flush icache before set_pte() on ia64: flush icache at set_pte
[sfrench/cifs-2.6.git] / arch / ia64 / mm / init.c
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/mm.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
23
24 #include <asm/a.out.h>
25 #include <asm/dma.h>
26 #include <asm/ia32.h>
27 #include <asm/io.h>
28 #include <asm/machvec.h>
29 #include <asm/numa.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
32 #include <asm/sal.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
35 #include <asm/tlb.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
39
40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
41
42 extern void ia64_tlb_init (void);
43
44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
45
46 #ifdef CONFIG_VIRTUAL_MEM_MAP
47 unsigned long vmalloc_end = VMALLOC_END_INIT;
48 EXPORT_SYMBOL(vmalloc_end);
49 struct page *vmem_map;
50 EXPORT_SYMBOL(vmem_map);
51 #endif
52
53 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
54 EXPORT_SYMBOL(zero_page_memmap_ptr);
55
56 void
57 __ia64_sync_icache_dcache (pte_t pte)
58 {
59         unsigned long addr;
60         struct page *page;
61         unsigned long order;
62
63         page = pte_page(pte);
64         addr = (unsigned long) page_address(page);
65
66         if (test_bit(PG_arch_1, &page->flags))
67                 return;                         /* i-cache is already coherent with d-cache */
68
69         if (PageCompound(page)) {
70                 order = compound_order(page);
71                 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
72         }
73         else
74                 flush_icache_range(addr, addr + PAGE_SIZE);
75         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
76 }
77
78 /*
79  * Since DMA is i-cache coherent, any (complete) pages that were written via
80  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
81  * flush them when they get mapped into an executable vm-area.
82  */
83 void
84 dma_mark_clean(void *addr, size_t size)
85 {
86         unsigned long pg_addr, end;
87
88         pg_addr = PAGE_ALIGN((unsigned long) addr);
89         end = (unsigned long) addr + size;
90         while (pg_addr + PAGE_SIZE <= end) {
91                 struct page *page = virt_to_page(pg_addr);
92                 set_bit(PG_arch_1, &page->flags);
93                 pg_addr += PAGE_SIZE;
94         }
95 }
96
97 inline void
98 ia64_set_rbs_bot (void)
99 {
100         unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
101
102         if (stack_size > MAX_USER_STACK_SIZE)
103                 stack_size = MAX_USER_STACK_SIZE;
104         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
105 }
106
107 /*
108  * This performs some platform-dependent address space initialization.
109  * On IA-64, we want to setup the VM area for the register backing
110  * store (which grows upwards) and install the gateway page which is
111  * used for signal trampolines, etc.
112  */
113 void
114 ia64_init_addr_space (void)
115 {
116         struct vm_area_struct *vma;
117
118         ia64_set_rbs_bot();
119
120         /*
121          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
122          * the problem.  When the process attempts to write to the register backing store
123          * for the first time, it will get a SEGFAULT in this case.
124          */
125         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
126         if (vma) {
127                 vma->vm_mm = current->mm;
128                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
129                 vma->vm_end = vma->vm_start + PAGE_SIZE;
130                 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
131                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
132                 down_write(&current->mm->mmap_sem);
133                 if (insert_vm_struct(current->mm, vma)) {
134                         up_write(&current->mm->mmap_sem);
135                         kmem_cache_free(vm_area_cachep, vma);
136                         return;
137                 }
138                 up_write(&current->mm->mmap_sem);
139         }
140
141         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
142         if (!(current->personality & MMAP_PAGE_ZERO)) {
143                 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
144                 if (vma) {
145                         vma->vm_mm = current->mm;
146                         vma->vm_end = PAGE_SIZE;
147                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
148                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
149                         down_write(&current->mm->mmap_sem);
150                         if (insert_vm_struct(current->mm, vma)) {
151                                 up_write(&current->mm->mmap_sem);
152                                 kmem_cache_free(vm_area_cachep, vma);
153                                 return;
154                         }
155                         up_write(&current->mm->mmap_sem);
156                 }
157         }
158 }
159
160 void
161 free_initmem (void)
162 {
163         unsigned long addr, eaddr;
164
165         addr = (unsigned long) ia64_imva(__init_begin);
166         eaddr = (unsigned long) ia64_imva(__init_end);
167         while (addr < eaddr) {
168                 ClearPageReserved(virt_to_page(addr));
169                 init_page_count(virt_to_page(addr));
170                 free_page(addr);
171                 ++totalram_pages;
172                 addr += PAGE_SIZE;
173         }
174         printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
175                (__init_end - __init_begin) >> 10);
176 }
177
178 void __init
179 free_initrd_mem (unsigned long start, unsigned long end)
180 {
181         struct page *page;
182         /*
183          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
184          * Thus EFI and the kernel may have different page sizes. It is
185          * therefore possible to have the initrd share the same page as
186          * the end of the kernel (given current setup).
