Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Copyright (C) 2003 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  *
8  * Copyright (C) 2002 Dell Inc.
9  * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10  *
11  * Copyright (C) 2002 Intel
12  * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13  *
14  * Copyright (C) 2001 Intel
15  * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16  *
17  * Copyright (C) 2000 Intel
18  * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19  *
20  * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21  * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22  *
23  * Copyright (C) 2006 FUJITSU LIMITED
24  * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25  *
26  * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27  *            Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28  *            added min save state dump, added INIT handler.
29  *
30  * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31  *            Added setup of CMCI and CPEI IRQs, logging of corrected platform
32  *            errors, completed code for logging of corrected & uncorrected
33  *            machine check errors, and updated for conformance with Nov. 2000
34  *            revision of the SAL 3.0 spec.
35  *
36  * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37  *            Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38  *            set SAL default return values, changed error record structure to
39  *            linked list, added init call to sal_get_state_info_size().
40  *
41  * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42  *            GUID cleanups.
43  *
44  * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45  *            Added INIT backtrace support.
46  *
47  * 2003-12-08 Keith Owens <kaos@sgi.com>
48  *            smp_call_function() must not be called from interrupt context
49  *            (can deadlock on tasklist_lock).
50  *            Use keventd to call smp_call_function().
51  *
52  * 2004-02-01 Keith Owens <kaos@sgi.com>
53  *            Avoid deadlock when using printk() for MCA and INIT records.
54  *            Delete all record printing code, moved to salinfo_decode in user
55  *            space.  Mark variables and functions static where possible.
56  *            Delete dead variables and functions.  Reorder to remove the need
57  *            for forward declarations and to consolidate related code.
58  *
59  * 2005-08-12 Keith Owens <kaos@sgi.com>
60  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS
61  *            state.
62  *
63  * 2005-10-07 Keith Owens <kaos@sgi.com>
64  *            Add notify_die() hooks.
65  *
66  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67  *            Add printing support for MCA/INIT.
68  *
69  * 2007-04-27 Russ Anderson <rja@sgi.com>
70  *            Support multiple cpus going through OS_MCA in the same event.
71  */
72 #include <linux/jiffies.h>
73 #include <linux/types.h>
74 #include <linux/init.h>
75 #include <linux/sched.h>
76 #include <linux/interrupt.h>
77 #include <linux/irq.h>
78 #include <linux/bootmem.h>
79 #include <linux/acpi.h>
80 #include <linux/timer.h>
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/smp.h>
84 #include <linux/workqueue.h>
85 #include <linux/cpumask.h>
86 #include <linux/kdebug.h>
87 #include <linux/cpu.h>
88 #include <linux/gfp.h>
89
90 #include <asm/delay.h>
91 #include <asm/machvec.h>
92 #include <asm/meminit.h>
93 #include <asm/page.h>
94 #include <asm/ptrace.h>
95 #include <asm/sal.h>
96 #include <asm/mca.h>
97 #include <asm/kexec.h>
98
99 #include <asm/irq.h>
100 #include <asm/hw_irq.h>
101 #include <asm/tlb.h>
102
103 #include "mca_drv.h"
104 #include "entry.h"
105
106 #if defined(IA64_MCA_DEBUG_INFO)
107 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
108 #else
109 # define IA64_MCA_DEBUG(fmt...)
110 #endif
111
112 #define NOTIFY_INIT(event, regs, arg, spin)                             \
113 do {                                                                    \
114         if ((notify_die((event), "INIT", (regs), (arg), 0, 0)           \
115                         == NOTIFY_STOP) && ((spin) == 1))               \
116                 ia64_mca_spin(__func__);                                \
117 } while (0)
118
119 #define NOTIFY_MCA(event, regs, arg, spin)                              \
120 do {                                                                    \
121         if ((notify_die((event), "MCA", (regs), (arg), 0, 0)            \
122                         == NOTIFY_STOP) && ((spin) == 1))               \
123                 ia64_mca_spin(__func__);                                \
124 } while (0)
125
126 /* Used by mca_asm.S */
127 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
128 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
129 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
130 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
131 DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
132
133 unsigned long __per_cpu_mca[NR_CPUS];
134
135 /* In mca_asm.S */
136 extern void                     ia64_os_init_dispatch_monarch (void);
137 extern void                     ia64_os_init_dispatch_slave (void);
138
139 static int monarch_cpu = -1;
140
141 static ia64_mc_info_t           ia64_mc_info;
142
143 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
144 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
145 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
146 #define CPE_HISTORY_LENGTH    5
147 #define CMC_HISTORY_LENGTH    5
148
149 #ifdef CONFIG_ACPI
150 static struct timer_list cpe_poll_timer;
151 #endif
152 static struct timer_list cmc_poll_timer;
153 /*
154  * This variable tells whether we are currently in polling mode.
155  * Start with this in the wrong state so we won't play w/ timers
156  * before the system is ready.
157  */
158 static int cmc_polling_enabled = 1;
159
160 /*
161  * Clearing this variable prevents CPE polling from getting activated
162  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
163  * but encounters problems retrieving CPE logs.  This should only be
164  * necessary for debugging.
165  */
166 static int cpe_poll_enabled = 1;
167
168 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
169
170 static int mca_init __initdata;
171
172 /*
173  * limited & delayed printing support for MCA/INIT handler
174  */
175
176 #define mprintk(fmt...) ia64_mca_printk(fmt)
177
178 #define MLOGBUF_SIZE (512+256*NR_CPUS)
179 #define MLOGBUF_MSGMAX 256
180 static char mlogbuf[MLOGBUF_SIZE];
181 static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
182 static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
183 static unsigned long mlogbuf_start;
184 static unsigned long mlogbuf_end;
185 static unsigned int mlogbuf_finished = 0;
186 static unsigned long mlogbuf_timestamp = 0;
187
188 static int loglevel_save = -1;
189 #define BREAK_LOGLEVEL(__console_loglevel)              \
190         oops_in_progress = 1;                           \
191         if (loglevel_save < 0)                          \
192                 loglevel_save = __console_loglevel;     \
193         __console_loglevel = 15;
194
195 #define RESTORE_LOGLEVEL(__console_loglevel)            \
196         if (loglevel_save >= 0) {                       \
197                 __console_loglevel = loglevel_save;     \
198                 loglevel_save = -1;                     \
199         }                                               \
200         mlogbuf_finished = 0;                           \
201         oops_in_progress = 0;
202
203 /*
204  * Push messages into buffer, print them later if not urgent.
205  */
206 void ia64_mca_printk(const char *fmt, ...)
207 {
208         va_list args;
209         int printed_len;
210         char temp_buf[MLOGBUF_MSGMAX];
211         char *p;
212
213         va_start(args, fmt);
214         printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
215         va_end(args);
216
217         /* Copy the output into mlogbuf */
218         if (oops_in_progress) {
219                 /* mlogbuf was abandoned, use printk directly instead. */
220                 printk("%s", temp_buf);
221         } else {
222                 spin_lock(&mlogbuf_wlock);
223                 for (p = temp_buf; *p; p++) {
224                         unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
225                         if (next != mlogbuf_start) {
226                                 mlogbuf[mlogbuf_end] = *p;
227                                 mlogbuf_end = next;
228                         } else {
229                                 /* buffer full */
230                                 break;
231                         }
232                 }
233                 mlogbuf[mlogbuf_end] = '\0';
234                 spin_unlock(&mlogbuf_wlock);
235         }
236 }
237 EXPORT_SYMBOL(ia64_mca_printk);
238
239 /*
240  * Print buffered messages.
