Merge tag 'driver-core-4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / ia64 / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Initialize MMU support.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10
11 #include <linux/dma-noncoherent.h>
12 #include <linux/efi.h>
13 #include <linux/elf.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/mmzone.h>
18 #include <linux/module.h>
19 #include <linux/personality.h>
20 #include <linux/reboot.h>
21 #include <linux/slab.h>
22 #include <linux/swap.h>
23 #include <linux/proc_fs.h>
24 #include <linux/bitops.h>
25 #include <linux/kexec.h>
26
27 #include <asm/dma.h>
28 #include <asm/io.h>
29 #include <asm/machvec.h>
30 #include <asm/numa.h>
31 #include <asm/patch.h>
32 #include <asm/pgalloc.h>
33 #include <asm/sal.h>
34 #include <asm/sections.h>
35 #include <asm/tlb.h>
36 #include <linux/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
39
40 extern void ia64_tlb_init (void);
41
42 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
43
44 #ifdef CONFIG_VIRTUAL_MEM_MAP
45 unsigned long VMALLOC_END = VMALLOC_END_INIT;
46 EXPORT_SYMBOL(VMALLOC_END);
47 struct page *vmem_map;
48 EXPORT_SYMBOL(vmem_map);
49 #endif
50
51 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
52 EXPORT_SYMBOL(zero_page_memmap_ptr);
53
54 void
55 __ia64_sync_icache_dcache (pte_t pte)
56 {
57         unsigned long addr;
58         struct page *page;
59
60         page = pte_page(pte);
61         addr = (unsigned long) page_address(page);
62
63         if (test_bit(PG_arch_1, &page->flags))
64                 return;                         /* i-cache is already coherent with d-cache */
65
66         flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
67         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
68 }
69
70 /*
71  * Since DMA is i-cache coherent, any (complete) pages that were written via
72  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
73  * flush them when they get mapped into an executable vm-area.
74  */
75 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
76                 size_t size, enum dma_data_direction dir)
77 {
78         unsigned long pfn = PHYS_PFN(paddr);
79
80         do {
81                 set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
82         } while (++pfn <= PHYS_PFN(paddr + size - 1));
83 }
84
85 inline void
86 ia64_set_rbs_bot (void)
87 {
88         unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
89
90         if (stack_size > MAX_USER_STACK_SIZE)
91                 stack_size = MAX_USER_STACK_SIZE;
92         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
93 }
94
95 /*
96  * This performs some platform-dependent address space initialization.
97  * On IA-64, we want to setup the VM area for the register backing
98  * store (which grows upwards) and install the gateway page which is
99  * used for signal trampolines, etc.
100  */
101 void
102 ia64_init_addr_space (void)
103 {
104         struct vm_area_struct *vma;
105
106         ia64_set_rbs_bot();
107
108         /*
109          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
110          * the problem.  When the process attempts to write to the register backing store
111          * for the first time, it will get a SEGFAULT in this case.
112          */
113         vma = vm_area_alloc(current->mm);
114         if (vma) {
115                 vma_set_anonymous(vma);
116                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
117                 vma->vm_end = vma->vm_start + PAGE_SIZE;
118                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
119                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
120                 down_write(&current->mm->mmap_sem);
121                 if (insert_vm_struct(current->mm, vma)) {
122                         up_write(&current->mm->mmap_sem);
123                         vm_area_free(vma);
124                         return;
125                 }
126                 up_write(&current->mm->mmap_sem);
127         }
128
129         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
130         if (!(current->personality & MMAP_PAGE_ZERO)) {
131                 vma = vm_area_alloc(current->mm);
132                 if (vma) {
133                         vma_set_anonymous(vma);
134                         vma->vm_end = PAGE_SIZE;
135                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
136                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
137                                         VM_DONTEXPAND | VM_DONTDUMP;
138                         down_write(&current->mm->mmap_sem);
139                         if (insert_vm_struct(current->mm, vma)) {
140                                 up_write(&current->mm->mmap_sem);
141                                 vm_area_free(vma);
142                                 return;
143                         }
144                         up_write(&current->mm->mmap_sem);
145                 }
146         }
147 }
148
149 void
150 free_initmem (void)
151 {
152         free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
153                            -1, "unused kernel");
154 }
155
156 void __init
157 free_initrd_mem (unsigned long start, unsigned long end)
158 {
159         /*
160          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
161          * Thus EFI and the kernel may have different page sizes. It is
162          * therefore possible to have the initrd share the same page as
163          * the end of the kernel (given current setup).
