Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
[sfrench/cifs-2.6.git] / arch / ia64 / mm / init.c
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/mm.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22
23 #include <asm/a.out.h>
24 #include <asm/dma.h>
25 #include <asm/ia32.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/system.h>
34 #include <asm/tlb.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/mca.h>
38
39 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
40
41 DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist);
42 DEFINE_PER_CPU(long, __pgtable_quicklist_size);
43
44 extern void ia64_tlb_init (void);
45
46 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
47
48 #ifdef CONFIG_VIRTUAL_MEM_MAP
49 unsigned long vmalloc_end = VMALLOC_END_INIT;
50 EXPORT_SYMBOL(vmalloc_end);
51 struct page *vmem_map;
52 EXPORT_SYMBOL(vmem_map);
53 #endif
54
55 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
56 EXPORT_SYMBOL(zero_page_memmap_ptr);
57
58 #define MIN_PGT_PAGES                   25UL
59 #define MAX_PGT_FREES_PER_PASS          16L
60 #define PGT_FRACTION_OF_NODE_MEM        16
61
62 static inline long
63 max_pgt_pages(void)
64 {
65         u64 node_free_pages, max_pgt_pages;
66
67 #ifndef CONFIG_NUMA
68         node_free_pages = nr_free_pages();
69 #else
70         node_free_pages = nr_free_pages_pgdat(NODE_DATA(numa_node_id()));
71 #endif
72         max_pgt_pages = node_free_pages / PGT_FRACTION_OF_NODE_MEM;
73         max_pgt_pages = max(max_pgt_pages, MIN_PGT_PAGES);
74         return max_pgt_pages;
75 }
76
77 static inline long
78 min_pages_to_free(void)
79 {
80         long pages_to_free;
81
82         pages_to_free = pgtable_quicklist_size - max_pgt_pages();
83         pages_to_free = min(pages_to_free, MAX_PGT_FREES_PER_PASS);
84         return pages_to_free;
85 }
86
87 void
88 check_pgt_cache(void)
89 {
90         long pages_to_free;
91
92         if (unlikely(pgtable_quicklist_size <= MIN_PGT_PAGES))
93                 return;
94
95         preempt_disable();
96         while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
97                 while (pages_to_free--) {
98                         free_page((unsigned long)pgtable_quicklist_alloc());
99                 }
100                 preempt_enable();
101                 preempt_disable();
102         }
103         preempt_enable();
104 }
105
106 void
107 lazy_mmu_prot_update (pte_t pte)
108 {
109         unsigned long addr;
110         struct page *page;
111         unsigned long order;
112
113         if (!pte_exec(pte))
114                 return;                         /* not an executable page... */
115
116         page = pte_page(pte);
117         addr = (unsigned long) page_address(page);
118
119         if (test_bit(PG_arch_1, &page->flags))
120                 return;                         /* i-cache is already coherent with d-cache */
121
122         if (PageCompound(page)) {
123                 order = (unsigned long) (page[1].lru.prev);
124                 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
125         }
126         else
127                 flush_icache_range(addr, addr + PAGE_SIZE);
128         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
129 }
130
131 inline void
132 ia64_set_rbs_bot (void)
133 {
134         unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
135
136         if (stack_size > MAX_USER_STACK_SIZE)
137                 stack_size = MAX_USER_STACK_SIZE;
138         current->thread.rbs_bot = STACK_TOP - stack_size;
139 }
140
141 /*
142  * This performs some platform-dependent address space initialization.
143  * On IA-64, we want to setup the VM area for the register backing
144  * store (which grows upwards) and install the gateway page which is
145  * used for signal trampolines, etc.
146  */
147 void
148 ia64_init_addr_space (void)
149 {
150         struct vm_area_struct *vma;
151
152         ia64_set_rbs_bot();
153
154         /*
155          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
156          * the problem.  When the process attempts to write to the register backing store
157          * for the first time, it will get a SEGFAULT in this case.