241  *  NOTE: call this after returning normal context. (ex. from salinfod)
242  */
243 void ia64_mlogbuf_dump(void)
244 {
245         char temp_buf[MLOGBUF_MSGMAX];
246         char *p;
247         unsigned long index;
248         unsigned long flags;
249         unsigned int printed_len;
250
251         /* Get output from mlogbuf */
252         while (mlogbuf_start != mlogbuf_end) {
253                 temp_buf[0] = '\0';
254                 p = temp_buf;
255                 printed_len = 0;
256
257                 spin_lock_irqsave(&mlogbuf_rlock, flags);
258
259                 index = mlogbuf_start;
260                 while (index != mlogbuf_end) {
261                         *p = mlogbuf[index];
262                         index = (index + 1) % MLOGBUF_SIZE;
263                         if (!*p)
264                                 break;
265                         p++;
266                         if (++printed_len >= MLOGBUF_MSGMAX - 1)
267                                 break;
268                 }
269                 *p = '\0';
270                 if (temp_buf[0])
271                         printk("%s", temp_buf);
272                 mlogbuf_start = index;
273
274                 mlogbuf_timestamp = 0;
275                 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
276         }
277 }
278 EXPORT_SYMBOL(ia64_mlogbuf_dump);
279
280 /*
281  * Call this if system is going to down or if immediate flushing messages to
282  * console is required. (ex. recovery was failed, crash dump is going to be
283  * invoked, long-wait rendezvous etc.)
284  *  NOTE: this should be called from monarch.
285  */
286 static void ia64_mlogbuf_finish(int wait)
287 {
288         BREAK_LOGLEVEL(console_loglevel);
289
290         spin_lock_init(&mlogbuf_rlock);
291         ia64_mlogbuf_dump();
292         printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
293                 "MCA/INIT might be dodgy or fail.\n");
294
295         if (!wait)
296                 return;
297
298         /* wait for console */
299         printk("Delaying for 5 seconds...\n");
300         udelay(5*1000000);
301
302         mlogbuf_finished = 1;
303 }
304
305 /*
306  * Print buffered messages from INIT context.
307  */
308 static void ia64_mlogbuf_dump_from_init(void)
309 {
310         if (mlogbuf_finished)
311                 return;
312
313         if (mlogbuf_timestamp &&
314                         time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
315                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
316                         " and the system seems to be messed up.\n");
317                 ia64_mlogbuf_finish(0);
318                 return;
319         }
320
321         if (!spin_trylock(&mlogbuf_rlock)) {
322                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
323                         "Generated messages other than stack dump will be "
324                         "buffered to mlogbuf and will be printed later.\n");
325                 printk(KERN_ERR "INIT: If messages would not printed after "
326                         "this INIT, wait 30sec and assert INIT again.\n");
327                 if (!mlogbuf_timestamp)
328                         mlogbuf_timestamp = jiffies;
329                 return;
330         }
331         spin_unlock(&mlogbuf_rlock);
332         ia64_mlogbuf_dump();
333 }
334
335 static void inline
336 ia64_mca_spin(const char *func)
337 {
338         if (monarch_cpu == smp_processor_id())
339                 ia64_mlogbuf_finish(0);
340         mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
341         while (1)
342                 cpu_relax();
343 }
344 /*
345  * IA64_MCA log support
346  */
347 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
348 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
349
350 typedef struct ia64_state_log_s
351 {
352         spinlock_t      isl_lock;
353         int             isl_index;
354         unsigned long   isl_count;
355         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
356 } ia64_state_log_t;
357
358 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
359
360 #define IA64_LOG_ALLOCATE(it, size) \
361         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
362                 (ia64_err_rec_t *)alloc_bootmem(size); \
363         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
364                 (ia64_err_rec_t *)alloc_bootmem(size);}
365 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
366 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
367 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
368 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
369 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
370 #define IA64_LOG_INDEX_INC(it) \
371     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
372     ia64_state_log[it].isl_count++;}
373 #define IA64_LOG_INDEX_DEC(it) \
374     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
375 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
376 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
377 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
378
379 /*
380  * ia64_log_init
381  *      Reset the OS ia64 log buffer
382  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
383  * Outputs      :       None
384  */
385 static void __init
386 ia64_log_init(int sal_info_type)
387 {
388         u64     max_size = 0;
389
390         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
391         IA64_LOG_LOCK_INIT(sal_info_type);
392
393         // SAL will tell us the maximum size of any error record of this type
394         max_size = ia64_sal_get_state_info_size(sal_info_type);
395         if (!max_size)
396                 /* alloc_bootmem() doesn't like zero-sized allocations! */
397                 return;
398
399         // set up OS data structures to hold error info
400         IA64_LOG_ALLOCATE(sal_info_type, max_size);
401         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
402         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
403 }
404
405 /*
406  * ia64_log_get
407  *
408  *      Get the current MCA log from SAL and copy it into the OS log buffer.
409  *
410  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
411  *              irq_safe    whether you can use printk at this point
412  *  Outputs :   size        (total record length)
413  *              *buffer     (ptr to error record)
414  *
415  */
416 static u64
417 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
418 {
419         sal_log_record_header_t     *log_buffer;
420         u64                         total_len = 0;
421         unsigned long               s;
422
423         IA64_LOG_LOCK(sal_info_type);
424
425         /* Get the process state information */
426         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
427
428         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
429
430         if (total_len) {
431                 IA64_LOG_INDEX_INC(sal_info_type);
432                 IA64_LOG_UNLOCK(sal_info_type);
433                 if (irq_safe) {
434                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
435                                        __func__, sal_info_type, total_len);
436                 }
437                 *buffer = (u8 *) log_buffer;
438                 return total_len;
439         } else {
440                 IA64_LOG_UNLOCK(sal_info_type);
441                 return 0;
442         }
443 }
444
445 /*
446  *  ia64_mca_log_sal_error_record
447  *
448  *  This function retrieves a specified error record type from SAL
449  *  and wakes up any processes waiting for error records.
450  *
451  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
452  *              FIXME: remove MCA and irq_safe.
453  */
454 static void
455 ia64_mca_log_sal_error_record(int sal_info_type)
456 {
457         u8 *buffer;
458         sal_log_record_header_t *rh;
459         u64 size;
460         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
461 #ifdef IA64_MCA_DEBUG_INFO
462         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
463 #endif
464
465         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
466         if (!size)
467                 return;
468
469         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
470
471         if (irq_safe)
472                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
473                         smp_processor_id(),
474                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
475
476         /* Clear logs from corrected errors in case there's no user-level logger */
477         rh = (sal_log_record_header_t *)buffer;
478         if (rh->severity == sal_log_severity_corrected)
479                 ia64_sal_clear_state_info(sal_info_type);
480 }
481
482 /*
483  * search_mca_table
484  *  See if the MCA surfaced in an instruction range
485  *  that has been tagged as recoverable.
486  *
487  *  Inputs
488  *      first   First address range to check
489  *      last    Last address range to check
490  *      ip      Instruction pointer, address we are looking for
491  *
492  * Return value:
493  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
494  */
495 int
496 search_mca_table (const struct mca_table_entry *first,
497                 const struct mca_table_entry *last,
498                 unsigned long ip)
499 {
500         const struct mca_table_entry *curr;
501         u64 curr_start, curr_end;
502
503         curr = first;
504         while (curr <= last) {
505                 curr_start = (u64) &curr->start_addr + curr->start_addr;
506                 curr_end = (u64) &curr->end_addr + curr->end_addr;
507
508                 if ((ip >= curr_start) && (ip <= curr_end)) {
509                         return 1;
510                 }
511                 curr++;
512         }
513         return 0;
514 }
515
516 /* Given an address, look for it in the mca tables. */
517 int mca_recover_range(unsigned long addr)
518 {
519         extern struct mca_table_entry __start___mca_table[];
520         extern struct mca_table_entry __stop___mca_table[];
521
522         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
523 }
524 EXPORT_SYMBOL_GPL(mca_recover_range);
525
526 #ifdef CONFIG_ACPI
527
528 int cpe_vector = -1;
529 int ia64_cpe_irq = -1;
530
531 static irqreturn_t
532 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
533 {
534         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
535         static int              index;
536         static DEFINE_SPINLOCK(cpe_history_lock);
537
538         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
539                        __func__, cpe_irq, smp_processor_id());
540
541         /* SAL spec states this should run w/ interrupts enabled */
542         local_irq_enable();
543
544         spin_lock(&cpe_history_lock);
545         if (!cpe_poll_enabled && cpe_vector >= 0) {
546
547                 int i, count = 1; /* we know 1 happened now */
548                 unsigned long now = jiffies;
549
550                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
551                         if (now - cpe_history[i] <= HZ)
552                                 count++;
553                 }
554
555                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
556                 if (count >= CPE_HISTORY_LENGTH) {
557
558                         cpe_poll_enabled = 1;
559                         spin_unlock(&cpe_history_lock);
560                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
561
562                         /*
563                          * Corrected errors will still be corrected, but
564                          * make sure there's a log somewhere that indicates
565                          * something is generating more than we can handle.