187          *
188          * To avoid freeing/using the wrong page (kernel sized) we:
189          *      - align up the beginning of initrd
190          *      - align down the end of initrd
191          *
192          *  |             |
193          *  |=============| a000
194          *  |             |
195          *  |             |
196          *  |             | 9000
197          *  |/////////////|
198          *  |/////////////|
199          *  |=============| 8000
200          *  |///INITRD////|
201          *  |/////////////|
202          *  |/////////////| 7000
203          *  |             |
204          *  |KKKKKKKKKKKKK|
205          *  |=============| 6000
206          *  |KKKKKKKKKKKKK|
207          *  |KKKKKKKKKKKKK|
208          *  K=kernel using 8KB pages
209          *
210          * In this example, we must free page 8000 ONLY. So we must align up
211          * initrd_start and keep initrd_end as is.
212          */
213         start = PAGE_ALIGN(start);
214         end = end & PAGE_MASK;
215
216         if (start < end)
217                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
218
219         for (; start < end; start += PAGE_SIZE) {
220                 if (!virt_addr_valid(start))
221                         continue;
222                 page = virt_to_page(start);
223                 ClearPageReserved(page);
224                 init_page_count(page);
225                 free_page(start);
226                 ++totalram_pages;
227         }
228 }
229
230 /*
231  * This installs a clean page in the kernel's page table.
232  */
233 static struct page * __init
234 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
235 {
236         pgd_t *pgd;
237         pud_t *pud;
238         pmd_t *pmd;
239         pte_t *pte;
240
241         if (!PageReserved(page))
242                 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
243                        page_address(page));
244
245         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
246
247         {
248                 pud = pud_alloc(&init_mm, pgd, address);
249                 if (!pud)
250                         goto out;
251                 pmd = pmd_alloc(&init_mm, pud, address);
252                 if (!pmd)
253                         goto out;
254                 pte = pte_alloc_kernel(pmd, address);
255                 if (!pte)
256                         goto out;
257                 if (!pte_none(*pte))
258                         goto out;
259                 set_pte(pte, mk_pte(page, pgprot));
260         }
261   out:
262         /* no need for flush_tlb */
263         return page;
264 }
265
266 static void __init
267 setup_gate (void)
268 {
269         struct page *page;
270
271         /*
272          * Map the gate page twice: once read-only to export the ELF
273          * headers etc. and once execute-only page to enable
274          * privilege-promotion via "epc":
275          */
276         page = virt_to_page(ia64_imva(__start_gate_section));
277         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
278 #ifdef HAVE_BUGGY_SEGREL
279         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
280         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
281 #else
282         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
283         /* Fill in the holes (if any) with read-only zero pages: */
284         {
285                 unsigned long addr;
286
287                 for (addr = GATE_ADDR + PAGE_SIZE;
288                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
289                      addr += PAGE_SIZE)
290                 {
291                         put_kernel_page(ZERO_PAGE(0), addr,
292                                         PAGE_READONLY);
293                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
294                                         PAGE_READONLY);
295                 }
296         }
297 #endif
298         ia64_patch_gate();
299 }
300
301 void __devinit
302 ia64_mmu_init (void *my_cpu_data)
303 {
304         unsigned long pta, impl_va_bits;
305         extern void __devinit tlb_init (void);
306
307 #ifdef CONFIG_DISABLE_VHPT
308 #       define VHPT_ENABLE_BIT  0
309 #else
310 #       define VHPT_ENABLE_BIT  1
311 #endif
312
313         /*
314          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
315          * address space.  The IA-64 architecture guarantees that at least 50 bits of
316          * virtual address space are implemented but if we pick a large enough page size
317          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
318          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
319          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
320          * problem in practice.  Alternatively, we could truncate the top of the mapped
321          * address space to not permit mappings that would overlap with the VMLPT.