158          */
159         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
160         if (vma) {
161                 memset(vma, 0, sizeof(*vma));
162                 vma->vm_mm = current->mm;
163                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
164                 vma->vm_end = vma->vm_start + PAGE_SIZE;
165                 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
166                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
167                 down_write(&current->mm->mmap_sem);
168                 if (insert_vm_struct(current->mm, vma)) {
169                         up_write(&current->mm->mmap_sem);
170                         kmem_cache_free(vm_area_cachep, vma);
171                         return;
172                 }
173                 up_write(&current->mm->mmap_sem);
174         }
175
176         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
177         if (!(current->personality & MMAP_PAGE_ZERO)) {
178                 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
179                 if (vma) {
180                         memset(vma, 0, sizeof(*vma));
181                         vma->vm_mm = current->mm;
182                         vma->vm_end = PAGE_SIZE;
183                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
184                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
185                         down_write(&current->mm->mmap_sem);
186                         if (insert_vm_struct(current->mm, vma)) {
187                                 up_write(&current->mm->mmap_sem);
188                                 kmem_cache_free(vm_area_cachep, vma);
189                                 return;
190                         }
191                         up_write(&current->mm->mmap_sem);
192                 }
193         }
194 }
195
196 void
197 free_initmem (void)
198 {
199         unsigned long addr, eaddr;
200
201         addr = (unsigned long) ia64_imva(__init_begin);
202         eaddr = (unsigned long) ia64_imva(__init_end);
203         while (addr < eaddr) {
204                 ClearPageReserved(virt_to_page(addr));
205                 init_page_count(virt_to_page(addr));
206                 free_page(addr);
207                 ++totalram_pages;
208                 addr += PAGE_SIZE;
209         }
210         printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
211                (__init_end - __init_begin) >> 10);
212 }
213
214 void __init
215 free_initrd_mem (unsigned long start, unsigned long end)
216 {
217         struct page *page;
218         /*
219          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
220          * Thus EFI and the kernel may have different page sizes. It is
221          * therefore possible to have the initrd share the same page as
222          * the end of the kernel (given current setup).
223          *
224          * To avoid freeing/using the wrong page (kernel sized) we:
225          *      - align up the beginning of initrd
226          *      - align down the end of initrd
227          *
228          *  |             |
229          *  |=============| a000
230          *  |             |
231          *  |             |
232          *  |             | 9000
233          *  |/////////////|
234          *  |/////////////|
235          *  |=============| 8000
236          *  |///INITRD////|
237          *  |/////////////|
238          *  |/////////////| 7000
239          *  |             |
240          *  |KKKKKKKKKKKKK|
241          *  |=============| 6000
242          *  |KKKKKKKKKKKKK|
243          *  |KKKKKKKKKKKKK|
244          *  K=kernel using 8KB pages
245          *
246          * In this example, we must free page 8000 ONLY. So we must align up
247          * initrd_start and keep initrd_end as is.
248          */
249         start = PAGE_ALIGN(start);
250         end = end & PAGE_MASK;
251
252         if (start < end)
253                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
254
255         for (; start < end; start += PAGE_SIZE) {
256                 if (!virt_addr_valid(start))
257                         continue;
258                 page = virt_to_page(start);
259                 ClearPageReserved(page);
260                 init_page_count(page);
261                 free_page(start);
262                 ++totalram_pages;
263         }
264 }
265
266 /*
267  * This installs a clean page in the kernel's page table.