566                          */
567                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
568
569                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
570
571                         /* lock already released, get out now */
572                         goto out;
573                 } else {
574                         cpe_history[index++] = now;
575                         if (index == CPE_HISTORY_LENGTH)
576                                 index = 0;
577                 }
578         }
579         spin_unlock(&cpe_history_lock);
580 out:
581         /* Get the CPE error record and log it */
582         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
583
584         local_irq_disable();
585
586         return IRQ_HANDLED;
587 }
588
589 #endif /* CONFIG_ACPI */
590
591 #ifdef CONFIG_ACPI
592 /*
593  * ia64_mca_register_cpev
594  *
595  *  Register the corrected platform error vector with SAL.
596  *
597  *  Inputs
598  *      cpev        Corrected Platform Error Vector number
599  *
600  *  Outputs
601  *      None
602  */
603 void
604 ia64_mca_register_cpev (int cpev)
605 {
606         /* Register the CPE interrupt vector with SAL */
607         struct ia64_sal_retval isrv;
608
609         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
610         if (isrv.status) {
611                 printk(KERN_ERR "Failed to register Corrected Platform "
612                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
613                 return;
614         }
615
616         IA64_MCA_DEBUG("%s: corrected platform error "
617                        "vector %#x registered\n", __func__, cpev);
618 }
619 #endif /* CONFIG_ACPI */
620
621 /*
622  * ia64_mca_cmc_vector_setup
623  *
624  *  Setup the corrected machine check vector register in the processor.
625  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
626  *  This function is invoked on a per-processor basis.
627  *
628  * Inputs
629  *      None
630  *
631  * Outputs
632  *      None
633  */
634 void
635 ia64_mca_cmc_vector_setup (void)
636 {
637         cmcv_reg_t      cmcv;
638
639         cmcv.cmcv_regval        = 0;
640         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
641         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
642         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
643
644         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
645                        __func__, smp_processor_id(), IA64_CMC_VECTOR);
646
647         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
648                        __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
649 }
650
651 /*
652  * ia64_mca_cmc_vector_disable
653  *
654  *  Mask the corrected machine check vector register in the processor.
655  *  This function is invoked on a per-processor basis.
656  *
657  * Inputs
658  *      dummy(unused)
659  *
660  * Outputs
661  *      None
662  */
663 static void
664 ia64_mca_cmc_vector_disable (void *dummy)
665 {
666         cmcv_reg_t      cmcv;
667
668         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
669
670         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
671         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
672
673         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
674                        __func__, smp_processor_id(), cmcv.cmcv_vector);
675 }
676
677 /*
678  * ia64_mca_cmc_vector_enable
679  *
680  *  Unmask the corrected machine check vector register in the processor.
681  *  This function is invoked on a per-processor basis.
682  *
683  * Inputs
684  *      dummy(unused)
685  *
686  * Outputs
687  *      None
688  */
689 static void
690 ia64_mca_cmc_vector_enable (void *dummy)
691 {
692         cmcv_reg_t      cmcv;
693
694         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
695
696         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
697         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
698
699         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
700                        __func__, smp_processor_id(), cmcv.cmcv_vector);
701 }
702
703 /*
704  * ia64_mca_cmc_vector_disable_keventd
705  *
706  * Called via keventd (smp_call_function() is not safe in interrupt context) to
707  * disable the cmc interrupt vector.
708  */
709 static void
710 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
711 {
712         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
713 }
714
715 /*
716  * ia64_mca_cmc_vector_enable_keventd
717  *
718  * Called via keventd (smp_call_function() is not safe in interrupt context) to
719  * enable the cmc interrupt vector.
720  */
721 static void
722 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
723 {
724         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
725 }
726
727 /*
728  * ia64_mca_wakeup
729  *
730  *      Send an inter-cpu interrupt to wake-up a particular cpu.
731  *
732  *  Inputs  :   cpuid
733  *  Outputs :   None
734  */
735 static void
736 ia64_mca_wakeup(int cpu)
737 {
738         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
739 }
740
741 /*
742  * ia64_mca_wakeup_all
743  *
744  *      Wakeup all the slave cpus which have rendez'ed previously.
745  *
746  *  Inputs  :   None
747  *  Outputs :   None
748  */
749 static void
750 ia64_mca_wakeup_all(void)
751 {
752         int cpu;
753
754         /* Clear the Rendez checkin flag for all cpus */
755         for_each_online_cpu(cpu) {
756                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
757                         ia64_mca_wakeup(cpu);
758         }
759
760 }
761
762 /*
763  * ia64_mca_rendez_interrupt_handler
764  *
765  *      This is handler used to put slave processors into spinloop
766  *      while the monarch processor does the mca handling and later
767  *      wake each slave up once the monarch is done.  The state
768  *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
769  *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
770  *      the cpu has come out of OS rendezvous.
771  *
772  *  Inputs  :   None
773  *  Outputs :   None
774  */
775 static irqreturn_t
776 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
777 {
778         unsigned long flags;
779         int cpu = smp_processor_id();
780         struct ia64_mca_notify_die nd =
781                 { .sos = NULL, .monarch_cpu = &monarch_cpu };
782
783         /* Mask all interrupts */
784         local_irq_save(flags);
785
786         NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
787
788         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
789         /* Register with the SAL monarch that the slave has
790          * reached SAL
791          */
792         ia64_sal_mc_rendez();
793
794         NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
795
796         /* Wait for the monarch cpu to exit. */
797         while (monarch_cpu != -1)
798                cpu_relax();     /* spin until monarch leaves */
799
800         NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
801
802         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
803         /* Enable all interrupts */
804         local_irq_restore(flags);
805         return IRQ_HANDLED;
806 }
807
808 /*
809  * ia64_mca_wakeup_int_handler
810  *
811  *      The interrupt handler for processing the inter-cpu interrupt to the
812  *      slave cpu which was spinning in the rendez loop.
813  *      Since this spinning is done by turning off the interrupts and
814  *      polling on the wakeup-interrupt bit in the IRR, there is
815  *      nothing useful to be done in the handler.
816  *
817  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
818  *      arg             (Interrupt handler specific argument)
819  *  Outputs :   None
820  *
821  */
822 static irqreturn_t
823 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
824 {
825         return IRQ_HANDLED;
826 }
827
828 /* Function pointer for extra MCA recovery */
829 int (*ia64_mca_ucmc_extension)
830         (void*,struct ia64_sal_os_state*)
831         = NULL;
832
833 int
834 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
835 {
836         if (ia64_mca_ucmc_extension)
837                 return 1;
838
839         ia64_mca_ucmc_extension = fn;
840         return 0;
841 }
842
843 void
844 ia64_unreg_MCA_extension(void)
845 {
846         if (ia64_mca_ucmc_extension)
847                 ia64_mca_ucmc_extension = NULL;
848 }
849
850 EXPORT_SYMBOL(ia64_reg_MCA_extension);
851 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
852
853
854 static inline void
855 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
856 {
857         u64 fslot, tslot, nat;
858         *tr = *fr;
859         fslot = ((unsigned long)fr >> 3) & 63;
860         tslot = ((unsigned long)tr >> 3) & 63;
861         *tnat &= ~(1UL << tslot);
862         nat = (fnat >> fslot) & 1;
863         *tnat |= (nat << tslot);
864 }
865
866 /* Change the comm field on the MCA/INT task to include the pid that
867  * was interrupted, it makes for easier debugging.  If that pid was 0
868  * (swapper or nested MCA/INIT) then use the start of the previous comm
869  * field suffixed with its cpu.