322          * --davidm 00/12/06
323          */
324 #       define pte_bits                 3
325 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
326         /*
327          * The virtual page table has to cover the entire implemented address space within
328          * a region even though not all of this space may be mappable.  The reason for
329          * this is that the Access bit and Dirty bit fault handlers perform
330          * non-speculative accesses to the virtual page table, so the address range of the
331          * virtual page table itself needs to be covered by virtual page table.
332          */
333 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
334 #       define POW2(n)                  (1ULL << (n))
335
336         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
337
338         if (impl_va_bits < 51 || impl_va_bits > 61)
339                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
340         /*
341          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
342          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
343          * the test makes sure that our mapped space doesn't overlap the
344          * unimplemented hole in the middle of the region.
345          */
346         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
347             (mapped_space_bits > impl_va_bits - 1))
348                 panic("Cannot build a big enough virtual-linear page table"
349                       " to cover mapped address space.\n"
350                       " Try using a smaller page size.\n");
351
352
353         /* place the VMLPT at the end of each page-table mapped region: */
354         pta = POW2(61) - POW2(vmlpt_bits);
355
356         /*
357          * Set the (virtually mapped linear) page table address.  Bit
358          * 8 selects between the short and long format, bits 2-7 the
359          * size of the table, and bit 0 whether the VHPT walker is
360          * enabled.
361          */
362         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
363
364         ia64_tlb_init();
365
366 #ifdef  CONFIG_HUGETLB_PAGE
367         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
368         ia64_srlz_d();
369 #endif
370 }
371
372 #ifdef CONFIG_VIRTUAL_MEM_MAP
373 int vmemmap_find_next_valid_pfn(int node, int i)
374 {
375         unsigned long end_address, hole_next_pfn;
376         unsigned long stop_address;
377         pg_data_t *pgdat = NODE_DATA(node);
378
379         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
380         end_address = PAGE_ALIGN(end_address);
381
382         stop_address = (unsigned long) &vmem_map[
383                 pgdat->node_start_pfn + pgdat->node_spanned_pages];
384
385         do {
386                 pgd_t *pgd;
387                 pud_t *pud;
388                 pmd_t *pmd;
389                 pte_t *pte;
390
391                 pgd = pgd_offset_k(end_address);
392                 if (pgd_none(*pgd)) {
393                         end_address += PGDIR_SIZE;
394                         continue;
395                 }
396
397                 pud = pud_offset(pgd, end_address);
398                 if (pud_none(*pud)) {
399                         end_address += PUD_SIZE;
400                         continue;
401                 }
402
403                 pmd = pmd_offset(pud, end_address);
404                 if (pmd_none(*pmd)) {
405                         end_address += PMD_SIZE;
406                         continue;
407                 }
408
409                 pte = pte_offset_kernel(pmd, end_address);
410 retry_pte:
411                 if (pte_none(*pte)) {
412                         end_address += PAGE_SIZE;
413                         pte++;
414                         if ((end_address < stop_address) &&
415                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
416                                 goto retry_pte;
417                         continue;
418                 }
419                 /* Found next valid vmem_map page */
420                 break;
421         } while (end_address < stop_address);
422
423         end_address = min(end_address, stop_address);
424         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
425         hole_next_pfn = end_address / sizeof(struct page);
426         return hole_next_pfn - pgdat->node_start_pfn;
427 }
428
429 int __init
430 create_mem_map_page_table (u64 start, u64 end, void *arg)
431 {
432         unsigned long address, start_page, end_page;
433         struct page *map_start, *map_end;
434         int node;
435         pgd_t *pgd;
436         pud_t *pud;
437         pmd_t *pmd;
438         pte_t *pte;
439
440         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
441         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
442
443         start_page = (unsigned long) map_start & PAGE_MASK;
444         end_page = PAGE_ALIGN((unsigned long) map_end);
445         node = paddr_to_nid(__pa(start));
446
447         for (address = start_page; address < end_page; address += PAGE_SIZE) {
448                 pgd = pgd_offset_k(address);
449                 if (pgd_none(*pgd))
450                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
451                 pud = pud_offset(pgd, address);
452
453                 if (pud_none(*pud))
