Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/aoe-2.6
[sfrench/cifs-2.6.git] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch   GUID cleanups
26  *
27  * 02/01/04 J. Hall     Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *                      error flag, set SAL default return values, changed
29  *                      error record structure to linked list, added init call
30  *                      to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  *
52  * 2005-08-12 Keith Owens <kaos@sgi.com>
53  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54  *
55  * 2005-10-07 Keith Owens <kaos@sgi.com>
56  *            Add notify_die() hooks.
57  */
58 #include <linux/config.h>
59 #include <linux/types.h>
60 #include <linux/init.h>
61 #include <linux/sched.h>
62 #include <linux/interrupt.h>
63 #include <linux/irq.h>
64 #include <linux/smp_lock.h>
65 #include <linux/bootmem.h>
66 #include <linux/acpi.h>
67 #include <linux/timer.h>
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/smp.h>
71 #include <linux/workqueue.h>
72
73 #include <asm/delay.h>
74 #include <asm/kdebug.h>
75 #include <asm/machvec.h>
76 #include <asm/meminit.h>
77 #include <asm/page.h>
78 #include <asm/ptrace.h>
79 #include <asm/system.h>
80 #include <asm/sal.h>
81 #include <asm/mca.h>
82
83 #include <asm/irq.h>
84 #include <asm/hw_irq.h>
85
86 #include "mca_drv.h"
87 #include "entry.h"
88
89 #if defined(IA64_MCA_DEBUG_INFO)
90 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
91 #else
92 # define IA64_MCA_DEBUG(fmt...)
93 #endif
94
95 /* Used by mca_asm.S */
96 u32                             ia64_mca_serialize;
97 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
98 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
99 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
100 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
101
102 unsigned long __per_cpu_mca[NR_CPUS];
103
104 /* In mca_asm.S */
105 extern void                     ia64_os_init_dispatch_monarch (void);
106 extern void                     ia64_os_init_dispatch_slave (void);
107
108 static int monarch_cpu = -1;
109
110 static ia64_mc_info_t           ia64_mc_info;
111
112 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
113 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
114 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
115 #define CPE_HISTORY_LENGTH    5
116 #define CMC_HISTORY_LENGTH    5
117
118 static struct timer_list cpe_poll_timer;
119 static struct timer_list cmc_poll_timer;
120 /*
121  * This variable tells whether we are currently in polling mode.
122  * Start with this in the wrong state so we won't play w/ timers
123  * before the system is ready.
124  */
125 static int cmc_polling_enabled = 1;
126
127 /*
128  * Clearing this variable prevents CPE polling from getting activated
129  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
130  * but encounters problems retrieving CPE logs.  This should only be
131  * necessary for debugging.
132  */
133 static int cpe_poll_enabled = 1;
134
135 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
136
137 static int mca_init __initdata;
138
139
140 static void inline
141 ia64_mca_spin(const char *func)
142 {
143         printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
144         while (1)
145                 cpu_relax();
146 }
147 /*
148  * IA64_MCA log support
149  */
150 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
151 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
152
153 typedef struct ia64_state_log_s
154 {
155         spinlock_t      isl_lock;
156         int             isl_index;
157         unsigned long   isl_count;
158         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
159 } ia64_state_log_t;
160
161 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
162
163 #define IA64_LOG_ALLOCATE(it, size) \
164         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
165                 (ia64_err_rec_t *)alloc_bootmem(size); \
166         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
167                 (ia64_err_rec_t *)alloc_bootmem(size);}
168 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
169 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
170 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
171 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
172 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
173 #define IA64_LOG_INDEX_INC(it) \
174     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
175     ia64_state_log[it].isl_count++;}
176 #define IA64_LOG_INDEX_DEC(it) \
177     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
178 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
179 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
180 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
181
182 /*
183  * ia64_log_init
184  *      Reset the OS ia64 log buffer
185  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
186  * Outputs      :       None
187  */
188 static void __init
189 ia64_log_init(int sal_info_type)
190 {
191         u64     max_size = 0;
192
193         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
194         IA64_LOG_LOCK_INIT(sal_info_type);
195
196         // SAL will tell us the maximum size of any error record of this type
197         max_size = ia64_sal_get_state_info_size(sal_info_type);
198         if (!max_size)
199                 /* alloc_bootmem() doesn't like zero-sized allocations! */
200                 return;
201
202         // set up OS data structures to hold error info
203         IA64_LOG_ALLOCATE(sal_info_type, max_size);
204         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
205         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
206 }
207
208 /*
209  * ia64_log_get
210  *
211  *      Get the current MCA log from SAL and copy it into the OS log buffer.
