Merge master.kernel.org:/pub/scm/linux/kernel/git/lethal/sh64-2.6
[sfrench/cifs-2.6.git] / arch / ia64 / kernel / setup.c
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  *      Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  *      Rohit Seth <rohit.seth@intel.com>
9  *      Suresh Siddha <suresh.b.siddha@intel.com>
10  *      Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *                      Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth      cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth      fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian   added the support for command line argument
22  * 06/24/99 W.Drummond  added boot_cpu_data.
23  * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63
64 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
65 # error "struct cpuinfo_ia64 too big!"
66 #endif
67
68 #ifdef CONFIG_SMP
69 unsigned long __per_cpu_offset[NR_CPUS];
70 EXPORT_SYMBOL(__per_cpu_offset);
71 #endif
72
73 extern void ia64_setup_printk_clock(void);
74
75 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
76 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
77 unsigned long ia64_cycles_per_usec;
78 struct ia64_boot_param *ia64_boot_param;
79 struct screen_info screen_info;
80 unsigned long vga_console_iobase;
81 unsigned long vga_console_membase;
82
83 static struct resource data_resource = {
84         .name   = "Kernel data",
85         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
86 };
87
88 static struct resource code_resource = {
89         .name   = "Kernel code",
90         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
91 };
92 extern char _text[], _end[], _etext[];
93
94 unsigned long ia64_max_cacheline_size;
95
96 int dma_get_cache_alignment(void)
97 {
98         return ia64_max_cacheline_size;
99 }
100 EXPORT_SYMBOL(dma_get_cache_alignment);
101
102 unsigned long ia64_iobase;      /* virtual address for I/O accesses */
103 EXPORT_SYMBOL(ia64_iobase);
104 struct io_space io_space[MAX_IO_SPACES];
105 EXPORT_SYMBOL(io_space);
106 unsigned int num_io_spaces;
107
108 /*
109  * "flush_icache_range()" needs to know what processor dependent stride size to use
110  * when it makes i-cache(s) coherent with d-caches.
111  */
112 #define I_CACHE_STRIDE_SHIFT    5       /* Safest way to go: 32 bytes by 32 bytes */
113 unsigned long ia64_i_cache_stride_shift = ~0;
114
115 /*
116  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
117  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
118  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
119  * address of the second buffer must be aligned to (merge_mask+1) in order to be
120  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
121  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
122  * page-size of 2^64.
123  */
124 unsigned long ia64_max_iommu_merge_mask = ~0UL;
125 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
126
127 /*
128  * We use a special marker for the end of memory and it uses the extra (+1) slot
129  */
130 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
131 int num_rsvd_regions __initdata;
132
133
134 /*
135  * Filter incoming memory segments based on the primitive map created from the boot
136  * parameters. Segments contained in the map are removed from the memory ranges. A
137  * caller-specified function is called with the memory ranges that remain after filtering.
138  * This routine does not assume the incoming segments are sorted.
139  */
140 int __init
141 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
142 {
143         unsigned long range_start, range_end, prev_start;
144         void (*func)(unsigned long, unsigned long, int);
145         int i;
146
147 #if IGNORE_PFN0
148         if (start == PAGE_OFFSET) {
149                 printk(KERN_WARNING "warning: skipping physical page 0\n");
150                 start += PAGE_SIZE;
151                 if (start >= end) return 0;
152         }
153 #endif
154         /*
155          * lowest possible address(walker uses virtual)
156          */
157         prev_start = PAGE_OFFSET;
158         func = arg;
159
160         for (i = 0; i < num_rsvd_regions; ++i) {
161                 range_start = max(start, prev_start);
162                 range_end   = min(end, rsvd_region[i].start);
163
164                 if (range_start < range_end)
165                         call_pernode_memory(__pa(range_start), range_end - range_start, func);
166
167                 /* nothing more available in this segment */
168                 if (range_end == end) return 0;
169
170                 prev_start = rsvd_region[i].end;
171         }
172         /* end of memory marker allows full processing inside loop body */
173         return 0;
174 }
175
176 static void __init
177 sort_regions (struct rsvd_region *rsvd_region, int max)
178 {
179         int j;
180
181         /* simple bubble sorting */
182         while (max--) {
183                 for (j = 0; j < max; ++j) {
184                         if (rsvd_region[j].start > rsvd_region[j+1].start) {
185                                 struct rsvd_region tmp;
186                                 tmp = rsvd_region[j];
187                                 rsvd_region[j] = rsvd_region[j + 1];
188                                 rsvd_region[j + 1] = tmp;
189                         }
190                 }
191         }
192 }
193
194 /*
195  * Request address space for all standard resources
196  */
197 static int __init register_memory(void)
198 {
199         code_resource.start = ia64_tpa(_text);
200         code_resource.end   = ia64_tpa(_etext) - 1;
201         data_resource.start = ia64_tpa(_etext);
202         data_resource.end   = ia64_tpa(_end) - 1;
203         efi_initialize_iomem_resources(&code_resource, &data_resource);
204
205         return 0;
206 }
207
208 __initcall(register_memory);
209
210 /**
211  * reserve_memory - setup reserved memory areas
212  *
213  * Setup the reserved memory areas set aside for the boot parameters,
214  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
215  * see include/asm-ia64/meminit.h if you need to define more.
