Merge branch 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[sfrench/cifs-2.6.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44 #include <asm/sn/addrs.h>
45 #include <asm/sn/clksupport.h>
46 #include <asm/sn/shub_mmr.h>
47
48 #include "misc.h"
49 #include "vti.h"
50 #include "iodev.h"
51 #include "ioapic.h"
52 #include "lapic.h"
53 #include "irq.h"
54
55 static unsigned long kvm_vmm_base;
56 static unsigned long kvm_vsa_base;
57 static unsigned long kvm_vm_buffer;
58 static unsigned long kvm_vm_buffer_size;
59 unsigned long kvm_vmm_gp;
60
61 static long vp_env_info;
62
63 static struct kvm_vmm_info *kvm_vmm_info;
64
65 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67 struct kvm_stats_debugfs_item debugfs_entries[] = {
68         { NULL }
69 };
70
71 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
72 {
73 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
74         if (vcpu->kvm->arch.is_sn2)
75                 return rtc_time();
76         else
77 #endif
78                 return ia64_getreg(_IA64_REG_AR_ITC);
79 }
80
81 static void kvm_flush_icache(unsigned long start, unsigned long len)
82 {
83         int l;
84
85         for (l = 0; l < (len + 32); l += 32)
86                 ia64_fc((void *)(start + l));
87
88         ia64_sync_i();
89         ia64_srlz_i();
90 }
91
92 static void kvm_flush_tlb_all(void)
93 {
94         unsigned long i, j, count0, count1, stride0, stride1, addr;
95         long flags;
96
97         addr    = local_cpu_data->ptce_base;
98         count0  = local_cpu_data->ptce_count[0];
99         count1  = local_cpu_data->ptce_count[1];
100         stride0 = local_cpu_data->ptce_stride[0];
101         stride1 = local_cpu_data->ptce_stride[1];
102
103         local_irq_save(flags);
104         for (i = 0; i < count0; ++i) {
105                 for (j = 0; j < count1; ++j) {
106                         ia64_ptce(addr);
107                         addr += stride1;
108                 }
109                 addr += stride0;
110         }
111         local_irq_restore(flags);
112         ia64_srlz_i();                  /* srlz.i implies srlz.d */
113 }
114
115 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
116 {
117         struct ia64_pal_retval iprv;
118
119         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
120                         (u64)opt_handler);
121
122         return iprv.status;
123 }
124
125 static  DEFINE_SPINLOCK(vp_lock);
126
127 int kvm_arch_hardware_enable(void *garbage)
128 {
129         long  status;
130         long  tmp_base;
131         unsigned long pte;
132         unsigned long saved_psr;
133         int slot;
134
135         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136         local_irq_save(saved_psr);
137         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138         local_irq_restore(saved_psr);
139         if (slot < 0)
140                 return -EINVAL;
141
142         spin_lock(&vp_lock);
143         status = ia64_pal_vp_init_env(kvm_vsa_base ?
144                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
145                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
146         if (status != 0) {
147                 spin_unlock(&vp_lock);
148                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
149                 return -EINVAL;
150         }
151
152         if (!kvm_vsa_base) {
153                 kvm_vsa_base = tmp_base;
154                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
155         }
156         spin_unlock(&vp_lock);
157         ia64_ptr_entry(0x3, slot);
158
159         return 0;
160 }
161
162 void kvm_arch_hardware_disable(void *garbage)
163 {
164
165         long status;
166         int slot;
167         unsigned long pte;
168         unsigned long saved_psr;
169         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
170
171         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
172                                 PAGE_KERNEL));
173
174         local_irq_save(saved_psr);
175         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
176         local_irq_restore(saved_psr);
177         if (slot < 0)
178                 return;
179
180         status = ia64_pal_vp_exit_env(host_iva);
181         if (status)
182                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
183                                 status);
184         ia64_ptr_entry(0x3, slot);
185 }
186
187 void kvm_arch_check_processor_compat(void *rtn)
188 {
189         *(int *)rtn = 0;
190 }
191
192 int kvm_dev_ioctl_check_extension(long ext)
193 {
194
195         int r;
196
197         switch (ext) {
198         case KVM_CAP_IRQCHIP:
199         case KVM_CAP_MP_STATE:
200         case KVM_CAP_IRQ_INJECT_STATUS:
201                 r = 1;
202                 break;
203         case KVM_CAP_COALESCED_MMIO:
204                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
205                 break;
206         case KVM_CAP_IOMMU:
207                 r = iommu_found();
208                 break;
209         default:
210                 r = 0;
211         }
212         return r;
213
214 }
215
216 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
217 {
218         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
219         kvm_run->hw.hardware_exit_reason = 1;
220         return 0;
221 }
222
223 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
224 {
225         struct kvm_mmio_req *p;
226         struct kvm_io_device *mmio_dev;
227         int r;
228
229         p = kvm_get_vcpu_ioreq(vcpu);
230
231         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
232                 goto mmio;
233         vcpu->mmio_needed = 1;
234         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
235         vcpu->mmio_size = kvm_run->mmio.len = p->size;
236         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
237
238         if (vcpu->mmio_is_write)
239                 memcpy(vcpu->mmio_data, &p->data, p->size);
240         memcpy(kvm_run->mmio.data, &p->data, p->size);
241         kvm_run->exit_reason = KVM_EXIT_MMIO;
242         return 0;
243 mmio:
244         if (p->dir)
245                 r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
246                                     p->size, &p->data);
247         else
248                 r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
249                                      p->size, &p->data);
250         if (r)
251                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
252         p->state = STATE_IORESP_READY;
253
254         return 1;
255 }
256
257 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
258 {
259         struct exit_ctl_data *p;
260
261         p = kvm_get_exit_data(vcpu);
262
263         if (p->exit_reason == EXIT_REASON_PAL_CALL)
264                 return kvm_pal_emul(vcpu, kvm_run);
265         else {
266                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
267                 kvm_run->hw.hardware_exit_reason = 2;
268                 return 0;
269         }
270 }
271
272 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
273 {
274         struct exit_ctl_data *p;
275
276         p = kvm_get_exit_data(vcpu);
277
278         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
279                 kvm_sal_emul(vcpu);
280                 return 1;
281         } else {
282                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
283                 kvm_run->hw.hardware_exit_reason = 3;
284                 return 0;
285         }
286
287 }
288
289 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
290 {
291         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
292
293         if (!test_and_set_bit(vector, &vpd->irr[0])) {
294                 vcpu->arch.irq_new_pending = 1;
295                 kvm_vcpu_kick(vcpu);
296                 return 1;
297         }
298         return 0;
299 }
300
301 /*
302  *  offset: address offset to IPI space.