870  */
871
872 static void
873 ia64_mca_modify_comm(const struct task_struct *previous_current)
874 {
875         char *p, comm[sizeof(current->comm)];
876         if (previous_current->pid)
877                 snprintf(comm, sizeof(comm), "%s %d",
878                         current->comm, previous_current->pid);
879         else {
880                 int l;
881                 if ((p = strchr(previous_current->comm, ' ')))
882                         l = p - previous_current->comm;
883                 else
884                         l = strlen(previous_current->comm);
885                 snprintf(comm, sizeof(comm), "%s %*s %d",
886                         current->comm, l, previous_current->comm,
887                         task_thread_info(previous_current)->cpu);
888         }
889         memcpy(current->comm, comm, sizeof(current->comm));
890 }
891
892 static void
893 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
894                 unsigned long *nat)
895 {
896         const pal_min_state_area_t *ms = sos->pal_min_state;
897         const u64 *bank;
898
899         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
900          * pmsa_{xip,xpsr,xfs}
901          */
902         if (ia64_psr(regs)->ic) {
903                 regs->cr_iip = ms->pmsa_iip;
904                 regs->cr_ipsr = ms->pmsa_ipsr;
905                 regs->cr_ifs = ms->pmsa_ifs;
906         } else {
907                 regs->cr_iip = ms->pmsa_xip;
908                 regs->cr_ipsr = ms->pmsa_xpsr;
909                 regs->cr_ifs = ms->pmsa_xfs;
910
911                 sos->iip = ms->pmsa_iip;
912                 sos->ipsr = ms->pmsa_ipsr;
913                 sos->ifs = ms->pmsa_ifs;
914         }
915         regs->pr = ms->pmsa_pr;
916         regs->b0 = ms->pmsa_br0;
917         regs->ar_rsc = ms->pmsa_rsc;
918         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
919         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
920         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
921         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
922         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
923         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
924         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
925         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
926         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
927         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
928         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
929         if (ia64_psr(regs)->bn)
930                 bank = ms->pmsa_bank1_gr;
931         else
932                 bank = ms->pmsa_bank0_gr;
933         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
934         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
935         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
936         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
937         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
938         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
939         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
940         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
941         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
942         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
943         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
944         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
945         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
946         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
947         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
948         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
949 }
950
951 /* On entry to this routine, we are running on the per cpu stack, see
952  * mca_asm.h.  The original stack has not been touched by this event.  Some of
953  * the original stack's registers will be in the RBS on this stack.  This stack
954  * also contains a partial pt_regs and switch_stack, the rest of the data is in
955  * PAL minstate.
956  *
957  * The first thing to do is modify the original stack to look like a blocked
958  * task so we can run backtrace on the original task.  Also mark the per cpu
959  * stack as current to ensure that we use the correct task state, it also means
960  * that we can do backtrace on the MCA/INIT handler code itself.
961  */
962
963 static struct task_struct *
964 ia64_mca_modify_original_stack(struct pt_regs *regs,
965                 const struct switch_stack *sw,
966                 struct ia64_sal_os_state *sos,
967                 const char *type)
968 {
969         char *p;
970         ia64_va va;
971         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
972         const pal_min_state_area_t *ms = sos->pal_min_state;
973         struct task_struct *previous_current;
974         struct pt_regs *old_regs;
975         struct switch_stack *old_sw;
976         unsigned size = sizeof(struct pt_regs) +
977                         sizeof(struct switch_stack) + 16;
978         unsigned long *old_bspstore, *old_bsp;
979         unsigned long *new_bspstore, *new_bsp;
980         unsigned long old_unat, old_rnat, new_rnat, nat;
981         u64 slots, loadrs = regs->loadrs;
982         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
983         u64 ar_bspstore = regs->ar_bspstore;
984         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
985         const char *msg;
986         int cpu = smp_processor_id();
987
988         previous_current = curr_task(cpu);
989         set_curr_task(cpu, current);
990         if ((p = strchr(current->comm, ' ')))
991                 *p = '\0';
992
993         /* Best effort attempt to cope with MCA/INIT delivered while in
994          * physical mode.
995          */
996         regs->cr_ipsr = ms->pmsa_ipsr;
997         if (ia64_psr(regs)->dt == 0) {
998                 va.l = r12;
999                 if (va.f.reg == 0) {
1000                         va.f.reg = 7;
1001                         r12 = va.l;
1002                 }
1003                 va.l = r13;
1004                 if (va.f.reg == 0) {
1005                         va.f.reg = 7;
1006                         r13 = va.l;
1007                 }
1008         }
1009         if (ia64_psr(regs)->rt == 0) {
1010                 va.l = ar_bspstore;
1011                 if (va.f.reg == 0) {
1012                         va.f.reg = 7;
1013                         ar_bspstore = va.l;
1014                 }
1015                 va.l = ar_bsp;
1016                 if (va.f.reg == 0) {
1017                         va.f.reg = 7;
1018                         ar_bsp = va.l;
1019                 }
1020         }
1021
1022         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1023          * have been copied to the old stack, the old stack may fail the
1024          * validation tests below.  So ia64_old_stack() must restore the dirty
1025          * registers from the new stack.  The old and new bspstore probably
1026          * have different alignments, so loadrs calculated on the old bsp
1027          * cannot be used to restore from the new bsp.  Calculate a suitable
1028          * loadrs for the new stack and save it in the new pt_regs, where
1029          * ia64_old_stack() can get it.
1030          */
1031         old_bspstore = (unsigned long *)ar_bspstore;
1032         old_bsp = (unsigned long *)ar_bsp;
1033         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1034         new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1035         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1036         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1037
1038         /* Verify the previous stack state before we change it */
1039         if (user_mode(regs)) {
1040                 msg = "occurred in user space";
1041                 /* previous_current is guaranteed to be valid when the task was
1042                  * in user space, so ...
1043                  */
1044                 ia64_mca_modify_comm(previous_current);
1045                 goto no_mod;
1046         }
1047
1048         if (r13 != sos->prev_IA64_KR_CURRENT) {
1049                 msg = "inconsistent previous current and r13";
1050                 goto no_mod;
1051         }
1052
1053         if (!mca_recover_range(ms->pmsa_iip)) {
1054                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1055                         msg = "inconsistent r12 and r13";
1056                         goto no_mod;
1057                 }
1058                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1059                         msg = "inconsistent ar.bspstore and r13";
1060                         goto no_mod;
1061                 }
1062                 va.p = old_bspstore;
1063                 if (va.f.reg < 5) {
1064                         msg = "old_bspstore is in the wrong region";
1065                         goto no_mod;
1066                 }
1067                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1068                         msg = "inconsistent ar.bsp and r13";
1069                         goto no_mod;
1070                 }
1071                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1072                 if (ar_bspstore + size > r12) {
1073                         msg = "no room for blocked state";
1074                         goto no_mod;
1075                 }
1076         }
1077
1078         ia64_mca_modify_comm(previous_current);
1079
1080         /* Make the original task look blocked.  First stack a struct pt_regs,
1081          * describing the state at the time of interrupt.  mca_asm.S built a
1082          * partial pt_regs, copy it and fill in the blanks using minstate.
1083          */
1084         p = (char *)r12 - sizeof(*regs);
1085         old_regs = (struct pt_regs *)p;
1086         memcpy(old_regs, regs, sizeof(*regs));
1087         old_regs->loadrs = loadrs;
1088         old_unat = old_regs->ar_unat;
1089         finish_pt_regs(old_regs, sos, &old_unat);
1090
1091         /* Next stack a struct switch_stack.  mca_asm.S built a partial
1092          * switch_stack, copy it and fill in the blanks using pt_regs and
1093          * minstate.
1094          *
1095          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1096          * ar.pfs is set to 0.
1097          *
1098          * unwind.c::unw_unwind() does special processing for interrupt frames.
1099          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1100          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1101          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1102          * switch_stack on the original stack so it will unwind correctly when
1103          * unwind.c reads pt_regs.
1104          *
1105          * thread.ksp is updated to point to the synthesized switch_stack.
