Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[sfrench/cifs-2.6.git] / arch / ia64 / mm / tlb.c
1 /*
2  * TLB support routines.
3  *
4  * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  *
7  * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
8  *              Modified RID allocation for SMP
9  *          Goutham Rao <goutham.rao@intel.com>
10  *              IPI based ptc implementation and A-step IPI implementation.
11  * Rohit Seth <rohit.seth@intel.com>
12  * Ken Chen <kenneth.w.chen@intel.com>
13  * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
14  * Copyright (C) 2007 Intel Corp
15  *      Fenghua Yu <fenghua.yu@intel.com>
16  *      Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
17  */
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/mm.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/delay.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pal.h>
30 #include <asm/tlbflush.h>
31 #include <asm/dma.h>
32 #include <asm/processor.h>
33 #include <asm/sal.h>
34 #include <asm/tlb.h>
35
36 static struct {
37         u64 mask;               /* mask of supported purge page-sizes */
38         unsigned long max_bits; /* log2 of largest supported purge page-size */
39 } purge;
40
41 struct ia64_ctx ia64_ctx = {
42         .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
43         .next = 1,
44         .max_ctx = ~0U
45 };
46
47 DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
48 DEFINE_PER_CPU(u8, ia64_tr_num);  /*Number of TR slots in current processor*/
49 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/
50
51 struct ia64_tr_entry *ia64_idtrs[NR_CPUS];
52
53 /*
54  * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
55  * Called after cpu_init() has setup ia64_ctx.max_ctx based on
56  * maximum RID that is supported by boot CPU.
57  */
58 void __init
59 mmu_context_init (void)
60 {
61         ia64_ctx.bitmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
62         ia64_ctx.flushmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
63 }
64
65 /*
66  * Acquire the ia64_ctx.lock before calling this function!
67  */
68 void
69 wrap_mmu_context (struct mm_struct *mm)
70 {
71         int i, cpu;
72         unsigned long flush_bit;
73
74         for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
75                 flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
76                 ia64_ctx.bitmap[i] ^= flush_bit;
77         }
78  
79         /* use offset at 300 to skip daemons */
80         ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
81                                 ia64_ctx.max_ctx, 300);
82         ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
83                                 ia64_ctx.max_ctx, ia64_ctx.next);
84
85         /*
86          * can't call flush_tlb_all() here because of race condition
87          * with O(1) scheduler [EF]
88          */
89         cpu = get_cpu(); /* prevent preemption/migration */
90         for_each_online_cpu(i)
91                 if (i != cpu)
92                         per_cpu(ia64_need_tlb_flush, i) = 1;
93         put_cpu();
94         local_flush_tlb_all();
95 }
96
97 /*
98  * Implement "spinaphores" ... like counting semaphores, but they
99  * spin instead of sleeping.  If there are ever any other users for
100  * this primitive it can be moved up to a spinaphore.h header.
101  */
102 struct spinaphore {
103         unsigned long   ticket;
104         unsigned long   serve;
105 };
106
107 static inline void spinaphore_init(struct spinaphore *ss, int val)
108 {
109         ss->ticket = 0;
110         ss->serve = val;
111 }
112
113 static inline void down_spin(struct spinaphore *ss)
114 {
115         unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve;
116
117         if (time_before(t, ss->serve))
118                 return;
119
120         ia64_invala();
121
122         for (;;) {
123                 asm volatile ("ld4.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory");
124                 if (time_before(t, serve))
125                         return;
126                 cpu_relax();
127         }
128 }
129
130 static inline void up_spin(struct spinaphore *ss)
131 {
132         ia64_fetchadd(1, &ss->serve, rel);
133 }
134
135 static struct spinaphore ptcg_sem;
136 static u16 nptcg = 1;
137 static int need_ptcg_sem = 1;
138 static int toolatetochangeptcgsem = 0;
139
140 /*
141  * Kernel parameter "nptcg=" overrides max number of concurrent global TLB
142  * purges which is reported from either PAL or SAL PALO.
143  *
144  * We don't have sanity checking for nptcg value. It's the user's responsibility
145  * for valid nptcg value on the platform. Otherwise, kernel may hang in some
146  * cases.
