Merge tag 'kvm-s390-next-5.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / ia64 / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Initialize MMU support.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10
11 #include <linux/dma-noncoherent.h>
12 #include <linux/dmar.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/memblock.h>
16 #include <linux/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/mmzone.h>
19 #include <linux/module.h>
20 #include <linux/personality.h>
21 #include <linux/reboot.h>
22 #include <linux/slab.h>
23 #include <linux/swap.h>
24 #include <linux/proc_fs.h>
25 #include <linux/bitops.h>
26 #include <linux/kexec.h>
27 #include <linux/swiotlb.h>
28
29 #include <asm/dma.h>
30 #include <asm/io.h>
31 #include <asm/numa.h>
32 #include <asm/patch.h>
33 #include <asm/pgalloc.h>
34 #include <asm/sal.h>
35 #include <asm/sections.h>
36 #include <asm/tlb.h>
37 #include <linux/uaccess.h>
38 #include <asm/unistd.h>
39 #include <asm/mca.h>
40
41 extern void ia64_tlb_init (void);
42
43 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
44
45 #ifdef CONFIG_VIRTUAL_MEM_MAP
46 unsigned long VMALLOC_END = VMALLOC_END_INIT;
47 EXPORT_SYMBOL(VMALLOC_END);
48 struct page *vmem_map;
49 EXPORT_SYMBOL(vmem_map);
50 #endif
51
52 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
53 EXPORT_SYMBOL(zero_page_memmap_ptr);
54
55 void
56 __ia64_sync_icache_dcache (pte_t pte)
57 {
58         unsigned long addr;
59         struct page *page;
60
61         page = pte_page(pte);
62         addr = (unsigned long) page_address(page);
63
64         if (test_bit(PG_arch_1, &page->flags))
65                 return;                         /* i-cache is already coherent with d-cache */
66
67         flush_icache_range(addr, addr + page_size(page));
68         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
69 }
70
71 /*
72  * Since DMA is i-cache coherent, any (complete) pages that were written via
73  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
74  * flush them when they get mapped into an executable vm-area.
75  */
76 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
77                 enum dma_data_direction dir)
78 {
79         unsigned long pfn = PHYS_PFN(paddr);
80
81         do {
82                 set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
83         } while (++pfn <= PHYS_PFN(paddr + size - 1));
84 }
85
86 inline void
87 ia64_set_rbs_bot (void)
88 {
89         unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
90
91         if (stack_size > MAX_USER_STACK_SIZE)
92                 stack_size = MAX_USER_STACK_SIZE;
93         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
94 }
95
96 /*
97  * This performs some platform-dependent address space initialization.
98  * On IA-64, we want to setup the VM area for the register backing
99  * store (which grows upwards) and install the gateway page which is
100  * used for signal trampolines, etc.
101  */
102 void
103 ia64_init_addr_space (void)
104 {
105         struct vm_area_struct *vma;
106
107         ia64_set_rbs_bot();
108
109         /*
110          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
111          * the problem.  When the process attempts to write to the register backing store
112          * for the first time, it will get a SEGFAULT in this case.
113          */
114         vma = vm_area_alloc(current->mm);
115         if (vma) {
116                 vma_set_anonymous(vma);
117                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
118                 vma->vm_end = vma->vm_start + PAGE_SIZE;
119                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
120                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
121                 down_write(&current->mm->mmap_sem);
122                 if (insert_vm_struct(current->mm, vma)) {
123                         up_write(&current->mm->mmap_sem);
124                         vm_area_free(vma);
125                         return;
126                 }
127                 up_write(&current->mm->mmap_sem);
128         }
129
130         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
131         if (!(current->personality & MMAP_PAGE_ZERO)) {
132                 vma = vm_area_alloc(current->mm);
133                 if (vma) {
134                         vma_set_anonymous(vma);
135                         vma->vm_end = PAGE_SIZE;
136                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
137                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
138                                         VM_DONTEXPAND | VM_DONTDUMP;
139                         down_write(&current->mm->mmap_sem);
140                         if (insert_vm_struct(current->mm, vma)) {
141                                 up_write(&current->mm->mmap_sem);
142                                 vm_area_free(vma);
143                                 return;
144                         }
145                         up_write(&current->mm->mmap_sem);
146                 }
147         }
148 }
149
150 void
151 free_initmem (void)
152 {
153         free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
154                            -1, "unused kernel");
155 }
156
157 void __init
158 free_initrd_mem (unsigned long start, unsigned long end)
159 {
160         /*
161          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
162          * Thus EFI and the kernel may have different page sizes. It is
163          * therefore possible to have the initrd share the same page as
164          * the end of the kernel (given current setup).
