Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[sfrench/cifs-2.6.git] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch   GUID cleanups
26  *
27  * 02/01/04 J. Hall     Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *                      error flag, set SAL default return values, changed
29  *                      error record structure to linked list, added init call
30  *                      to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  *
52  * 2005-08-12 Keith Owens <kaos@sgi.com>
53  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54  *
55  * 2005-10-07 Keith Owens <kaos@sgi.com>
56  *            Add notify_die() hooks.
57  *
58  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59  *            Add printing support for MCA/INIT.
60  */
61 #include <linux/types.h>
62 #include <linux/init.h>
63 #include <linux/sched.h>
64 #include <linux/interrupt.h>
65 #include <linux/irq.h>
66 #include <linux/bootmem.h>
67 #include <linux/acpi.h>
68 #include <linux/timer.h>
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/smp.h>
72 #include <linux/workqueue.h>
73 #include <linux/cpumask.h>
74 #include <linux/kdebug.h>
75
76 #include <asm/delay.h>
77 #include <asm/machvec.h>
78 #include <asm/meminit.h>
79 #include <asm/page.h>
80 #include <asm/ptrace.h>
81 #include <asm/system.h>
82 #include <asm/sal.h>
83 #include <asm/mca.h>
84 #include <asm/kexec.h>
85
86 #include <asm/irq.h>
87 #include <asm/hw_irq.h>
88
89 #include "mca_drv.h"
90 #include "entry.h"
91
92 #if defined(IA64_MCA_DEBUG_INFO)
93 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
94 #else
95 # define IA64_MCA_DEBUG(fmt...)
96 #endif
97
98 /* Used by mca_asm.S */
99 u32                             ia64_mca_serialize;
100 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
101 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
102 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
103 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
104
105 unsigned long __per_cpu_mca[NR_CPUS];
106
107 /* In mca_asm.S */
108 extern void                     ia64_os_init_dispatch_monarch (void);
109 extern void                     ia64_os_init_dispatch_slave (void);
110
111 static int monarch_cpu = -1;
112
113 static ia64_mc_info_t           ia64_mc_info;
114
115 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
116 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
117 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
118 #define CPE_HISTORY_LENGTH    5
119 #define CMC_HISTORY_LENGTH    5
120
121 #ifdef CONFIG_ACPI
122 static struct timer_list cpe_poll_timer;
123 #endif
124 static struct timer_list cmc_poll_timer;
125 /*
126  * This variable tells whether we are currently in polling mode.
127  * Start with this in the wrong state so we won't play w/ timers
128  * before the system is ready.
129  */
130 static int cmc_polling_enabled = 1;
131
132 /*
133  * Clearing this variable prevents CPE polling from getting activated
134  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
135  * but encounters problems retrieving CPE logs.  This should only be
136  * necessary for debugging.
137  */
138 static int cpe_poll_enabled = 1;
139
140 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
141
142 static int mca_init __initdata;
143
144 /*
145  * limited & delayed printing support for MCA/INIT handler
146  */
147
148 #define mprintk(fmt...) ia64_mca_printk(fmt)
149
150 #define MLOGBUF_SIZE (512+256*NR_CPUS)
151 #define MLOGBUF_MSGMAX 256
152 static char mlogbuf[MLOGBUF_SIZE];
153 static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
154 static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
155 static unsigned long mlogbuf_start;
156 static unsigned long mlogbuf_end;
157 static unsigned int mlogbuf_finished = 0;
158 static unsigned long mlogbuf_timestamp = 0;
159
160 static int loglevel_save = -1;
161 #define BREAK_LOGLEVEL(__console_loglevel)              \
162         oops_in_progress = 1;                           \
163         if (loglevel_save < 0)                          \
164                 loglevel_save = __console_loglevel;     \
165         __console_loglevel = 15;
166
167 #define RESTORE_LOGLEVEL(__console_loglevel)            \
168         if (loglevel_save >= 0) {                       \
169                 __console_loglevel = loglevel_save;     \
170                 loglevel_save = -1;                     \
171         }                                               \
172         mlogbuf_finished = 0;                           \
173         oops_in_progress = 0;
174
175 /*
176  * Push messages into buffer, print them later if not urgent.
177  */
178 void ia64_mca_printk(const char *fmt, ...)
179 {
180         va_list args;
181         int printed_len;
182         char temp_buf[MLOGBUF_MSGMAX];
183         char *p;
184
185         va_start(args, fmt);
186         printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
187         va_end(args);
188
189         /* Copy the output into mlogbuf */
190         if (oops_in_progress) {
191                 /* mlogbuf was abandoned, use printk directly instead. */
192                 printk(temp_buf);
193         } else {
194                 spin_lock(&mlogbuf_wlock);
195                 for (p = temp_buf; *p; p++) {
196                         unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
197                         if (next != mlogbuf_start) {
198                                 mlogbuf[mlogbuf_end] = *p;
199                                 mlogbuf_end = next;
200                         } else {
201                                 /* buffer full */
202                                 break;
203                         }
204                 }
205                 mlogbuf[mlogbuf_end] = '\0';
206                 spin_unlock(&mlogbuf_wlock);
207         }
208 }
209 EXPORT_SYMBOL(ia64_mca_printk);
210
211 /*
212  * Print buffered messages.
213  *  NOTE: call this after returning normal context. (ex. from salinfod)
214  */
215 void ia64_mlogbuf_dump(void)
216 {
217         char temp_buf[MLOGBUF_MSGMAX];
218         char *p;
219         unsigned long index;
220         unsigned long flags;
221         unsigned int printed_len;
222
223         /* Get output from mlogbuf */
224         while (mlogbuf_start != mlogbuf_end) {
225                 temp_buf[0] = '\0';
226                 p = temp_buf;
227                 printed_len = 0;
228
229                 spin_lock_irqsave(&mlogbuf_rlock, flags);
230
231                 index = mlogbuf_start;
232                 while (index != mlogbuf_end) {
233                         *p = mlogbuf[index];
234                         index = (index + 1) % MLOGBUF_SIZE;
235                         if (!*p)
236                                 break;
237                         p++;
238                         if (++printed_len >= MLOGBUF_MSGMAX - 1)
239                                 break;
240                 }
241                 *p = '\0';
242                 if (temp_buf[0])
243                         printk(temp_buf);
244                 mlogbuf_start = index;
245
246                 mlogbuf_timestamp = 0;
247                 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
248         }
249 }
250 EXPORT_SYMBOL(ia64_mlogbuf_dump);
251
252 /*
253  * Call this if system is going to down or if immediate flushing messages to
254  * console is required. (ex. recovery was failed, crash dump is going to be
255  * invoked, long-wait rendezvous etc.)
256  *  NOTE: this should be called from monarch.
257  */
258 static void ia64_mlogbuf_finish(int wait)
259 {
260         BREAK_LOGLEVEL(console_loglevel);
261
262         spin_lock_init(&mlogbuf_rlock);
263         ia64_mlogbuf_dump();
264         printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
265                 "MCA/INIT might be dodgy or fail.\n");
266
267         if (!wait)
268                 return;
269
270         /* wait for console */
271         printk("Delaying for 5 seconds...\n");
272         udelay(5*1000000);
273
274         mlogbuf_finished = 1;
275 }
276
277 /*
278  * Print buffered messages from INIT context.