303  *  value:  deliver value.
304  */
305 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
306                                 uint64_t vector)
307 {
308         switch (dm) {
309         case SAPIC_FIXED:
310                 break;
311         case SAPIC_NMI:
312                 vector = 2;
313                 break;
314         case SAPIC_EXTINT:
315                 vector = 0;
316                 break;
317         case SAPIC_INIT:
318         case SAPIC_PMI:
319         default:
320                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
321                 return;
322         }
323         __apic_accept_irq(vcpu, vector);
324 }
325
326 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
327                         unsigned long eid)
328 {
329         union ia64_lid lid;
330         int i;
331         struct kvm_vcpu *vcpu;
332
333         kvm_for_each_vcpu(i, vcpu, kvm) {
334                 lid.val = VCPU_LID(vcpu);
335                 if (lid.id == id && lid.eid == eid)
336                         return vcpu;
337         }
338
339         return NULL;
340 }
341
342 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
343 {
344         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
345         struct kvm_vcpu *target_vcpu;
346         struct kvm_pt_regs *regs;
347         union ia64_ipi_a addr = p->u.ipi_data.addr;
348         union ia64_ipi_d data = p->u.ipi_data.data;
349
350         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
351         if (!target_vcpu)
352                 return handle_vm_error(vcpu, kvm_run);
353
354         if (!target_vcpu->arch.launched) {
355                 regs = vcpu_regs(target_vcpu);
356
357                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
358                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
359
360                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
361                 if (waitqueue_active(&target_vcpu->wq))
362                         wake_up_interruptible(&target_vcpu->wq);
363         } else {
364                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
365                 if (target_vcpu != vcpu)
366                         kvm_vcpu_kick(target_vcpu);
367         }
368
369         return 1;
370 }
371
372 struct call_data {
373         struct kvm_ptc_g ptc_g_data;
374         struct kvm_vcpu *vcpu;
375 };
376
377 static void vcpu_global_purge(void *info)
378 {
379         struct call_data *p = (struct call_data *)info;
380         struct kvm_vcpu *vcpu = p->vcpu;
381
382         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
383                 return;
384
385         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
386         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
387                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
388                                                         p->ptc_g_data;
389         } else {
390                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
391                 vcpu->arch.ptc_g_count = 0;
392                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
393         }
394 }
395
396 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
397 {
398         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
399         struct kvm *kvm = vcpu->kvm;
400         struct call_data call_data;
401         int i;
402         struct kvm_vcpu *vcpui;
403
404         call_data.ptc_g_data = p->u.ptc_g_data;
405
406         kvm_for_each_vcpu(i, vcpui, kvm) {
407                 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
408                                 vcpu == vcpui)
409                         continue;
410
411                 if (waitqueue_active(&vcpui->wq))
412                         wake_up_interruptible(&vcpui->wq);
413
414                 if (vcpui->cpu != -1) {
415                         call_data.vcpu = vcpui;
416                         smp_call_function_single(vcpui->cpu,
417                                         vcpu_global_purge, &call_data, 1);
418                 } else
419                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
420
421         }
422         return 1;
423 }
424
425 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
426 {
427         return 1;
428 }
429
430 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
431 {
432         unsigned long pte, rtc_phys_addr, map_addr;
433         int slot;
434
435         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
436         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
437         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
438         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
439         vcpu->arch.sn_rtc_tr_slot = slot;
440         if (slot < 0) {
441                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
442                 slot = 0;
443         }
444         return slot;
445 }
446
447 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
448 {
449
450         ktime_t kt;
451         long itc_diff;
452         unsigned long vcpu_now_itc;
453         unsigned long expires;
454         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
455         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
456         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
457
458         if (irqchip_in_kernel(vcpu->kvm)) {
459
460                 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
461
462                 if (time_after(vcpu_now_itc, vpd->itm)) {
463                         vcpu->arch.timer_check = 1;
464                         return 1;
465                 }
466                 itc_diff = vpd->itm - vcpu_now_itc;
467                 if (itc_diff < 0)
468                         itc_diff = -itc_diff;
469
470                 expires = div64_u64(itc_diff, cyc_per_usec);
471                 kt = ktime_set(0, 1000 * expires);
472
473                 vcpu->arch.ht_active = 1;
474                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
475
476                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
477                 kvm_vcpu_block(vcpu);
478                 hrtimer_cancel(p_ht);
479                 vcpu->arch.ht_active = 0;
480
481                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
482                                 kvm_cpu_has_pending_timer(vcpu))
483                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
484                                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
485
486                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
487                         return -EINTR;
488                 return 1;
489         } else {
490                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
491                 return 0;
492         }
493 }
494
495 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
496                 struct kvm_run *kvm_run)
497 {
498         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
499         return 0;
500 }
501
502 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
503                 struct kvm_run *kvm_run)
504 {
505         return 1;
506 }
507
508 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
509                                 struct kvm_run *kvm_run)
510 {
511         printk("VMM: %s", vcpu->arch.log_buf);
512         return 1;
513 }
514
515 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
516                 struct kvm_run *kvm_run) = {
517         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
518         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
519         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
520         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
521         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
522         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
523         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
524         [EXIT_REASON_IPI]                   = handle_ipi,
525         [EXIT_REASON_PTC_G]                 = handle_global_purge,
526         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
527
528 };
529
530 static const int kvm_vti_max_exit_handlers =
531                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
532
533 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
534 {
535         struct exit_ctl_data *p_exit_data;
536
537         p_exit_data = kvm_get_exit_data(vcpu);
538         return p_exit_data->exit_reason;
539 }
540
541 /*
542  * The guest has exited.  See if we can fix it or if we need userspace
543  * assistance.