165          *
166          * To avoid freeing/using the wrong page (kernel sized) we:
167          *      - align up the beginning of initrd
168          *      - align down the end of initrd
169          *
170          *  |             |
171          *  |=============| a000
172          *  |             |
173          *  |             |
174          *  |             | 9000
175          *  |/////////////|
176          *  |/////////////|
177          *  |=============| 8000
178          *  |///INITRD////|
179          *  |/////////////|
180          *  |/////////////| 7000
181          *  |             |
182          *  |KKKKKKKKKKKKK|
183          *  |=============| 6000
184          *  |KKKKKKKKKKKKK|
185          *  |KKKKKKKKKKKKK|
186          *  K=kernel using 8KB pages
187          *
188          * In this example, we must free page 8000 ONLY. So we must align up
189          * initrd_start and keep initrd_end as is.
190          */
191         start = PAGE_ALIGN(start);
192         end = end & PAGE_MASK;
193
194         if (start < end)
195                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
196
197         for (; start < end; start += PAGE_SIZE) {
198                 if (!virt_addr_valid(start))
199                         continue;
200                 free_reserved_page(virt_to_page(start));
201         }
202 }
203
204 /*
205  * This installs a clean page in the kernel's page table.
206  */
207 static struct page * __init
208 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
209 {
210         pgd_t *pgd;
211         pud_t *pud;
212         pmd_t *pmd;
213         pte_t *pte;
214
215         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
216
217         {
218                 pud = pud_alloc(&init_mm, pgd, address);
219                 if (!pud)
220                         goto out;
221                 pmd = pmd_alloc(&init_mm, pud, address);
222                 if (!pmd)
223                         goto out;
224                 pte = pte_alloc_kernel(pmd, address);
225                 if (!pte)
226                         goto out;
227                 if (!pte_none(*pte))
228                         goto out;
229                 set_pte(pte, mk_pte(page, pgprot));
230         }
231   out:
232         /* no need for flush_tlb */
233         return page;
234 }
235
236 static void __init
237 setup_gate (void)
238 {
239         struct page *page;
240
241         /*
242          * Map the gate page twice: once read-only to export the ELF
243          * headers etc. and once execute-only page to enable
244          * privilege-promotion via "epc":
245          */
246         page = virt_to_page(ia64_imva(__start_gate_section));
247         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
248 #ifdef HAVE_BUGGY_SEGREL
249         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
250         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
251 #else
252         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
253         /* Fill in the holes (if any) with read-only zero pages: */
254         {
255                 unsigned long addr;
256
257                 for (addr = GATE_ADDR + PAGE_SIZE;
258                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
259                      addr += PAGE_SIZE)
260                 {
261                         put_kernel_page(ZERO_PAGE(0), addr,
262                                         PAGE_READONLY);
263                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
264                                         PAGE_READONLY);
265                 }
266         }
267 #endif
268         ia64_patch_gate();
269 }
270
271 static struct vm_area_struct gate_vma;
272
273 static int __init gate_vma_init(void)
274 {
275         vma_init(&gate_vma, NULL);
276         gate_vma.vm_start = FIXADDR_USER_START;
277         gate_vma.vm_end = FIXADDR_USER_END;
278         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
279         gate_vma.vm_page_prot = __P101;
280
281         return 0;
282 }
283 __initcall(gate_vma_init);
284
285 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
286 {
287         return &gate_vma;
288 }
289
290 int in_gate_area_no_mm(unsigned long addr)
291 {
292         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
293                 return 1;
294         return 0;
295 }
296
297 int in_gate_area(struct mm_struct *mm, unsigned long addr)
298 {
299         return in_gate_area_no_mm(addr);
300 }
301
302 void ia64_mmu_init(void *my_cpu_data)
303 {
304         unsigned long pta, impl_va_bits;
305         extern void tlb_init(void);
306
307 #ifdef CONFIG_DISABLE_VHPT
308 #       define VHPT_ENABLE_BIT  0
309 #else
310 #       define VHPT_ENABLE_BIT  1
311 #endif
312
313         /*
314          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
315          * address space.  The IA-64 architecture guarantees that at least 50 bits of
316          * virtual address space are implemented but if we pick a large enough page size
317          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
318          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
319          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
320          * problem in practice.  Alternatively, we could truncate the top of the mapped
321          * address space to not permit mappings that would overlap with the VMLPT.