279  */
280 static void ia64_mlogbuf_dump_from_init(void)
281 {
282         if (mlogbuf_finished)
283                 return;
284
285         if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
286                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
287                         " and the system seems to be messed up.\n");
288                 ia64_mlogbuf_finish(0);
289                 return;
290         }
291
292         if (!spin_trylock(&mlogbuf_rlock)) {
293                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
294                         "Generated messages other than stack dump will be "
295                         "buffered to mlogbuf and will be printed later.\n");
296                 printk(KERN_ERR "INIT: If messages would not printed after "
297                         "this INIT, wait 30sec and assert INIT again.\n");
298                 if (!mlogbuf_timestamp)
299                         mlogbuf_timestamp = jiffies;
300                 return;
301         }
302         spin_unlock(&mlogbuf_rlock);
303         ia64_mlogbuf_dump();
304 }
305
306 static void inline
307 ia64_mca_spin(const char *func)
308 {
309         if (monarch_cpu == smp_processor_id())
310                 ia64_mlogbuf_finish(0);
311         mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
312         while (1)
313                 cpu_relax();
314 }
315 /*
316  * IA64_MCA log support
317  */
318 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
319 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
320
321 typedef struct ia64_state_log_s
322 {
323         spinlock_t      isl_lock;
324         int             isl_index;
325         unsigned long   isl_count;
326         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
327 } ia64_state_log_t;
328
329 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
330
331 #define IA64_LOG_ALLOCATE(it, size) \
332         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
333                 (ia64_err_rec_t *)alloc_bootmem(size); \
334         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
335                 (ia64_err_rec_t *)alloc_bootmem(size);}
336 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
337 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
338 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
339 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
340 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
341 #define IA64_LOG_INDEX_INC(it) \
342     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
343     ia64_state_log[it].isl_count++;}
344 #define IA64_LOG_INDEX_DEC(it) \
345     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
346 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
347 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
348 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
349
350 /*
351  * ia64_log_init
352  *      Reset the OS ia64 log buffer
353  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
354  * Outputs      :       None
355  */
356 static void __init
357 ia64_log_init(int sal_info_type)
358 {
359         u64     max_size = 0;
360
361         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
362         IA64_LOG_LOCK_INIT(sal_info_type);
363
364         // SAL will tell us the maximum size of any error record of this type
365         max_size = ia64_sal_get_state_info_size(sal_info_type);
366         if (!max_size)
367                 /* alloc_bootmem() doesn't like zero-sized allocations! */
368                 return;
369
370         // set up OS data structures to hold error info
371         IA64_LOG_ALLOCATE(sal_info_type, max_size);
372         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
373         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
374 }
375
376 /*
377  * ia64_log_get
378  *
379  *      Get the current MCA log from SAL and copy it into the OS log buffer.
380  *
381  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
382  *              irq_safe    whether you can use printk at this point
383  *  Outputs :   size        (total record length)
384  *              *buffer     (ptr to error record)
385  *
386  */
387 static u64
388 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
389 {
390         sal_log_record_header_t     *log_buffer;
391         u64                         total_len = 0;
392         unsigned long               s;
393
394         IA64_LOG_LOCK(sal_info_type);
395
396         /* Get the process state information */
397         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
398
399         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
400
401         if (total_len) {
402                 IA64_LOG_INDEX_INC(sal_info_type);
403                 IA64_LOG_UNLOCK(sal_info_type);
404                 if (irq_safe) {
405                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
406                                        "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
407                 }
408                 *buffer = (u8 *) log_buffer;
409                 return total_len;
410         } else {
411                 IA64_LOG_UNLOCK(sal_info_type);
412                 return 0;
413         }
414 }
415
416 /*
417  *  ia64_mca_log_sal_error_record
418  *
419  *  This function retrieves a specified error record type from SAL
420  *  and wakes up any processes waiting for error records.
421  *
422  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
423  *              FIXME: remove MCA and irq_safe.
424  */
425 static void
426 ia64_mca_log_sal_error_record(int sal_info_type)
427 {
428         u8 *buffer;
429         sal_log_record_header_t *rh;
430         u64 size;
431         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
432 #ifdef IA64_MCA_DEBUG_INFO
433         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
434 #endif
435
436         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
437         if (!size)
438                 return;
439
440         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
441
442         if (irq_safe)
443                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
444                         smp_processor_id(),
445                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
446
447         /* Clear logs from corrected errors in case there's no user-level logger */
448         rh = (sal_log_record_header_t *)buffer;
449         if (rh->severity == sal_log_severity_corrected)
450                 ia64_sal_clear_state_info(sal_info_type);
451 }
452
453 /*
454  * search_mca_table
455  *  See if the MCA surfaced in an instruction range
456  *  that has been tagged as recoverable.
457  *
458  *  Inputs
459  *      first   First address range to check
460  *      last    Last address range to check
461  *      ip      Instruction pointer, address we are looking for
462  *
463  * Return value:
464  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
465  */
466 int
467 search_mca_table (const struct mca_table_entry *first,
468                 const struct mca_table_entry *last,
469                 unsigned long ip)
470 {
471         const struct mca_table_entry *curr;
472         u64 curr_start, curr_end;
473
474         curr = first;
475         while (curr <= last) {
476                 curr_start = (u64) &curr->start_addr + curr->start_addr;
477                 curr_end = (u64) &curr->end_addr + curr->end_addr;
478
479                 if ((ip >= curr_start) && (ip <= curr_end)) {
480                         return 1;
481                 }
482                 curr++;
483         }
484         return 0;
485 }
486
487 /* Given an address, look for it in the mca tables. */
488 int mca_recover_range(unsigned long addr)
489 {
490         extern struct mca_table_entry __start___mca_table[];
491         extern struct mca_table_entry __stop___mca_table[];
492
493         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
494 }
495 EXPORT_SYMBOL_GPL(mca_recover_range);
496
497 #ifdef CONFIG_ACPI
498
499 int cpe_vector = -1;
500 int ia64_cpe_irq = -1;
501
502 static irqreturn_t
503 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
504 {
505         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
506         static int              index;
507         static DEFINE_SPINLOCK(cpe_history_lock);
508
509         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
510                        __FUNCTION__, cpe_irq, smp_processor_id());
511
512         /* SAL spec states this should run w/ interrupts enabled */
513         local_irq_enable();
514
515         spin_lock(&cpe_history_lock);
516         if (!cpe_poll_enabled && cpe_vector >= 0) {
517
518                 int i, count = 1; /* we know 1 happened now */
519                 unsigned long now = jiffies;
520
521                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
522                         if (now - cpe_history[i] <= HZ)
523                                 count++;
524                 }
525
526                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
527                 if (count >= CPE_HISTORY_LENGTH) {
528
529                         cpe_poll_enabled = 1;
530                         spin_unlock(&cpe_history_lock);
531                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
532
533                         /*
534                          * Corrected errors will still be corrected, but
535                          * make sure there's a log somewhere that indicates
536                          * something is generating more than we can handle.
537                          */
538                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
539
540                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
541
542                         /* lock already released, get out now */
543                         goto out;
544                 } else {
545                         cpe_history[index++] = now;
546                         if (index == CPE_HISTORY_LENGTH)
547                                 index = 0;
548                 }
549         }
550         spin_unlock(&cpe_history_lock);
551 out:
552         /* Get the CPE error record and log it */
553         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
554
555         return IRQ_HANDLED;
556 }
557
558 #endif /* CONFIG_ACPI */
559
560 #ifdef CONFIG_ACPI
561 /*
562  * ia64_mca_register_cpev
563  *
564  *  Register the corrected platform error vector with SAL.
