active >= max_active || i == (nix - 1)) {
286                                 if ((deadlock = wait_piowc())) {
287                                         if (flush_opt == 1)
288                                                 goto done;
289                                         sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
290                                         if (reset_max_active_on_deadlock())
291                                                 max_active = 1;
292                                 }
293                                 active = 0;
294                                 ibegin = i + 1;
295                         }
296                 }
297                 start += (1UL << nbits);
298         } while (start < end);
299
300 done:
301         itc2 = ia64_get_itc() - itc2;
302         __get_cpu_var(ptcstats).shub_itc_clocks += itc2;
303         if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
304                 __get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
305
306         if (old_rr) {
307                 ia64_set_rr(start, old_rr);
308                 ia64_srlz_d();
309         }
310
311         spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
312
313         if (flush_opt == 1 && deadlock) {
314                 __get_cpu_var(ptcstats).deadlocks++;
315                 sn2_ipi_flush_all_tlb(mm);
316         }
317
318         preempt_enable();
319 }
320
321 /*
322  * sn2_ptc_deadlock_recovery
323  *
324  * Recover from PTC deadlocks conditions. Recovery requires stepping thru each 
325  * TLB flush transaction.  The recovery sequence is somewhat tricky & is
326  * coded in assembly language.
327  */
328
329 void
330 sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
331                           volatile unsigned long *ptc0, unsigned long data0,
332                           volatile unsigned long *ptc1, unsigned long data1)
333 {
334         short nasid, i;
335         unsigned long *piows, zeroval, n;
336
337         __get_cpu_var(ptcstats).deadlocks++;
338
339         piows = (unsigned long *) pda->pio_write_status_addr;
340         zeroval = pda->pio_write_status_val;
341
342
343         for (i=ib; i <= ie; i++) {
344                 nasid = nasids[i];
345                 if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
346                         continue;
347                 ptc0 = CHANGE_NASID(nasid, ptc0);
348                 if (ptc1)
349                         ptc1 = CHANGE_NASID(nasid, ptc1);
350
351                 n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
352                 __get_cpu_var(ptcstats).deadlocks2 += n;
353         }
354
355 }
356
357 /**
358  * sn_send_IPI_phys - send an IPI to a Nasid and slice
359  * @nasid: nasid to receive the interrupt (may be outside partition)
360  * @physid: physical cpuid to receive the interrupt.
361  * @vector: command to send
362  * @delivery_mode: delivery mechanism
363  *
364  * Sends an IPI (interprocessor interrupt) to the processor specified by
365  * @physid
366  *
367  * @delivery_mode can be one of the following
368  *
369  * %IA64_IPI_DM_INT - pend an interrupt
370  * %IA64_IPI_DM_PMI - pend a PMI
371  * %IA64_IPI_DM_NMI - pend an NMI
372  * %IA64_IPI_DM_INIT - pend an INIT interrupt
373  */
374 void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
375 {
376         long val;
377         unsigned long flags = 0;
378         volatile long *p;
379
380         p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
381         val = (1UL << SH_IPI_INT_SEND_SHFT) |
382             (physid << SH_IPI_INT_PID_SHFT) |
383             ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
384             ((long)vector << SH_IPI_INT_IDX_SHFT) |
385             (0x000feeUL << SH_IPI_INT_BASE_SHFT);
386
387         mb();
388         if (enable_shub_wars_1_1()) {
389                 spin_lock_irqsave(&sn2_global_ptc_lock, flags);
390         }
391         pio_phys_write_mmr(p, val);
392         if (enable_shub_wars_1_1()) {
393                 wait_piowc();
394                 spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
395         }
396
397 }
398
399 EXPORT_SYMBOL(sn_send_IPI_phys);
400
401 /**
402  * sn2_send_IPI - send an IPI to a processor
403  * @cpuid: target of the IPI
404  * @vector: command to send
405  * @delivery_mode: delivery mechanism
406  * @redirect: redirect the IPI?