212  *
213  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
214  *              irq_safe    whether you can use printk at this point
215  *  Outputs :   size        (total record length)
216  *              *buffer     (ptr to error record)
217  *
218  */
219 static u64
220 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
221 {
222         sal_log_record_header_t     *log_buffer;
223         u64                         total_len = 0;
224         int                         s;
225
226         IA64_LOG_LOCK(sal_info_type);
227
228         /* Get the process state information */
229         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
230
231         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
232
233         if (total_len) {
234                 IA64_LOG_INDEX_INC(sal_info_type);
235                 IA64_LOG_UNLOCK(sal_info_type);
236                 if (irq_safe) {
237                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
238                                        "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
239                 }
240                 *buffer = (u8 *) log_buffer;
241                 return total_len;
242         } else {
243                 IA64_LOG_UNLOCK(sal_info_type);
244                 return 0;
245         }
246 }
247
248 /*
249  *  ia64_mca_log_sal_error_record
250  *
251  *  This function retrieves a specified error record type from SAL
252  *  and wakes up any processes waiting for error records.
253  *
254  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
255  *              FIXME: remove MCA and irq_safe.
256  */
257 static void
258 ia64_mca_log_sal_error_record(int sal_info_type)
259 {
260         u8 *buffer;
261         sal_log_record_header_t *rh;
262         u64 size;
263         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
264 #ifdef IA64_MCA_DEBUG_INFO
265         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
266 #endif
267
268         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
269         if (!size)
270                 return;
271
272         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
273
274         if (irq_safe)
275                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
276                         smp_processor_id(),
277                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
278
279         /* Clear logs from corrected errors in case there's no user-level logger */
280         rh = (sal_log_record_header_t *)buffer;
281         if (rh->severity == sal_log_severity_corrected)
282                 ia64_sal_clear_state_info(sal_info_type);
283 }
284
285 /*
286  * search_mca_table
287  *  See if the MCA surfaced in an instruction range
288  *  that has been tagged as recoverable.
289  *
290  *  Inputs
291  *      first   First address range to check
292  *      last    Last address range to check
293  *      ip      Instruction pointer, address we are looking for
294  *
295  * Return value:
296  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
297  */
298 int
299 search_mca_table (const struct mca_table_entry *first,
300                 const struct mca_table_entry *last,
301                 unsigned long ip)
302 {
303         const struct mca_table_entry *curr;
304         u64 curr_start, curr_end;
305
306         curr = first;
307         while (curr <= last) {
308                 curr_start = (u64) &curr->start_addr + curr->start_addr;
309                 curr_end = (u64) &curr->end_addr + curr->end_addr;
310
311                 if ((ip >= curr_start) && (ip <= curr_end)) {
312                         return 1;
313                 }
314                 curr++;
315         }
316         return 0;
317 }
318
319 /* Given an address, look for it in the mca tables. */
320 int mca_recover_range(unsigned long addr)
321 {
322         extern struct mca_table_entry __start___mca_table[];
323         extern struct mca_table_entry __stop___mca_table[];
324
325         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
326 }
327 EXPORT_SYMBOL_GPL(mca_recover_range);
328
329 #ifdef CONFIG_ACPI
330
331 int cpe_vector = -1;
332 int ia64_cpe_irq = -1;
333
334 static irqreturn_t
335 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
336 {
337         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
338         static int              index;
339         static DEFINE_SPINLOCK(cpe_history_lock);
340
341         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
342                        __FUNCTION__, cpe_irq, smp_processor_id());
343
344         /* SAL spec states this should run w/ interrupts enabled */
345         local_irq_enable();
346
347         /* Get the CPE error record and log it */
348         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
349
350         spin_lock(&cpe_history_lock);
351         if (!cpe_poll_enabled && cpe_vector >= 0) {
352
353                 int i, count = 1; /* we know 1 happened now */
354                 unsigned long now = jiffies;
355
356                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
357                         if (now - cpe_history[i] <= HZ)
358                                 count++;
359                 }
360
361                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
362                 if (count >= CPE_HISTORY_LENGTH) {
363
364                         cpe_poll_enabled = 1;
365                         spin_unlock(&cpe_history_lock);
366                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
367
368                         /*
369                          * Corrected errors will still be corrected, but
370                          * make sure there's a log somewhere that indicates
371                          * something is generating more than we can handle.
372                          */
373                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
374
375                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
376
377                         /* lock already released, get out now */
378                         return IRQ_HANDLED;
379                 } else {
380                         cpe_history[index++] = now;
381                         if (index == CPE_HISTORY_LENGTH)
382                                 index = 0;
383                 }
384         }
385         spin_unlock(&cpe_history_lock);
386         return IRQ_HANDLED;
387 }
388
389 #endif /* CONFIG_ACPI */
390
391 #ifdef CONFIG_ACPI
392 /*
393  * ia64_mca_register_cpev
394  *
395  *  Register the corrected platform error vector with SAL.