565  *
566  *  Inputs
567  *      cpev        Corrected Platform Error Vector number
568  *
569  *  Outputs
570  *      None
571  */
572 static void __init
573 ia64_mca_register_cpev (int cpev)
574 {
575         /* Register the CPE interrupt vector with SAL */
576         struct ia64_sal_retval isrv;
577
578         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
579         if (isrv.status) {
580                 printk(KERN_ERR "Failed to register Corrected Platform "
581                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
582                 return;
583         }
584
585         IA64_MCA_DEBUG("%s: corrected platform error "
586                        "vector %#x registered\n", __FUNCTION__, cpev);
587 }
588 #endif /* CONFIG_ACPI */
589
590 /*
591  * ia64_mca_cmc_vector_setup
592  *
593  *  Setup the corrected machine check vector register in the processor.
594  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
595  *  This function is invoked on a per-processor basis.
596  *
597  * Inputs
598  *      None
599  *
600  * Outputs
601  *      None
602  */
603 void __cpuinit
604 ia64_mca_cmc_vector_setup (void)
605 {
606         cmcv_reg_t      cmcv;
607
608         cmcv.cmcv_regval        = 0;
609         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
610         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
611         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
612
613         IA64_MCA_DEBUG("%s: CPU %d corrected "
614                        "machine check vector %#x registered.\n",
615                        __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
616
617         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
618                        __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
619 }
620
621 /*
622  * ia64_mca_cmc_vector_disable
623  *
624  *  Mask the corrected machine check vector register in the processor.
625  *  This function is invoked on a per-processor basis.
626  *
627  * Inputs
628  *      dummy(unused)
629  *
630  * Outputs
631  *      None
632  */
633 static void
634 ia64_mca_cmc_vector_disable (void *dummy)
635 {
636         cmcv_reg_t      cmcv;
637
638         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
639
640         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
641         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
642
643         IA64_MCA_DEBUG("%s: CPU %d corrected "
644                        "machine check vector %#x disabled.\n",
645                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
646 }
647
648 /*
649  * ia64_mca_cmc_vector_enable
650  *
651  *  Unmask the corrected machine check vector register in the processor.
652  *  This function is invoked on a per-processor basis.
653  *
654  * Inputs
655  *      dummy(unused)
656  *
657  * Outputs
658  *      None
659  */
660 static void
661 ia64_mca_cmc_vector_enable (void *dummy)
662 {
663         cmcv_reg_t      cmcv;
664
665         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
666
667         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
668         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
669
670         IA64_MCA_DEBUG("%s: CPU %d corrected "
671                        "machine check vector %#x enabled.\n",
672                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
673 }
674
675 /*
676  * ia64_mca_cmc_vector_disable_keventd
677  *
678  * Called via keventd (smp_call_function() is not safe in interrupt context) to
679  * disable the cmc interrupt vector.
680  */
681 static void
682 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
683 {
684         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
685 }
686
687 /*
688  * ia64_mca_cmc_vector_enable_keventd
689  *
690  * Called via keventd (smp_call_function() is not safe in interrupt context) to
691  * enable the cmc interrupt vector.
692  */
693 static void
694 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
695 {
696         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
697 }
698
699 /*
700  * ia64_mca_wakeup
701  *
702  *      Send an inter-cpu interrupt to wake-up a particular cpu
703  *      and mark that cpu to be out of rendez.
704  *
705  *  Inputs  :   cpuid
706  *  Outputs :   None
707  */
708 static void
709 ia64_mca_wakeup(int cpu)
710 {
711         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
712         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
713
714 }
715
716 /*
717  * ia64_mca_wakeup_all
718  *
719  *      Wakeup all the cpus which have rendez'ed previously.
720  *
721  *  Inputs  :   None
722  *  Outputs :   None
723  */
724 static void
725 ia64_mca_wakeup_all(void)
726 {
727         int cpu;
728
729         /* Clear the Rendez checkin flag for all cpus */
730         for_each_online_cpu(cpu) {
731                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
732                         ia64_mca_wakeup(cpu);
733         }
734
735 }
736
737 /*
738  * ia64_mca_rendez_interrupt_handler
739  *
740  *      This is handler used to put slave processors into spinloop
741  *      while the monarch processor does the mca handling and later
742  *      wake each slave up once the monarch is done.
743  *
744  *  Inputs  :   None
745  *  Outputs :   None
746  */
747 static irqreturn_t
748 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
749 {
750         unsigned long flags;
751         int cpu = smp_processor_id();
752         struct ia64_mca_notify_die nd =
753                 { .sos = NULL, .monarch_cpu = &monarch_cpu };
754
755         /* Mask all interrupts */
756         local_irq_save(flags);
757         if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
758                        (long)&nd, 0, 0) == NOTIFY_STOP)
759                 ia64_mca_spin(__FUNCTION__);
760
761         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
762         /* Register with the SAL monarch that the slave has
763          * reached SAL
764          */
765         ia64_sal_mc_rendez();
766
767         if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
768                        (long)&nd, 0, 0) == NOTIFY_STOP)
769                 ia64_mca_spin(__FUNCTION__);
770
771         /* Wait for the monarch cpu to exit. */
772         while (monarch_cpu != -1)
773                cpu_relax();     /* spin until monarch leaves */
774
775         if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
776                        (long)&nd, 0, 0) == NOTIFY_STOP)
777                 ia64_mca_spin(__FUNCTION__);
778
779         /* Enable all interrupts */
780         local_irq_restore(flags);
781         return IRQ_HANDLED;
782 }
783
784 /*
785  * ia64_mca_wakeup_int_handler
786  *
787  *      The interrupt handler for processing the inter-cpu interrupt to the
788  *      slave cpu which was spinning in the rendez loop.
789  *      Since this spinning is done by turning off the interrupts and
790  *      polling on the wakeup-interrupt bit in the IRR, there is
791  *      nothing useful to be done in the handler.
792  *
793  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
794  *      arg             (Interrupt handler specific argument)
795  *  Outputs :   None
796  *
797  */
798 static irqreturn_t
799 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
800 {
801         return IRQ_HANDLED;
802 }
803
804 /* Function pointer for extra MCA recovery */
805 int (*ia64_mca_ucmc_extension)
806         (void*,struct ia64_sal_os_state*)
807         = NULL;
808
809 int
810 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
811 {
812         if (ia64_mca_ucmc_extension)
813                 return 1;
814
815         ia64_mca_ucmc_extension = fn;
816         return 0;
817 }
818
819 void
820 ia64_unreg_MCA_extension(void)
821 {
822         if (ia64_mca_ucmc_extension)
823                 ia64_mca_ucmc_extension = NULL;
824 }
825
826 EXPORT_SYMBOL(ia64_reg_MCA_extension);
827 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
828
829
830 static inline void
831 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
832 {
833         u64 fslot, tslot, nat;
834         *tr = *fr;
835         fslot = ((unsigned long)fr >> 3) & 63;
836         tslot = ((unsigned long)tr >> 3) & 63;
837         *tnat &= ~(1UL << tslot);
838         nat = (fnat >> fslot) & 1;
839         *tnat |= (nat << tslot);
840 }
841
842 /* Change the comm field on the MCA/INT task to include the pid that
843  * was interrupted, it makes for easier debugging.  If that pid was 0
844  * (swapper or nested MCA/INIT) then use the start of the previous comm
845  * field suffixed with its cpu.