544  */
545 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
546 {
547         u32 exit_reason = kvm_get_exit_reason(vcpu);
548         vcpu->arch.last_exit = exit_reason;
549
550         if (exit_reason < kvm_vti_max_exit_handlers
551                         && kvm_vti_exit_handlers[exit_reason])
552                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
553         else {
554                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
555                 kvm_run->hw.hardware_exit_reason = exit_reason;
556         }
557         return 0;
558 }
559
560 static inline void vti_set_rr6(unsigned long rr6)
561 {
562         ia64_set_rr(RR6, rr6);
563         ia64_srlz_i();
564 }
565
566 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
567 {
568         unsigned long pte;
569         struct kvm *kvm = vcpu->kvm;
570         int r;
571
572         /*Insert a pair of tr to map vmm*/
573         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
574         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
575         if (r < 0)
576                 goto out;
577         vcpu->arch.vmm_tr_slot = r;
578         /*Insert a pairt of tr to map data of vm*/
579         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
580         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
581                                         pte, KVM_VM_DATA_SHIFT);
582         if (r < 0)
583                 goto out;
584         vcpu->arch.vm_tr_slot = r;
585
586 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
587         if (kvm->arch.is_sn2) {
588                 r = kvm_sn2_setup_mappings(vcpu);
589                 if (r < 0)
590                         goto out;
591         }
592 #endif
593
594         r = 0;
595 out:
596         return r;
597 }
598
599 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
600 {
601         struct kvm *kvm = vcpu->kvm;
602         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
603         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
604 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
605         if (kvm->arch.is_sn2)
606                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
607 #endif
608 }
609
610 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
611 {
612         unsigned long psr;
613         int r;
614         int cpu = smp_processor_id();
615
616         if (vcpu->arch.last_run_cpu != cpu ||
617                         per_cpu(last_vcpu, cpu) != vcpu) {
618                 per_cpu(last_vcpu, cpu) = vcpu;
619                 vcpu->arch.last_run_cpu = cpu;
620                 kvm_flush_tlb_all();
621         }
622
623         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
624         vti_set_rr6(vcpu->arch.vmm_rr);
625         local_irq_save(psr);
626         r = kvm_insert_vmm_mapping(vcpu);
627         local_irq_restore(psr);
628         return r;
629 }
630
631 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
632 {
633         kvm_purge_vmm_mapping(vcpu);
634         vti_set_rr6(vcpu->arch.host_rr6);
635 }
636
637 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
638 {
639         union context *host_ctx, *guest_ctx;
640         int r, idx;
641
642         idx = srcu_read_lock(&vcpu->kvm->srcu);
643
644 again:
645         if (signal_pending(current)) {
646                 r = -EINTR;
647                 kvm_run->exit_reason = KVM_EXIT_INTR;
648                 goto out;
649         }
650
651         preempt_disable();
652         local_irq_disable();
653
654         /*Get host and guest context with guest address space.*/
655         host_ctx = kvm_get_host_context(vcpu);
656         guest_ctx = kvm_get_guest_context(vcpu);
657
658         clear_bit(KVM_REQ_KICK, &vcpu->requests);
659
660         r = kvm_vcpu_pre_transition(vcpu);
661         if (r < 0)
662                 goto vcpu_run_fail;
663
664         srcu_read_unlock(&vcpu->kvm->srcu, idx);
665         kvm_guest_enter();
666
667         /*
668          * Transition to the guest
669          */
670         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
671
672         kvm_vcpu_post_transition(vcpu);
673
674         vcpu->arch.launched = 1;
675         set_bit(KVM_REQ_KICK, &vcpu->requests);
676         local_irq_enable();
677
678         /*
679          * We must have an instruction between local_irq_enable() and
680          * kvm_guest_exit(), so the timer interrupt isn't delayed by
681          * the interrupt shadow.  The stat.exits increment will do nicely.
682          * But we need to prevent reordering, hence this barrier():
683          */
684         barrier();
685         kvm_guest_exit();
686         preempt_enable();
687
688         idx = srcu_read_lock(&vcpu->kvm->srcu);
689
690         r = kvm_handle_exit(kvm_run, vcpu);
691
692         if (r > 0) {
693                 if (!need_resched())
694                         goto again;
695         }
696
697 out:
698         srcu_read_unlock(&vcpu->kvm->srcu, idx);
699         if (r > 0) {
700                 kvm_resched(vcpu);
701                 idx = srcu_read_lock(&vcpu->kvm->srcu);
702                 goto again;
703         }
704
705         return r;
706
707 vcpu_run_fail:
708         local_irq_enable();
709         preempt_enable();
710         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
711         goto out;
712 }
713
714 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
715 {
716         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
717
718         if (!vcpu->mmio_is_write)
719                 memcpy(&p->data, vcpu->mmio_data, 8);
720         p->state = STATE_IORESP_READY;
721 }
722
723 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
724 {
725         int r;
726         sigset_t sigsaved;
727
728         if (vcpu->sigset_active)
729                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
730
731         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
732                 kvm_vcpu_block(vcpu);
733                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
734                 r = -EAGAIN;
735                 goto out;
736         }
737
738         if (vcpu->mmio_needed) {
739                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
740                 kvm_set_mmio_data(vcpu);
741                 vcpu->mmio_read_completed = 1;
742                 vcpu->mmio_needed = 0;
743         }
744         r = __vcpu_run(vcpu, kvm_run);
745 out:
746         if (vcpu->sigset_active)
747                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
748
749         return r;
750 }
751
752 static struct kvm *kvm_alloc_kvm(void)
753 {
754
755         struct kvm *kvm;
756         uint64_t  vm_base;
757
758         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
759
760         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
761
762         if (!vm_base)
763                 return ERR_PTR(-ENOMEM);
764
765         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
766         kvm = (struct kvm *)(vm_base +
767                         offsetof(struct kvm_vm_data, kvm_vm_struct));
768         kvm->arch.vm_base = vm_base;
769         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
770
771         return kvm;
772 }
773
774 struct kvm_io_range {
775         unsigned long start;
776         unsigned long size;
777         unsigned long type;
778 };
779
780 static const struct kvm_io_range io_ranges[] = {
781         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
782         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
783         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
784         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