396  *
397  *  Inputs
398  *      cpev        Corrected Platform Error Vector number
399  *
400  *  Outputs
401  *      None
402  */
403 static void __init
404 ia64_mca_register_cpev (int cpev)
405 {
406         /* Register the CPE interrupt vector with SAL */
407         struct ia64_sal_retval isrv;
408
409         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
410         if (isrv.status) {
411                 printk(KERN_ERR "Failed to register Corrected Platform "
412                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
413                 return;
414         }
415
416         IA64_MCA_DEBUG("%s: corrected platform error "
417                        "vector %#x registered\n", __FUNCTION__, cpev);
418 }
419 #endif /* CONFIG_ACPI */
420
421 /*
422  * ia64_mca_cmc_vector_setup
423  *
424  *  Setup the corrected machine check vector register in the processor.
425  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
426  *  This function is invoked on a per-processor basis.
427  *
428  * Inputs
429  *      None
430  *
431  * Outputs
432  *      None
433  */
434 void __cpuinit
435 ia64_mca_cmc_vector_setup (void)
436 {
437         cmcv_reg_t      cmcv;
438
439         cmcv.cmcv_regval        = 0;
440         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
441         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
442         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
443
444         IA64_MCA_DEBUG("%s: CPU %d corrected "
445                        "machine check vector %#x registered.\n",
446                        __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
447
448         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
449                        __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
450 }
451
452 /*
453  * ia64_mca_cmc_vector_disable
454  *
455  *  Mask the corrected machine check vector register in the processor.
456  *  This function is invoked on a per-processor basis.
457  *
458  * Inputs
459  *      dummy(unused)
460  *
461  * Outputs
462  *      None
463  */
464 static void
465 ia64_mca_cmc_vector_disable (void *dummy)
466 {
467         cmcv_reg_t      cmcv;
468
469         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
470
471         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
472         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
473
474         IA64_MCA_DEBUG("%s: CPU %d corrected "
475                        "machine check vector %#x disabled.\n",
476                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
477 }
478
479 /*
480  * ia64_mca_cmc_vector_enable
481  *
482  *  Unmask the corrected machine check vector register in the processor.
483  *  This function is invoked on a per-processor basis.
484  *
485  * Inputs
486  *      dummy(unused)
487  *
488  * Outputs
489  *      None
490  */
491 static void
492 ia64_mca_cmc_vector_enable (void *dummy)
493 {
494         cmcv_reg_t      cmcv;
495
496         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
497
498         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
499         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
500
501         IA64_MCA_DEBUG("%s: CPU %d corrected "
502                        "machine check vector %#x enabled.\n",
503                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
504 }
505
506 /*
507  * ia64_mca_cmc_vector_disable_keventd
508  *
509  * Called via keventd (smp_call_function() is not safe in interrupt context) to
510  * disable the cmc interrupt vector.
511  */
512 static void
513 ia64_mca_cmc_vector_disable_keventd(void *unused)
514 {
515         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
516 }
517
518 /*
519  * ia64_mca_cmc_vector_enable_keventd
520  *
521  * Called via keventd (smp_call_function() is not safe in interrupt context) to
522  * enable the cmc interrupt vector.
523  */
524 static void
525 ia64_mca_cmc_vector_enable_keventd(void *unused)
526 {
527         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
528 }
529
530 /*
531  * ia64_mca_wakeup
532  *
533  *      Send an inter-cpu interrupt to wake-up a particular cpu
534  *      and mark that cpu to be out of rendez.
535  *
536  *  Inputs  :   cpuid
537  *  Outputs :   None
538  */
539 static void
540 ia64_mca_wakeup(int cpu)
541 {
542         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
543         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
544
545 }
546
547 /*
548  * ia64_mca_wakeup_all
549  *
550  *      Wakeup all the cpus which have rendez'ed previously.
551  *
552  *  Inputs  :   None
553  *  Outputs :   None
554  */
555 static void
556 ia64_mca_wakeup_all(void)
557 {
558         int cpu;
559
560         /* Clear the Rendez checkin flag for all cpus */
561         for_each_online_cpu(cpu) {
562                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
563                         ia64_mca_wakeup(cpu);
564         }
565
566 }
567
568 /*
569  * ia64_mca_rendez_interrupt_handler
570  *
571  *      This is handler used to put slave processors into spinloop
572  *      while the monarch processor does the mca handling and later
573  *      wake each slave up once the monarch is done.