268  */
269 static struct page * __init
270 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
271 {
272         pgd_t *pgd;
273         pud_t *pud;
274         pmd_t *pmd;
275         pte_t *pte;
276
277         if (!PageReserved(page))
278                 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
279                        page_address(page));
280
281         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
282
283         {
284                 pud = pud_alloc(&init_mm, pgd, address);
285                 if (!pud)
286                         goto out;
287                 pmd = pmd_alloc(&init_mm, pud, address);
288                 if (!pmd)
289                         goto out;
290                 pte = pte_alloc_kernel(pmd, address);
291                 if (!pte)
292                         goto out;
293                 if (!pte_none(*pte))
294                         goto out;
295                 set_pte(pte, mk_pte(page, pgprot));
296         }
297   out:
298         /* no need for flush_tlb */
299         return page;
300 }
301
302 static void __init
303 setup_gate (void)
304 {
305         struct page *page;
306
307         /*
308          * Map the gate page twice: once read-only to export the ELF
309          * headers etc. and once execute-only page to enable
310          * privilege-promotion via "epc":
311          */
312         page = virt_to_page(ia64_imva(__start_gate_section));
313         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
314 #ifdef HAVE_BUGGY_SEGREL
315         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
316         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
317 #else
318         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
319         /* Fill in the holes (if any) with read-only zero pages: */
320         {
321                 unsigned long addr;
322
323                 for (addr = GATE_ADDR + PAGE_SIZE;
324                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
325                      addr += PAGE_SIZE)
326                 {
327                         put_kernel_page(ZERO_PAGE(0), addr,
328                                         PAGE_READONLY);
329                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
330                                         PAGE_READONLY);
331                 }
332         }
333 #endif
334         ia64_patch_gate();
335 }
336
337 void __devinit
338 ia64_mmu_init (void *my_cpu_data)
339 {
340         unsigned long psr, pta, impl_va_bits;
341         extern void __devinit tlb_init (void);
342
343 #ifdef CONFIG_DISABLE_VHPT
344 #       define VHPT_ENABLE_BIT  0
345 #else
346 #       define VHPT_ENABLE_BIT  1
347 #endif
348
349         /* Pin mapping for percpu area into TLB */
350         psr = ia64_clear_ic();
351         ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
352                  pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)),
353                  PERCPU_PAGE_SHIFT);
354
355         ia64_set_psr(psr);
356         ia64_srlz_i();
357
358         /*
359          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
360          * address space.  The IA-64 architecture guarantees that at least 50 bits of
361          * virtual address space are implemented but if we pick a large enough page size
362          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
363          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
364          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
365          * problem in practice.  Alternatively, we could truncate the top of the mapped
366          * address space to not permit mappings that would overlap with the VMLPT.
367          * --davidm 00/12/06
368          */
369 #       define pte_bits                 3
370 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
371         /*
372          * The virtual page table has to cover the entire implemented address space within
373          * a region even though not all of this space may be mappable.  The reason for
374          * this is that the Access bit and Dirty bit fault handlers perform
375          * non-speculative accesses to the virtual page table, so the address range of the
376          * virtual page table itself needs to be covered by virtual page table.
377          */
378 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
379 #       define POW2(n)                  (1ULL << (n))
380
381         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
382
383         if (impl_va_bits < 51 || impl_va_bits > 61)
384                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
385         /*
386          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
387          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
388          * the test makes sure that our mapped space doesn't overlap the
389          * unimplemented hole in the middle of the region.
390          */
391         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
392             (mapped_space_bits > impl_va_bits - 1))
393                 panic("Cannot build a big enough virtual-linear page table"
394                       " to cover mapped address space.\n"
395                       " Try using a smaller page size.\n");
396
397
398         /* place the VMLPT at the end of each page-table mapped region: */
399         pta = POW2(61) - POW2(vmlpt_bits);
400
401         /*
402          * Set the (virtually mapped linear) page table address.  Bit
403          * 8 selects between the short and long format, bits 2-7 the
404          * size of the table, and bit 0 whether the VHPT walker is
405          * enabled.