454                         pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
455                 pmd = pmd_offset(pud, address);
456
457                 if (pmd_none(*pmd))
458                         pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
459                 pte = pte_offset_kernel(pmd, address);
460
461                 if (pte_none(*pte))
462                         set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
463                                              PAGE_KERNEL));
464         }
465         return 0;
466 }
467
468 struct memmap_init_callback_data {
469         struct page *start;
470         struct page *end;
471         int nid;
472         unsigned long zone;
473 };
474
475 static int
476 virtual_memmap_init (u64 start, u64 end, void *arg)
477 {
478         struct memmap_init_callback_data *args;
479         struct page *map_start, *map_end;
480
481         args = (struct memmap_init_callback_data *) arg;
482         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
483         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
484
485         if (map_start < args->start)
486                 map_start = args->start;
487         if (map_end > args->end)
488                 map_end = args->end;
489
490         /*
491          * We have to initialize "out of bounds" struct page elements that fit completely
492          * on the same pages that were allocated for the "in bounds" elements because they
493          * may be referenced later (and found to be "reserved").
494          */
495         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
496         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
497                     / sizeof(struct page));
498
499         if (map_start < map_end)
500                 memmap_init_zone((unsigned long)(map_end - map_start),
501                                  args->nid, args->zone, page_to_pfn(map_start),
502                                  MEMMAP_EARLY);
503         return 0;
504 }
505
506 void
507 memmap_init (unsigned long size, int nid, unsigned long zone,
508              unsigned long start_pfn)
509 {
510         if (!vmem_map)
511                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
512         else {
513                 struct page *start;
514                 struct memmap_init_callback_data args;
515
516                 start = pfn_to_page(start_pfn);
517                 args.start = start;
518                 args.end = start + size;
519                 args.nid = nid;
520                 args.zone = zone;
521
522                 efi_memmap_walk(virtual_memmap_init, &args);
523         }
524 }
525
526 int
527 ia64_pfn_valid (unsigned long pfn)
528 {
529         char byte;
530         struct page *pg = pfn_to_page(pfn);
531
532         return     (__get_user(byte, (char __user *) pg) == 0)
533                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
534                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
535 }
536 EXPORT_SYMBOL(ia64_pfn_valid);
537
538 int __init
539 find_largest_hole (u64 start, u64 end, void *arg)
540 {
541         u64 *max_gap = arg;
542
543         static u64 last_end = PAGE_OFFSET;
544
545         /* NOTE: this algorithm assumes efi memmap table is ordered */
546
547         if (*max_gap < (start - last_end))
548                 *max_gap = start - last_end;
549         last_end = end;
550         return 0;
551 }
552
553 #endif /* CONFIG_VIRTUAL_MEM_MAP */
554
555 int __init
556 register_active_ranges(u64 start, u64 end, void *arg)
557 {
558         int nid = paddr_to_nid(__pa(start));
559
560         if (nid < 0)
561                 nid = 0;
562 #ifdef CONFIG_KEXEC
563         if (start > crashk_res.start && start < crashk_res.end)
564                 start = crashk_res.end;
565         if (end > crashk_res.start && end < crashk_res.end)
566                 end = crashk_res.start;
567 #endif
568
569         if (start < end)
570                 add_active_range(nid, __pa(start) >> PAGE_SHIFT,
571                         __pa(end) >> PAGE_SHIFT);
572         return 0;
573 }
574
575 static int __init
576 count_reserved_pages (u64 start, u64 end, void *arg)
577 {
578         unsigned long num_reserved = 0;
579         unsigned long *count = arg;
580
581         for (; start < end; start += PAGE_SIZE)
582                 if (PageReserved(virt_to_page(start)))
583                         ++num_reserved;
584         *count += num_reserved;
585         return 0;
586 }
587
588 int
589 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
590 {
591         unsigned long pfn_start, pfn_end;
592 #ifdef CONFIG_FLATMEM
593         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
594         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
595 #else
596         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
597         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
598 #endif
599         min_low_pfn = min(min_low_pfn, pfn_start);
600         max_low_pfn = max(max_low_pfn, pfn_end);
601         return 0;
602 }
603
604 /*
605  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
606  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
607  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
608  * useful for performance testing, but conceivably could also come in handy for debugging
609  * purposes.