846  */
847
848 static void
849 ia64_mca_modify_comm(const struct task_struct *previous_current)
850 {
851         char *p, comm[sizeof(current->comm)];
852         if (previous_current->pid)
853                 snprintf(comm, sizeof(comm), "%s %d",
854                         current->comm, previous_current->pid);
855         else {
856                 int l;
857                 if ((p = strchr(previous_current->comm, ' ')))
858                         l = p - previous_current->comm;
859                 else
860                         l = strlen(previous_current->comm);
861                 snprintf(comm, sizeof(comm), "%s %*s %d",
862                         current->comm, l, previous_current->comm,
863                         task_thread_info(previous_current)->cpu);
864         }
865         memcpy(current->comm, comm, sizeof(current->comm));
866 }
867
868 /* On entry to this routine, we are running on the per cpu stack, see
869  * mca_asm.h.  The original stack has not been touched by this event.  Some of
870  * the original stack's registers will be in the RBS on this stack.  This stack
871  * also contains a partial pt_regs and switch_stack, the rest of the data is in
872  * PAL minstate.
873  *
874  * The first thing to do is modify the original stack to look like a blocked
875  * task so we can run backtrace on the original task.  Also mark the per cpu
876  * stack as current to ensure that we use the correct task state, it also means
877  * that we can do backtrace on the MCA/INIT handler code itself.
878  */
879
880 static struct task_struct *
881 ia64_mca_modify_original_stack(struct pt_regs *regs,
882                 const struct switch_stack *sw,
883                 struct ia64_sal_os_state *sos,
884                 const char *type)
885 {
886         char *p;
887         ia64_va va;
888         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
889         const pal_min_state_area_t *ms = sos->pal_min_state;
890         struct task_struct *previous_current;
891         struct pt_regs *old_regs;
892         struct switch_stack *old_sw;
893         unsigned size = sizeof(struct pt_regs) +
894                         sizeof(struct switch_stack) + 16;
895         u64 *old_bspstore, *old_bsp;
896         u64 *new_bspstore, *new_bsp;
897         u64 old_unat, old_rnat, new_rnat, nat;
898         u64 slots, loadrs = regs->loadrs;
899         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
900         u64 ar_bspstore = regs->ar_bspstore;
901         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
902         const u64 *bank;
903         const char *msg;
904         int cpu = smp_processor_id();
905
906         previous_current = curr_task(cpu);
907         set_curr_task(cpu, current);
908         if ((p = strchr(current->comm, ' ')))
909                 *p = '\0';
910
911         /* Best effort attempt to cope with MCA/INIT delivered while in
912          * physical mode.
913          */
914         regs->cr_ipsr = ms->pmsa_ipsr;
915         if (ia64_psr(regs)->dt == 0) {
916                 va.l = r12;
917                 if (va.f.reg == 0) {
918                         va.f.reg = 7;
919                         r12 = va.l;
920                 }
921                 va.l = r13;
922                 if (va.f.reg == 0) {
923                         va.f.reg = 7;
924                         r13 = va.l;
925                 }
926         }
927         if (ia64_psr(regs)->rt == 0) {
928                 va.l = ar_bspstore;
929                 if (va.f.reg == 0) {
930                         va.f.reg = 7;
931                         ar_bspstore = va.l;
932                 }
933                 va.l = ar_bsp;
934                 if (va.f.reg == 0) {
935                         va.f.reg = 7;
936                         ar_bsp = va.l;
937                 }
938         }
939
940         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
941          * have been copied to the old stack, the old stack may fail the
942          * validation tests below.  So ia64_old_stack() must restore the dirty
943          * registers from the new stack.  The old and new bspstore probably
944          * have different alignments, so loadrs calculated on the old bsp
945          * cannot be used to restore from the new bsp.  Calculate a suitable
946          * loadrs for the new stack and save it in the new pt_regs, where
947          * ia64_old_stack() can get it.
948          */
949         old_bspstore = (u64 *)ar_bspstore;
950         old_bsp = (u64 *)ar_bsp;
951         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
952         new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
953         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
954         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
955
956         /* Verify the previous stack state before we change it */
957         if (user_mode(regs)) {
958                 msg = "occurred in user space";
959                 /* previous_current is guaranteed to be valid when the task was
960                  * in user space, so ...
961                  */
962                 ia64_mca_modify_comm(previous_current);
963                 goto no_mod;
964         }
965
966         if (!mca_recover_range(ms->pmsa_iip)) {
967                 if (r13 != sos->prev_IA64_KR_CURRENT) {
968                         msg = "inconsistent previous current and r13";
969                         goto no_mod;
970                 }
971                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
972                         msg = "inconsistent r12 and r13";
973                         goto no_mod;
974                 }
975                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
976                         msg = "inconsistent ar.bspstore and r13";
977                         goto no_mod;
978                 }
979                 va.p = old_bspstore;
980                 if (va.f.reg < 5) {
981                         msg = "old_bspstore is in the wrong region";
982                         goto no_mod;
983                 }
984                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
985                         msg = "inconsistent ar.bsp and r13";
986                         goto no_mod;
987                 }
988                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
989                 if (ar_bspstore + size > r12) {
990                         msg = "no room for blocked state";
991                         goto no_mod;
992                 }
993         }
994
995         ia64_mca_modify_comm(previous_current);
996
997         /* Make the original task look blocked.  First stack a struct pt_regs,
998          * describing the state at the time of interrupt.  mca_asm.S built a
999          * partial pt_regs, copy it and fill in the blanks using minstate.
1000          */
1001         p = (char *)r12 - sizeof(*regs);
1002         old_regs = (struct pt_regs *)p;
1003         memcpy(old_regs, regs, sizeof(*regs));
1004         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1005          * pmsa_{xip,xpsr,xfs}
1006          */
1007         if (ia64_psr(regs)->ic) {
1008                 old_regs->cr_iip = ms->pmsa_iip;
1009                 old_regs->cr_ipsr = ms->pmsa_ipsr;
1010                 old_regs->cr_ifs = ms->pmsa_ifs;
1011         } else {
1012                 old_regs->cr_iip = ms->pmsa_xip;
1013                 old_regs->cr_ipsr = ms->pmsa_xpsr;
1014                 old_regs->cr_ifs = ms->pmsa_xfs;
1015         }
1016         old_regs->pr = ms->pmsa_pr;
1017         old_regs->b0 = ms->pmsa_br0;
1018         old_regs->loadrs = loadrs;
1019         old_regs->ar_rsc = ms->pmsa_rsc;
1020         old_unat = old_regs->ar_unat;
1021         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1022         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1023         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1024         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1025         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1026         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1027         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1028         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1029         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1030         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1031         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1032         if (ia64_psr(old_regs)->bn)
1033                 bank = ms->pmsa_bank1_gr;
1034         else
1035                 bank = ms->pmsa_bank0_gr;
1036         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1037         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1038         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1039         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1040         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1041         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1042         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1043         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1044         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1045         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1046         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1047         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1048         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1049         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1050         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1051         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1052
1053         /* Next stack a struct switch_stack.  mca_asm.S built a partial
1054          * switch_stack, copy it and fill in the blanks using pt_regs and
1055          * minstate.