164          *
165          * To avoid freeing/using the wrong page (kernel sized) we:
166          *      - align up the beginning of initrd
167          *      - align down the end of initrd
168          *
169          *  |             |
170          *  |=============| a000
171          *  |             |
172          *  |             |
173          *  |             | 9000
174          *  |/////////////|
175          *  |/////////////|
176          *  |=============| 8000
177          *  |///INITRD////|
178          *  |/////////////|
179          *  |/////////////| 7000
180          *  |             |
181          *  |KKKKKKKKKKKKK|
182          *  |=============| 6000
183          *  |KKKKKKKKKKKKK|
184          *  |KKKKKKKKKKKKK|
185          *  K=kernel using 8KB pages
186          *
187          * In this example, we must free page 8000 ONLY. So we must align up
188          * initrd_start and keep initrd_end as is.
189          */
190         start = PAGE_ALIGN(start);
191         end = end & PAGE_MASK;
192
193         if (start < end)
194                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
195
196         for (; start < end; start += PAGE_SIZE) {
197                 if (!virt_addr_valid(start))
198                         continue;
199                 free_reserved_page(virt_to_page(start));
200         }
201 }
202
203 /*
204  * This installs a clean page in the kernel's page table.
205  */
206 static struct page * __init
207 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
208 {
209         pgd_t *pgd;
210         pud_t *pud;
211         pmd_t *pmd;
212         pte_t *pte;
213
214         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
215
216         {
217                 pud = pud_alloc(&init_mm, pgd, address);
218                 if (!pud)
219                         goto out;
220                 pmd = pmd_alloc(&init_mm, pud, address);
221                 if (!pmd)
222                         goto out;
223                 pte = pte_alloc_kernel(pmd, address);
224                 if (!pte)
225                         goto out;
226                 if (!pte_none(*pte))
227                         goto out;
228                 set_pte(pte, mk_pte(page, pgprot));
229         }
230   out:
231         /* no need for flush_tlb */
232         return page;
233 }
234
235 static void __init
236 setup_gate (void)
237 {
238         struct page *page;
239
240         /*
241          * Map the gate page twice: once read-only to export the ELF
242          * headers etc. and once execute-only page to enable
243          * privilege-promotion via "epc":
244          */
245         page = virt_to_page(ia64_imva(__start_gate_section));
246         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
247 #ifdef HAVE_BUGGY_SEGREL
248         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
249         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
250 #else
251         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
252         /* Fill in the holes (if any) with read-only zero pages: */
253         {
254                 unsigned long addr;
255
256                 for (addr = GATE_ADDR + PAGE_SIZE;
257                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
258                      addr += PAGE_SIZE)
259                 {
260                         put_kernel_page(ZERO_PAGE(0), addr,
261                                         PAGE_READONLY);
262                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
263                                         PAGE_READONLY);
264                 }
265         }
266 #endif
267         ia64_patch_gate();
268 }
269
270 static struct vm_area_struct gate_vma;
271
272 static int __init gate_vma_init(void)
273 {
274         vma_init(&gate_vma, NULL);
275         gate_vma.vm_start = FIXADDR_USER_START;
276         gate_vma.vm_end = FIXADDR_USER_END;
277         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
278         gate_vma.vm_page_prot = __P101;
279
280         return 0;
281 }
282 __initcall(gate_vma_init);
283
284 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
285 {
286         return &gate_vma;
287 }
288
289 int in_gate_area_no_mm(unsigned long addr)
290 {
291         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
292                 return 1;
293         return 0;
294 }
295
296 int in_gate_area(struct mm_struct *mm, unsigned long addr)
297 {
298         return in_gate_area_no_mm(addr);
299 }
300
301 void ia64_mmu_init(void *my_cpu_data)
302 {
303         unsigned long pta, impl_va_bits;
304         extern void tlb_init(void);
305
306 #ifdef CONFIG_DISABLE_VHPT
307 #       define VHPT_ENABLE_BIT  0
308 #else
309 #       define VHPT_ENABLE_BIT  1
310 #endif
311
312         /*
313          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
314          * address space.  The IA-64 architecture guarantees that at least 50 bits of
315          * virtual address space are implemented but if we pick a large enough page size
316          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
317          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
318          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
319          * problem in practice.  Alternatively, we could truncate the top of the mapped
320          * address space to not permit mappings that would overlap with the VMLPT.