574  *
575  *  Inputs  :   None
576  *  Outputs :   None
577  */
578 static irqreturn_t
579 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
580 {
581         unsigned long flags;
582         int cpu = smp_processor_id();
583
584         /* Mask all interrupts */
585         local_irq_save(flags);
586         if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, 0, 0, 0)
587                         == NOTIFY_STOP)
588                 ia64_mca_spin(__FUNCTION__);
589
590         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
591         /* Register with the SAL monarch that the slave has
592          * reached SAL
593          */
594         ia64_sal_mc_rendez();
595
596         if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, 0, 0, 0)
597                         == NOTIFY_STOP)
598                 ia64_mca_spin(__FUNCTION__);
599
600         /* Wait for the monarch cpu to exit. */
601         while (monarch_cpu != -1)
602                cpu_relax();     /* spin until monarch leaves */
603
604         if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, 0, 0, 0)
605                         == NOTIFY_STOP)
606                 ia64_mca_spin(__FUNCTION__);
607
608         /* Enable all interrupts */
609         local_irq_restore(flags);
610         return IRQ_HANDLED;
611 }
612
613 /*
614  * ia64_mca_wakeup_int_handler
615  *
616  *      The interrupt handler for processing the inter-cpu interrupt to the
617  *      slave cpu which was spinning in the rendez loop.
618  *      Since this spinning is done by turning off the interrupts and
619  *      polling on the wakeup-interrupt bit in the IRR, there is
620  *      nothing useful to be done in the handler.
621  *
622  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
623  *      arg             (Interrupt handler specific argument)
624  *      ptregs          (Exception frame at the time of the interrupt)
625  *  Outputs :   None
626  *
627  */
628 static irqreturn_t
629 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
630 {
631         return IRQ_HANDLED;
632 }
633
634 /* Function pointer for extra MCA recovery */
635 int (*ia64_mca_ucmc_extension)
636         (void*,struct ia64_sal_os_state*)
637         = NULL;
638
639 int
640 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
641 {
642         if (ia64_mca_ucmc_extension)
643                 return 1;
644
645         ia64_mca_ucmc_extension = fn;
646         return 0;
647 }
648
649 void
650 ia64_unreg_MCA_extension(void)
651 {
652         if (ia64_mca_ucmc_extension)
653                 ia64_mca_ucmc_extension = NULL;
654 }
655
656 EXPORT_SYMBOL(ia64_reg_MCA_extension);
657 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
658
659
660 static inline void
661 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
662 {
663         u64 fslot, tslot, nat;
664         *tr = *fr;
665         fslot = ((unsigned long)fr >> 3) & 63;
666         tslot = ((unsigned long)tr >> 3) & 63;
667         *tnat &= ~(1UL << tslot);
668         nat = (fnat >> fslot) & 1;
669         *tnat |= (nat << tslot);
670 }
671
672 /* Change the comm field on the MCA/INT task to include the pid that
673  * was interrupted, it makes for easier debugging.  If that pid was 0
674  * (swapper or nested MCA/INIT) then use the start of the previous comm
675  * field suffixed with its cpu.
676  */
677
678 static void
679 ia64_mca_modify_comm(const task_t *previous_current)
680 {
681         char *p, comm[sizeof(current->comm)];
682         if (previous_current->pid)
683                 snprintf(comm, sizeof(comm), "%s %d",
684                         current->comm, previous_current->pid);
685         else {
686                 int l;
687                 if ((p = strchr(previous_current->comm, ' ')))
688                         l = p - previous_current->comm;
689                 else
690                         l = strlen(previous_current->comm);
691                 snprintf(comm, sizeof(comm), "%s %*s %d",
692                         current->comm, l, previous_current->comm,
693                         task_thread_info(previous_current)->cpu);
694         }
695         memcpy(current->comm, comm, sizeof(current->comm));
696 }
697
698 /* On entry to this routine, we are running on the per cpu stack, see
699  * mca_asm.h.  The original stack has not been touched by this event.  Some of
700  * the original stack's registers will be in the RBS on this stack.  This stack
701  * also contains a partial pt_regs and switch_stack, the rest of the data is in
702  * PAL minstate.
703  *
704  * The first thing to do is modify the original stack to look like a blocked
705  * task so we can run backtrace on the original task.  Also mark the per cpu
706  * stack as current to ensure that we use the correct task state, it also means
707  * that we can do backtrace on the MCA/INIT handler code itself.