322          * --davidm 00/12/06
323          */
324 #       define pte_bits                 3
325 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
326         /*
327          * The virtual page table has to cover the entire implemented address space within
328          * a region even though not all of this space may be mappable.  The reason for
329          * this is that the Access bit and Dirty bit fault handlers perform
330          * non-speculative accesses to the virtual page table, so the address range of the
331          * virtual page table itself needs to be covered by virtual page table.
332          */
333 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
334 #       define POW2(n)                  (1ULL << (n))
335
336         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
337
338         if (impl_va_bits < 51 || impl_va_bits > 61)
339                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
340         /*
341          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
342          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
343          * the test makes sure that our mapped space doesn't overlap the
344          * unimplemented hole in the middle of the region.
345          */
346         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
347             (mapped_space_bits > impl_va_bits - 1))
348                 panic("Cannot build a big enough virtual-linear page table"
349                       " to cover mapped address space.\n"
350                       " Try using a smaller page size.\n");
351
352
353         /* place the VMLPT at the end of each page-table mapped region: */
354         pta = POW2(61) - POW2(vmlpt_bits);
355
356         /*
357          * Set the (virtually mapped linear) page table address.  Bit
358          * 8 selects between the short and long format, bits 2-7 the
359          * size of the table, and bit 0 whether the VHPT walker is
360          * enabled.
361          */
362         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
363
364         ia64_tlb_init();
365
366 #ifdef  CONFIG_HUGETLB_PAGE
367         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
368         ia64_srlz_d();
369 #endif
370 }
371
372 #ifdef CONFIG_VIRTUAL_MEM_MAP
373 int vmemmap_find_next_valid_pfn(int node, int i)
374 {
375         unsigned long end_address, hole_next_pfn;
376         unsigned long stop_address;
377         pg_data_t *pgdat = NODE_DATA(node);
378
379         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
380         end_address = PAGE_ALIGN(end_address);
381         stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
382
383         do {
384                 pgd_t *pgd;
385                 pud_t *pud;
386                 pmd_t *pmd;
387                 pte_t *pte;
388
389                 pgd = pgd_offset_k(end_address);
390                 if (pgd_none(*pgd)) {
391                         end_address += PGDIR_SIZE;
392                         continue;
393                 }
394
395                 pud = pud_offset(pgd, end_address);
396                 if (pud_none(*pud)) {
397                         end_address += PUD_SIZE;
398                         continue;
399                 }
400
401                 pmd = pmd_offset(pud, end_address);
402                 if (pmd_none(*pmd)) {
403                         end_address += PMD_SIZE;
404                         continue;
405                 }
406
407                 pte = pte_offset_kernel(pmd, end_address);
408 retry_pte:
409                 if (pte_none(*pte)) {
410                         end_address += PAGE_SIZE;
411                         pte++;
412                         if ((end_address < stop_address) &&
413                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
414                                 goto retry_pte;
415                         continue;
416                 }
417                 /* Found next valid vmem_map page */
418                 break;
419         } while (end_address < stop_address);
420
421         end_address = min(end_address, stop_address);
422         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
423         hole_next_pfn = end_address / sizeof(struct page);
424         return hole_next_pfn - pgdat->node_start_pfn;
425 }
426
427 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
428 {
429         unsigned long address, start_page, end_page;
430         struct page *map_start, *map_end;
431         int node;
432         pgd_t *pgd;
433         pud_t *pud;
434         pmd_t *pmd;
435         pte_t *pte;