147  */
148 static int __init
149 set_nptcg(char *str)
150 {
151         int value = 0;
152
153         get_option(&str, &value);
154         setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER);
155
156         return 1;
157 }
158
159 __setup("nptcg=", set_nptcg);
160
161 /*
162  * Maximum number of simultaneous ptc.g purges in the system can
163  * be defined by PAL_VM_SUMMARY (in which case we should take
164  * the smallest value for any cpu in the system) or by the PAL
165  * override table (in which case we should ignore the value from
166  * PAL_VM_SUMMARY).
167  *
168  * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g
169  * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
170  * we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
171  *
172  * Complicating the logic here is the fact that num_possible_cpus()
173  * isn't fully setup until we start bringing cpus online.
174  */
175 void
176 setup_ptcg_sem(int max_purges, int nptcg_from)
177 {
178         static int kp_override;
179         static int palo_override;
180         static int firstcpu = 1;
181
182         if (toolatetochangeptcgsem) {
183                 if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0)
184                         BUG_ON(1 < nptcg);
185                 else
186                         BUG_ON(max_purges < nptcg);
187                 return;
188         }
189
190         if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) {
191                 kp_override = 1;
192                 nptcg = max_purges;
193                 goto resetsema;
194         }
195         if (kp_override) {
196                 need_ptcg_sem = num_possible_cpus() > nptcg;
197                 return;
198         }
199
200         if (nptcg_from == NPTCG_FROM_PALO) {
201                 palo_override = 1;
202
203                 /* In PALO max_purges == 0 really means it! */
204                 if (max_purges == 0)
205                         panic("Whoa! Platform does not support global TLB purges.\n");
206                 nptcg = max_purges;
207                 if (nptcg == PALO_MAX_TLB_PURGES) {
208                         need_ptcg_sem = 0;
209                         return;
210                 }
211                 goto resetsema;
212         }
213         if (palo_override) {
214                 if (nptcg != PALO_MAX_TLB_PURGES)
215                         need_ptcg_sem = (num_possible_cpus() > nptcg);
216                 return;
217         }
218
219         /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
220         if (max_purges == 0) max_purges = 1;
221
222         if (firstcpu) {
223                 nptcg = max_purges;
224                 firstcpu = 0;
225         }
226         if (max_purges < nptcg)
227                 nptcg = max_purges;
228         if (nptcg == PAL_MAX_PURGES) {
229                 need_ptcg_sem = 0;
230                 return;
231         } else
232                 need_ptcg_sem = (num_possible_cpus() > nptcg);
233
234 resetsema:
235         spinaphore_init(&ptcg_sem, max_purges);
236 }
237
238 void
239 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
240                        unsigned long end, unsigned long nbits)
241 {
242         struct mm_struct *active_mm = current->active_mm;
243
244         toolatetochangeptcgsem = 1;
245
246         if (mm != active_mm) {
247                 /* Restore region IDs for mm */
248                 if (mm && active_mm) {
249                         activate_context(mm);
250                 } else {
251                         flush_tlb_all();
252                         return;
253                 }
254         }
255
256         if (need_ptcg_sem)
257                 down_spin(&ptcg_sem);
258
259         do {
260                 /*
261                  * Flush ALAT entries also.