708  */
709
710 static task_t *
711 ia64_mca_modify_original_stack(struct pt_regs *regs,
712                 const struct switch_stack *sw,
713                 struct ia64_sal_os_state *sos,
714                 const char *type)
715 {
716         char *p;
717         ia64_va va;
718         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
719         const pal_min_state_area_t *ms = sos->pal_min_state;
720         task_t *previous_current;
721         struct pt_regs *old_regs;
722         struct switch_stack *old_sw;
723         unsigned size = sizeof(struct pt_regs) +
724                         sizeof(struct switch_stack) + 16;
725         u64 *old_bspstore, *old_bsp;
726         u64 *new_bspstore, *new_bsp;
727         u64 old_unat, old_rnat, new_rnat, nat;
728         u64 slots, loadrs = regs->loadrs;
729         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
730         u64 ar_bspstore = regs->ar_bspstore;
731         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
732         const u64 *bank;
733         const char *msg;
734         int cpu = smp_processor_id();
735
736         previous_current = curr_task(cpu);
737         set_curr_task(cpu, current);
738         if ((p = strchr(current->comm, ' ')))
739                 *p = '\0';
740
741         /* Best effort attempt to cope with MCA/INIT delivered while in
742          * physical mode.
743          */
744         regs->cr_ipsr = ms->pmsa_ipsr;
745         if (ia64_psr(regs)->dt == 0) {
746                 va.l = r12;
747                 if (va.f.reg == 0) {
748                         va.f.reg = 7;
749                         r12 = va.l;
750                 }
751                 va.l = r13;
752                 if (va.f.reg == 0) {
753                         va.f.reg = 7;
754                         r13 = va.l;
755                 }
756         }
757         if (ia64_psr(regs)->rt == 0) {
758                 va.l = ar_bspstore;
759                 if (va.f.reg == 0) {
760                         va.f.reg = 7;
761                         ar_bspstore = va.l;
762                 }
763                 va.l = ar_bsp;
764                 if (va.f.reg == 0) {
765                         va.f.reg = 7;
766                         ar_bsp = va.l;
767                 }
768         }
769
770         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
771          * have been copied to the old stack, the old stack may fail the
772          * validation tests below.  So ia64_old_stack() must restore the dirty
773          * registers from the new stack.  The old and new bspstore probably
774          * have different alignments, so loadrs calculated on the old bsp
775          * cannot be used to restore from the new bsp.  Calculate a suitable
776          * loadrs for the new stack and save it in the new pt_regs, where
777          * ia64_old_stack() can get it.
778          */
779         old_bspstore = (u64 *)ar_bspstore;
780         old_bsp = (u64 *)ar_bsp;
781         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
782         new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
783         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
784         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
785
786         /* Verify the previous stack state before we change it */
787         if (user_mode(regs)) {
788                 msg = "occurred in user space";
789                 /* previous_current is guaranteed to be valid when the task was
790                  * in user space, so ...
791                  */
792                 ia64_mca_modify_comm(previous_current);
793                 goto no_mod;
794         }
795
796         if (!mca_recover_range(ms->pmsa_iip)) {
797                 if (r13 != sos->prev_IA64_KR_CURRENT) {
798                         msg = "inconsistent previous current and r13";
799                         goto no_mod;
800                 }
801                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
802                         msg = "inconsistent r12 and r13";
803                         goto no_mod;
804                 }
805                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
806                         msg = "inconsistent ar.bspstore and r13";
807                         goto no_mod;
808                 }
809                 va.p = old_bspstore;
810                 if (va.f.reg < 5) {
811                         msg = "old_bspstore is in the wrong region";
812                         goto no_mod;
813                 }
814                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
815                         msg = "inconsistent ar.bsp and r13";
816                         goto no_mod;
817                 }
818                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
819                 if (ar_bspstore + size > r12) {
820                         msg = "no room for blocked state";
821                         goto no_mod;
822                 }
823         }
824
825         ia64_mca_modify_comm(previous_current);
826
827         /* Make the original task look blocked.  First stack a struct pt_regs,
828          * describing the state at the time of interrupt.  mca_asm.S built a
829          * partial pt_regs, copy it and fill in the blanks using minstate.