216  */
217 void __init
218 reserve_memory (void)
219 {
220         int n = 0;
221
222         /*
223          * none of the entries in this table overlap
224          */
225         rsvd_region[n].start = (unsigned long) ia64_boot_param;
226         rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
227         n++;
228
229         rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
230         rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
231         n++;
232
233         rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
234         rsvd_region[n].end   = (rsvd_region[n].start
235                                 + strlen(__va(ia64_boot_param->command_line)) + 1);
236         n++;
237
238         rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
239         rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
240         n++;
241
242 #ifdef CONFIG_BLK_DEV_INITRD
243         if (ia64_boot_param->initrd_start) {
244                 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
245                 rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
246                 n++;
247         }
248 #endif
249
250 #ifdef CONFIG_PROC_VMCORE
251         if (reserve_elfcorehdr(&rsvd_region[n].start,
252                                &rsvd_region[n].end) == 0)
253                 n++;
254 #endif
255
256         efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
257         n++;
258
259 #ifdef CONFIG_KEXEC
260         /* crashkernel=size@offset specifies the size to reserve for a crash
261          * kernel. If offset is 0, then it is determined automatically.
262          * By reserving this memory we guarantee that linux never set's it
263          * up as a DMA target.Useful for holding code to do something
264          * appropriate after a kernel panic.
265          */
266         {
267                 char *from = strstr(boot_command_line, "crashkernel=");
268                 unsigned long base, size;
269                 if (from) {
270                         size = memparse(from + 12, &from);
271                         if (*from == '@')
272                                 base = memparse(from+1, &from);
273                         else
274                                 base = 0;
275                         if (size) {
276                                 if (!base) {
277                                         sort_regions(rsvd_region, n);
278                                         base = kdump_find_rsvd_region(size,
279                                                                 rsvd_region, n);
280                                         }
281                                 if (base != ~0UL) {
282                                         rsvd_region[n].start =
283                                                 (unsigned long)__va(base);
284                                         rsvd_region[n].end =
285                                                 (unsigned long)__va(base + size);
286                                         n++;
287                                         crashk_res.start = base;
288                                         crashk_res.end = base + size - 1;
289                                 }
290                         }
291                 }
292                 efi_memmap_res.start = ia64_boot_param->efi_memmap;
293                 efi_memmap_res.end = efi_memmap_res.start +
294                         ia64_boot_param->efi_memmap_size;
295                 boot_param_res.start = __pa(ia64_boot_param);
296                 boot_param_res.end = boot_param_res.start +
297                         sizeof(*ia64_boot_param);
298         }
299 #endif
300         /* end of memory marker */
301         rsvd_region[n].start = ~0UL;
302         rsvd_region[n].end   = ~0UL;
303         n++;
304
305         num_rsvd_regions = n;
306         BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
307
308         sort_regions(rsvd_region, num_rsvd_regions);
309 }
310
311
312 /**
313  * find_initrd - get initrd parameters from the boot parameter structure
314  *
315  * Grab the initrd start and end from the boot parameter struct given us by
316  * the boot loader.