406          */
407         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
408
409         ia64_tlb_init();
410
411 #ifdef  CONFIG_HUGETLB_PAGE
412         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
413         ia64_srlz_d();
414 #endif
415 }
416
417 #ifdef CONFIG_VIRTUAL_MEM_MAP
418 int vmemmap_find_next_valid_pfn(int node, int i)
419 {
420         unsigned long end_address, hole_next_pfn;
421         unsigned long stop_address;
422         pg_data_t *pgdat = NODE_DATA(node);
423
424         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
425         end_address = PAGE_ALIGN(end_address);
426
427         stop_address = (unsigned long) &vmem_map[
428                 pgdat->node_start_pfn + pgdat->node_spanned_pages];
429
430         do {
431                 pgd_t *pgd;
432                 pud_t *pud;
433                 pmd_t *pmd;
434                 pte_t *pte;
435
436                 pgd = pgd_offset_k(end_address);
437                 if (pgd_none(*pgd)) {
438                         end_address += PGDIR_SIZE;
439                         continue;
440                 }
441
442                 pud = pud_offset(pgd, end_address);
443                 if (pud_none(*pud)) {
444                         end_address += PUD_SIZE;
445                         continue;
446                 }
447
448                 pmd = pmd_offset(pud, end_address);
449                 if (pmd_none(*pmd)) {
450                         end_address += PMD_SIZE;
451                         continue;
452                 }
453
454                 pte = pte_offset_kernel(pmd, end_address);
455 retry_pte:
456                 if (pte_none(*pte)) {
457                         end_address += PAGE_SIZE;
458                         pte++;
459                         if ((end_address < stop_address) &&
460                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
461                                 goto retry_pte;
462                         continue;
463                 }
464                 /* Found next valid vmem_map page */
465                 break;
466         } while (end_address < stop_address);
467
468         end_address = min(end_address, stop_address);
469         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
470         hole_next_pfn = end_address / sizeof(struct page);
471         return hole_next_pfn - pgdat->node_start_pfn;
472 }
473
474 int __init
475 create_mem_map_page_table (u64 start, u64 end, void *arg)
476 {
477         unsigned long address, start_page, end_page;
478         struct page *map_start, *map_end;
479         int node;
480         pgd_t *pgd;
481         pud_t *pud;
482         pmd_t *pmd;
483         pte_t *pte;
484
485         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
486         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
487
488         start_page = (unsigned long) map_start & PAGE_MASK;
489         end_page = PAGE_ALIGN((unsigned long) map_end);
490         node = paddr_to_nid(__pa(start));
491
492         for (address = start_page; address < end_page; address += PAGE_SIZE) {
493                 pgd = pgd_offset_k(address);
494                 if (pgd_none(*pgd))
495                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
496                 pud = pud_offset(pgd, address);
497
498                 if (pud_none(*pud))
499                         pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
500                 pmd = pmd_offset(pud, address);
501
502                 if (pmd_none(*pmd))
503                         pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
504                 pte = pte_offset_kernel(pmd, address);
505
506                 if (pte_none(*pte))
507                         set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
508                                              PAGE_KERNEL));
509         }
510         return 0;
511 }
512
513 struct memmap_init_callback_data {
514         struct page *start;
515         struct page *end;
516         int nid;
517         unsigned long zone;
518 };
519
520 static int
521 virtual_memmap_init (u64 start, u64 end, void *arg)
522 {
523         struct memmap_init_callback_data *args;
524         struct page *map_start, *map_end;
525
526         args = (struct memmap_init_callback_data *) arg;
527         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
528         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
529
530         if (map_start < args->start)
531                 map_start = args->start;
532         if (map_end > args->end)
533                 map_end = args->end;
534
535         /*
536          * We have to initialize "out of bounds" struct page elements that fit completely
537          * on the same pages that were allocated for the "in bounds" elements because they
538          * may be referenced later (and found to be "reserved").
539          */
540         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
541         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
542                     / sizeof(struct page));
543
544         if (map_start < map_end)
545                 memmap_init_zone((unsigned long)(map_end - map_start),
546                                  args->nid, args->zone, page_to_pfn(map_start));
547         return 0;
548 }
549
550 void
551 memmap_init (unsigned long size, int nid, unsigned long zone,
552              unsigned long start_pfn)
553 {
554         if (!vmem_map)
555                 memmap_init_zone(size, nid, zone, start_pfn);
556         else {
557                 struct page *start;
558                 struct memmap_init_callback_data args;
559
560                 start = pfn_to_page(start_pfn);
561                 args.start = start;
562                 args.end = start + size;
563                 args.nid = nid;
564                 args.zone = zone;
565
566                 efi_memmap_walk(virtual_memmap_init, &args);
567         }
568 }
569
570 int
571 ia64_pfn_valid (unsigned long pfn)
572 {
573         char byte;
574         struct page *pg = pfn_to_page(pfn);
575
576         return     (__get_user(byte, (char __user *) pg) == 0)
577                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
578                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
579 }
580 EXPORT_SYMBOL(ia64_pfn_valid);
581
582 int __init
583 find_largest_hole (u64 start, u64 end, void *arg)
584 {
585         u64 *max_gap = arg;
586
587         static u64 last_end = PAGE_OFFSET;
588
589         /* NOTE: this algorithm assumes efi memmap table is ordered */
590
591         if (*max_gap < (start - last_end))
592                 *max_gap = start - last_end;
593         last_end = end;
594         return 0;
595 }
596
597 int __init
598 register_active_ranges(u64 start, u64 end, void *arg)
599 {
600         add_active_range(0, __pa(start) >> PAGE_SHIFT, __pa(end) >> PAGE_SHIFT);
601         return 0;
602 }
603 #endif /* CONFIG_VIRTUAL_MEM_MAP */
604
605 static int __init
606 count_reserved_pages (u64 start, u64 end, void *arg)
607 {
608         unsigned long num_reserved = 0;
609         unsigned long *count = arg;
610
611         for (; start < end; start += PAGE_SIZE)
612                 if (PageReserved(virt_to_page(start)))
613                         ++num_reserved;
614         *count += num_reserved;
615         return 0;
616 }
617
618 /*
619  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
620  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
621  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
622  * useful for performance testing, but conceivably could also come in handy for debugging
623  * purposes.