785         {PIB_START, PIB_SIZE, GPFN_PIB},
786 };
787
788 static void kvm_build_io_pmt(struct kvm *kvm)
789 {
790         unsigned long i, j;
791
792         /* Mark I/O ranges */
793         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
794                                                         i++) {
795                 for (j = io_ranges[i].start;
796                                 j < io_ranges[i].start + io_ranges[i].size;
797                                 j += PAGE_SIZE)
798                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
799                                         io_ranges[i].type, 0);
800         }
801
802 }
803
804 /*Use unused rids to virtualize guest rid.*/
805 #define GUEST_PHYSICAL_RR0      0x1739
806 #define GUEST_PHYSICAL_RR4      0x2739
807 #define VMM_INIT_RR             0x1660
808
809 static void kvm_init_vm(struct kvm *kvm)
810 {
811         BUG_ON(!kvm);
812
813         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
814         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
815         kvm->arch.vmm_init_rr = VMM_INIT_RR;
816
817         /*
818          *Fill P2M entries for MMIO/IO ranges
819          */
820         kvm_build_io_pmt(kvm);
821
822         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
823
824         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
825         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
826 }
827
828 struct  kvm *kvm_arch_create_vm(void)
829 {
830         struct kvm *kvm = kvm_alloc_kvm();
831
832         if (IS_ERR(kvm))
833                 return ERR_PTR(-ENOMEM);
834
835         kvm->arch.is_sn2 = ia64_platform_is("sn2");
836
837         kvm_init_vm(kvm);
838
839         return kvm;
840
841 }
842
843 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
844                                         struct kvm_irqchip *chip)
845 {
846         int r;
847
848         r = 0;
849         switch (chip->chip_id) {
850         case KVM_IRQCHIP_IOAPIC:
851                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
852                 break;
853         default:
854                 r = -EINVAL;
855                 break;
856         }
857         return r;
858 }
859
860 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
861 {
862         int r;
863
864         r = 0;
865         switch (chip->chip_id) {
866         case KVM_IRQCHIP_IOAPIC:
867                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
868                 break;
869         default:
870                 r = -EINVAL;
871                 break;
872         }
873         return r;
874 }
875
876 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
877
878 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
879 {
880         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
881         int i;
882
883         for (i = 0; i < 16; i++) {
884                 vpd->vgr[i] = regs->vpd.vgr[i];
885                 vpd->vbgr[i] = regs->vpd.vbgr[i];
886         }
887         for (i = 0; i < 128; i++)
888                 vpd->vcr[i] = regs->vpd.vcr[i];
889         vpd->vhpi = regs->vpd.vhpi;
890         vpd->vnat = regs->vpd.vnat;
891         vpd->vbnat = regs->vpd.vbnat;
892         vpd->vpsr = regs->vpd.vpsr;
893
894         vpd->vpr = regs->vpd.vpr;
895
896         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
897
898         RESTORE_REGS(mp_state);
899         RESTORE_REGS(vmm_rr);
900         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
901         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
902         RESTORE_REGS(itr_regions);
903         RESTORE_REGS(dtr_regions);
904         RESTORE_REGS(tc_regions);
905         RESTORE_REGS(irq_check);
906         RESTORE_REGS(itc_check);
907         RESTORE_REGS(timer_check);
908         RESTORE_REGS(timer_pending);
909         RESTORE_REGS(last_itc);
910         for (i = 0; i < 8; i++) {
911                 vcpu->arch.vrr[i] = regs->vrr[i];
912                 vcpu->arch.ibr[i] = regs->ibr[i];
913                 vcpu->arch.dbr[i] = regs->dbr[i];
914         }
915         for (i = 0; i < 4; i++)
916                 vcpu->arch.insvc[i] = regs->insvc[i];
917         RESTORE_REGS(xtp);
918         RESTORE_REGS(metaphysical_rr0);
919         RESTORE_REGS(metaphysical_rr4);
920         RESTORE_REGS(metaphysical_saved_rr0);
921         RESTORE_REGS(metaphysical_saved_rr4);
922         RESTORE_REGS(fp_psr);
923         RESTORE_REGS(saved_gp);
924
925         vcpu->arch.irq_new_pending = 1;
926         vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
927         set_bit(KVM_REQ_RESUME, &vcpu->requests);
928
929         return 0;
930 }
931
932 long kvm_arch_vm_ioctl(struct file *filp,
933                 unsigned int ioctl, unsigned long arg)
934 {
935         struct kvm *kvm = filp->private_data;
936         void __user *argp = (void __user *)arg;
937         int r = -ENOTTY;
938
939         switch (ioctl) {
940         case KVM_SET_MEMORY_REGION: {
941                 struct kvm_memory_region kvm_mem;
942                 struct kvm_userspace_memory_region kvm_userspace_mem;
943
944                 r = -EFAULT;
945                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
946                         goto out;
947                 kvm_userspace_mem.slot = kvm_mem.slot;
948                 kvm_userspace_mem.flags = kvm_mem.flags;
949                 kvm_userspace_mem.guest_phys_addr =
950                                         kvm_mem.guest_phys_addr;
951                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
952                 r = kvm_vm_ioctl_set_memory_region(kvm,
953                                         &kvm_userspace_mem, 0);
954                 if (r)
955                         goto out;
956                 break;
957                 }
958         case KVM_CREATE_IRQCHIP:
959                 r = -EFAULT;
960                 r = kvm_ioapic_init(kvm);
961                 if (r)
962                         goto out;
963                 r = kvm_setup_default_irq_routing(kvm);
964                 if (r) {
965                         kvm_ioapic_destroy(kvm);
966                         goto out;
967                 }
968                 break;
969         case KVM_IRQ_LINE_STATUS:
970         case KVM_IRQ_LINE: {
971                 struct kvm_irq_level irq_event;
972
973                 r = -EFAULT;
974                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
975                         goto out;
976                 r = -ENXIO;
977                 if (irqchip_in_kernel(kvm)) {
978                         __s32 status;
979                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
980                                     irq_event.irq, irq_event.level);
981                         if (ioctl == KVM_IRQ_LINE_STATUS) {
982                                 r = -EFAULT;
983                                 irq_event.status = status;
984                                 if (copy_to_user(argp, &irq_event,
985                                                         sizeof irq_event))
986                                         goto out;
987                         }
988                         r = 0;
989                 }
990                 break;
991                 }
992         case KVM_GET_IRQCHIP: {
993                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
994                 struct kvm_irqchip chip;
995
996                 r = -EFAULT;
997                 if (copy_from_user(&chip, argp, sizeof chip))
998                                 goto out;
999                 r = -ENXIO;
1000                 if (!irqchip_in_kernel(kvm))
1001                         goto out;