317  */
318 void __init
319 find_initrd (void)
320 {
321 #ifdef CONFIG_BLK_DEV_INITRD
322         if (ia64_boot_param->initrd_start) {
323                 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
324                 initrd_end   = initrd_start+ia64_boot_param->initrd_size;
325
326                 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
327                        initrd_start, ia64_boot_param->initrd_size);
328         }
329 #endif
330 }
331
332 static void __init
333 io_port_init (void)
334 {
335         unsigned long phys_iobase;
336
337         /*
338          * Set `iobase' based on the EFI memory map or, failing that, the
339          * value firmware left in ar.k0.
340          *
341          * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
342          * the port's virtual address, so ia32_load_state() loads it with a
343          * user virtual address.  But in ia64 mode, glibc uses the
344          * *physical* address in ar.k0 to mmap the appropriate area from
345          * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
346          * cases, user-mode can only use the legacy 0-64K I/O port space.
347          *
348          * ar.k0 is not involved in kernel I/O port accesses, which can use
349          * any of the I/O port spaces and are done via MMIO using the
350          * virtual mmio_base from the appropriate io_space[].
351          */
352         phys_iobase = efi_get_iobase();
353         if (!phys_iobase) {
354                 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
355                 printk(KERN_INFO "No I/O port range found in EFI memory map, "
356                         "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
357         }
358         ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
359         ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
360
361         /* setup legacy IO port space */
362         io_space[0].mmio_base = ia64_iobase;
363         io_space[0].sparse = 1;
364         num_io_spaces = 1;
365 }
366
367 /**
368  * early_console_setup - setup debugging console
369  *
370  * Consoles started here require little enough setup that we can start using
371  * them very early in the boot process, either right after the machine
372  * vector initialization, or even before if the drivers can detect their hw.
373  *
374  * Returns non-zero if a console couldn't be setup.
375  */
376 static inline int __init
377 early_console_setup (char *cmdline)
378 {
379         int earlycons = 0;
380
381 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
382         {
383                 extern int sn_serial_console_early_setup(void);
384                 if (!sn_serial_console_early_setup())
385                         earlycons++;
386         }
387 #endif
388 #ifdef CONFIG_EFI_PCDP
389         if (!efi_setup_pcdp_console(cmdline))
390                 earlycons++;
391 #endif
392 #ifdef CONFIG_HP_SIMSERIAL_CONSOLE
393         {
394                 extern struct console hpsim_cons;
395                 register_console(&hpsim_cons);
396                 earlycons++;
397         }
398 #endif
399
400         return (earlycons) ? 0 : -1;
401 }
402
403 static inline void
404 mark_bsp_online (void)
405 {
406 #ifdef CONFIG_SMP
407         /* If we register an early console, allow CPU 0 to printk */
408         cpu_set(smp_processor_id(), cpu_online_map);
409 #endif
410 }
411
412 #ifdef CONFIG_SMP
413 static void __init
414 check_for_logical_procs (void)
415 {
416         pal_logical_to_physical_t info;
417         s64 status;
418
419         status = ia64_pal_logical_to_phys(0, &info);
420         if (status == -1) {
421                 printk(KERN_INFO "No logical to physical processor mapping "
422                        "available\n");
423                 return;
424         }
425         if (status) {
426                 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
427                        status);
428                 return;
429         }
430         /*
431          * Total number of siblings that BSP has.  Though not all of them 
432          * may have booted successfully. The correct number of siblings 
433          * booted is in info.overview_num_log.
434          */
435         smp_num_siblings = info.overview_tpc;
436         smp_num_cpucores = info.overview_cpp;
437 }
438 #endif
439
440 static __initdata int nomca;
441 static __init int setup_nomca(char *s)
442 {
443         nomca = 1;
444         return 0;
445 }
446 early_param("nomca", setup_nomca);
447
448 #ifdef CONFIG_PROC_VMCORE
449 /* elfcorehdr= specifies the location of elf core header
450  * stored by the crashed kernel.
451  */
452 static int __init parse_elfcorehdr(char *arg)
453 {
454         if (!arg)
455                 return -EINVAL;
456
457         elfcorehdr_addr = memparse(arg, &arg);
458         return 0;
459 }
460 early_param("elfcorehdr", parse_elfcorehdr);
461
462 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
463 {
464         unsigned long length;
465
466         /* We get the address using the kernel command line,
467          * but the size is extracted from the EFI tables.
468          * Both address and size are required for reservation
469          * to work properly.