1106          */
1107         p -= sizeof(struct switch_stack);
1108         old_sw = (struct switch_stack *)p;
1109         memcpy(old_sw, sw, sizeof(*sw));
1110         old_sw->caller_unat = old_unat;
1111         old_sw->ar_fpsr = old_regs->ar_fpsr;
1112         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1113         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1114         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1115         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1116         old_sw->b0 = (u64)ia64_leave_kernel;
1117         old_sw->b1 = ms->pmsa_br1;
1118         old_sw->ar_pfs = 0;
1119         old_sw->ar_unat = old_unat;
1120         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1121         previous_current->thread.ksp = (u64)p - 16;
1122
1123         /* Finally copy the original stack's registers back to its RBS.
1124          * Registers from ar.bspstore through ar.bsp at the time of the event
1125          * are in the current RBS, copy them back to the original stack.  The
1126          * copy must be done register by register because the original bspstore
1127          * and the current one have different alignments, so the saved RNAT
1128          * data occurs at different places.
1129          *
1130          * mca_asm does cover, so the old_bsp already includes all registers at
1131          * the time of MCA/INIT.  It also does flushrs, so all registers before
1132          * this function have been written to backing store on the MCA/INIT
1133          * stack.
1134          */
1135         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1136         old_rnat = regs->ar_rnat;
1137         while (slots--) {
1138                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1139                         new_rnat = ia64_get_rnat(new_bspstore++);
1140                 }
1141                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1142                         *old_bspstore++ = old_rnat;
1143                         old_rnat = 0;
1144                 }
1145                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1146                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1147                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1148                 *old_bspstore++ = *new_bspstore++;
1149         }
1150         old_sw->ar_bspstore = (unsigned long)old_bspstore;
1151         old_sw->ar_rnat = old_rnat;
1152
1153         sos->prev_task = previous_current;
1154         return previous_current;
1155
1156 no_mod:
1157         mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1158                         smp_processor_id(), type, msg);
1159         old_unat = regs->ar_unat;
1160         finish_pt_regs(regs, sos, &old_unat);
1161         return previous_current;
1162 }
1163
1164 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1165  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1166  * not entered rendezvous yet then wait a bit.  The assumption is that any
1167  * slave that has not rendezvoused after a reasonable time is never going to do
1168  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1169  * interrupt, as well as cpus that receive the INIT slave event.
1170  */
1171
1172 static void
1173 ia64_wait_for_slaves(int monarch, const char *type)
1174 {
1175         int c, i , wait;
1176
1177         /*
1178          * wait 5 seconds total for slaves (arbitrary)
1179          */
1180         for (i = 0; i < 5000; i++) {
1181                 wait = 0;
1182                 for_each_online_cpu(c) {
1183                         if (c == monarch)
1184                                 continue;
1185                         if (ia64_mc_info.imi_rendez_checkin[c]
1186                                         == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1187                                 udelay(1000);           /* short wait */
1188                                 wait = 1;
1189                                 break;
1190                         }
1191                 }
1192                 if (!wait)
1193                         goto all_in;
1194         }
1195
1196         /*
1197          * Maybe slave(s) dead. Print buffered messages immediately.
1198          */
1199         ia64_mlogbuf_finish(0);
1200         mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1201         for_each_online_cpu(c) {
1202                 if (c == monarch)
1203                         continue;
1204                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1205                         mprintk(" %d", c);
1206         }
1207         mprintk("\n");
1208         return;
1209
1210 all_in:
1211         mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1212         return;
1213 }
1214
1215 /*  mca_insert_tr
1216  *
1217  *  Switch rid when TR reload and needed!
1218  *  iord: 1: itr, 2: itr;
1219  *
1220 */
1221 static void mca_insert_tr(u64 iord)
1222 {
1223
1224         int i;
1225         u64 old_rr;
1226         struct ia64_tr_entry *p;
1227         unsigned long psr;
1228         int cpu = smp_processor_id();
1229
1230         if (!ia64_idtrs[cpu])
1231                 return;
1232
1233         psr = ia64_clear_ic();
1234         for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1235                 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1236                 if (p->pte & 0x1) {
1237                         old_rr = ia64_get_rr(p->ifa);
1238                         if (old_rr != p->rr) {
1239                                 ia64_set_rr(p->ifa, p->rr);
1240                                 ia64_srlz_d();
1241                         }
1242                         ia64_ptr(iord, p->ifa, p->itir >> 2);
1243                         ia64_srlz_i();
1244                         if (iord & 0x1) {
1245                                 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1246                                 ia64_srlz_i();
1247                         }
1248                         if (iord & 0x2) {
1249                                 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1250                                 ia64_srlz_i();
1251                         }
1252                         if (old_rr != p->rr) {
1253                                 ia64_set_rr(p->ifa, old_rr);
1254                                 ia64_srlz_d();
1255                         }
1256                 }
1257         }
1258         ia64_set_psr(psr);
1259 }
1260
1261 /*
1262  * ia64_mca_handler
1263  *
1264  *      This is uncorrectable machine check handler called from OS_MCA
1265  *      dispatch code which is in turn called from SAL_CHECK().
1266  *      This is the place where the core of OS MCA handling is done.
1267  *      Right now the logs are extracted and displayed in a well-defined
1268  *      format. This handler code is supposed to be run only on the
1269  *      monarch processor. Once the monarch is done with MCA handling
1270  *      further MCA logging is enabled by clearing logs.
1271  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1272  *      slave processors out of rendezvous spinloop.
1273  *
1274  *      If multiple processors call into OS_MCA, the first will become
1275  *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1276  *      bitmask.  After the first monarch has processed its MCA, it
1277  *      will wake up the next cpu in the mca_cpu bitmask and then go
1278  *      into the rendezvous loop.  When all processors have serviced
1279  *      their MCA, the last monarch frees up the rest of the processors.
1280  */
1281 void
1282 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1283                  struct ia64_sal_os_state *sos)
1284 {
1285         int recover, cpu = smp_processor_id();
1286         struct task_struct *previous_current;
1287         struct ia64_mca_notify_die nd =
1288                 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1289         static atomic_t mca_count;
1290         static cpumask_t mca_cpu;
1291
1292         if (atomic_add_return(1, &mca_count) == 1) {
1293                 monarch_cpu = cpu;
1294                 sos->monarch = 1;
1295         } else {
1296                 cpu_set(cpu, mca_cpu);
1297                 sos->monarch = 0;
1298         }
1299         mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1300                 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1301
1302         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1303
1304         NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1305
1306         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1307         if (sos->monarch) {
1308                 ia64_wait_for_slaves(cpu, "MCA");
1309
1310                 /* Wakeup all the processors which are spinning in the
1311                  * rendezvous loop.  They will leave SAL, then spin in the OS
1312                  * with interrupts disabled until this monarch cpu leaves the
1313                  * MCA handler.  That gets control back to the OS so we can
1314                  * backtrace the other cpus, backtrace when spinning in SAL
1315                  * does not work.
1316                  */
1317                 ia64_mca_wakeup_all();
1318         } else {
1319                 while (cpu_isset(cpu, mca_cpu))
1320                         cpu_relax();    /* spin until monarch wakes us */
1321         }
1322
1323         NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1324
1325         /* Get the MCA error record and log it */
1326         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1327
1328         /* MCA error recovery */
1329         recover = (ia64_mca_ucmc_extension
1330                 && ia64_mca_ucmc_extension(
1331                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1332                         sos));
1333
1334         if (recover) {
1335                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1336                 rh->severity = sal_log_severity_corrected;
1337                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1338                 sos->os_status = IA64_MCA_CORRECTED;
1339         } else {
1340                 /* Dump buffered message to console */
1341                 ia64_mlogbuf_finish(1);
1342         }
1343
1344         if (__this_cpu_read(ia64_mca_tr_reload)) {
1345                 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1346                 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1347         }
1348
1349         NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1350
1351         if (atomic_dec_return(&mca_count) > 0) {
1352                 int i;
1353
1354                 /* wake up the next monarch cpu,
1355                  * and put this cpu in the rendez loop.