1002                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1003                 if (r)
1004                         goto out;
1005                 r = -EFAULT;
1006                 if (copy_to_user(argp, &chip, sizeof chip))
1007                                 goto out;
1008                 r = 0;
1009                 break;
1010                 }
1011         case KVM_SET_IRQCHIP: {
1012                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1013                 struct kvm_irqchip chip;
1014
1015                 r = -EFAULT;
1016                 if (copy_from_user(&chip, argp, sizeof chip))
1017                                 goto out;
1018                 r = -ENXIO;
1019                 if (!irqchip_in_kernel(kvm))
1020                         goto out;
1021                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1022                 if (r)
1023                         goto out;
1024                 r = 0;
1025                 break;
1026                 }
1027         default:
1028                 ;
1029         }
1030 out:
1031         return r;
1032 }
1033
1034 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1035                 struct kvm_sregs *sregs)
1036 {
1037         return -EINVAL;
1038 }
1039
1040 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1041                 struct kvm_sregs *sregs)
1042 {
1043         return -EINVAL;
1044
1045 }
1046 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1047                 struct kvm_translation *tr)
1048 {
1049
1050         return -EINVAL;
1051 }
1052
1053 static int kvm_alloc_vmm_area(void)
1054 {
1055         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1056                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1057                                 get_order(KVM_VMM_SIZE));
1058                 if (!kvm_vmm_base)
1059                         return -ENOMEM;
1060
1061                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1062                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1063
1064                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1065                                 kvm_vmm_base, kvm_vm_buffer);
1066         }
1067
1068         return 0;
1069 }
1070
1071 static void kvm_free_vmm_area(void)
1072 {
1073         if (kvm_vmm_base) {
1074                 /*Zero this area before free to avoid bits leak!!*/
1075                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1076                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1077                 kvm_vmm_base  = 0;
1078                 kvm_vm_buffer = 0;
1079                 kvm_vsa_base = 0;
1080         }
1081 }
1082
1083 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1084 {
1085         int i;
1086         union cpuid3_t cpuid3;
1087         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1088
1089         if (IS_ERR(vpd))
1090                 return PTR_ERR(vpd);
1091
1092         /* CPUID init */
1093         for (i = 0; i < 5; i++)
1094                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1095
1096         /* Limit the CPUID number to 5 */
1097         cpuid3.value = vpd->vcpuid[3];
1098         cpuid3.number = 4;      /* 5 - 1 */
1099         vpd->vcpuid[3] = cpuid3.value;
1100
1101         /*Set vac and vdc fields*/
1102         vpd->vac.a_from_int_cr = 1;
1103         vpd->vac.a_to_int_cr = 1;
1104         vpd->vac.a_from_psr = 1;
1105         vpd->vac.a_from_cpuid = 1;
1106         vpd->vac.a_cover = 1;
1107         vpd->vac.a_bsw = 1;
1108         vpd->vac.a_int = 1;
1109         vpd->vdc.d_vmsw = 1;
1110
1111         /*Set virtual buffer*/
1112         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1113
1114         return 0;
1115 }
1116
1117 static int vti_create_vp(struct kvm_vcpu *vcpu)
1118 {
1119         long ret;
1120         struct vpd *vpd = vcpu->arch.vpd;
1121         unsigned long  vmm_ivt;
1122
1123         vmm_ivt = kvm_vmm_info->vmm_ivt;
1124
1125         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1126
1127         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1128
1129         if (ret) {
1130                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1131                 return -EINVAL;
1132         }
1133         return 0;
1134 }
1135
1136 static void init_ptce_info(struct kvm_vcpu *vcpu)
1137 {
1138         ia64_ptce_info_t ptce = {0};
1139
1140         ia64_get_ptce(&ptce);
1141         vcpu->arch.ptce_base = ptce.base;
1142         vcpu->arch.ptce_count[0] = ptce.count[0];
1143         vcpu->arch.ptce_count[1] = ptce.count[1];
1144         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1145         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1146 }
1147
1148 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1149 {
1150         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1151
1152         if (hrtimer_cancel(p_ht))
1153                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1154 }
1155
1156 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1157 {
1158         struct kvm_vcpu *vcpu;
1159         wait_queue_head_t *q;
1160
1161         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1162         q = &vcpu->wq;
1163
1164         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1165                 goto out;
1166
1167         if (waitqueue_active(q))
1168                 wake_up_interruptible(q);
1169
1170 out:
1171         vcpu->arch.timer_fired = 1;
1172         vcpu->arch.timer_check = 1;
1173         return HRTIMER_NORESTART;
1174 }
1175
1176 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1177
1178 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1179 {
1180         struct kvm_vcpu *v;
1181         int r;
1182         int i;
1183         long itc_offset;
1184         struct kvm *kvm = vcpu->kvm;
1185         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1186
1187         union context *p_ctx = &vcpu->arch.guest;
1188         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1189
1190         /*Init vcpu context for first run.*/
1191         if (IS_ERR(vmm_vcpu))
1192                 return PTR_ERR(vmm_vcpu);
1193
1194         if (kvm_vcpu_is_bsp(vcpu)) {
1195                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1196
1197                 /*Set entry address for first run.*/
1198                 regs->cr_iip = PALE_RESET_ENTRY;
1199
1200                 /*Initialize itc offset for vcpus*/
1201                 itc_offset = 0UL - kvm_get_itc(vcpu);
1202                 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1203                         v = (struct kvm_vcpu *)((char *)vcpu +
1204                                         sizeof(struct kvm_vcpu_data) * i);
1205                         v->arch.itc_offset = itc_offset;
1206                         v->arch.last_itc = 0;
1207                 }
1208         } else
1209                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1210
1211         r = -ENOMEM;
1212         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1213         if (!vcpu->arch.apic)
1214                 goto out;
1215         vcpu->arch.apic->vcpu = vcpu;
1216
1217         p_ctx->gr[1] = 0;
1218         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1219         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1220         p_ctx->psr = 0x1008522000UL;
1221         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1222         p_ctx->caller_unat = 0;
1223         p_ctx->pr = 0x0;
1224         p_ctx->ar[36] = 0x0; /*unat*/
1225         p_ctx->ar[19] = 0x0; /*rnat*/