436
437         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
438         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
439
440         start_page = (unsigned long) map_start & PAGE_MASK;
441         end_page = PAGE_ALIGN((unsigned long) map_end);
442         node = paddr_to_nid(__pa(start));
443
444         for (address = start_page; address < end_page; address += PAGE_SIZE) {
445                 pgd = pgd_offset_k(address);
446                 if (pgd_none(*pgd)) {
447                         pud = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
448                         if (!pud)
449                                 goto err_alloc;
450                         pgd_populate(&init_mm, pgd, pud);
451                 }
452                 pud = pud_offset(pgd, address);
453
454                 if (pud_none(*pud)) {
455                         pmd = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
456                         if (!pmd)
457                                 goto err_alloc;
458                         pud_populate(&init_mm, pud, pmd);
459                 }
460                 pmd = pmd_offset(pud, address);
461
462                 if (pmd_none(*pmd)) {
463                         pte = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
464                         if (!pte)
465                                 goto err_alloc;
466                         pmd_populate_kernel(&init_mm, pmd, pte);
467                 }
468                 pte = pte_offset_kernel(pmd, address);
469
470                 if (pte_none(*pte)) {
471                         void *page = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE,
472                                                          node);
473                         if (!page)
474                                 goto err_alloc;
475                         set_pte(pte, pfn_pte(__pa(page) >> PAGE_SHIFT,
476                                              PAGE_KERNEL));
477                 }
478         }
479         return 0;
480
481 err_alloc:
482         panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d\n",
483               __func__, PAGE_SIZE, PAGE_SIZE, node);
484         return -ENOMEM;
485 }
486
487 struct memmap_init_callback_data {
488         struct page *start;
489         struct page *end;
490         int nid;
491         unsigned long zone;
492 };
493
494 static int __meminit
495 virtual_memmap_init(u64 start, u64 end, void *arg)
496 {
497         struct memmap_init_callback_data *args;
498         struct page *map_start, *map_end;
499
500         args = (struct memmap_init_callback_data *) arg;
501         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
502         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
503
504         if (map_start < args->start)
505                 map_start = args->start;
506         if (map_end > args->end)
507                 map_end = args->end;
508
509         /*
510          * We have to initialize "out of bounds" struct page elements that fit completely
511          * on the same pages that were allocated for the "in bounds" elements because they
512          * may be referenced later (and found to be "reserved").
513          */
514         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
515         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
516                     / sizeof(struct page));
517
518         if (map_start < map_end)
519                 memmap_init_zone((unsigned long)(map_end - map_start),
520                                  args->nid, args->zone, page_to_pfn(map_start),
521                                  MEMMAP_EARLY, NULL);
522         return 0;
523 }
524
525 void __meminit
526 memmap_init (unsigned long size, int nid, unsigned long zone,
527              unsigned long start_pfn)
528 {
529         if (!vmem_map) {
530                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY,
531                                 NULL);
532         } else {
533                 struct page *start;
534                 struct memmap_init_callback_data args;
535
536                 start = pfn_to_page(start_pfn);
537                 args.start = start;
538                 args.end = start + size;
539                 args.nid = nid;
540                 args.zone = zone;
541
542                 efi_memmap_walk(virtual_memmap_init, &args);
543         }
544 }
545
546 int
547 ia64_pfn_valid (unsigned long pfn)
548 {
549         char byte;
550         struct page *pg = pfn_to_page(pfn);
551
552         return     (__get_user(byte, (char __user *) pg) == 0)