1356                  */
1357                 for_each_online_cpu(i) {
1358                         if (cpu_isset(i, mca_cpu)) {
1359                                 monarch_cpu = i;
1360                                 cpu_clear(i, mca_cpu);  /* wake next cpu */
1361                                 while (monarch_cpu != -1)
1362                                         cpu_relax();    /* spin until last cpu leaves */
1363                                 set_curr_task(cpu, previous_current);
1364                                 ia64_mc_info.imi_rendez_checkin[cpu]
1365                                                 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1366                                 return;
1367                         }
1368                 }
1369         }
1370         set_curr_task(cpu, previous_current);
1371         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1372         monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1373 }
1374
1375 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1376 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1377
1378 /*
1379  * ia64_mca_cmc_int_handler
1380  *
1381  *  This is corrected machine check interrupt handler.
1382  *      Right now the logs are extracted and displayed in a well-defined
1383  *      format.
1384  *
1385  * Inputs
1386  *      interrupt number
1387  *      client data arg ptr
1388  *
1389  * Outputs
1390  *      None
1391  */
1392 static irqreturn_t
1393 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1394 {
1395         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1396         static int              index;
1397         static DEFINE_SPINLOCK(cmc_history_lock);
1398
1399         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1400                        __func__, cmc_irq, smp_processor_id());
1401
1402         /* SAL spec states this should run w/ interrupts enabled */
1403         local_irq_enable();
1404
1405         spin_lock(&cmc_history_lock);
1406         if (!cmc_polling_enabled) {
1407                 int i, count = 1; /* we know 1 happened now */
1408                 unsigned long now = jiffies;
1409
1410                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1411                         if (now - cmc_history[i] <= HZ)
1412                                 count++;
1413                 }
1414
1415                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1416                 if (count >= CMC_HISTORY_LENGTH) {
1417
1418                         cmc_polling_enabled = 1;
1419                         spin_unlock(&cmc_history_lock);
1420                         /* If we're being hit with CMC interrupts, we won't
1421                          * ever execute the schedule_work() below.  Need to
1422                          * disable CMC interrupts on this processor now.
1423                          */
1424                         ia64_mca_cmc_vector_disable(NULL);
1425                         schedule_work(&cmc_disable_work);
1426
1427                         /*
1428                          * Corrected errors will still be corrected, but
1429                          * make sure there's a log somewhere that indicates
1430                          * something is generating more than we can handle.
1431                          */
1432                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1433
1434                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1435
1436                         /* lock already released, get out now */
1437                         goto out;
1438                 } else {
1439                         cmc_history[index++] = now;
1440                         if (index == CMC_HISTORY_LENGTH)
1441                                 index = 0;
1442                 }
1443         }
1444         spin_unlock(&cmc_history_lock);
1445 out:
1446         /* Get the CMC error record and log it */
1447         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1448
1449         local_irq_disable();
1450
1451         return IRQ_HANDLED;
1452 }
1453
1454 /*
1455  *  ia64_mca_cmc_int_caller
1456  *
1457  *      Triggered by sw interrupt from CMC polling routine.  Calls
1458  *      real interrupt handler and either triggers a sw interrupt
1459  *      on the next cpu or does cleanup at the end.
1460  *
1461  * Inputs
1462  *      interrupt number
1463  *      client data arg ptr
1464  * Outputs
1465  *      handled
1466  */
1467 static irqreturn_t
1468 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1469 {
1470         static int start_count = -1;
1471         unsigned int cpuid;
1472
1473         cpuid = smp_processor_id();
1474
1475         /* If first cpu, update count */
1476         if (start_count == -1)
1477                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1478
1479         ia64_mca_cmc_int_handler(cmc_irq, arg);
1480
1481         cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1482
1483         if (cpuid < nr_cpu_ids) {
1484                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1485         } else {
1486                 /* If no log record, switch out of polling mode */
1487                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1488
1489                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1490                         schedule_work(&cmc_enable_work);
1491                         cmc_polling_enabled = 0;
1492
1493                 } else {
1494
1495                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1496                 }
1497
1498                 start_count = -1;
1499         }
1500
1501         return IRQ_HANDLED;
1502 }
1503
1504 /*
1505  *  ia64_mca_cmc_poll
1506  *
1507  *      Poll for Corrected Machine Checks (CMCs)
1508  *
1509  * Inputs   :   dummy(unused)
1510  * Outputs  :   None
1511  *
1512  */
1513 static void
1514 ia64_mca_cmc_poll (unsigned long dummy)
1515 {
1516         /* Trigger a CMC interrupt cascade  */
1517         platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1518                                                         IA64_IPI_DM_INT, 0);
1519 }
1520
1521 /*
1522  *  ia64_mca_cpe_int_caller
1523  *
1524  *      Triggered by sw interrupt from CPE polling routine.  Calls
1525  *      real interrupt handler and either triggers a sw interrupt
1526  *      on the next cpu or does cleanup at the end.
1527  *
1528  * Inputs
1529  *      interrupt number
1530  *      client data arg ptr
1531  * Outputs
1532  *      handled
1533  */
1534 #ifdef CONFIG_ACPI
1535
1536 static irqreturn_t
1537 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1538 {
1539         static int start_count = -1;
1540         static int poll_time = MIN_CPE_POLL_INTERVAL;
1541         unsigned int cpuid;
1542
1543         cpuid = smp_processor_id();
1544
1545         /* If first cpu, update count */
1546         if (start_count == -1)
1547                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1548
1549         ia64_mca_cpe_int_handler(cpe_irq, arg);
1550
1551         cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1552
1553         if (cpuid < NR_CPUS) {
1554                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1555         } else {
1556                 /*
1557                  * If a log was recorded, increase our polling frequency,
1558                  * otherwise, backoff or return to interrupt mode.
1559                  */
1560                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1561                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1562                 } else if (cpe_vector < 0) {
1563                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1564                 } else {
1565                         poll_time = MIN_CPE_POLL_INTERVAL;
1566
1567                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1568                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1569                         cpe_poll_enabled = 0;
1570                 }
1571
1572                 if (cpe_poll_enabled)
1573                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1574                 start_count = -1;
1575         }
1576
1577         return IRQ_HANDLED;
1578 }
1579
1580 /*
1581  *  ia64_mca_cpe_poll
1582  *
1583  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1584  *      on first cpu, from there it will trickle through all the cpus.
1585  *
1586  * Inputs   :   dummy(unused)
1587  * Outputs  :   None
1588  *
1589  */
1590 static void
1591 ia64_mca_cpe_poll (unsigned long dummy)
1592 {
1593         /* Trigger a CPE interrupt cascade  */
1594         platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1595                                                         IA64_IPI_DM_INT, 0);
1596 }
1597
1598 #endif /* CONFIG_ACPI */
1599
1600 static int
1601 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1602 {
1603         int c;
1604         struct task_struct *g, *t;
1605         if (val != DIE_INIT_MONARCH_PROCESS)
1606                 return NOTIFY_DONE;
1607 #ifdef CONFIG_KEXEC
1608         if (atomic_read(&kdump_in_progress))
1609                 return NOTIFY_DONE;
1610 #endif
1611
1612         /*
1613          * FIXME: mlogbuf will brim over with INIT stack dumps.
1614          * To enable show_stack from INIT, we use oops_in_progress which should
1615          * be used in real oops. This would cause something wrong after INIT.
1616          */
1617         BREAK_LOGLEVEL(console_loglevel);
1618         ia64_mlogbuf_dump_from_init();
1619
1620         printk(KERN_ERR "Processes interrupted by INIT -");
1621         for_each_online_cpu(c) {
1622                 struct ia64_sal_os_state *s;
1623                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1624                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1625                 g = s->prev_task;
1626                 if (g) {
1627                         if (g->pid)
1628                                 printk(" %d", g->pid);
1629                         else
1630                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1631                 }
1632         }
1633         printk("\n\n");
1634         if (read_trylock(&tasklist_lock)) {
1635                 do_each_thread (g, t) {
1636                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1637                         show_stack(t, NULL);
1638                 } while_each_thread (g, t);
1639                 read_unlock(&tasklist_lock);
1640         }
1641         /* FIXME: This will not restore zapped printk locks. */
1642         RESTORE_LOGLEVEL(console_loglevel);
1643         return NOTIFY_DONE;
1644 }
1645
1646 /*
1647  * C portion of the OS INIT handler
1648  *
1649  * Called from ia64_os_init_dispatch
1650  *
1651  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1652  * this event.  This code is used for both monarch and slave INIT events, see
1653  * sos->monarch.