321          * --davidm 00/12/06
322          */
323 #       define pte_bits                 3
324 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
325         /*
326          * The virtual page table has to cover the entire implemented address space within
327          * a region even though not all of this space may be mappable.  The reason for
328          * this is that the Access bit and Dirty bit fault handlers perform
329          * non-speculative accesses to the virtual page table, so the address range of the
330          * virtual page table itself needs to be covered by virtual page table.
331          */
332 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
333 #       define POW2(n)                  (1ULL << (n))
334
335         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
336
337         if (impl_va_bits < 51 || impl_va_bits > 61)
338                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
339         /*
340          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
341          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
342          * the test makes sure that our mapped space doesn't overlap the
343          * unimplemented hole in the middle of the region.
344          */
345         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
346             (mapped_space_bits > impl_va_bits - 1))
347                 panic("Cannot build a big enough virtual-linear page table"
348                       " to cover mapped address space.\n"
349                       " Try using a smaller page size.\n");
350
351
352         /* place the VMLPT at the end of each page-table mapped region: */
353         pta = POW2(61) - POW2(vmlpt_bits);
354
355         /*
356          * Set the (virtually mapped linear) page table address.  Bit
357          * 8 selects between the short and long format, bits 2-7 the
358          * size of the table, and bit 0 whether the VHPT walker is
359          * enabled.
360          */
361         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
362
363         ia64_tlb_init();
364
365 #ifdef  CONFIG_HUGETLB_PAGE
366         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
367         ia64_srlz_d();
368 #endif
369 }
370
371 #ifdef CONFIG_VIRTUAL_MEM_MAP
372 int vmemmap_find_next_valid_pfn(int node, int i)
373 {
374         unsigned long end_address, hole_next_pfn;
375         unsigned long stop_address;
376         pg_data_t *pgdat = NODE_DATA(node);
377
378         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
379         end_address = PAGE_ALIGN(end_address);
380         stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
381
382         do {
383                 pgd_t *pgd;
384                 pud_t *pud;
385                 pmd_t *pmd;
386                 pte_t *pte;
387
388                 pgd = pgd_offset_k(end_address);
389                 if (pgd_none(*pgd)) {
390                         end_address += PGDIR_SIZE;
391                         continue;
392                 }
393
394                 pud = pud_offset(pgd, end_address);
395                 if (pud_none(*pud)) {
396                         end_address += PUD_SIZE;
397                         continue;
398                 }
399
400                 pmd = pmd_offset(pud, end_address);
401                 if (pmd_none(*pmd)) {
402                         end_address += PMD_SIZE;
403                         continue;
404                 }
405
406                 pte = pte_offset_kernel(pmd, end_address);
407 retry_pte:
408                 if (pte_none(*pte)) {
409                         end_address += PAGE_SIZE;
410                         pte++;
411                         if ((end_address < stop_address) &&
412                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
413                                 goto retry_pte;
414                         continue;
415                 }
416                 /* Found next valid vmem_map page */
417                 break;
418         } while (end_address < stop_address);
419
420         end_address = min(end_address, stop_address);
421         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
422         hole_next_pfn = end_address / sizeof(struct page);
423         return hole_next_pfn - pgdat->node_start_pfn;
424 }
425
426 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