1056          *
1057          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1058          * ar.pfs is set to 0.
1059          *
1060          * unwind.c::unw_unwind() does special processing for interrupt frames.
1061          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1062          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1063          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1064          * switch_stack on the original stack so it will unwind correctly when
1065          * unwind.c reads pt_regs.
1066          *
1067          * thread.ksp is updated to point to the synthesized switch_stack.
1068          */
1069         p -= sizeof(struct switch_stack);
1070         old_sw = (struct switch_stack *)p;
1071         memcpy(old_sw, sw, sizeof(*sw));
1072         old_sw->caller_unat = old_unat;
1073         old_sw->ar_fpsr = old_regs->ar_fpsr;
1074         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1075         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1076         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1077         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1078         old_sw->b0 = (u64)ia64_leave_kernel;
1079         old_sw->b1 = ms->pmsa_br1;
1080         old_sw->ar_pfs = 0;
1081         old_sw->ar_unat = old_unat;
1082         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1083         previous_current->thread.ksp = (u64)p - 16;
1084
1085         /* Finally copy the original stack's registers back to its RBS.
1086          * Registers from ar.bspstore through ar.bsp at the time of the event
1087          * are in the current RBS, copy them back to the original stack.  The
1088          * copy must be done register by register because the original bspstore
1089          * and the current one have different alignments, so the saved RNAT
1090          * data occurs at different places.
1091          *
1092          * mca_asm does cover, so the old_bsp already includes all registers at
1093          * the time of MCA/INIT.  It also does flushrs, so all registers before
1094          * this function have been written to backing store on the MCA/INIT
1095          * stack.
1096          */
1097         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1098         old_rnat = regs->ar_rnat;
1099         while (slots--) {
1100                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1101                         new_rnat = ia64_get_rnat(new_bspstore++);
1102                 }
1103                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1104                         *old_bspstore++ = old_rnat;
1105                         old_rnat = 0;
1106                 }
1107                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1108                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1109                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1110                 *old_bspstore++ = *new_bspstore++;
1111         }
1112         old_sw->ar_bspstore = (unsigned long)old_bspstore;
1113         old_sw->ar_rnat = old_rnat;
1114
1115         sos->prev_task = previous_current;
1116         return previous_current;
1117
1118 no_mod:
1119         printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1120                         smp_processor_id(), type, msg);
1121         return previous_current;
1122 }
1123
1124 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1125  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1126  * not entered rendezvous yet then wait a bit.  The assumption is that any
1127  * slave that has not rendezvoused after a reasonable time is never going to do
1128  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1129  * interrupt, as well as cpus that receive the INIT slave event.
1130  */
1131
1132 static void
1133 ia64_wait_for_slaves(int monarch, const char *type)
1134 {
1135         int c, wait = 0, missing = 0;
1136         for_each_online_cpu(c) {
1137                 if (c == monarch)
1138                         continue;
1139                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1140                         udelay(1000);           /* short wait first */
1141                         wait = 1;
1142                         break;
1143                 }
1144         }
1145         if (!wait)
1146                 goto all_in;
1147         for_each_online_cpu(c) {
1148                 if (c == monarch)
1149                         continue;
1150                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1151                         udelay(5*1000000);      /* wait 5 seconds for slaves (arbitrary) */
1152                         if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1153                                 missing = 1;
1154                         break;
1155                 }
1156         }
1157         if (!missing)
1158                 goto all_in;
1159         /*
1160          * Maybe slave(s) dead. Print buffered messages immediately.
1161          */
1162         ia64_mlogbuf_finish(0);
1163         mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1164         for_each_online_cpu(c) {
1165                 if (c == monarch)
1166                         continue;
1167                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1168                         mprintk(" %d", c);
1169         }
1170         mprintk("\n");
1171         return;
1172
1173 all_in:
1174         mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1175         return;
1176 }
1177
1178 /*
1179  * ia64_mca_handler
1180  *
1181  *      This is uncorrectable machine check handler called from OS_MCA
1182  *      dispatch code which is in turn called from SAL_CHECK().
1183  *      This is the place where the core of OS MCA handling is done.
1184  *      Right now the logs are extracted and displayed in a well-defined
1185  *      format. This handler code is supposed to be run only on the
1186  *      monarch processor. Once the monarch is done with MCA handling
1187  *      further MCA logging is enabled by clearing logs.
1188  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1189  *      slave processors out of rendezvous spinloop.
1190  */
1191 void
1192 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1193                  struct ia64_sal_os_state *sos)
1194 {
1195         int recover, cpu = smp_processor_id();
1196         struct task_struct *previous_current;
1197         struct ia64_mca_notify_die nd =
1198                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1199
1200         mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1201                 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1202
1203         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1204         monarch_cpu = cpu;
1205         if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1206                         == NOTIFY_STOP)
1207                 ia64_mca_spin(__FUNCTION__);
1208         ia64_wait_for_slaves(cpu, "MCA");
1209
1210         /* Wakeup all the processors which are spinning in the rendezvous loop.
1211          * They will leave SAL, then spin in the OS with interrupts disabled
1212          * until this monarch cpu leaves the MCA handler.  That gets control
1213          * back to the OS so we can backtrace the other cpus, backtrace when
1214          * spinning in SAL does not work.
1215          */
1216         ia64_mca_wakeup_all();
1217         if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1218                         == NOTIFY_STOP)
1219                 ia64_mca_spin(__FUNCTION__);
1220
1221         /* Get the MCA error record and log it */
1222         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1223
1224         /* MCA error recovery */
1225         recover = (ia64_mca_ucmc_extension
1226                 && ia64_mca_ucmc_extension(
1227                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1228                         sos));
1229
1230         if (recover) {
1231                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1232                 rh->severity = sal_log_severity_corrected;
1233                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1234                 sos->os_status = IA64_MCA_CORRECTED;
1235         } else {
1236                 /* Dump buffered message to console */
1237                 ia64_mlogbuf_finish(1);
1238 #ifdef CONFIG_KEXEC
1239                 atomic_set(&kdump_in_progress, 1);
1240                 monarch_cpu = -1;
1241 #endif
1242         }
1243         if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1244                         == NOTIFY_STOP)
1245                 ia64_mca_spin(__FUNCTION__);
1246
1247         set_curr_task(cpu, previous_current);
1248         monarch_cpu = -1;
1249 }
1250
1251 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1252 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1253
1254 /*
1255  * ia64_mca_cmc_int_handler
1256  *
1257  *  This is corrected machine check interrupt handler.
1258  *      Right now the logs are extracted and displayed in a well-defined
1259  *      format.