1226         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1227                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1228         p_ctx->ar[64] = 0x0; /*pfs*/
1229         p_ctx->cr[0] = 0x7e04UL;
1230         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1231         p_ctx->cr[8] = 0x3c;
1232
1233         /*Initialize region register*/
1234         p_ctx->rr[0] = 0x30;
1235         p_ctx->rr[1] = 0x30;
1236         p_ctx->rr[2] = 0x30;
1237         p_ctx->rr[3] = 0x30;
1238         p_ctx->rr[4] = 0x30;
1239         p_ctx->rr[5] = 0x30;
1240         p_ctx->rr[7] = 0x30;
1241
1242         /*Initialize branch register 0*/
1243         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1244
1245         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1246         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1247         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1248
1249         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1250         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1251
1252         vcpu->arch.last_run_cpu = -1;
1253         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1254         vcpu->arch.vsa_base = kvm_vsa_base;
1255         vcpu->arch.__gp = kvm_vmm_gp;
1256         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1257         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1258         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1259         init_ptce_info(vcpu);
1260
1261         r = 0;
1262 out:
1263         return r;
1264 }
1265
1266 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1267 {
1268         unsigned long psr;
1269         int r;
1270
1271         local_irq_save(psr);
1272         r = kvm_insert_vmm_mapping(vcpu);
1273         local_irq_restore(psr);
1274         if (r)
1275                 goto fail;
1276         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1277         if (r)
1278                 goto fail;
1279
1280         r = vti_init_vpd(vcpu);
1281         if (r) {
1282                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1283                 goto uninit;
1284         }
1285
1286         r = vti_create_vp(vcpu);
1287         if (r)
1288                 goto uninit;
1289
1290         kvm_purge_vmm_mapping(vcpu);
1291
1292         return 0;
1293 uninit:
1294         kvm_vcpu_uninit(vcpu);
1295 fail:
1296         return r;
1297 }
1298
1299 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1300                 unsigned int id)
1301 {
1302         struct kvm_vcpu *vcpu;
1303         unsigned long vm_base = kvm->arch.vm_base;
1304         int r;
1305         int cpu;
1306
1307         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1308
1309         r = -EINVAL;
1310         if (id >= KVM_MAX_VCPUS) {
1311                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1312                                 KVM_MAX_VCPUS);
1313                 goto fail;
1314         }
1315
1316         r = -ENOMEM;
1317         if (!vm_base) {
1318                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1319                 goto fail;
1320         }
1321         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1322                                         vcpu_data[id].vcpu_struct));
1323         vcpu->kvm = kvm;
1324
1325         cpu = get_cpu();
1326         r = vti_vcpu_setup(vcpu, id);
1327         put_cpu();
1328
1329         if (r) {
1330                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1331                 goto fail;
1332         }
1333
1334         return vcpu;
1335 fail:
1336         return ERR_PTR(r);
1337 }
1338
1339 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1340 {
1341         return 0;
1342 }
1343
1344 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1345 {
1346         return -EINVAL;
1347 }
1348
1349 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1350 {
1351         return -EINVAL;
1352 }
1353
1354 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1355                                         struct kvm_guest_debug *dbg)
1356 {
1357         return -EINVAL;
1358 }
1359
1360 static void free_kvm(struct kvm *kvm)
1361 {
1362         unsigned long vm_base = kvm->arch.vm_base;
1363
1364         if (vm_base) {
1365                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1366                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1367         }
1368
1369 }
1370
1371 static void kvm_release_vm_pages(struct kvm *kvm)
1372 {
1373         struct kvm_memslots *slots;
1374         struct kvm_memory_slot *memslot;
1375         int i, j;
1376         unsigned long base_gfn;
1377
1378         slots = kvm_memslots(kvm);
1379         for (i = 0; i < slots->nmemslots; i++) {
1380                 memslot = &slots->memslots[i];
1381                 base_gfn = memslot->base_gfn;
1382
1383                 for (j = 0; j < memslot->npages; j++) {
1384                         if (memslot->rmap[j])
1385                                 put_page((struct page *)memslot->rmap[j]);
1386                 }
1387         }
1388 }
1389
1390 void kvm_arch_sync_events(struct kvm *kvm)
1391 {
1392 }
1393
1394 void kvm_arch_destroy_vm(struct kvm *kvm)
1395 {
1396         kvm_iommu_unmap_guest(kvm);
1397 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1398         kvm_free_all_assigned_devices(kvm);
1399 #endif
1400         kfree(kvm->arch.vioapic);
1401         kvm_release_vm_pages(kvm);
1402         kvm_free_physmem(kvm);
1403         cleanup_srcu_struct(&kvm->srcu);
1404         free_kvm(kvm);
1405 }
1406
1407 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1408 {
1409 }
1410
1411 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1412 {
1413         if (cpu != vcpu->cpu) {
1414                 vcpu->cpu = cpu;
1415                 if (vcpu->arch.ht_active)
1416                         kvm_migrate_hlt_timer(vcpu);
1417         }
1418 }
1419
1420 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1421
1422 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1423 {
1424         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1425         int i;
1426
1427         vcpu_load(vcpu);
1428
1429         for (i = 0; i < 16; i++) {
1430                 regs->vpd.vgr[i] = vpd->vgr[i];
1431                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1432         }
1433         for (i = 0; i < 128; i++)
1434                 regs->vpd.vcr[i] = vpd->vcr[i];
1435         regs->vpd.vhpi = vpd->vhpi;
1436         regs->vpd.vnat = vpd->vnat;
1437         regs->vpd.vbnat = vpd->vbnat;
1438         regs->vpd.vpsr = vpd->vpsr;
1439         regs->vpd.vpr = vpd->vpr;
1440
1441         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1442
1443         SAVE_REGS(mp_state);
1444         SAVE_REGS(vmm_rr);
1445         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1446         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1447         SAVE_REGS(itr_regions);
1448         SAVE_REGS(dtr_regions);
1449         SAVE_REGS(tc_regions);
1450         SAVE_REGS(irq_check);
1451         SAVE_REGS(itc_check);
1452         SAVE_REGS(timer_check);
1453         SAVE_REGS(timer_pending);
1454         SAVE_REGS(last_itc);
1455         for (i = 0; i < 8; i++) {
1456                 regs->vrr[i] = vcpu->arch.vrr[i];
1457                 regs->ibr[i] = vcpu->arch.ibr[i];
1458                 regs->dbr[i] = vcpu->arch.dbr[i];
1459         }
1460         for (i = 0; i < 4; i++)
1461                 regs->insvc[i] = vcpu->arch.insvc[i];
1462         regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1463         SAVE_REGS(xtp);
1464         SAVE_REGS(metaphysical_rr0);
1465         SAVE_REGS(metaphysical_rr4);
1466         SAVE_REGS(metaphysical_saved_rr0);