470          */
471
472         if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
473                 return -EINVAL;
474
475         if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
476                 elfcorehdr_addr = ELFCORE_ADDR_MAX;
477                 return -EINVAL;
478         }
479
480         *start = (unsigned long)__va(elfcorehdr_addr);
481         *end = *start + length;
482         return 0;
483 }
484
485 #endif /* CONFIG_PROC_VMCORE */
486
487 void __init
488 setup_arch (char **cmdline_p)
489 {
490         unw_init();
491
492         ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
493
494         *cmdline_p = __va(ia64_boot_param->command_line);
495         strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
496
497         efi_init();
498         io_port_init();
499
500 #ifdef CONFIG_IA64_GENERIC
501         /* machvec needs to be parsed from the command line
502          * before parse_early_param() is called to ensure
503          * that ia64_mv is initialised before any command line
504          * settings may cause console setup to occur
505          */
506         machvec_init_from_cmdline(*cmdline_p);
507 #endif
508
509         parse_early_param();
510
511         if (early_console_setup(*cmdline_p) == 0)
512                 mark_bsp_online();
513
514 #ifdef CONFIG_ACPI
515         /* Initialize the ACPI boot-time table parser */
516         acpi_table_init();
517 # ifdef CONFIG_ACPI_NUMA
518         acpi_numa_init();
519 # endif
520 #else
521 # ifdef CONFIG_SMP
522         smp_build_cpu_map();    /* happens, e.g., with the Ski simulator */
523 # endif
524 #endif /* CONFIG_APCI_BOOT */
525
526         find_memory();
527
528         /* process SAL system table: */
529         ia64_sal_init(__va(efi.sal_systab));
530
531         ia64_setup_printk_clock();
532
533 #ifdef CONFIG_SMP
534         cpu_physical_id(0) = hard_smp_processor_id();
535
536         cpu_set(0, cpu_sibling_map[0]);
537         cpu_set(0, cpu_core_map[0]);
538
539         check_for_logical_procs();
540         if (smp_num_cpucores > 1)
541                 printk(KERN_INFO
542                        "cpu package is Multi-Core capable: number of cores=%d\n",
543                        smp_num_cpucores);
544         if (smp_num_siblings > 1)
545                 printk(KERN_INFO
546                        "cpu package is Multi-Threading capable: number of siblings=%d\n",
547                        smp_num_siblings);
548 #endif
549
550         cpu_init();     /* initialize the bootstrap CPU */
551         mmu_context_init();     /* initialize context_id bitmap */
552
553         check_sal_cache_flush();
554
555 #ifdef CONFIG_ACPI
556         acpi_boot_init();
557 #endif
558
559 #ifdef CONFIG_VT
560         if (!conswitchp) {
561 # if defined(CONFIG_DUMMY_CONSOLE)
562                 conswitchp = &dummy_con;
563 # endif
564 # if defined(CONFIG_VGA_CONSOLE)
565                 /*
566                  * Non-legacy systems may route legacy VGA MMIO range to system
567                  * memory.  vga_con probes the MMIO hole, so memory looks like
568                  * a VGA device to it.  The EFI memory map can tell us if it's
569                  * memory so we can avoid this problem.
570                  */
571                 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
572                         conswitchp = &vga_con;
573 # endif
574         }
575 #endif
576
577         /* enable IA-64 Machine Check Abort Handling unless disabled */
578         if (!nomca)
579                 ia64_mca_init();
580
581         platform_setup(cmdline_p);
582         paging_init();
583 }
584
585 /*
586  * Display cpu info for all CPUs.