1260  *
1261  * Inputs
1262  *      interrupt number
1263  *      client data arg ptr
1264  *
1265  * Outputs
1266  *      None
1267  */
1268 static irqreturn_t
1269 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1270 {
1271         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1272         static int              index;
1273         static DEFINE_SPINLOCK(cmc_history_lock);
1274
1275         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1276                        __FUNCTION__, cmc_irq, smp_processor_id());
1277
1278         /* SAL spec states this should run w/ interrupts enabled */
1279         local_irq_enable();
1280
1281         spin_lock(&cmc_history_lock);
1282         if (!cmc_polling_enabled) {
1283                 int i, count = 1; /* we know 1 happened now */
1284                 unsigned long now = jiffies;
1285
1286                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1287                         if (now - cmc_history[i] <= HZ)
1288                                 count++;
1289                 }
1290
1291                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1292                 if (count >= CMC_HISTORY_LENGTH) {
1293
1294                         cmc_polling_enabled = 1;
1295                         spin_unlock(&cmc_history_lock);
1296                         /* If we're being hit with CMC interrupts, we won't
1297                          * ever execute the schedule_work() below.  Need to
1298                          * disable CMC interrupts on this processor now.
1299                          */
1300                         ia64_mca_cmc_vector_disable(NULL);
1301                         schedule_work(&cmc_disable_work);
1302
1303                         /*
1304                          * Corrected errors will still be corrected, but
1305                          * make sure there's a log somewhere that indicates
1306                          * something is generating more than we can handle.
1307                          */
1308                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1309
1310                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1311
1312                         /* lock already released, get out now */
1313                         goto out;
1314                 } else {
1315                         cmc_history[index++] = now;
1316                         if (index == CMC_HISTORY_LENGTH)
1317                                 index = 0;
1318                 }
1319         }
1320         spin_unlock(&cmc_history_lock);
1321 out:
1322         /* Get the CMC error record and log it */
1323         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1324
1325         return IRQ_HANDLED;
1326 }
1327
1328 /*
1329  *  ia64_mca_cmc_int_caller
1330  *
1331  *      Triggered by sw interrupt from CMC polling routine.  Calls
1332  *      real interrupt handler and either triggers a sw interrupt
1333  *      on the next cpu or does cleanup at the end.
1334  *
1335  * Inputs
1336  *      interrupt number
1337  *      client data arg ptr
1338  * Outputs
1339  *      handled
1340  */
1341 static irqreturn_t
1342 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1343 {
1344         static int start_count = -1;
1345         unsigned int cpuid;
1346
1347         cpuid = smp_processor_id();
1348
1349         /* If first cpu, update count */
1350         if (start_count == -1)
1351                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1352
1353         ia64_mca_cmc_int_handler(cmc_irq, arg);
1354
1355         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1356
1357         if (cpuid < NR_CPUS) {
1358                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1359         } else {
1360                 /* If no log record, switch out of polling mode */
1361                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1362
1363                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1364                         schedule_work(&cmc_enable_work);
1365                         cmc_polling_enabled = 0;
1366
1367                 } else {
1368
1369                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1370                 }
1371
1372                 start_count = -1;
1373         }
1374
1375         return IRQ_HANDLED;
1376 }
1377
1378 /*
1379  *  ia64_mca_cmc_poll
1380  *
1381  *      Poll for Corrected Machine Checks (CMCs)
1382  *
1383  * Inputs   :   dummy(unused)
1384  * Outputs  :   None
1385  *
1386  */
1387 static void
1388 ia64_mca_cmc_poll (unsigned long dummy)
1389 {
1390         /* Trigger a CMC interrupt cascade  */
1391         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1392 }
1393
1394 /*
1395  *  ia64_mca_cpe_int_caller
1396  *
1397  *      Triggered by sw interrupt from CPE polling routine.  Calls
1398  *      real interrupt handler and either triggers a sw interrupt
1399  *      on the next cpu or does cleanup at the end.
1400  *
1401  * Inputs
1402  *      interrupt number
1403  *      client data arg ptr
1404  * Outputs
1405  *      handled
1406  */
1407 #ifdef CONFIG_ACPI
1408
1409 static irqreturn_t
1410 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1411 {
1412         static int start_count = -1;
1413         static int poll_time = MIN_CPE_POLL_INTERVAL;
1414         unsigned int cpuid;
1415
1416         cpuid = smp_processor_id();
1417
1418         /* If first cpu, update count */
1419         if (start_count == -1)
1420                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1421
1422         ia64_mca_cpe_int_handler(cpe_irq, arg);
1423
1424         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1425
1426         if (cpuid < NR_CPUS) {
1427                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1428         } else {
1429                 /*
1430                  * If a log was recorded, increase our polling frequency,
1431                  * otherwise, backoff or return to interrupt mode.
1432                  */
1433                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1434                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1435                 } else if (cpe_vector < 0) {
1436                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1437                 } else {
1438                         poll_time = MIN_CPE_POLL_INTERVAL;
1439
1440                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1441                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1442                         cpe_poll_enabled = 0;
1443                 }
1444
1445                 if (cpe_poll_enabled)
1446                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1447                 start_count = -1;
1448         }
1449
1450         return IRQ_HANDLED;
1451 }
1452
1453 /*
1454  *  ia64_mca_cpe_poll
1455  *
1456  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1457  *      on first cpu, from there it will trickle through all the cpus.
1458  *
1459  * Inputs   :   dummy(unused)
1460  * Outputs  :   None
1461  *
1462  */
1463 static void
1464 ia64_mca_cpe_poll (unsigned long dummy)
1465 {
1466         /* Trigger a CPE interrupt cascade  */
1467         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1468 }
1469
1470 #endif /* CONFIG_ACPI */
1471
1472 static int
1473 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1474 {
1475         int c;
1476         struct task_struct *g, *t;
1477         if (val != DIE_INIT_MONARCH_PROCESS)
1478                 return NOTIFY_DONE;
1479 #ifdef CONFIG_KEXEC
1480         if (atomic_read(&kdump_in_progress))
1481                 return NOTIFY_DONE;
1482 #endif
1483
1484         /*
1485          * FIXME: mlogbuf will brim over with INIT stack dumps.
1486          * To enable show_stack from INIT, we use oops_in_progress which should
1487          * be used in real oops. This would cause something wrong after INIT.
1488          */
1489         BREAK_LOGLEVEL(console_loglevel);
1490         ia64_mlogbuf_dump_from_init();
1491
1492         printk(KERN_ERR "Processes interrupted by INIT -");
1493         for_each_online_cpu(c) {
1494                 struct ia64_sal_os_state *s;
1495                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1496                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1497                 g = s->prev_task;
1498                 if (g) {
1499                         if (g->pid)
1500                                 printk(" %d", g->pid);
1501                         else
1502                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1503                 }
1504         }
1505         printk("\n\n");
1506         if (read_trylock(&tasklist_lock)) {
1507                 do_each_thread (g, t) {
1508                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1509                         show_stack(t, NULL);
1510                 } while_each_thread (g, t);
1511                 read_unlock(&tasklist_lock);
1512         }
1513         /* FIXME: This will not restore zapped printk locks. */
1514         RESTORE_LOGLEVEL(console_loglevel);
1515         return NOTIFY_DONE;
1516 }
1517
1518 /*
1519  * C portion of the OS INIT handler
1520  *
1521  * Called from ia64_os_init_dispatch
1522  *
1523  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1524  * this event.  This code is used for both monarch and slave INIT events, see
1525  * sos->monarch.
1526  *
1527  * All INIT events switch to the INIT stack and change the previous process to
1528  * blocked status.  If one of the INIT events is the monarch then we are
1529  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1530  * the processes.  The slave INIT events all spin until the monarch cpu
1531  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1532  * process is the monarch.