262                  */
263                 ia64_ptcga(start, (nbits << 2));
264                 ia64_srlz_i();
265                 start += (1UL << nbits);
266         } while (start < end);
267
268         if (need_ptcg_sem)
269                 up_spin(&ptcg_sem);
270
271         if (mm != active_mm) {
272                 activate_context(active_mm);
273         }
274 }
275
276 void
277 local_flush_tlb_all (void)
278 {
279         unsigned long i, j, flags, count0, count1, stride0, stride1, addr;
280
281         addr    = local_cpu_data->ptce_base;
282         count0  = local_cpu_data->ptce_count[0];
283         count1  = local_cpu_data->ptce_count[1];
284         stride0 = local_cpu_data->ptce_stride[0];
285         stride1 = local_cpu_data->ptce_stride[1];
286
287         local_irq_save(flags);
288         for (i = 0; i < count0; ++i) {
289                 for (j = 0; j < count1; ++j) {
290                         ia64_ptce(addr);
291                         addr += stride1;
292                 }
293                 addr += stride0;
294         }
295         local_irq_restore(flags);
296         ia64_srlz_i();                  /* srlz.i implies srlz.d */
297 }
298
299 void
300 flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
301                  unsigned long end)
302 {
303         struct mm_struct *mm = vma->vm_mm;
304         unsigned long size = end - start;
305         unsigned long nbits;
306
307 #ifndef CONFIG_SMP
308         if (mm != current->active_mm) {
309                 mm->context = 0;
310                 return;
311         }
312 #endif
313
314         nbits = ia64_fls(size + 0xfff);
315         while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
316                         (nbits < purge.max_bits))
317                 ++nbits;
318         if (nbits > purge.max_bits)
319                 nbits = purge.max_bits;
320         start &= ~((1UL << nbits) - 1);
321
322         preempt_disable();
323 #ifdef CONFIG_SMP
324         if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) {
325                 platform_global_tlb_purge(mm, start, end, nbits);
326                 preempt_enable();
327                 return;
328         }
329 #endif
330         do {
331                 ia64_ptcl(start, (nbits<<2));
332                 start += (1UL << nbits);
333         } while (start < end);
334         preempt_enable();
335         ia64_srlz_i();                  /* srlz.i implies srlz.d */
336 }
337 EXPORT_SYMBOL(flush_tlb_range);
338
339 void __devinit
340 ia64_tlb_init (void)
341 {
342         ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */
343         u64 tr_pgbits;
344         long status;
345         pal_vm_info_1_u_t vm_info_1;
346         pal_vm_info_2_u_t vm_info_2;
347         int cpu = smp_processor_id();
348
349         if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
350                 printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
351                        "defaulting to architected purge page-sizes.\n", status);
352                 purge.mask = 0x115557000UL;
353         }
354         purge.max_bits = ia64_fls(purge.mask);
355
356         ia64_get_ptce(&ptce_info);
357         local_cpu_data->ptce_base = ptce_info.base;
358         local_cpu_data->ptce_count[0] = ptce_info.count[0];
359         local_cpu_data->ptce_count[1] = ptce_info.count[1];
360         local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
361         local_cpu_data->ptce_stride[1] = ptce_info.stride[1];
362
363         local_flush_tlb_all();  /* nuke left overs from bootstrapping... */
364         status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);
365
366         if (status) {
367                 printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
368                 per_cpu(ia64_tr_num, cpu) = 8;
369                 return;
370         }
371         per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
372         if (per_cpu(ia64_tr_num, cpu) >
373                                 (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
374                 per_cpu(ia64_tr_num, cpu) =
375                                 vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
376         if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
377                 static int justonce = 1;
378                 per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
379                 if (justonce) {
380                         justonce = 0;
381                         printk(KERN_DEBUG "TR register number exceeds "
382                                "IA64_TR_ALLOC_MAX!\n");
383                 }
384         }
385 }
386
387 /*
388  * is_tr_overlap
389  *
390  * Check overlap with inserted TRs.
391  */
392 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
393 {
394         u64 tr_log_size;
395         u64 tr_end;
396         u64 va_rr = ia64_get_rr(va);
397         u64 va_rid = RR_TO_RID(va_rr);
398         u64 va_end = va + (1<<log_size) - 1;
399
400         if (va_rid != RR_TO_RID(p->rr))
401                 return 0;
402         tr_log_size = (p->itir & 0xff) >> 2;
403         tr_end = p->ifa + (1<<tr_log_size) - 1;
404
405         if (va > tr_end || p->ifa > va_end)
406                 return 0;
407         return 1;
408
409 }
410
411 /*
412  * ia64_insert_tr in virtual mode. Allocate a TR slot
413  *
414  * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
415  *
416  * va   : virtual address.
417  * pte  : pte entries inserted.
418  * log_size: range to be covered.
419  *
420  * Return value:  <0 :  error No.
421  *
422  *                >=0 : slot number allocated for TR.
423  * Must be called with preemption disabled.