407  *
408  * Sends an IPI (InterProcessor Interrupt) to the processor specified by
409  * @cpuid.  @vector specifies the command to send, while @delivery_mode can 
410  * be one of the following
411  *
412  * %IA64_IPI_DM_INT - pend an interrupt
413  * %IA64_IPI_DM_PMI - pend a PMI
414  * %IA64_IPI_DM_NMI - pend an NMI
415  * %IA64_IPI_DM_INIT - pend an INIT interrupt
416  */
417 void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
418 {
419         long physid;
420         int nasid;
421
422         physid = cpu_physical_id(cpuid);
423         nasid = cpuid_to_nasid(cpuid);
424
425         /* the following is used only when starting cpus at boot time */
426         if (unlikely(nasid == -1))
427                 ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
428
429         sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
430 }
431
432 #ifdef CONFIG_HOTPLUG_CPU
433 /**
434  * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
435  * @cpu - CPU that is requested to be disabled.
436  *
437  * CPU disable is only allowed on SHub2 systems running with a PROM
438  * that supports CPU disable. It is not permitted to disable the boot processor.
439  */
440 bool sn_cpu_disable_allowed(int cpu)
441 {
442         if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
443                 if (cpu != 0)
444                         return true;
445                 else
446                         printk(KERN_WARNING
447                               "Disabling the boot processor is not allowed.\n");
448
449         } else
450                 printk(KERN_WARNING
451                        "CPU disable is not supported on this system.\n");
452
453         return false;
454 }
455 #endif /* CONFIG_HOTPLUG_CPU */
456
457 #ifdef CONFIG_PROC_FS
458
459 #define PTC_BASENAME    "sgi_sn/ptc_statistics"
460
461 static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
462 {
463         if (*offset < nr_cpu_ids)
464                 return offset;
465         return NULL;
466 }
467
468 static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
469 {
470         (*offset)++;
471         if (*offset < nr_cpu_ids)
472                 return offset;
473         return NULL;
474 }
475
476 static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
477 {
478 }
479
480 static int sn2_ptc_seq_show(struct seq_file *file, void *data)
481 {
482         struct ptc_stats *stat;
483         int cpu;
484
485         cpu = *(loff_t *) data;
486
487         if (!cpu) {
488                 seq_printf(file,
489                            "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
490                 seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
491         }
492
493         if (cpu < nr_cpu_ids && cpu_online(cpu)) {
494                 stat = &per_cpu(ptcstats, cpu);
495                 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
496                                 stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
497                                 stat->deadlocks,
498                                 1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
499                                 1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
500                                 1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
501                                 stat->shub_ptc_flushes_not_my_mm,
502                                 stat->deadlocks2,
503                                 stat->shub_ipi_flushes,
504                                 1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec);
505         }
506         return 0;
507 }
508
509 static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
510 {
511         int cpu;
512         char optstr[64];
513
514         if (count == 0 || count > sizeof(optstr))
515                 return -EINVAL;
516         if (copy_from_user(optstr, user, count))
517                 return -EFAULT;
518         optstr[count - 1] = '\0';
519         sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
520
521         for_each_online_cpu(cpu)
522                 memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
523
524         return count;
525 }
526
527 static const struct seq_operations sn2_ptc_seq_ops = {
528         .start = sn2_ptc_seq_start,
529         .next = sn2_ptc_seq_next,
530         .stop = sn2_ptc_seq_stop,
531         .show = sn2_ptc_seq_show
532 };
533
534 static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
535 {
536         return seq_open(file, &sn2_ptc_seq_ops);
537 }
538
539 static const struct file_operations proc_sn2_ptc_operations = {
540         .open = sn2_ptc_proc_open,
541         .read = seq_read,
542         .write = sn2_ptc_proc_write,
543         .llseek = seq_lseek,
544         .release = seq_release,
545 };
546
547 static struct proc_dir_entry *proc_sn2_ptc;
548
549 static int __init sn2_ptc_init(void)
550 {
551         if (!ia64_platform_is("sn2"))
552                 return 0;
553
554         proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
555                                    NULL, &proc_sn2_ptc_operations);
556         if (!proc_sn2_ptc) {
557                 printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
558                 return -EINVAL;
559         }
560         spin_lock_init(&sn2_global_ptc_lock);
561         return 0;
562 }
563
564 static void __exit sn2_ptc_exit(void)
565 {
566         remove_proc_entry(PTC_BASENAME, NULL);
567 }
568
569 module_init(sn2_ptc_init);
570 module_exit(sn2_ptc_exit);
571 #endif /* CONFIG_PROC_FS */
572