587  */
588 static int
589 show_cpuinfo (struct seq_file *m, void *v)
590 {
591 #ifdef CONFIG_SMP
592 #       define lpj      c->loops_per_jiffy
593 #       define cpunum   c->cpu
594 #else
595 #       define lpj      loops_per_jiffy
596 #       define cpunum   0
597 #endif
598         static struct {
599                 unsigned long mask;
600                 const char *feature_name;
601         } feature_bits[] = {
602                 { 1UL << 0, "branchlong" },
603                 { 1UL << 1, "spontaneous deferral"},
604                 { 1UL << 2, "16-byte atomic ops" }
605         };
606         char features[128], *cp, *sep;
607         struct cpuinfo_ia64 *c = v;
608         unsigned long mask;
609         unsigned long proc_freq;
610         int i, size;
611
612         mask = c->features;
613
614         /* build the feature string: */
615         memcpy(features, "standard", 9);
616         cp = features;
617         size = sizeof(features);
618         sep = "";
619         for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
620                 if (mask & feature_bits[i].mask) {
621                         cp += snprintf(cp, size, "%s%s", sep,
622                                        feature_bits[i].feature_name),
623                         sep = ", ";
624                         mask &= ~feature_bits[i].mask;
625                         size = sizeof(features) - (cp - features);
626                 }
627         }
628         if (mask && size > 1) {
629                 /* print unknown features as a hex value */
630                 snprintf(cp, size, "%s0x%lx", sep, mask);
631         }
632
633         proc_freq = cpufreq_quick_get(cpunum);
634         if (!proc_freq)
635                 proc_freq = c->proc_freq / 1000;
636
637         seq_printf(m,
638                    "processor  : %d\n"
639                    "vendor     : %s\n"
640                    "arch       : IA-64\n"
641                    "family     : %u\n"
642                    "model      : %u\n"
643                    "model name : %s\n"
644                    "revision   : %u\n"
645                    "archrev    : %u\n"
646                    "features   : %s\n"
647                    "cpu number : %lu\n"
648                    "cpu regs   : %u\n"
649                    "cpu MHz    : %lu.%03lu\n"
650                    "itc MHz    : %lu.%06lu\n"
651                    "BogoMIPS   : %lu.%02lu\n",
652                    cpunum, c->vendor, c->family, c->model,
653                    c->model_name, c->revision, c->archrev,
654                    features, c->ppn, c->number,
655                    proc_freq / 1000, proc_freq % 1000,
656                    c->itc_freq / 1000000, c->itc_freq % 1000000,
657                    lpj*HZ/500000, (lpj*HZ/5000) % 100);
658 #ifdef CONFIG_SMP
659         seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
660         if (c->threads_per_core > 1 || c->cores_per_socket > 1)
661                 seq_printf(m,
662                            "physical id: %u\n"
663                            "core id    : %u\n"
664                            "thread id  : %u\n",
665                            c->socket_id, c->core_id, c->thread_id);
666 #endif
667         seq_printf(m,"\n");
668
669         return 0;
670 }
671
672 static void *
673 c_start (struct seq_file *m, loff_t *pos)
674 {
675 #ifdef CONFIG_SMP
676         while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
677                 ++*pos;
678 #endif
679         return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
680 }
681
682 static void *
683 c_next (struct seq_file *m, void *v, loff_t *pos)
684 {
685         ++*pos;
686         return c_start(m, pos);
687 }
688
689 static void
690 c_stop (struct seq_file *m, void *v)
691 {
692 }
693
694 struct seq_operations cpuinfo_op = {
695         .start =        c_start,
696         .next =         c_next,
697         .stop =         c_stop,
698         .show =         show_cpuinfo
699 };
700
701 #define MAX_BRANDS      8
702 static char brandname[MAX_BRANDS][128];
703
704 static char * __cpuinit
705 get_model_name(__u8 family, __u8 model)
706 {
707         static int overflow;
708         char brand[128];
709         int i;
710
711         memcpy(brand, "Unknown", 8);
712         if (ia64_pal_get_brand_info(brand)) {
713                 if (family == 0x7)
714                         memcpy(brand, "Merced", 7);
715                 else if (family == 0x1f) switch (model) {
716                         case 0: memcpy(brand, "McKinley", 9); break;
717                         case 1: memcpy(brand, "Madison", 8); break;
718                         case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
719                 }
720         }
721         for (i = 0; i < MAX_BRANDS; i++)
722                 if (strcmp(brandname[i], brand) == 0)
723                         return brandname[i];
724         for (i = 0; i < MAX_BRANDS; i++)
725                 if (brandname[i][0] == '\0')
726                         return strcpy(brandname[i], brand);
727         if (overflow++ == 0)
728                 printk(KERN_ERR
729                        "%s: Table overflow. Some processor model information will be missing\n",
730                        __FUNCTION__);
731         return "Unknown";
732 }
733
734 static void __cpuinit
735 identify_cpu (struct cpuinfo_ia64 *c)
736 {
737         union {