424  */
425 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
426 {
427         int i, r;
428         unsigned long psr;
429         struct ia64_tr_entry *p;
430         int cpu = smp_processor_id();
431
432         if (!ia64_idtrs[cpu]) {
433                 ia64_idtrs[cpu] = kmalloc(2 * IA64_TR_ALLOC_MAX *
434                                 sizeof (struct ia64_tr_entry), GFP_KERNEL);
435                 if (!ia64_idtrs[cpu])
436                         return -ENOMEM;
437         }
438         r = -EINVAL;
439         /*Check overlap with existing TR entries*/
440         if (target_mask & 0x1) {
441                 p = ia64_idtrs[cpu];
442                 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
443                                                                 i++, p++) {
444                         if (p->pte & 0x1)
445                                 if (is_tr_overlap(p, va, log_size)) {
446                                         printk(KERN_DEBUG "Overlapped Entry"
447                                                 "Inserted for TR Reigster!!\n");
448                                         goto out;
449                         }
450                 }
451         }
452         if (target_mask & 0x2) {
453                 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX;
454                 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
455                                                                 i++, p++) {
456                         if (p->pte & 0x1)
457                                 if (is_tr_overlap(p, va, log_size)) {
458                                         printk(KERN_DEBUG "Overlapped Entry"
459                                                 "Inserted for TR Reigster!!\n");
460                                         goto out;
461                                 }
462                 }
463         }
464
465         for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
466                 switch (target_mask & 0x3) {
467                 case 1:
468                         if (!((ia64_idtrs[cpu] + i)->pte & 0x1))
469                                 goto found;
470                         continue;
471                 case 2:
472                         if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
473                                 goto found;
474                         continue;
475                 case 3:
476                         if (!((ia64_idtrs[cpu] + i)->pte & 0x1) &&
477                             !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
478                                 goto found;
479                         continue;
480                 default:
481                         r = -EINVAL;
482                         goto out;
483                 }
484         }
485 found:
486         if (i >= per_cpu(ia64_tr_num, cpu))
487                 return -EBUSY;
488
489         /*Record tr info for mca hander use!*/
490         if (i > per_cpu(ia64_tr_used, cpu))
491                 per_cpu(ia64_tr_used, cpu) = i;
492
493         psr = ia64_clear_ic();
494         if (target_mask & 0x1) {
495                 ia64_itr(0x1, i, va, pte, log_size);
496                 ia64_srlz_i();
497                 p = ia64_idtrs[cpu] + i;
498                 p->ifa = va;
499                 p->pte = pte;
500                 p->itir = log_size << 2;
501                 p->rr = ia64_get_rr(va);
502         }
503         if (target_mask & 0x2) {
504                 ia64_itr(0x2, i, va, pte, log_size);
505                 ia64_srlz_i();
506                 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i;
507                 p->ifa = va;
508                 p->pte = pte;
509                 p->itir = log_size << 2;
510                 p->rr = ia64_get_rr(va);
511         }
512         ia64_set_psr(psr);
513         r = i;
514 out:
515         return r;
516 }
517 EXPORT_SYMBOL_GPL(ia64_itr_entry);
518
519 /*
520  * ia64_purge_tr
521  *
522  * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
523  * slot: slot number to be freed.
524  *
525  * Must be called with preemption disabled.
526  */
527 void ia64_ptr_entry(u64 target_mask, int slot)
528 {
529         int cpu = smp_processor_id();
530         int i;
531         struct ia64_tr_entry *p;
532
533         if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
534                 return;
535
536         if (target_mask & 0x1) {
537                 p = ia64_idtrs[cpu] + slot;
538                 if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
539                         p->pte = 0;
540                         ia64_ptr(0x1, p->ifa, p->itir>>2);
541                         ia64_srlz_i();
542                 }
543         }
544
545         if (target_mask & 0x2) {
546                 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot;
547                 if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
548                         p->pte = 0;
549                         ia64_ptr(0x2, p->ifa, p->itir>>2);
550                         ia64_srlz_i();
551                 }
552         }
553
554         for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
555                 if (((ia64_idtrs[cpu] + i)->pte & 0x1) ||
556                     ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
557                         break;
558         }
559         per_cpu(ia64_tr_used, cpu) = i;
560 }
561 EXPORT_SYMBOL_GPL(ia64_ptr_entry);