Merge git://git.kernel.org/pub/scm/linux/kernel/git/kyle/parisc-2.6
[sfrench/cifs-2.6.git] / arch / ia64 / mm / init.c
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/mm.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
23
24 #include <asm/dma.h>
25 #include <asm/ia32.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/system.h>
34 #include <asm/tlb.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/mca.h>
38 #include <asm/paravirt.h>
39
40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
41
42 extern void ia64_tlb_init (void);
43
44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
45
46 #ifdef CONFIG_VIRTUAL_MEM_MAP
47 unsigned long vmalloc_end = VMALLOC_END_INIT;
48 EXPORT_SYMBOL(vmalloc_end);
49 struct page *vmem_map;
50 EXPORT_SYMBOL(vmem_map);
51 #endif
52
53 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
54 EXPORT_SYMBOL(zero_page_memmap_ptr);
55
56 void
57 __ia64_sync_icache_dcache (pte_t pte)
58 {
59         unsigned long addr;
60         struct page *page;
61
62         page = pte_page(pte);
63         addr = (unsigned long) page_address(page);
64
65         if (test_bit(PG_arch_1, &page->flags))
66                 return;                         /* i-cache is already coherent with d-cache */
67
68         flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
69         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
70 }
71
72 /*
73  * Since DMA is i-cache coherent, any (complete) pages that were written via
74  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
75  * flush them when they get mapped into an executable vm-area.
76  */
77 void
78 dma_mark_clean(void *addr, size_t size)
79 {
80         unsigned long pg_addr, end;
81
82         pg_addr = PAGE_ALIGN((unsigned long) addr);
83         end = (unsigned long) addr + size;
84         while (pg_addr + PAGE_SIZE <= end) {
85                 struct page *page = virt_to_page(pg_addr);
86                 set_bit(PG_arch_1, &page->flags);
87                 pg_addr += PAGE_SIZE;
88         }
89 }
90
91 inline void
92 ia64_set_rbs_bot (void)
93 {
94         unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
95
96         if (stack_size > MAX_USER_STACK_SIZE)
97                 stack_size = MAX_USER_STACK_SIZE;
98         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
99 }
100
101 /*
102  * This performs some platform-dependent address space initialization.
103  * On IA-64, we want to setup the VM area for the register backing
104  * store (which grows upwards) and install the gateway page which is
105  * used for signal trampolines, etc.
106  */
107 void
108 ia64_init_addr_space (void)
109 {
110         struct vm_area_struct *vma;
111
112         ia64_set_rbs_bot();
113
114         /*
115          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
116          * the problem.  When the process attempts to write to the register backing store
117          * for the first time, it will get a SEGFAULT in this case.
118          */
119         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
120         if (vma) {
121                 vma->vm_mm = current->mm;
122                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
123                 vma->vm_end = vma->vm_start + PAGE_SIZE;
124                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
125                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
126                 down_write(&current->mm->mmap_sem);
127                 if (insert_vm_struct(current->mm, vma)) {
128                         up_write(&current->mm->mmap_sem);
129                         kmem_cache_free(vm_area_cachep, vma);
130                         return;
131                 }
132                 up_write(&current->mm->mmap_sem);
133         }
134
135         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
136         if (!(current->personality & MMAP_PAGE_ZERO)) {
137                 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
138                 if (vma) {
139                         vma->vm_mm = current->mm;
140                         vma->vm_end = PAGE_SIZE;
141                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
142                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
143                         down_write(&current->mm->mmap_sem);
144                         if (insert_vm_struct(current->mm, vma)) {
145                                 up_write(&current->mm->mmap_sem);
146                                 kmem_cache_free(vm_area_cachep, vma);
147                                 return;
148                         }
149                         up_write(&current->mm->mmap_sem);
150                 }
151         }
152 }
153
154 void
155 free_initmem (void)
156 {
157         unsigned long addr, eaddr;
158
159         addr = (unsigned long) ia64_imva(__init_begin);
160         eaddr = (unsigned long) ia64_imva(__init_end);
161         while (addr < eaddr) {
162                 ClearPageReserved(virt_to_page(addr));
163                 init_page_count(virt_to_page(addr));
164                 free_page(addr);
165                 ++totalram_pages;
166                 addr += PAGE_SIZE;
167         }
168         printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
169                (__init_end - __init_begin) >> 10);
170 }
171
172 void __init
173 free_initrd_mem (unsigned long start, unsigned long end)
174 {
175         struct page *page;
176         /*
177          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
178          * Thus EFI and the kernel may have different page sizes. It is
179          * therefore possible to have the initrd share the same page as
180          * the end of the kernel (given current setup).