1654  *
1655  * All INIT events switch to the INIT stack and change the previous process to
1656  * blocked status.  If one of the INIT events is the monarch then we are
1657  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1658  * the processes.  The slave INIT events all spin until the monarch cpu
1659  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1660  * process is the monarch.
1661  */
1662
1663 void
1664 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1665                   struct ia64_sal_os_state *sos)
1666 {
1667         static atomic_t slaves;
1668         static atomic_t monarchs;
1669         struct task_struct *previous_current;
1670         int cpu = smp_processor_id();
1671         struct ia64_mca_notify_die nd =
1672                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1673
1674         NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1675
1676         mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1677                 sos->proc_state_param, cpu, sos->monarch);
1678         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1679
1680         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1681         sos->os_status = IA64_INIT_RESUME;
1682
1683         /* FIXME: Workaround for broken proms that drive all INIT events as
1684          * slaves.  The last slave that enters is promoted to be a monarch.
1685          * Remove this code in September 2006, that gives platforms a year to
1686          * fix their proms and get their customers updated.
1687          */
1688         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1689                 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1690                         __func__, cpu);
1691                 atomic_dec(&slaves);
1692                 sos->monarch = 1;
1693         }
1694
1695         /* FIXME: Workaround for broken proms that drive all INIT events as
1696          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1697          * Remove this code in September 2006, that gives platforms a year to
1698          * fix their proms and get their customers updated.
1699          */
1700         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1701                 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1702                                __func__, cpu);
1703                 atomic_dec(&monarchs);
1704                 sos->monarch = 0;
1705         }
1706
1707         if (!sos->monarch) {
1708                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1709
1710 #ifdef CONFIG_KEXEC
1711                 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1712                         udelay(1000);
1713 #else
1714                 while (monarch_cpu == -1)
1715                         cpu_relax();    /* spin until monarch enters */
1716 #endif
1717
1718                 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1719                 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1720
1721 #ifdef CONFIG_KEXEC
1722                 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1723                         udelay(1000);
1724 #else
1725                 while (monarch_cpu != -1)
1726                         cpu_relax();    /* spin until monarch leaves */
1727 #endif
1728
1729                 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1730
1731                 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1732                 set_curr_task(cpu, previous_current);
1733                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1734                 atomic_dec(&slaves);
1735                 return;
1736         }
1737
1738         monarch_cpu = cpu;
1739         NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1740
1741         /*
1742          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1743          * generated via the BMC's command-line interface, but since the console is on the
1744          * same serial line, the user will need some time to switch out of the BMC before
1745          * the dump begins.
1746          */
1747         mprintk("Delaying for 5 seconds...\n");
1748         udelay(5*1000000);
1749         ia64_wait_for_slaves(cpu, "INIT");
1750         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1751          * to default_monarch_init_process() above and just print all the
1752          * tasks.
1753          */
1754         NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1755         NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1756
1757         mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1758         atomic_dec(&monarchs);
1759         set_curr_task(cpu, previous_current);
1760         monarch_cpu = -1;
1761         return;
1762 }
1763
1764 static int __init
1765 ia64_mca_disable_cpe_polling(char *str)
1766 {
1767         cpe_poll_enabled = 0;
1768         return 1;
1769 }
1770
1771 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1772
1773 static struct irqaction cmci_irqaction = {
1774         .handler =      ia64_mca_cmc_int_handler,
1775         .name =         "cmc_hndlr"
1776 };
1777
1778 static struct irqaction cmcp_irqaction = {
1779         .handler =      ia64_mca_cmc_int_caller,
1780         .name =         "cmc_poll"
1781 };
1782
1783 static struct irqaction mca_rdzv_irqaction = {
1784         .handler =      ia64_mca_rendez_int_handler,
1785         .name =         "mca_rdzv"
1786 };
1787
1788 static struct irqaction mca_wkup_irqaction = {
1789         .handler =      ia64_mca_wakeup_int_handler,
1790         .name =         "mca_wkup"
1791 };
1792
1793 #ifdef CONFIG_ACPI
1794 static struct irqaction mca_cpe_irqaction = {
1795         .handler =      ia64_mca_cpe_int_handler,
1796         .name =         "cpe_hndlr"
1797 };
1798
1799 static struct irqaction mca_cpep_irqaction = {
1800         .handler =      ia64_mca_cpe_int_caller,
1801         .name =         "cpe_poll"
1802 };
1803 #endif /* CONFIG_ACPI */
1804
1805 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1806  * these stacks can never sleep, they cannot return from the kernel to user
1807  * space, they do not appear in a normal ps listing.  So there is no need to
1808  * format most of the fields.
1809  */
1810
1811 static void
1812 format_mca_init_stack(void *mca_data, unsigned long offset,
1813                 const char *type, int cpu)
1814 {
1815         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1816         struct thread_info *ti;
1817         memset(p, 0, KERNEL_STACK_SIZE);
1818         ti = task_thread_info(p);
1819         ti->flags = _TIF_MCA_INIT;
1820         ti->preempt_count = 1;
1821         ti->task = p;
1822         ti->cpu = cpu;
1823         p->stack = ti;
1824         p->state = TASK_UNINTERRUPTIBLE;
1825         cpu_set(cpu, p->cpus_allowed);
1826         INIT_LIST_HEAD(&p->tasks);
1827         p->parent = p->real_parent = p->group_leader = p;
1828         INIT_LIST_HEAD(&p->children);
1829         INIT_LIST_HEAD(&p->sibling);
1830         strncpy(p->comm, type, sizeof(p->comm)-1);
1831 }
1832
1833 /* Caller prevents this from being called after init */
1834 static void * __init_refok mca_bootmem(void)
1835 {
1836         return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1837                             KERNEL_STACK_SIZE, 0);
1838 }
1839
1840 /* Do per-CPU MCA-related initialization.  */
1841 void
1842 ia64_mca_cpu_init(void *cpu_data)
1843 {
1844         void *pal_vaddr;
1845         void *data;
1846         long sz = sizeof(struct ia64_mca_cpu);
1847         int cpu = smp_processor_id();
1848         static int first_time = 1;
1849
1850         /*
1851          * Structure will already be allocated if cpu has been online,
1852          * then offlined.
1853          */
1854         if (__per_cpu_mca[cpu]) {
1855                 data = __va(__per_cpu_mca[cpu]);
1856         } else {
1857                 if (first_time) {
1858                         data = mca_bootmem();
1859                         first_time = 0;
1860                 } else
1861                         data = (void *)__get_free_pages(GFP_KERNEL,
1862                                                         get_order(sz));
1863                 if (!data)
1864                         panic("Could not allocate MCA memory for cpu %d\n",
1865                                         cpu);
1866         }
1867         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1868                 "MCA", cpu);
1869         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1870                 "INIT", cpu);
1871         __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1872
1873         /*
1874          * Stash away a copy of the PTE needed to map the per-CPU page.
1875          * We may need it during MCA recovery.
1876          */
1877         __this_cpu_write(ia64_mca_per_cpu_pte,
1878                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1879
1880         /*
1881          * Also, stash away a copy of the PAL address and the PTE
1882          * needed to map it.
1883          */
1884         pal_vaddr = efi_get_pal_addr();
1885         if (!pal_vaddr)
1886                 return;
1887         __this_cpu_write(ia64_mca_pal_base,
1888                 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1889         __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1890                                                               PAGE_KERNEL)));
1891 }
1892
1893 static void ia64_mca_cmc_vector_adjust(void *dummy)
1894 {
1895         unsigned long flags;
1896
1897         local_irq_save(flags);
1898         if (!cmc_polling_enabled)
1899                 ia64_mca_cmc_vector_enable(NULL);
1900         local_irq_restore(flags);
1901 }
1902
1903 static int mca_cpu_callback(struct notifier_block *nfb,
1904                                       unsigned long action,
1905                                       void *hcpu)
1906 {
1907         int hotcpu = (unsigned long) hcpu;
1908
1909         switch (action) {
1910         case CPU_ONLINE:
1911         case CPU_ONLINE_FROZEN:
1912                 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1913                                          NULL, 0);
1914                 break;
1915         }
1916         return NOTIFY_OK;
1917 }
1918
1919 static struct notifier_block mca_cpu_notifier = {
1920         .notifier_call = mca_cpu_callback
1921 };
1922
1923 /*
1924  * ia64_mca_init
1925  *
1926  *  Do all the system level mca specific initialization.