738                 unsigned long bits[5];
739                 struct {
740                         /* id 0 & 1: */
741                         char vendor[16];
742
743                         /* id 2 */
744                         u64 ppn;                /* processor serial number */
745
746                         /* id 3: */
747                         unsigned number         :  8;
748                         unsigned revision       :  8;
749                         unsigned model          :  8;
750                         unsigned family         :  8;
751                         unsigned archrev        :  8;
752                         unsigned reserved       : 24;
753
754                         /* id 4: */
755                         u64 features;
756                 } field;
757         } cpuid;
758         pal_vm_info_1_u_t vm1;
759         pal_vm_info_2_u_t vm2;
760         pal_status_t status;
761         unsigned long impl_va_msb = 50, phys_addr_size = 44;    /* Itanium defaults */
762         int i;
763         for (i = 0; i < 5; ++i)
764                 cpuid.bits[i] = ia64_get_cpuid(i);
765
766         memcpy(c->vendor, cpuid.field.vendor, 16);
767 #ifdef CONFIG_SMP
768         c->cpu = smp_processor_id();
769
770         /* below default values will be overwritten  by identify_siblings() 
771          * for Multi-Threading/Multi-Core capable CPUs
772          */
773         c->threads_per_core = c->cores_per_socket = c->num_log = 1;
774         c->socket_id = -1;
775
776         identify_siblings(c);
777 #endif
778         c->ppn = cpuid.field.ppn;
779         c->number = cpuid.field.number;
780         c->revision = cpuid.field.revision;
781         c->model = cpuid.field.model;
782         c->family = cpuid.field.family;
783         c->archrev = cpuid.field.archrev;
784         c->features = cpuid.field.features;
785         c->model_name = get_model_name(c->family, c->model);
786
787         status = ia64_pal_vm_summary(&vm1, &vm2);
788         if (status == PAL_STATUS_SUCCESS) {
789                 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
790                 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
791         }
792         c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
793         c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
794 }
795
796 void __init
797 setup_per_cpu_areas (void)
798 {
799         /* start_kernel() requires this... */
800 #ifdef CONFIG_ACPI_HOTPLUG_CPU
801         prefill_possible_map();
802 #endif
803 }
804
805 /*
806  * Calculate the max. cache line size.
807  *
808  * In addition, the minimum of the i-cache stride sizes is calculated for
809  * "flush_icache_range()".
810  */
811 static void __cpuinit
812 get_max_cacheline_size (void)
813 {
814         unsigned long line_size, max = 1;
815         u64 l, levels, unique_caches;
816         pal_cache_config_info_t cci;
817         s64 status;
818
819         status = ia64_pal_cache_summary(&levels, &unique_caches);
820         if (status != 0) {
821                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
822                        __FUNCTION__, status);
823                 max = SMP_CACHE_BYTES;
824                 /* Safest setup for "flush_icache_range()" */
825                 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
826                 goto out;
827         }
828
829         for (l = 0; l < levels; ++l) {
830                 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
831                                                     &cci);
832                 if (status != 0) {
833                         printk(KERN_ERR
834                                "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
835                                __FUNCTION__, l, status);
836                         max = SMP_CACHE_BYTES;
837                         /* The safest setup for "flush_icache_range()" */
838                         cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
839                         cci.pcci_unified = 1;
840                 }
841                 line_size = 1 << cci.pcci_line_size;
842                 if (line_size > max)
843                         max = line_size;
844                 if (!cci.pcci_unified) {
845                         status = ia64_pal_cache_config_info(l,
846                                                     /* cache_type (instruction)= */ 1,
847                                                     &cci);
848                         if (status != 0) {
849                                 printk(KERN_ERR
850                                 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
851                                         __FUNCTION__, l, status);
852                                 /* The safest setup for "flush_icache_range()" */
853                                 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
854                         }
855                 }
856                 if (cci.pcci_stride < ia64_i_cache_stride_shift)
857                         ia64_i_cache_stride_shift = cci.pcci_stride;
858         }
859   out:
860         if (max > ia64_max_cacheline_size)
861                 ia64_max_cacheline_size = max;
862 }
863
864 /*
865  * cpu_init() initializes state that is per-CPU.  This function acts
866  * as a 'CPU state barrier', nothing should get across.