181          *
182          * To avoid freeing/using the wrong page (kernel sized) we:
183          *      - align up the beginning of initrd
184          *      - align down the end of initrd
185          *
186          *  |             |
187          *  |=============| a000
188          *  |             |
189          *  |             |
190          *  |             | 9000
191          *  |/////////////|
192          *  |/////////////|
193          *  |=============| 8000
194          *  |///INITRD////|
195          *  |/////////////|
196          *  |/////////////| 7000
197          *  |             |
198          *  |KKKKKKKKKKKKK|
199          *  |=============| 6000
200          *  |KKKKKKKKKKKKK|
201          *  |KKKKKKKKKKKKK|
202          *  K=kernel using 8KB pages
203          *
204          * In this example, we must free page 8000 ONLY. So we must align up
205          * initrd_start and keep initrd_end as is.
206          */
207         start = PAGE_ALIGN(start);
208         end = end & PAGE_MASK;
209
210         if (start < end)
211                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
212
213         for (; start < end; start += PAGE_SIZE) {
214                 if (!virt_addr_valid(start))
215                         continue;
216                 page = virt_to_page(start);
217                 ClearPageReserved(page);
218                 init_page_count(page);
219                 free_page(start);
220                 ++totalram_pages;
221         }
222 }
223
224 /*
225  * This installs a clean page in the kernel's page table.
226  */
227 static struct page * __init
228 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
229 {
230         pgd_t *pgd;
231         pud_t *pud;
232         pmd_t *pmd;
233         pte_t *pte;
234
235         if (!PageReserved(page))
236                 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
237                        page_address(page));
238
239         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
240
241         {
242                 pud = pud_alloc(&init_mm, pgd, address);
243                 if (!pud)
244                         goto out;
245                 pmd = pmd_alloc(&init_mm, pud, address);
246                 if (!pmd)
247                         goto out;
248                 pte = pte_alloc_kernel(pmd, address);
249                 if (!pte)
250                         goto out;
251                 if (!pte_none(*pte))
252                         goto out;
253                 set_pte(pte, mk_pte(page, pgprot));
254         }
255   out:
256         /* no need for flush_tlb */
257         return page;
258 }
259
260 static void __init
261 setup_gate (void)
262 {
263         void *gate_section;
264         struct page *page;
265
266         /*
267          * Map the gate page twice: once read-only to export the ELF
268          * headers etc. and once execute-only page to enable
269          * privilege-promotion via "epc":
270          */
271         gate_section = paravirt_get_gate_section();
272         page = virt_to_page(ia64_imva(gate_section));
273         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
274 #ifdef HAVE_BUGGY_SEGREL
275         page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
276         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
277 #else
278         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
279         /* Fill in the holes (if any) with read-only zero pages: */
280         {
281                 unsigned long addr;
282
283                 for (addr = GATE_ADDR + PAGE_SIZE;
284                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
285                      addr += PAGE_SIZE)
286                 {
287                         put_kernel_page(ZERO_PAGE(0), addr,
288                                         PAGE_READONLY);
289                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
290                                         PAGE_READONLY);
291                 }
292         }
293 #endif
294         ia64_patch_gate();
295 }
296
297 void __devinit
298 ia64_mmu_init (void *my_cpu_data)
299 {
300         unsigned long pta, impl_va_bits;
301         extern void __devinit tlb_init (void);
302
303 #ifdef CONFIG_DISABLE_VHPT
304 #       define VHPT_ENABLE_BIT  0
305 #else
306 #       define VHPT_ENABLE_BIT  1
307 #endif
308
309         /*
310          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
311          * address space.  The IA-64 architecture guarantees that at least 50 bits of
312          * virtual address space are implemented but if we pick a large enough page size
313          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
314          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
315          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
316          * problem in practice.  Alternatively, we could truncate the top of the mapped
317          * address space to not permit mappings that would overlap with the VMLPT.