1467         SAVE_REGS(metaphysical_saved_rr4);
1468         SAVE_REGS(fp_psr);
1469         SAVE_REGS(saved_gp);
1470
1471         vcpu_put(vcpu);
1472         return 0;
1473 }
1474
1475 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1476                                   struct kvm_ia64_vcpu_stack *stack)
1477 {
1478         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1479         return 0;
1480 }
1481
1482 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1483                                   struct kvm_ia64_vcpu_stack *stack)
1484 {
1485         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1486                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1487
1488         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1489         return 0;
1490 }
1491
1492 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1493 {
1494
1495         hrtimer_cancel(&vcpu->arch.hlt_timer);
1496         kfree(vcpu->arch.apic);
1497 }
1498
1499
1500 long kvm_arch_vcpu_ioctl(struct file *filp,
1501                          unsigned int ioctl, unsigned long arg)
1502 {
1503         struct kvm_vcpu *vcpu = filp->private_data;
1504         void __user *argp = (void __user *)arg;
1505         struct kvm_ia64_vcpu_stack *stack = NULL;
1506         long r;
1507
1508         switch (ioctl) {
1509         case KVM_IA64_VCPU_GET_STACK: {
1510                 struct kvm_ia64_vcpu_stack __user *user_stack;
1511                 void __user *first_p = argp;
1512
1513                 r = -EFAULT;
1514                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1515                         goto out;
1516
1517                 if (!access_ok(VERIFY_WRITE, user_stack,
1518                                sizeof(struct kvm_ia64_vcpu_stack))) {
1519                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1520                                "Illegal user destination address for stack\n");
1521                         goto out;
1522                 }
1523                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1524                 if (!stack) {
1525                         r = -ENOMEM;
1526                         goto out;
1527                 }
1528
1529                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1530                 if (r)
1531                         goto out;
1532
1533                 if (copy_to_user(user_stack, stack,
1534                                  sizeof(struct kvm_ia64_vcpu_stack))) {
1535                         r = -EFAULT;
1536                         goto out;
1537                 }
1538
1539                 break;
1540         }
1541         case KVM_IA64_VCPU_SET_STACK: {
1542                 struct kvm_ia64_vcpu_stack __user *user_stack;
1543                 void __user *first_p = argp;
1544
1545                 r = -EFAULT;
1546                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1547                         goto out;
1548
1549                 if (!access_ok(VERIFY_READ, user_stack,
1550                             sizeof(struct kvm_ia64_vcpu_stack))) {
1551                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1552                                "Illegal user address for stack\n");
1553                         goto out;
1554                 }
1555                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1556                 if (!stack) {
1557                         r = -ENOMEM;
1558                         goto out;
1559                 }
1560                 if (copy_from_user(stack, user_stack,
1561                                    sizeof(struct kvm_ia64_vcpu_stack)))
1562                         goto out;
1563
1564                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1565                 break;
1566         }
1567
1568         default:
1569                 r = -EINVAL;
1570         }
1571
1572 out:
1573         kfree(stack);
1574         return r;
1575 }
1576
1577 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1578                 struct kvm_memory_slot *memslot,
1579                 struct kvm_memory_slot old,
1580                 struct kvm_userspace_memory_region *mem,
1581                 int user_alloc)
1582 {
1583         unsigned long i;
1584         unsigned long pfn;
1585         int npages = memslot->npages;
1586         unsigned long base_gfn = memslot->base_gfn;
1587
1588         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1589                 return -ENOMEM;
1590
1591         for (i = 0; i < npages; i++) {
1592                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1593                 if (!kvm_is_mmio_pfn(pfn)) {
1594                         kvm_set_pmt_entry(kvm, base_gfn + i,
1595                                         pfn << PAGE_SHIFT,
1596                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1597                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1598                 } else {
1599                         kvm_set_pmt_entry(kvm, base_gfn + i,
1600                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1601                                         _PAGE_MA_UC);
1602                         memslot->rmap[i] = 0;
1603                         }
1604         }
1605
1606         return 0;
1607 }
1608
1609 void kvm_arch_commit_memory_region(struct kvm *kvm,
1610                 struct kvm_userspace_memory_region *mem,
1611                 struct kvm_memory_slot old,
1612                 int user_alloc)
1613 {
1614         return;
1615 }
1616
1617 void kvm_arch_flush_shadow(struct kvm *kvm)
1618 {
1619         kvm_flush_remote_tlbs(kvm);
1620 }
1621
1622 long kvm_arch_dev_ioctl(struct file *filp,
1623                         unsigned int ioctl, unsigned long arg)
1624 {
1625         return -EINVAL;
1626 }
1627
1628 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1629 {
1630         kvm_vcpu_uninit(vcpu);
1631 }
1632
1633 static int vti_cpu_has_kvm_support(void)
1634 {
1635         long  avail = 1, status = 1, control = 1;
1636         long ret;
1637
1638         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1639         if (ret)
1640                 goto out;
1641
1642         if (!(avail & PAL_PROC_VM_BIT))
1643                 goto out;
1644
1645         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1646
1647         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1648         if (ret)
1649                 goto out;
1650         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1651
1652         if (!(vp_env_info & VP_OPCODE)) {
1653                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1654                                 "vm_env_info:0x%lx\n", vp_env_info);
1655         }
1656
1657         return 1;
1658 out:
1659         return 0;
1660 }
1661
1662
1663 /*
1664  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1665  * SN2 RTC, replacing the ITC based default verion.
1666  */
1667 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1668                           struct module *module)
1669 {
1670         unsigned long new_ar, new_ar_sn2;
1671         unsigned long module_base;
1672
1673         if (!ia64_platform_is("sn2"))
1674                 return;
1675
1676         module_base = (unsigned long)module->module_core;
1677
1678         new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1679         new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1680
1681         printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1682                "as source\n");
1683
1684         /*
1685          * Copy the SN2 version of mov_ar into place. They are both
1686          * the same size, so 6 bundles is sufficient (6 * 0x10).