610  */
611
612 static int nolwsys __initdata;
613
614 static int __init
615 nolwsys_setup (char *s)
616 {
617         nolwsys = 1;
618         return 1;
619 }
620
621 __setup("nolwsys", nolwsys_setup);
622
623 void __init
624 mem_init (void)
625 {
626         long reserved_pages, codesize, datasize, initsize;
627         pg_data_t *pgdat;
628         int i;
629         static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
630
631         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
632         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
633         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
634
635 #ifdef CONFIG_PCI
636         /*
637          * This needs to be called _after_ the command line has been parsed but _before_
638          * any drivers that may need the PCI DMA interface are initialized or bootmem has
639          * been freed.
640          */
641         platform_dma_init();
642 #endif
643
644 #ifdef CONFIG_FLATMEM
645         if (!mem_map)
646                 BUG();
647         max_mapnr = max_low_pfn;
648 #endif
649
650         high_memory = __va(max_low_pfn * PAGE_SIZE);
651
652         kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
653         kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
654         kclist_add(&kcore_kernel, _stext, _end - _stext);
655
656         for_each_online_pgdat(pgdat)
657                 if (pgdat->bdata->node_bootmem_map)
658                         totalram_pages += free_all_bootmem_node(pgdat);
659
660         reserved_pages = 0;
661         efi_memmap_walk(count_reserved_pages, &reserved_pages);
662
663         codesize =  (unsigned long) _etext - (unsigned long) _stext;
664         datasize =  (unsigned long) _edata - (unsigned long) _etext;
665         initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
666
667         printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
668                "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
669                num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
670                reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
671
672
673         /*
674          * For fsyscall entrpoints with no light-weight handler, use the ordinary
675          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
676          * code can tell them apart.
677          */
678         for (i = 0; i < NR_syscalls; ++i) {
679                 extern unsigned long fsyscall_table[NR_syscalls];
680                 extern unsigned long sys_call_table[NR_syscalls];
681
682                 if (!fsyscall_table[i] || nolwsys)
683                         fsyscall_table[i] = sys_call_table[i] | 1;
684         }
685         setup_gate();
686
687 #ifdef CONFIG_IA32_SUPPORT
688         ia32_mem_init();
689 #endif
690 }
691
692 #ifdef CONFIG_MEMORY_HOTPLUG
693 void online_page(struct page *page)
694 {
695         ClearPageReserved(page);
696         init_page_count(page);
697         __free_page(page);
698         totalram_pages++;
699         num_physpages++;
700 }
701
702 int arch_add_memory(int nid, u64 start, u64 size)
703 {
704         pg_data_t *pgdat;
705         struct zone *zone;
706         unsigned long start_pfn = start >> PAGE_SHIFT;
707         unsigned long nr_pages = size >> PAGE_SHIFT;
708         int ret;
709
710         pgdat = NODE_DATA(nid);
711
712         zone = pgdat->node_zones + ZONE_NORMAL;
713         ret = __add_pages(zone, start_pfn, nr_pages);
714
715         if (ret)
716                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
717                        __FUNCTION__,  ret);
718
719         return ret;
720 }
721
722 int remove_memory(u64 start, u64 size)
723 {
724         return -EINVAL;
725 }
726 EXPORT_SYMBOL_GPL(remove_memory);
727 #endif