318          * --davidm 00/12/06
319          */
320 #       define pte_bits                 3
321 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
322         /*
323          * The virtual page table has to cover the entire implemented address space within
324          * a region even though not all of this space may be mappable.  The reason for
325          * this is that the Access bit and Dirty bit fault handlers perform
326          * non-speculative accesses to the virtual page table, so the address range of the
327          * virtual page table itself needs to be covered by virtual page table.
328          */
329 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
330 #       define POW2(n)                  (1ULL << (n))
331
332         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
333
334         if (impl_va_bits < 51 || impl_va_bits > 61)
335                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
336         /*
337          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
338          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
339          * the test makes sure that our mapped space doesn't overlap the
340          * unimplemented hole in the middle of the region.
341          */
342         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
343             (mapped_space_bits > impl_va_bits - 1))
344                 panic("Cannot build a big enough virtual-linear page table"
345                       " to cover mapped address space.\n"
346                       " Try using a smaller page size.\n");
347
348
349         /* place the VMLPT at the end of each page-table mapped region: */
350         pta = POW2(61) - POW2(vmlpt_bits);
351
352         /*
353          * Set the (virtually mapped linear) page table address.  Bit
354          * 8 selects between the short and long format, bits 2-7 the
355          * size of the table, and bit 0 whether the VHPT walker is
356          * enabled.
357          */
358         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
359
360         ia64_tlb_init();
361
362 #ifdef  CONFIG_HUGETLB_PAGE
363         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
364         ia64_srlz_d();
365 #endif
366 }
367
368 #ifdef CONFIG_VIRTUAL_MEM_MAP
369 int vmemmap_find_next_valid_pfn(int node, int i)
370 {
371         unsigned long end_address, hole_next_pfn;
372         unsigned long stop_address;
373         pg_data_t *pgdat = NODE_DATA(node);
374
375         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
376         end_address = PAGE_ALIGN(end_address);
377
378         stop_address = (unsigned long) &vmem_map[
379                 pgdat->node_start_pfn + pgdat->node_spanned_pages];
380
381         do {
382                 pgd_t *pgd;
383                 pud_t *pud;
384                 pmd_t *pmd;
385                 pte_t *pte;
386
387                 pgd = pgd_offset_k(end_address);
388                 if (pgd_none(*pgd)) {
389                         end_address += PGDIR_SIZE;
390                         continue;
391                 }
392
393                 pud = pud_offset(pgd, end_address);
394                 if (pud_none(*pud)) {
395                         end_address += PUD_SIZE;
396                         continue;
397                 }
398
399                 pmd = pmd_offset(pud, end_address);
400                 if (pmd_none(*pmd)) {
401                         end_address += PMD_SIZE;
402                         continue;
403                 }
404
405                 pte = pte_offset_kernel(pmd, end_address);
406 retry_pte:
407                 if (pte_none(*pte)) {
408                         end_address += PAGE_SIZE;
409                         pte++;
410                         if ((end_address < stop_address) &&
411                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
412                                 goto retry_pte;
413                         continue;
414                 }
415                 /* Found next valid vmem_map page */
416                 break;
417         } while (end_address < stop_address);
418
419         end_address = min(end_address, stop_address);
420         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
421         hole_next_pfn = end_address / sizeof(struct page);
422         return hole_next_pfn - pgdat->node_start_pfn;
423 }
424
425 int __init
426 create_mem_map_page_table (u64 start, u64 end, void *arg)
427 {
428         unsigned long address, start_page, end_page;
429         struct page *map_start, *map_end;
430         int node;
431         pgd_t *pgd;
432         pud_t *pud;
433         pmd_t *pmd;
434         pte_t *pte;
435
436         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
437         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
438
439         start_page = (unsigned long) map_start & PAGE_MASK;
440         end_page = PAGE_ALIGN((unsigned long) map_end);
441         node = paddr_to_nid(__pa(start));
442
443         for (address = start_page; address < end_page; address += PAGE_SIZE) {
444                 pgd = pgd_offset_k(address);
445                 if (pgd_none(*pgd))
446                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
447                 pud = pud_offset(pgd, address);
448
449                 if (pud_none(*pud))