1687          */
1688         memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1689 }
1690
1691 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1692                             struct module *module)
1693 {
1694         unsigned long module_base;
1695         unsigned long vmm_size;
1696
1697         unsigned long vmm_offset, func_offset, fdesc_offset;
1698         struct fdesc *p_fdesc;
1699
1700         BUG_ON(!module);
1701
1702         if (!kvm_vmm_base) {
1703                 printk("kvm: kvm area hasn't been initialized yet!!\n");
1704                 return -EFAULT;
1705         }
1706
1707         /*Calculate new position of relocated vmm module.*/
1708         module_base = (unsigned long)module->module_core;
1709         vmm_size = module->core_size;
1710         if (unlikely(vmm_size > KVM_VMM_SIZE))
1711                 return -EFAULT;
1712
1713         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1714         kvm_patch_vmm(vmm_info, module);
1715         kvm_flush_icache(kvm_vmm_base, vmm_size);
1716
1717         /*Recalculate kvm_vmm_info based on new VMM*/
1718         vmm_offset = vmm_info->vmm_ivt - module_base;
1719         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1720         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1721                         kvm_vmm_info->vmm_ivt);
1722
1723         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1724         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1725                                                         fdesc_offset);
1726         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1727         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1728         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1729         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1730
1731         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1732                         KVM_VMM_BASE+func_offset);
1733
1734         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1735         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1736                         fdesc_offset);
1737         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1738         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1739         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1740         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1741
1742         kvm_vmm_gp = p_fdesc->gp;
1743
1744         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1745                                                 kvm_vmm_info->vmm_entry);
1746         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1747                                                 KVM_VMM_BASE + func_offset);
1748
1749         return 0;
1750 }
1751
1752 int kvm_arch_init(void *opaque)
1753 {
1754         int r;
1755         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1756
1757         if (!vti_cpu_has_kvm_support()) {
1758                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1759                 r = -EOPNOTSUPP;
1760                 goto out;
1761         }
1762
1763         if (kvm_vmm_info) {
1764                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1765                 r = -EEXIST;
1766                 goto out;
1767         }
1768
1769         r = -ENOMEM;
1770         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1771         if (!kvm_vmm_info)
1772                 goto out;
1773
1774         if (kvm_alloc_vmm_area())
1775                 goto out_free0;
1776
1777         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1778         if (r)
1779                 goto out_free1;
1780
1781         return 0;
1782
1783 out_free1:
1784         kvm_free_vmm_area();
1785 out_free0:
1786         kfree(kvm_vmm_info);
1787 out:
1788         return r;
1789 }
1790
1791 void kvm_arch_exit(void)
1792 {
1793         kvm_free_vmm_area();
1794         kfree(kvm_vmm_info);
1795         kvm_vmm_info = NULL;
1796 }
1797
1798 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1799                                     struct kvm_memory_slot *memslot)
1800 {
1801         int i;
1802         long base;
1803         unsigned long n;
1804         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1805                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1806
1807         n = kvm_dirty_bitmap_bytes(memslot);
1808         base = memslot->base_gfn / BITS_PER_LONG;
1809
1810         spin_lock(&kvm->arch.dirty_log_lock);
1811         for (i = 0; i < n/sizeof(long); ++i) {
1812                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1813                 dirty_bitmap[base + i] = 0;
1814         }
1815         spin_unlock(&kvm->arch.dirty_log_lock);
1816 }
1817
1818 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1819                 struct kvm_dirty_log *log)
1820 {
1821         int r;
1822         unsigned long n;
1823         struct kvm_memory_slot *memslot;
1824         int is_dirty = 0;
1825
1826         mutex_lock(&kvm->slots_lock);
1827
1828         r = -EINVAL;
1829         if (log->slot >= KVM_MEMORY_SLOTS)
1830                 goto out;
1831
1832         memslot = &kvm->memslots->memslots[log->slot];
1833         r = -ENOENT;
1834         if (!memslot->dirty_bitmap)
1835                 goto out;
1836
1837         kvm_ia64_sync_dirty_log(kvm, memslot);
1838         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1839         if (r)
1840                 goto out;
1841
1842         /* If nothing is dirty, don't bother messing with page tables. */
1843         if (is_dirty) {
1844                 kvm_flush_remote_tlbs(kvm);
1845                 n = kvm_dirty_bitmap_bytes(memslot);
1846                 memset(memslot->dirty_bitmap, 0, n);
1847         }
1848         r = 0;
1849 out:
1850         mutex_unlock(&kvm->slots_lock);
1851         return r;
1852 }
1853
1854 int kvm_arch_hardware_setup(void)
1855 {
1856         return 0;
1857 }
1858
1859 void kvm_arch_hardware_unsetup(void)
1860 {
1861 }
1862
1863 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1864 {
1865         int me;
1866         int cpu = vcpu->cpu;
1867
1868         if (waitqueue_active(&vcpu->wq))
1869                 wake_up_interruptible(&vcpu->wq);
1870
1871         me = get_cpu();
1872         if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
1873                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
1874                         smp_send_reschedule(cpu);
1875         put_cpu();
1876 }
1877
1878 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1879 {
1880         return __apic_accept_irq(vcpu, irq->vector);
1881 }
1882
1883 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1884 {
1885         return apic->vcpu->vcpu_id == dest;
1886 }
1887
1888 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1889 {
1890         return 0;
1891 }
1892
1893 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1894 {
1895         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1896 }
1897
1898 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1899                 int short_hand, int dest, int dest_mode)
1900 {
1901         struct kvm_lapic *target = vcpu->arch.apic;
1902         return (dest_mode == 0) ?
1903                 kvm_apic_match_physical_addr(target, dest) :
1904                 kvm_apic_match_logical_addr(target, dest);
1905 }
1906
1907 static int find_highest_bits(int *dat)
1908 {
1909         u32  bits, bitnum;
1910         int i;
1911
1912         /* loop for all 256 bits */
1913         for (i = 7; i >= 0 ; i--) {
1914                 bits = dat[i];
1915                 if (bits) {
1916                         bitnum = fls(bits);
1917                         return i * 32 + bitnum - 1;
1918                 }
1919         }
1920
1921         return -1;
1922 }
1923
1924 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1925 {
1926     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1927
1928     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1929                 return NMI_VECTOR;
1930     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1931                 return ExtINT_VECTOR;
1932
1933     return find_highest_bits((int *)&vpd->irr[0]);
1934 }
1935
1936 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1937 {
1938         return vcpu->arch.timer_fired;
1939 }
1940
1941 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1942 {
1943         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1944                 (kvm_highest_pending_irq(vcpu) != -1);
1945 }
1946
1947 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1948                                     struct kvm_mp_state *mp_state)
1949 {
1950         mp_state->mp_state = vcpu->arch.mp_state;
1951         return 0;
1952 }
1953
1954 static int vcpu_reset(struct kvm_vcpu *vcpu)
1955 {
1956         int r;
1957         long psr;
1958         local_irq_save(psr);
1959         r = kvm_insert_vmm_mapping(vcpu);
1960         local_irq_restore(psr);
1961         if (r)
1962                 goto fail;
1963
1964         vcpu->arch.launched = 0;
1965         kvm_arch_vcpu_uninit(vcpu);
1966         r = kvm_arch_vcpu_init(vcpu);
1967         if (r)
1968                 goto fail;
1969
1970         kvm_purge_vmm_mapping(vcpu);
1971         r = 0;
1972 fail:
1973         return r;
1974 }
1975
1976 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1977                                     struct kvm_mp_state *mp_state)
1978 {
1979         int r = 0;
1980
1981         vcpu->arch.mp_state = mp_state->mp_state;
1982         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1983                 r = vcpu_reset(vcpu);
1984         return r;
1985 }