1533  */
1534
1535 void
1536 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1537                   struct ia64_sal_os_state *sos)
1538 {
1539         static atomic_t slaves;
1540         static atomic_t monarchs;
1541         struct task_struct *previous_current;
1542         int cpu = smp_processor_id();
1543         struct ia64_mca_notify_die nd =
1544                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1545
1546         (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1547
1548         mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1549                 sos->proc_state_param, cpu, sos->monarch);
1550         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1551
1552         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1553         sos->os_status = IA64_INIT_RESUME;
1554
1555         /* FIXME: Workaround for broken proms that drive all INIT events as
1556          * slaves.  The last slave that enters is promoted to be a monarch.
1557          * Remove this code in September 2006, that gives platforms a year to
1558          * fix their proms and get their customers updated.
1559          */
1560         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1561                 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1562                        __FUNCTION__, cpu);
1563                 atomic_dec(&slaves);
1564                 sos->monarch = 1;
1565         }
1566
1567         /* FIXME: Workaround for broken proms that drive all INIT events as
1568          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1569          * Remove this code in September 2006, that gives platforms a year to
1570          * fix their proms and get their customers updated.
1571          */
1572         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1573                 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1574                                __FUNCTION__, cpu);
1575                 atomic_dec(&monarchs);
1576                 sos->monarch = 0;
1577         }
1578
1579         if (!sos->monarch) {
1580                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1581                 while (monarch_cpu == -1)
1582                        cpu_relax();     /* spin until monarch enters */
1583                 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1584                                 == NOTIFY_STOP)
1585                         ia64_mca_spin(__FUNCTION__);
1586                 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1587                                 == NOTIFY_STOP)
1588                         ia64_mca_spin(__FUNCTION__);
1589                 while (monarch_cpu != -1)
1590                        cpu_relax();     /* spin until monarch leaves */
1591                 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1592                                 == NOTIFY_STOP)
1593                         ia64_mca_spin(__FUNCTION__);
1594                 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1595                 set_curr_task(cpu, previous_current);
1596                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1597                 atomic_dec(&slaves);
1598                 return;
1599         }
1600
1601         monarch_cpu = cpu;
1602         if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1603                         == NOTIFY_STOP)
1604                 ia64_mca_spin(__FUNCTION__);
1605
1606         /*
1607          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1608          * generated via the BMC's command-line interface, but since the console is on the
1609          * same serial line, the user will need some time to switch out of the BMC before
1610          * the dump begins.
1611          */
1612         mprintk("Delaying for 5 seconds...\n");
1613         udelay(5*1000000);
1614         ia64_wait_for_slaves(cpu, "INIT");
1615         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1616          * to default_monarch_init_process() above and just print all the
1617          * tasks.
1618          */
1619         if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1620                         == NOTIFY_STOP)
1621                 ia64_mca_spin(__FUNCTION__);
1622         if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1623                         == NOTIFY_STOP)
1624                 ia64_mca_spin(__FUNCTION__);
1625         mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1626         atomic_dec(&monarchs);
1627         set_curr_task(cpu, previous_current);
1628         monarch_cpu = -1;
1629         return;
1630 }
1631
1632 static int __init
1633 ia64_mca_disable_cpe_polling(char *str)
1634 {
1635         cpe_poll_enabled = 0;
1636         return 1;
1637 }
1638
1639 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1640
1641 static struct irqaction cmci_irqaction = {
1642         .handler =      ia64_mca_cmc_int_handler,
1643         .flags =        IRQF_DISABLED,
1644         .name =         "cmc_hndlr"
1645 };
1646
1647 static struct irqaction cmcp_irqaction = {
1648         .handler =      ia64_mca_cmc_int_caller,
1649         .flags =        IRQF_DISABLED,
1650         .name =         "cmc_poll"
1651 };
1652
1653 static struct irqaction mca_rdzv_irqaction = {
1654         .handler =      ia64_mca_rendez_int_handler,
1655         .flags =        IRQF_DISABLED,
1656         .name =         "mca_rdzv"
1657 };
1658
1659 static struct irqaction mca_wkup_irqaction = {
1660         .handler =      ia64_mca_wakeup_int_handler,
1661         .flags =        IRQF_DISABLED,
1662         .name =         "mca_wkup"
1663 };
1664
1665 #ifdef CONFIG_ACPI
1666 static struct irqaction mca_cpe_irqaction = {
1667         .handler =      ia64_mca_cpe_int_handler,
1668         .flags =        IRQF_DISABLED,
1669         .name =         "cpe_hndlr"
1670 };
1671
1672 static struct irqaction mca_cpep_irqaction = {
1673         .handler =      ia64_mca_cpe_int_caller,
1674         .flags =        IRQF_DISABLED,
1675         .name =         "cpe_poll"
1676 };
1677 #endif /* CONFIG_ACPI */
1678
1679 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1680  * these stacks can never sleep, they cannot return from the kernel to user
1681  * space, they do not appear in a normal ps listing.  So there is no need to
1682  * format most of the fields.
1683  */
1684
1685 static void __cpuinit
1686 format_mca_init_stack(void *mca_data, unsigned long offset,
1687                 const char *type, int cpu)
1688 {
1689         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1690         struct thread_info *ti;
1691         memset(p, 0, KERNEL_STACK_SIZE);
1692         ti = task_thread_info(p);
1693         ti->flags = _TIF_MCA_INIT;
1694         ti->preempt_count = 1;
1695         ti->task = p;
1696         ti->cpu = cpu;
1697         p->stack = ti;
1698         p->state = TASK_UNINTERRUPTIBLE;
1699         cpu_set(cpu, p->cpus_allowed);
1700         INIT_LIST_HEAD(&p->tasks);
1701         p->parent = p->real_parent = p->group_leader = p;
1702         INIT_LIST_HEAD(&p->children);
1703         INIT_LIST_HEAD(&p->sibling);
1704         strncpy(p->comm, type, sizeof(p->comm)-1);
1705 }
1706
1707 /* Do per-CPU MCA-related initialization.  */
1708
1709 void __cpuinit
1710 ia64_mca_cpu_init(void *cpu_data)
1711 {
1712         void *pal_vaddr;
1713         static int first_time = 1;
1714
1715         if (first_time) {
1716                 void *mca_data;
1717                 int cpu;
1718
1719                 first_time = 0;
1720                 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1721                                          * NR_CPUS + KERNEL_STACK_SIZE);
1722                 mca_data = (void *)(((unsigned long)mca_data +
1723                                         KERNEL_STACK_SIZE - 1) &
1724                                 (-KERNEL_STACK_SIZE));
1725                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1726                         format_mca_init_stack(mca_data,
1727                                         offsetof(struct ia64_mca_cpu, mca_stack),
1728                                         "MCA", cpu);
1729                         format_mca_init_stack(mca_data,
1730                                         offsetof(struct ia64_mca_cpu, init_stack),
1731                                         "INIT", cpu);
1732                         __per_cpu_mca[cpu] = __pa(mca_data);
1733                         mca_data += sizeof(struct ia64_mca_cpu);
1734                 }
1735         }
1736
1737         /*
1738          * The MCA info structure was allocated earlier and its
1739          * physical address saved in __per_cpu_mca[cpu].  Copy that
1740          * address * to ia64_mca_data so we can access it as a per-CPU
1741          * variable.
1742          */
1743         __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1744
1745         /*
1746          * Stash away a copy of the PTE needed to map the per-CPU page.