450                         pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
451                 pmd = pmd_offset(pud, address);
452
453                 if (pmd_none(*pmd))
454                         pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
455                 pte = pte_offset_kernel(pmd, address);
456
457                 if (pte_none(*pte))
458                         set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
459                                              PAGE_KERNEL));
460         }
461         return 0;
462 }
463
464 struct memmap_init_callback_data {
465         struct page *start;
466         struct page *end;
467         int nid;
468         unsigned long zone;
469 };
470
471 static int __meminit
472 virtual_memmap_init (u64 start, u64 end, void *arg)
473 {
474         struct memmap_init_callback_data *args;
475         struct page *map_start, *map_end;
476
477         args = (struct memmap_init_callback_data *) arg;
478         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
479         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
480
481         if (map_start < args->start)
482                 map_start = args->start;
483         if (map_end > args->end)
484                 map_end = args->end;
485
486         /*
487          * We have to initialize "out of bounds" struct page elements that fit completely
488          * on the same pages that were allocated for the "in bounds" elements because they
489          * may be referenced later (and found to be "reserved").
490          */
491         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
492         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
493                     / sizeof(struct page));
494
495         if (map_start < map_end)
496                 memmap_init_zone((unsigned long)(map_end - map_start),
497                                  args->nid, args->zone, page_to_pfn(map_start),
498                                  MEMMAP_EARLY);
499         return 0;
500 }
501
502 void __meminit
503 memmap_init (unsigned long size, int nid, unsigned long zone,
504              unsigned long start_pfn)
505 {
506         if (!vmem_map)
507                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
508         else {
509                 struct page *start;
510                 struct memmap_init_callback_data args;
511
512                 start = pfn_to_page(start_pfn);
513                 args.start = start;
514                 args.end = start + size;
515                 args.nid = nid;
516                 args.zone = zone;
517
518                 efi_memmap_walk(virtual_memmap_init, &args);
519         }
520 }
521
522 int
523 ia64_pfn_valid (unsigned long pfn)
524 {
525         char byte;
526         struct page *pg = pfn_to_page(pfn);
527
528         return     (__get_user(byte, (char __user *) pg) == 0)
529                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
530                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
531 }
532 EXPORT_SYMBOL(ia64_pfn_valid);
533
534 int __init
535 find_largest_hole (u64 start, u64 end, void *arg)
536 {
537         u64 *max_gap = arg;
538
539         static u64 last_end = PAGE_OFFSET;
540
541         /* NOTE: this algorithm assumes efi memmap table is ordered */
542
543         if (*max_gap < (start - last_end))
544                 *max_gap = start - last_end;
545         last_end = end;
546         return 0;
547 }
548
549 #endif /* CONFIG_VIRTUAL_MEM_MAP */
550
551 int __init
552 register_active_ranges(u64 start, u64 len, int nid)
553 {
554         u64 end = start + len;
555
556 #ifdef CONFIG_KEXEC
557         if (start > crashk_res.start && start < crashk_res.end)
558                 start = crashk_res.end;
559         if (end > crashk_res.start && end < crashk_res.end)
560                 end = crashk_res.start;
561 #endif
562
563         if (start < end)
564                 add_active_range(nid, __pa(start) >> PAGE_SHIFT,
565                         __pa(end) >> PAGE_SHIFT);
566         return 0;
567 }
568
569 static int __init
570 count_reserved_pages (u64 start, u64 end, void *arg)
571 {
572         unsigned long num_reserved = 0;
573         unsigned long *count = arg;
574
575         for (; start < end; start += PAGE_SIZE)
576                 if (PageReserved(virt_to_page(start)))
577                         ++num_reserved;
578         *count += num_reserved;
579         return 0;
580 }
581
582 int
583 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
584 {
585         unsigned long pfn_start, pfn_end;
586 #ifdef CONFIG_FLATMEM
587         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
588         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
589 #else
590         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
591         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
592 #endif
593         min_low_pfn = min(min_low_pfn, pfn_start);
594         max_low_pfn = max(max_low_pfn, pfn_end);
595         return 0;
596 }
597
598 /*
599  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
600  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
601  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
602  * useful for performance testing, but conceivably could also come in handy for debugging
603  * purposes.