830          */
831         p = (char *)r12 - sizeof(*regs);
832         old_regs = (struct pt_regs *)p;
833         memcpy(old_regs, regs, sizeof(*regs));
834         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
835          * pmsa_{xip,xpsr,xfs}
836          */
837         if (ia64_psr(regs)->ic) {
838                 old_regs->cr_iip = ms->pmsa_iip;
839                 old_regs->cr_ipsr = ms->pmsa_ipsr;
840                 old_regs->cr_ifs = ms->pmsa_ifs;
841         } else {
842                 old_regs->cr_iip = ms->pmsa_xip;
843                 old_regs->cr_ipsr = ms->pmsa_xpsr;
844                 old_regs->cr_ifs = ms->pmsa_xfs;
845         }
846         old_regs->pr = ms->pmsa_pr;
847         old_regs->b0 = ms->pmsa_br0;
848         old_regs->loadrs = loadrs;
849         old_regs->ar_rsc = ms->pmsa_rsc;
850         old_unat = old_regs->ar_unat;
851         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
852         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
853         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
854         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
855         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
856         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
857         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
858         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
859         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
860         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
861         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
862         if (ia64_psr(old_regs)->bn)
863                 bank = ms->pmsa_bank1_gr;
864         else
865                 bank = ms->pmsa_bank0_gr;
866         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
867         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
868         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
869         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
870         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
871         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
872         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
873         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
874         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
875         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
876         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
877         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
878         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
879         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
880         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
881         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
882
883         /* Next stack a struct switch_stack.  mca_asm.S built a partial
884          * switch_stack, copy it and fill in the blanks using pt_regs and
885          * minstate.
886          *
887          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
888          * ar.pfs is set to 0.
889          *
890          * unwind.c::unw_unwind() does special processing for interrupt frames.
891          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
892          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
893          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
894          * switch_stack on the original stack so it will unwind correctly when
895          * unwind.c reads pt_regs.
896          *
897          * thread.ksp is updated to point to the synthesized switch_stack.
898          */
899         p -= sizeof(struct switch_stack);
900         old_sw = (struct switch_stack *)p;
901         memcpy(old_sw, sw, sizeof(*sw));
902         old_sw->caller_unat = old_unat;
903         old_sw->ar_fpsr = old_regs->ar_fpsr;
904         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
905         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
906         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
907         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
908         old_sw->b0 = (u64)ia64_leave_kernel;
909         old_sw->b1 = ms->pmsa_br1;
910         old_sw->ar_pfs = 0;
911         old_sw->ar_unat = old_unat;
912         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
913         previous_current->thread.ksp = (u64)p - 16;
914
915         /* Finally copy the original stack's registers back to its RBS.
916          * Registers from ar.bspstore through ar.bsp at the time of the event
917          * are in the current RBS, copy them back to the original stack.  The
918          * copy must be done register by register because the original bspstore
919          * and the current one have different alignments, so the saved RNAT
920          * data occurs at different places.
921          *
922          * mca_asm does cover, so the old_bsp already includes all registers at
923          * the time of MCA/INIT.  It also does flushrs, so all registers before
924          * this function have been written to backing store on the MCA/INIT
925          * stack.
926          */
927         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
928         old_rnat = regs->ar_rnat;
929         while (slots--) {
930                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
931                         new_rnat = ia64_get_rnat(new_bspstore++);
932                 }
933                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
934                         *old_bspstore++ = old_rnat;
935                         old_rnat = 0;
936                 }
937                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
938                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
939                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
940                 *old_bspstore++ = *new_bspstore++;
941         }
942         old_sw->ar_bspstore = (unsigned long)old_bspstore;
943         old_sw->ar_rnat = old_rnat;
944
945         sos->prev_task = previous_current;
946         return previous_current;
947
948 no_mod:
949         printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
950                         smp_processor_id(), type, msg);
951         return previous_current;
952 }
953
954 /* The monarch/slave interaction is based on monarch_cpu and requires that all
955  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
956  * not entered rendezvous yet then wait a bit.  The assumption is that any
957  * slave that has not rendezvoused after a reasonable time is never going to do
958  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
959  * interrupt, as well as cpus that receive the INIT slave event.
960  */
961
962 static void
963 ia64_wait_for_slaves(int monarch)
964 {
965         int c, wait = 0, missing = 0;
966         for_each_online_cpu(c) {
967                 if (c == monarch)
968                         continue;
969                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
970                         udelay(1000);           /* short wait first */
971                         wait = 1;
972                         break;
973                 }
974         }
975         if (!wait)
976                 goto all_in;
977         for_each_online_cpu(c) {
978                 if (c == monarch)
979                         continue;
980                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
981                         udelay(5*1000000);      /* wait 5 seconds for slaves (arbitrary) */
982                         if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
983                                 missing = 1;
984                         break;
985                 }
986         }
987         if (!missing)
988                 goto all_in;
989         printk(KERN_INFO "OS MCA slave did not rendezvous on cpu");
990         for_each_online_cpu(c) {
991                 if (c == monarch)
992                         continue;
993                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
994                         printk(" %d", c);
995         }
996         printk("\n");
997         return;
998
999 all_in:
1000         printk(KERN_INFO "All OS MCA slaves have reached rendezvous\n");
1001         return;
1002 }
1003
1004 /*
1005  * ia64_mca_handler
1006  *
1007  *      This is uncorrectable machine check handler called from OS_MCA
1008  *      dispatch code which is in turn called from SAL_CHECK().