1927  *
1928  *      1. Register spinloop and wakeup request interrupt vectors
1929  *
1930  *      2. Register OS_MCA handler entry point
1931  *
1932  *      3. Register OS_INIT handler entry point
1933  *
1934  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1935  *
1936  *  Note that this initialization is done very early before some kernel
1937  *  services are available.
1938  *
1939  *  Inputs  :   None
1940  *
1941  *  Outputs :   None
1942  */
1943 void __init
1944 ia64_mca_init(void)
1945 {
1946         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1947         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1948         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1949         int i;
1950         long rc;
1951         struct ia64_sal_retval isrv;
1952         unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1953         static struct notifier_block default_init_monarch_nb = {
1954                 .notifier_call = default_monarch_init_process,
1955                 .priority = 0/* we need to notified last */
1956         };
1957
1958         IA64_MCA_DEBUG("%s: begin\n", __func__);
1959
1960         /* Clear the Rendez checkin flag for all cpus */
1961         for(i = 0 ; i < NR_CPUS; i++)
1962                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1963
1964         /*
1965          * Register the rendezvous spinloop and wakeup mechanism with SAL
1966          */
1967
1968         /* Register the rendezvous interrupt vector with SAL */
1969         while (1) {
1970                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1971                                               SAL_MC_PARAM_MECHANISM_INT,
1972                                               IA64_MCA_RENDEZ_VECTOR,
1973                                               timeout,
1974                                               SAL_MC_PARAM_RZ_ALWAYS);
1975                 rc = isrv.status;
1976                 if (rc == 0)
1977                         break;
1978                 if (rc == -2) {
1979                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1980                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1981                         timeout = isrv.v0;
1982                         NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1983                         continue;
1984                 }
1985                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1986                        "with SAL (status %ld)\n", rc);
1987                 return;
1988         }
1989
1990         /* Register the wakeup interrupt vector with SAL */
1991         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1992                                       SAL_MC_PARAM_MECHANISM_INT,
1993                                       IA64_MCA_WAKEUP_VECTOR,
1994                                       0, 0);
1995         rc = isrv.status;
1996         if (rc) {
1997                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1998                        "(status %ld)\n", rc);
1999                 return;
2000         }
2001
2002         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
2003
2004         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
2005         /*
2006          * XXX - disable SAL checksum by setting size to 0; should be
2007          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
2008          */
2009         ia64_mc_info.imi_mca_handler_size       = 0;
2010
2011         /* Register the os mca handler with SAL */
2012         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
2013                                        ia64_mc_info.imi_mca_handler,
2014                                        ia64_tpa(mca_hldlr_ptr->gp),
2015                                        ia64_mc_info.imi_mca_handler_size,
2016                                        0, 0, 0)))
2017         {
2018                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2019                        "(status %ld)\n", rc);
2020                 return;
2021         }
2022
2023         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2024                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2025
2026         /*
2027          * XXX - disable SAL checksum by setting size to 0, should be
2028          * size of the actual init handler in mca_asm.S.
2029          */
2030         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
2031         ia64_mc_info.imi_monarch_init_handler_size      = 0;
2032         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
2033         ia64_mc_info.imi_slave_init_handler_size        = 0;
2034
2035         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2036                        ia64_mc_info.imi_monarch_init_handler);
2037
2038         /* Register the os init handler with SAL */
2039         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2040                                        ia64_mc_info.imi_monarch_init_handler,
2041                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2042                                        ia64_mc_info.imi_monarch_init_handler_size,
2043                                        ia64_mc_info.imi_slave_init_handler,
2044                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2045                                        ia64_mc_info.imi_slave_init_handler_size)))
2046         {
2047                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2048                        "(status %ld)\n", rc);
2049                 return;
2050         }
2051         if (register_die_notifier(&default_init_monarch_nb)) {
2052                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2053                 return;
2054         }
2055
2056         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2057
2058         /* Initialize the areas set aside by the OS to buffer the
2059          * platform/processor error states for MCA/INIT/CMC
2060          * handling.
2061          */
2062         ia64_log_init(SAL_INFO_TYPE_MCA);
2063         ia64_log_init(SAL_INFO_TYPE_INIT);
2064         ia64_log_init(SAL_INFO_TYPE_CMC);
2065         ia64_log_init(SAL_INFO_TYPE_CPE);
2066
2067         mca_init = 1;
2068         printk(KERN_INFO "MCA related initialization done\n");
2069 }
2070
2071
2072 /*
2073  * These pieces cannot be done in ia64_mca_init() because it is called before
2074  * early_irq_init() which would wipe out our percpu irq registrations. But we
2075  * cannot leave them until ia64_mca_late_init() because by then all the other
2076  * processors have been brought online and have set their own CMC vectors to
2077  * point at a non-existant action. Called from arch_early_irq_init().
2078  */
2079 void __init ia64_mca_irq_init(void)
2080 {
2081         /*
2082          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2083          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2084          */
2085         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2086         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2087         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2088
2089         /* Setup the MCA rendezvous interrupt vector */
2090         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2091
2092         /* Setup the MCA wakeup interrupt vector */
2093         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2094
2095 #ifdef CONFIG_ACPI
2096         /* Setup the CPEI/P handler */
2097         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2098 #endif
2099 }
2100
2101 /*
2102  * ia64_mca_late_init
2103  *
2104  *      Opportunity to setup things that require initialization later
2105  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
2106  *      platform doesn't support an interrupt driven mechanism.
2107  *
2108  *  Inputs  :   None
2109  *  Outputs :   Status
2110  */
2111 static int __init
2112 ia64_mca_late_init(void)
2113 {
2114         if (!mca_init)
2115                 return 0;
2116
2117         register_hotcpu_notifier(&mca_cpu_notifier);
2118
2119         /* Setup the CMCI/P vector and handler */
2120         init_timer(&cmc_poll_timer);
2121         cmc_poll_timer.function = ia64_mca_cmc_poll;
2122
2123         /* Unmask/enable the vector */
2124         cmc_polling_enabled = 0;
2125         schedule_work(&cmc_enable_work);
2126
2127         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2128
2129 #ifdef CONFIG_ACPI
2130         /* Setup the CPEI/P vector and handler */
2131         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2132         init_timer(&cpe_poll_timer);
2133         cpe_poll_timer.function = ia64_mca_cpe_poll;
2134
2135         {
2136                 unsigned int irq;
2137
2138                 if (cpe_vector >= 0) {
2139                         /* If platform supports CPEI, enable the irq. */
2140                         irq = local_vector_to_irq(cpe_vector);
2141                         if (irq > 0) {
2142                                 cpe_poll_enabled = 0;
2143                                 irq_set_status_flags(irq, IRQ_PER_CPU);
2144                                 setup_irq(irq, &mca_cpe_irqaction);
2145                                 ia64_cpe_irq = irq;
2146                                 ia64_mca_register_cpev(cpe_vector);
2147                                 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2148                                         __func__);
2149                                 return 0;
2150                         }
2151                         printk(KERN_ERR "%s: Failed to find irq for CPE "
2152                                         "interrupt handler, vector %d\n",
2153                                         __func__, cpe_vector);
2154                 }
2155                 /* If platform doesn't support CPEI, get the timer going. */
2156                 if (cpe_poll_enabled) {
2157                         ia64_mca_cpe_poll(0UL);
2158                         IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2159                 }
2160         }
2161 #endif
2162
2163         return 0;
2164 }
2165
2166 device_initcall(ia64_mca_late_init);