427 {
428         unsigned long address, start_page, end_page;
429         struct page *map_start, *map_end;
430         int node;
431         pgd_t *pgd;
432         pud_t *pud;
433         pmd_t *pmd;
434         pte_t *pte;
435
436         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
437         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
438
439         start_page = (unsigned long) map_start & PAGE_MASK;
440         end_page = PAGE_ALIGN((unsigned long) map_end);
441         node = paddr_to_nid(__pa(start));
442
443         for (address = start_page; address < end_page; address += PAGE_SIZE) {
444                 pgd = pgd_offset_k(address);
445                 if (pgd_none(*pgd))
446                         pgd_populate(&init_mm, pgd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
447                 pud = pud_offset(pgd, address);
448
449                 if (pud_none(*pud))
450                         pud_populate(&init_mm, pud, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
451                 pmd = pmd_offset(pud, address);
452
453                 if (pmd_none(*pmd))
454                         pmd_populate_kernel(&init_mm, pmd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
455                 pte = pte_offset_kernel(pmd, address);
456
457                 if (pte_none(*pte))
458                         set_pte(pte, pfn_pte(__pa(memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)) >> PAGE_SHIFT,
459                                              PAGE_KERNEL));
460         }
461         return 0;
462 }
463
464 struct memmap_init_callback_data {
465         struct page *start;
466         struct page *end;
467         int nid;
468         unsigned long zone;
469 };
470
471 static int __meminit
472 virtual_memmap_init(u64 start, u64 end, void *arg)
473 {
474         struct memmap_init_callback_data *args;
475         struct page *map_start, *map_end;
476
477         args = (struct memmap_init_callback_data *) arg;
478         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
479         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
480
481         if (map_start < args->start)
482                 map_start = args->start;
483         if (map_end > args->end)
484                 map_end = args->end;
485
486         /*
487          * We have to initialize "out of bounds" struct page elements that fit completely
488          * on the same pages that were allocated for the "in bounds" elements because they
489          * may be referenced later (and found to be "reserved").
490          */
491         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
492         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
493                     / sizeof(struct page));
494
495         if (map_start < map_end)
496                 memmap_init_zone((unsigned long)(map_end - map_start),
497                                  args->nid, args->zone, page_to_pfn(map_start),
498                                  MEMMAP_EARLY, NULL);
499         return 0;
500 }
501
502 void __meminit
503 memmap_init (unsigned long size, int nid, unsigned long zone,
504              unsigned long start_pfn)
505 {
506         if (!vmem_map) {
507                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY,
508                                 NULL);
509         } else {
510                 struct page *start;
511                 struct memmap_init_callback_data args;
512
513                 start = pfn_to_page(start_pfn);
514                 args.start = start;
515                 args.end = start + size;
516                 args.nid = nid;
517                 args.zone = zone;
518
519                 efi_memmap_walk(virtual_memmap_init, &args);
520         }
521 }
522
523 int
524 ia64_pfn_valid (unsigned long pfn)
525 {
526         char byte;
527         struct page *pg = pfn_to_page(pfn);
528
529         return     (__get_user(byte, (char __user *) pg) == 0)
530                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
531                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
532 }
533 EXPORT_SYMBOL(ia64_pfn_valid);
534
535 int __init find_largest_hole(u64 start, u64 end, void *arg)
536 {
537         u64 *max_gap = arg;
538
539         static u64 last_end = PAGE_OFFSET;
540
541         /* NOTE: this algorithm assumes efi memmap table is ordered */