1747          * We may need it during MCA recovery.
1748          */
1749         __get_cpu_var(ia64_mca_per_cpu_pte) =
1750                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1751
1752         /*
1753          * Also, stash away a copy of the PAL address and the PTE
1754          * needed to map it.
1755          */
1756         pal_vaddr = efi_get_pal_addr();
1757         if (!pal_vaddr)
1758                 return;
1759         __get_cpu_var(ia64_mca_pal_base) =
1760                 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1761         __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1762                                                               PAGE_KERNEL));
1763 }
1764
1765 /*
1766  * ia64_mca_init
1767  *
1768  *  Do all the system level mca specific initialization.
1769  *
1770  *      1. Register spinloop and wakeup request interrupt vectors
1771  *
1772  *      2. Register OS_MCA handler entry point
1773  *
1774  *      3. Register OS_INIT handler entry point
1775  *
1776  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1777  *
1778  *  Note that this initialization is done very early before some kernel
1779  *  services are available.
1780  *
1781  *  Inputs  :   None
1782  *
1783  *  Outputs :   None
1784  */
1785 void __init
1786 ia64_mca_init(void)
1787 {
1788         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1789         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1790         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1791         int i;
1792         s64 rc;
1793         struct ia64_sal_retval isrv;
1794         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1795         static struct notifier_block default_init_monarch_nb = {
1796                 .notifier_call = default_monarch_init_process,
1797                 .priority = 0/* we need to notified last */
1798         };
1799
1800         IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1801
1802         /* Clear the Rendez checkin flag for all cpus */
1803         for(i = 0 ; i < NR_CPUS; i++)
1804                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1805
1806         /*
1807          * Register the rendezvous spinloop and wakeup mechanism with SAL
1808          */
1809
1810         /* Register the rendezvous interrupt vector with SAL */
1811         while (1) {
1812                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1813                                               SAL_MC_PARAM_MECHANISM_INT,
1814                                               IA64_MCA_RENDEZ_VECTOR,
1815                                               timeout,
1816                                               SAL_MC_PARAM_RZ_ALWAYS);
1817                 rc = isrv.status;
1818                 if (rc == 0)
1819                         break;
1820                 if (rc == -2) {
1821                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1822                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1823                         timeout = isrv.v0;
1824                         (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1825                         continue;
1826                 }
1827                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1828                        "with SAL (status %ld)\n", rc);
1829                 return;
1830         }
1831
1832         /* Register the wakeup interrupt vector with SAL */
1833         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1834                                       SAL_MC_PARAM_MECHANISM_INT,
1835                                       IA64_MCA_WAKEUP_VECTOR,
1836                                       0, 0);
1837         rc = isrv.status;
1838         if (rc) {
1839                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1840                        "(status %ld)\n", rc);
1841                 return;
1842         }
1843
1844         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1845
1846         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1847         /*
1848          * XXX - disable SAL checksum by setting size to 0; should be
1849          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1850          */
1851         ia64_mc_info.imi_mca_handler_size       = 0;
1852
1853         /* Register the os mca handler with SAL */
1854         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1855                                        ia64_mc_info.imi_mca_handler,
1856                                        ia64_tpa(mca_hldlr_ptr->gp),
1857                                        ia64_mc_info.imi_mca_handler_size,
1858                                        0, 0, 0)))
1859         {
1860                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1861                        "(status %ld)\n", rc);
1862                 return;
1863         }
1864
1865         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1866                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1867
1868         /*
1869          * XXX - disable SAL checksum by setting size to 0, should be
1870          * size of the actual init handler in mca_asm.S.
1871          */
1872         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1873         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1874         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1875         ia64_mc_info.imi_slave_init_handler_size        = 0;
1876
1877         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1878                        ia64_mc_info.imi_monarch_init_handler);
1879
1880         /* Register the os init handler with SAL */
1881         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1882                                        ia64_mc_info.imi_monarch_init_handler,
1883                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1884                                        ia64_mc_info.imi_monarch_init_handler_size,
1885                                        ia64_mc_info.imi_slave_init_handler,
1886                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1887                                        ia64_mc_info.imi_slave_init_handler_size)))
1888         {
1889                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1890                        "(status %ld)\n", rc);
1891                 return;
1892         }
1893         if (register_die_notifier(&default_init_monarch_nb)) {
1894                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1895                 return;
1896         }
1897
1898         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1899
1900         /*
1901          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1902          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1903          */
1904         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1905         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1906         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1907
1908         /* Setup the MCA rendezvous interrupt vector */
1909         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1910
1911         /* Setup the MCA wakeup interrupt vector */
1912         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1913
1914 #ifdef CONFIG_ACPI
1915         /* Setup the CPEI/P handler */
1916         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1917 #endif
1918
1919         /* Initialize the areas set aside by the OS to buffer the
1920          * platform/processor error states for MCA/INIT/CMC
1921          * handling.
1922          */
1923         ia64_log_init(SAL_INFO_TYPE_MCA);
1924         ia64_log_init(SAL_INFO_TYPE_INIT);
1925         ia64_log_init(SAL_INFO_TYPE_CMC);
1926         ia64_log_init(SAL_INFO_TYPE_CPE);
1927
1928         mca_init = 1;
1929         printk(KERN_INFO "MCA related initialization done\n");
1930 }
1931
1932 /*
1933  * ia64_mca_late_init
1934  *
1935  *      Opportunity to setup things that require initialization later
1936  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
1937  *      platform doesn't support an interrupt driven mechanism.
1938  *
1939  *  Inputs  :   None
1940  *  Outputs :   Status
1941  */
1942 static int __init
1943 ia64_mca_late_init(void)
1944 {
1945         if (!mca_init)
1946                 return 0;
1947
1948         /* Setup the CMCI/P vector and handler */
1949         init_timer(&cmc_poll_timer);
1950         cmc_poll_timer.function = ia64_mca_cmc_poll;
1951
1952         /* Unmask/enable the vector */
1953         cmc_polling_enabled = 0;
1954         schedule_work(&cmc_enable_work);
1955
1956         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1957
1958 #ifdef CONFIG_ACPI
1959         /* Setup the CPEI/P vector and handler */
1960         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1961         init_timer(&cpe_poll_timer);
1962         cpe_poll_timer.function = ia64_mca_cpe_poll;
1963
1964         {
1965                 irq_desc_t *desc;
1966                 unsigned int irq;
1967
1968                 if (cpe_vector >= 0) {
1969                         /* If platform supports CPEI, enable the irq. */
1970                         cpe_poll_enabled = 0;
1971                         for (irq = 0; irq < NR_IRQS; ++irq)
1972                                 if (irq_to_vector(irq) == cpe_vector) {
1973                                         desc = irq_desc + irq;
1974                                         desc->status |= IRQ_PER_CPU;
1975                                         setup_irq(irq, &mca_cpe_irqaction);
1976                                         ia64_cpe_irq = irq;
1977                                 }
1978                         ia64_mca_register_cpev(cpe_vector);
1979                         IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1980                 } else {
1981                         /* If platform doesn't support CPEI, get the timer going. */
1982                         if (cpe_poll_enabled) {
1983                                 ia64_mca_cpe_poll(0UL);
1984                                 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1985                         }
1986                 }
1987         }
1988 #endif
1989
1990         return 0;
1991 }
1992
1993 device_initcall(ia64_mca_late_init);