624  */
625
626 static int nolwsys __initdata;
627
628 static int __init
629 nolwsys_setup (char *s)
630 {
631         nolwsys = 1;
632         return 1;
633 }
634
635 __setup("nolwsys", nolwsys_setup);
636
637 void __init
638 mem_init (void)
639 {
640         long reserved_pages, codesize, datasize, initsize;
641         pg_data_t *pgdat;
642         int i;
643         static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
644
645         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
646         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
647         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
648
649 #ifdef CONFIG_PCI
650         /*
651          * This needs to be called _after_ the command line has been parsed but _before_
652          * any drivers that may need the PCI DMA interface are initialized or bootmem has
653          * been freed.
654          */
655         platform_dma_init();
656 #endif
657
658 #ifdef CONFIG_FLATMEM
659         if (!mem_map)
660                 BUG();
661         max_mapnr = max_low_pfn;
662 #endif
663
664         high_memory = __va(max_low_pfn * PAGE_SIZE);
665
666         kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
667         kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
668         kclist_add(&kcore_kernel, _stext, _end - _stext);
669
670         for_each_online_pgdat(pgdat)
671                 if (pgdat->bdata->node_bootmem_map)
672                         totalram_pages += free_all_bootmem_node(pgdat);
673
674         reserved_pages = 0;
675         efi_memmap_walk(count_reserved_pages, &reserved_pages);
676
677         codesize =  (unsigned long) _etext - (unsigned long) _stext;
678         datasize =  (unsigned long) _edata - (unsigned long) _etext;
679         initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
680
681         printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
682                "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
683                num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
684                reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
685
686
687         /*
688          * For fsyscall entrpoints with no light-weight handler, use the ordinary
689          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
690          * code can tell them apart.
691          */
692         for (i = 0; i < NR_syscalls; ++i) {
693                 extern unsigned long fsyscall_table[NR_syscalls];
694                 extern unsigned long sys_call_table[NR_syscalls];
695
696                 if (!fsyscall_table[i] || nolwsys)
697                         fsyscall_table[i] = sys_call_table[i] | 1;
698         }
699         setup_gate();
700
701 #ifdef CONFIG_IA32_SUPPORT
702         ia32_mem_init();
703 #endif
704 }
705
706 #ifdef CONFIG_MEMORY_HOTPLUG
707 void online_page(struct page *page)
708 {
709         ClearPageReserved(page);
710         init_page_count(page);
711         __free_page(page);
712         totalram_pages++;
713         num_physpages++;
714 }
715
716 int arch_add_memory(int nid, u64 start, u64 size)
717 {
718         pg_data_t *pgdat;
719         struct zone *zone;
720         unsigned long start_pfn = start >> PAGE_SHIFT;
721         unsigned long nr_pages = size >> PAGE_SHIFT;
722         int ret;
723
724         pgdat = NODE_DATA(nid);
725
726         zone = pgdat->node_zones + ZONE_NORMAL;
727         ret = __add_pages(zone, start_pfn, nr_pages);
728
729         if (ret)
730                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
731                        __FUNCTION__,  ret);
732
733         return ret;
734 }
735
736 int remove_memory(u64 start, u64 size)
737 {
738         return -EINVAL;
739 }
740 EXPORT_SYMBOL_GPL(remove_memory);
741 #endif