553                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
554                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
555 }
556 EXPORT_SYMBOL(ia64_pfn_valid);
557
558 int __init find_largest_hole(u64 start, u64 end, void *arg)
559 {
560         u64 *max_gap = arg;
561
562         static u64 last_end = PAGE_OFFSET;
563
564         /* NOTE: this algorithm assumes efi memmap table is ordered */
565
566         if (*max_gap < (start - last_end))
567                 *max_gap = start - last_end;
568         last_end = end;
569         return 0;
570 }
571
572 #endif /* CONFIG_VIRTUAL_MEM_MAP */
573
574 int __init register_active_ranges(u64 start, u64 len, int nid)
575 {
576         u64 end = start + len;
577
578 #ifdef CONFIG_KEXEC
579         if (start > crashk_res.start && start < crashk_res.end)
580                 start = crashk_res.end;
581         if (end > crashk_res.start && end < crashk_res.end)
582                 end = crashk_res.start;
583 #endif
584
585         if (start < end)
586                 memblock_add_node(__pa(start), end - start, nid);
587         return 0;
588 }
589
590 int
591 find_max_min_low_pfn (u64 start, u64 end, void *arg)
592 {
593         unsigned long pfn_start, pfn_end;
594 #ifdef CONFIG_FLATMEM
595         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
596         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
597 #else
598         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
599         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
600 #endif
601         min_low_pfn = min(min_low_pfn, pfn_start);
602         max_low_pfn = max(max_low_pfn, pfn_end);
603         return 0;
604 }
605
606 /*
607  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
608  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
609  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
610  * useful for performance testing, but conceivably could also come in handy for debugging
611  * purposes.
612  */
613
614 static int nolwsys __initdata;
615
616 static int __init
617 nolwsys_setup (char *s)
618 {
619         nolwsys = 1;
620         return 1;
621 }
622
623 __setup("nolwsys", nolwsys_setup);
624
625 void __init
626 mem_init (void)
627 {
628         int i;
629
630         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
631         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
632         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
633
634         /*
635          * This needs to be called _after_ the command line has been parsed but
636          * _before_ any drivers that may need the PCI DMA interface are
637          * initialized or bootmem has been freed.
638          */
639 #ifdef CONFIG_INTEL_IOMMU
640         detect_intel_iommu();
641         if (!iommu_detected)
642 #endif
643 #ifdef CONFIG_SWIOTLB
644                 swiotlb_init(1);
645 #endif
646
647 #ifdef CONFIG_FLATMEM
648         BUG_ON(!mem_map);
649 #endif
650
651         set_max_mapnr(max_low_pfn);
652         high_memory = __va(max_low_pfn * PAGE_SIZE);
653         memblock_free_all();
654         mem_init_print_info(NULL);
655
656         /*
657          * For fsyscall entrpoints with no light-weight handler, use the ordinary
658          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
659          * code can tell them apart.
660          */
661         for (i = 0; i < NR_syscalls; ++i) {
662                 extern unsigned long fsyscall_table[NR_syscalls];
663                 extern unsigned long sys_call_table[NR_syscalls];
664
665                 if (!fsyscall_table[i] || nolwsys)
666                         fsyscall_table[i] = sys_call_table[i] | 1;
667         }
668         setup_gate();
669 }
670
671 #ifdef CONFIG_MEMORY_HOTPLUG
672 int arch_add_memory(int nid, u64 start, u64 size,
673                         struct mhp_restrictions *restrictions)
674 {
675         unsigned long start_pfn = start >> PAGE_SHIFT;
676         unsigned long nr_pages = size >> PAGE_SHIFT;
677         int ret;
678
679         ret = __add_pages(nid, start_pfn, nr_pages, restrictions);
680         if (ret)
681                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
682                        __func__,  ret);
683
684         return ret;
685 }
686
687 void arch_remove_memory(int nid, u64 start, u64 size,
688                         struct vmem_altmap *altmap)
689 {
690         unsigned long start_pfn = start >> PAGE_SHIFT;
691         unsigned long nr_pages = size >> PAGE_SHIFT;
692
693         __remove_pages(start_pfn, nr_pages, altmap);
694 }
695 #endif