1009  *      This is the place where the core of OS MCA handling is done.
1010  *      Right now the logs are extracted and displayed in a well-defined
1011  *      format. This handler code is supposed to be run only on the
1012  *      monarch processor. Once the monarch is done with MCA handling
1013  *      further MCA logging is enabled by clearing logs.
1014  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1015  *      slave processors out of rendezvous spinloop.
1016  */
1017 void
1018 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1019                  struct ia64_sal_os_state *sos)
1020 {
1021         pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
1022                 &sos->proc_state_param;
1023         int recover, cpu = smp_processor_id();
1024         task_t *previous_current;
1025
1026         oops_in_progress = 1;   /* FIXME: make printk NMI/MCA/INIT safe */
1027         console_loglevel = 15;  /* make sure printks make it to console */
1028         printk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d monarch=%ld\n",
1029                 sos->proc_state_param, cpu, sos->monarch);
1030
1031         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1032         monarch_cpu = cpu;
1033         if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, 0, 0, 0)
1034                         == NOTIFY_STOP)
1035                 ia64_mca_spin(__FUNCTION__);
1036         ia64_wait_for_slaves(cpu);
1037
1038         /* Wakeup all the processors which are spinning in the rendezvous loop.
1039          * They will leave SAL, then spin in the OS with interrupts disabled
1040          * until this monarch cpu leaves the MCA handler.  That gets control
1041          * back to the OS so we can backtrace the other cpus, backtrace when
1042          * spinning in SAL does not work.
1043          */
1044         ia64_mca_wakeup_all();
1045         if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, 0, 0, 0)
1046                         == NOTIFY_STOP)
1047                 ia64_mca_spin(__FUNCTION__);
1048
1049         /* Get the MCA error record and log it */
1050         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1051
1052         /* TLB error is only exist in this SAL error record */
1053         recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1054         /* other error recovery */
1055            || (ia64_mca_ucmc_extension
1056                 && ia64_mca_ucmc_extension(
1057                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1058                         sos));
1059
1060         if (recover) {
1061                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1062                 rh->severity = sal_log_severity_corrected;
1063                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1064                 sos->os_status = IA64_MCA_CORRECTED;
1065         }
1066         if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, 0, 0, recover)
1067                         == NOTIFY_STOP)
1068                 ia64_mca_spin(__FUNCTION__);
1069
1070         set_curr_task(cpu, previous_current);
1071         monarch_cpu = -1;
1072 }
1073
1074 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1075 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1076
1077 /*
1078  * ia64_mca_cmc_int_handler
1079  *
1080  *  This is corrected machine check interrupt handler.
1081  *      Right now the logs are extracted and displayed in a well-defined
1082  *      format.
1083  *
1084  * Inputs
1085  *      interrupt number
1086  *      client data arg ptr
1087  *      saved registers ptr
1088  *
1089  * Outputs
1090  *      None
1091  */
1092 static irqreturn_t
1093 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1094 {
1095         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1096         static int              index;
1097         static DEFINE_SPINLOCK(cmc_history_lock);
1098
1099         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1100                        __FUNCTION__, cmc_irq, smp_processor_id());
1101
1102         /* SAL spec states this should run w/ interrupts enabled */
1103         local_irq_enable();
1104
1105         /* Get the CMC error record and log it */
1106         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1107
1108         spin_lock(&cmc_history_lock);
1109         if (!cmc_polling_enabled) {
1110                 int i, count = 1; /* we know 1 happened now */
1111                 unsigned long now = jiffies;
1112
1113                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1114                         if (now - cmc_history[i] <= HZ)
1115                                 count++;
1116                 }
1117
1118                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1119                 if (count >= CMC_HISTORY_LENGTH) {
1120
1121                         cmc_polling_enabled = 1;
1122                         spin_unlock(&cmc_history_lock);
1123                         /* If we're being hit with CMC interrupts, we won't
1124                          * ever execute the schedule_work() below.  Need to
1125                          * disable CMC interrupts on this processor now.
1126                          */
1127                         ia64_mca_cmc_vector_disable(NULL);
1128                         schedule_work(&cmc_disable_work);
1129
1130                         /*
1131                          * Corrected errors will still be corrected, but
1132                          * make sure there's a log somewhere that indicates
1133                          * something is generating more than we can handle.