542
543         if (*max_gap < (start - last_end))
544                 *max_gap = start - last_end;
545         last_end = end;
546         return 0;
547 }
548
549 #endif /* CONFIG_VIRTUAL_MEM_MAP */
550
551 int __init register_active_ranges(u64 start, u64 len, int nid)
552 {
553         u64 end = start + len;
554
555 #ifdef CONFIG_KEXEC
556         if (start > crashk_res.start && start < crashk_res.end)
557                 start = crashk_res.end;
558         if (end > crashk_res.start && end < crashk_res.end)
559                 end = crashk_res.start;
560 #endif
561
562         if (start < end)
563                 memblock_add_node(__pa(start), end - start, nid);
564         return 0;
565 }
566
567 int
568 find_max_min_low_pfn (u64 start, u64 end, void *arg)
569 {
570         unsigned long pfn_start, pfn_end;
571 #ifdef CONFIG_FLATMEM
572         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
573         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
574 #else
575         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
576         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
577 #endif
578         min_low_pfn = min(min_low_pfn, pfn_start);
579         max_low_pfn = max(max_low_pfn, pfn_end);
580         return 0;
581 }
582
583 /*
584  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
585  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
586  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
587  * useful for performance testing, but conceivably could also come in handy for debugging
588  * purposes.
589  */
590
591 static int nolwsys __initdata;
592
593 static int __init
594 nolwsys_setup (char *s)
595 {
596         nolwsys = 1;
597         return 1;
598 }
599
600 __setup("nolwsys", nolwsys_setup);
601
602 void __init
603 mem_init (void)
604 {
605         int i;
606
607         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
608         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
609         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
610
611 #ifdef CONFIG_PCI
612         /*
613          * This needs to be called _after_ the command line has been parsed but _before_
614          * any drivers that may need the PCI DMA interface are initialized or bootmem has
615          * been freed.
616          */
617         platform_dma_init();
618 #endif
619
620 #ifdef CONFIG_FLATMEM
621         BUG_ON(!mem_map);
622 #endif
623
624         set_max_mapnr(max_low_pfn);
625         high_memory = __va(max_low_pfn * PAGE_SIZE);
626         memblock_free_all();
627         mem_init_print_info(NULL);
628
629         /*
630          * For fsyscall entrpoints with no light-weight handler, use the ordinary
631          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
632          * code can tell them apart.
633          */
634         for (i = 0; i < NR_syscalls; ++i) {
635                 extern unsigned long fsyscall_table[NR_syscalls];
636                 extern unsigned long sys_call_table[NR_syscalls];
637
638                 if (!fsyscall_table[i] || nolwsys)
639                         fsyscall_table[i] = sys_call_table[i] | 1;
640         }
641         setup_gate();
642 }
643
644 #ifdef CONFIG_MEMORY_HOTPLUG
645 int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
646                 bool want_memblock)
647 {
648         unsigned long start_pfn = start >> PAGE_SHIFT;
649         unsigned long nr_pages = size >> PAGE_SHIFT;
650         int ret;
651
652         ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
653         if (ret)
654                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
655                        __func__,  ret);
656
657         return ret;
658 }
659
660 #ifdef CONFIG_MEMORY_HOTREMOVE
661 int arch_remove_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap)
662 {
663         unsigned long start_pfn = start >> PAGE_SHIFT;
664         unsigned long nr_pages = size >> PAGE_SHIFT;
665         struct zone *zone;
666         int ret;
667
668         zone = page_zone(pfn_to_page(start_pfn));
669         ret = __remove_pages(zone, start_pfn, nr_pages, altmap);
670         if (ret)
671                 pr_warn("%s: Problem encountered in __remove_pages() as"
672                         " ret=%d\n", __func__,  ret);
673
674         return ret;
675 }
676 #endif
677 #endif