604  */
605
606 static int nolwsys __initdata;
607
608 static int __init
609 nolwsys_setup (char *s)
610 {
611         nolwsys = 1;
612         return 1;
613 }
614
615 __setup("nolwsys", nolwsys_setup);
616
617 void __init
618 mem_init (void)
619 {
620         long reserved_pages, codesize, datasize, initsize;
621         pg_data_t *pgdat;
622         int i;
623         static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
624
625         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
626         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
627         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
628
629 #ifdef CONFIG_PCI
630         /*
631          * This needs to be called _after_ the command line has been parsed but _before_
632          * any drivers that may need the PCI DMA interface are initialized or bootmem has
633          * been freed.
634          */
635         platform_dma_init();
636 #endif
637
638 #ifdef CONFIG_FLATMEM
639         BUG_ON(!mem_map);
640         max_mapnr = max_low_pfn;
641 #endif
642
643         high_memory = __va(max_low_pfn * PAGE_SIZE);
644
645         kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
646         kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
647         kclist_add(&kcore_kernel, _stext, _end - _stext);
648
649         for_each_online_pgdat(pgdat)
650                 if (pgdat->bdata->node_bootmem_map)
651                         totalram_pages += free_all_bootmem_node(pgdat);
652
653         reserved_pages = 0;
654         efi_memmap_walk(count_reserved_pages, &reserved_pages);
655
656         codesize =  (unsigned long) _etext - (unsigned long) _stext;
657         datasize =  (unsigned long) _edata - (unsigned long) _etext;
658         initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
659
660         printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
661                "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
662                num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
663                reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
664
665
666         /*
667          * For fsyscall entrpoints with no light-weight handler, use the ordinary
668          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
669          * code can tell them apart.
670          */
671         for (i = 0; i < NR_syscalls; ++i) {
672                 extern unsigned long sys_call_table[NR_syscalls];
673                 unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
674
675                 if (!fsyscall_table[i] || nolwsys)
676                         fsyscall_table[i] = sys_call_table[i] | 1;
677         }
678         setup_gate();
679
680 #ifdef CONFIG_IA32_SUPPORT
681         ia32_mem_init();
682 #endif
683 }
684
685 #ifdef CONFIG_MEMORY_HOTPLUG
686 int arch_add_memory(int nid, u64 start, u64 size)
687 {
688         pg_data_t *pgdat;
689         struct zone *zone;
690         unsigned long start_pfn = start >> PAGE_SHIFT;
691         unsigned long nr_pages = size >> PAGE_SHIFT;
692         int ret;
693
694         pgdat = NODE_DATA(nid);
695
696         zone = pgdat->node_zones + ZONE_NORMAL;
697         ret = __add_pages(nid, zone, start_pfn, nr_pages);
698
699         if (ret)
700                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
701                        __func__,  ret);
702
703         return ret;
704 }
705 #endif
706
707 /*
708  * Even when CONFIG_IA32_SUPPORT is not enabled it is
709  * useful to have the Linux/x86 domain registered to
710  * avoid an attempted module load when emulators call
711  * personality(PER_LINUX32). This saves several milliseconds
712  * on each such call.
713  */
714 static struct exec_domain ia32_exec_domain;
715
716 static int __init
717 per_linux32_init(void)
718 {
719         ia32_exec_domain.name = "Linux/x86";
720         ia32_exec_domain.handler = NULL;
721         ia32_exec_domain.pers_low = PER_LINUX32;
722         ia32_exec_domain.pers_high = PER_LINUX32;
723         ia32_exec_domain.signal_map = default_exec_domain.signal_map;
724         ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
725         register_exec_domain(&ia32_exec_domain);
726
727         return 0;
728 }
729
730 __initcall(per_linux32_init);