867  */
868 void __cpuinit
869 cpu_init (void)
870 {
871         extern void __cpuinit ia64_mmu_init (void *);
872         static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
873         unsigned long num_phys_stacked;
874         pal_vm_info_2_u_t vmi;
875         unsigned int max_ctx;
876         struct cpuinfo_ia64 *cpu_info;
877         void *cpu_data;
878
879         cpu_data = per_cpu_init();
880
881         /*
882          * We set ar.k3 so that assembly code in MCA handler can compute
883          * physical addresses of per cpu variables with a simple:
884          *   phys = ar.k3 + &per_cpu_var
885          */
886         ia64_set_kr(IA64_KR_PER_CPU_DATA,
887                     ia64_tpa(cpu_data) - (long) __per_cpu_start);
888
889         get_max_cacheline_size();
890
891         /*
892          * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
893          * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
894          * depends on the data returned by identify_cpu().  We break the dependency by
895          * accessing cpu_data() through the canonical per-CPU address.
896          */
897         cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
898         identify_cpu(cpu_info);
899
900 #ifdef CONFIG_MCKINLEY
901         {
902 #               define FEATURE_SET 16
903                 struct ia64_pal_retval iprv;
904
905                 if (cpu_info->family == 0x1f) {
906                         PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
907                         if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
908                                 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
909                                               (iprv.v1 | 0x80), FEATURE_SET, 0);
910                 }
911         }
912 #endif
913
914         /* Clear the stack memory reserved for pt_regs: */
915         memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
916
917         ia64_set_kr(IA64_KR_FPU_OWNER, 0);
918
919         /*
920          * Initialize the page-table base register to a global
921          * directory with all zeroes.  This ensure that we can handle
922          * TLB-misses to user address-space even before we created the
923          * first user address-space.  This may happen, e.g., due to
924          * aggressive use of lfetch.fault.
925          */
926         ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
927
928         /*
929          * Initialize default control register to defer speculative faults except
930          * for those arising from TLB misses, which are not deferred.  The
931          * kernel MUST NOT depend on a particular setting of these bits (in other words,
932          * the kernel must have recovery code for all speculative accesses).  Turn on
933          * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
934          * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
935          * be fine).
936          */
937         ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
938                                         | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
939         atomic_inc(&init_mm.mm_count);
940         current->active_mm = &init_mm;
941         if (current->mm)
942                 BUG();
943
944         ia64_mmu_init(ia64_imva(cpu_data));
945         ia64_mca_cpu_init(ia64_imva(cpu_data));
946
947 #ifdef CONFIG_IA32_SUPPORT
948         ia32_cpu_init();
949 #endif
950
951         /* Clear ITC to eliminate sched_clock() overflows in human time.  */
952         ia64_set_itc(0);
953
954         /* disable all local interrupt sources: */
955         ia64_set_itv(1 << 16);
956         ia64_set_lrr0(1 << 16);
957         ia64_set_lrr1(1 << 16);
958         ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
959         ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
960
961         /* clear TPR & XTP to enable all interrupt classes: */
962         ia64_setreg(_IA64_REG_CR_TPR, 0);
963 #ifdef CONFIG_SMP
964         normal_xtp();
965 #endif
966
967         /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
968         if (ia64_pal_vm_summary(NULL, &vmi) == 0)
969                 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
970         else {
971                 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
972                 max_ctx = (1U << 15) - 1;       /* use architected minimum */
973         }
974         while (max_ctx < ia64_ctx.max_ctx) {
975                 unsigned int old = ia64_ctx.max_ctx;
976                 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
977                         break;
978         }
979
980         if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
981                 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
982                        "stacked regs\n");
983                 num_phys_stacked = 96;
984         }
985         /* size of physical stacked register partition plus 8 bytes: */
986         if (num_phys_stacked > max_num_phys_stacked) {
987                 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
988                 max_num_phys_stacked = num_phys_stacked;
989         }
990         platform_cpu_init();
991         pm_idle = default_idle;
992 }
993
994 void __init
995 check_bugs (void)
996 {
997         ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
998                                (unsigned long) __end___mckinley_e9_bundles);
999 }
1000
1001 static int __init run_dmi_scan(void)
1002 {
1003         dmi_scan_machine();
1004         return 0;
1005 }
1006 core_initcall(run_dmi_scan);