1134                          */
1135                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1136
1137                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1138
1139                         /* lock already released, get out now */
1140                         return IRQ_HANDLED;
1141                 } else {
1142                         cmc_history[index++] = now;
1143                         if (index == CMC_HISTORY_LENGTH)
1144                                 index = 0;
1145                 }
1146         }
1147         spin_unlock(&cmc_history_lock);
1148         return IRQ_HANDLED;
1149 }
1150
1151 /*
1152  *  ia64_mca_cmc_int_caller
1153  *
1154  *      Triggered by sw interrupt from CMC polling routine.  Calls
1155  *      real interrupt handler and either triggers a sw interrupt
1156  *      on the next cpu or does cleanup at the end.
1157  *
1158  * Inputs
1159  *      interrupt number
1160  *      client data arg ptr
1161  *      saved registers ptr
1162  * Outputs
1163  *      handled
1164  */
1165 static irqreturn_t
1166 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1167 {
1168         static int start_count = -1;
1169         unsigned int cpuid;
1170
1171         cpuid = smp_processor_id();
1172
1173         /* If first cpu, update count */
1174         if (start_count == -1)
1175                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1176
1177         ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1178
1179         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1180
1181         if (cpuid < NR_CPUS) {
1182                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1183         } else {
1184                 /* If no log record, switch out of polling mode */
1185                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1186
1187                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1188                         schedule_work(&cmc_enable_work);
1189                         cmc_polling_enabled = 0;
1190
1191                 } else {
1192
1193                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1194                 }
1195
1196                 start_count = -1;
1197         }
1198
1199         return IRQ_HANDLED;
1200 }
1201
1202 /*
1203  *  ia64_mca_cmc_poll
1204  *
1205  *      Poll for Corrected Machine Checks (CMCs)
1206  *
1207  * Inputs   :   dummy(unused)
1208  * Outputs  :   None
1209  *
1210  */
1211 static void
1212 ia64_mca_cmc_poll (unsigned long dummy)
1213 {
1214         /* Trigger a CMC interrupt cascade  */
1215         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1216 }
1217
1218 /*
1219  *  ia64_mca_cpe_int_caller
1220  *
1221  *      Triggered by sw interrupt from CPE polling routine.  Calls
1222  *      real interrupt handler and either triggers a sw interrupt
1223  *      on the next cpu or does cleanup at the end.
1224  *
1225  * Inputs
1226  *      interrupt number
1227  *      client data arg ptr
1228  *      saved registers ptr
1229  * Outputs
1230  *      handled
1231  */
1232 #ifdef CONFIG_ACPI
1233
1234 static irqreturn_t
1235 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1236 {
1237         static int start_count = -1;
1238         static int poll_time = MIN_CPE_POLL_INTERVAL;
1239         unsigned int cpuid;
1240
1241         cpuid = smp_processor_id();
1242
1243         /* If first cpu, update count */
1244         if (start_count == -1)
1245                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1246
1247         ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1248
1249         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1250
1251         if (cpuid < NR_CPUS) {
1252                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1253         } else {
1254                 /*
1255                  * If a log was recorded, increase our polling frequency,
1256                  * otherwise, backoff or return to interrupt mode.
1257                  */
1258                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1259                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1260                 } else if (cpe_vector < 0) {
1261                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1262                 } else {
1263                         poll_time = MIN_CPE_POLL_INTERVAL;
1264
1265                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1266                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1267                         cpe_poll_enabled = 0;
1268                 }
1269
1270                 if (cpe_poll_enabled)
1271                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1272                 start_count = -1;
1273         }
1274
1275         return IRQ_HANDLED;
1276 }
1277
1278 /*
1279  *  ia64_mca_cpe_poll
1280  *
1281  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1282  *      on first cpu, from there it will trickle through all the cpus.
1283  *
1284  * Inputs   :   dummy(unused)
1285  * Outputs  :   None
1286  *
1287  */
1288 static void
1289 ia64_mca_cpe_poll (unsigned long dummy)
1290 {
1291         /* Trigger a CPE interrupt cascade  */
1292         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1293 }
1294
1295 #endif /* CONFIG_ACPI */
1296
1297 static int
1298 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1299 {
1300         int c;
1301         struct task_struct *g, *t;
1302         if (val != DIE_INIT_MONARCH_PROCESS)
1303                 return NOTIFY_DONE;
1304         printk(KERN_ERR "Processes interrupted by INIT -");
1305         for_each_online_cpu(c) {
1306                 struct ia64_sal_os_state *s;
1307                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1308                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1309                 g = s->prev_task;
1310                 if (g) {
1311                         if (g->pid)
1312                                 printk(" %d", g->pid);
1313                         else
1314                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1315                 }
1316         }
1317         printk("\n\n");
1318         if (read_trylock(&tasklist_lock)) {
1319                 do_each_thread (g, t) {
1320                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1321                         show_stack(t, NULL);
1322                 } while_each_thread (g, t);
1323                 read_unlock(&tasklist_lock);
1324         }
1325         return NOTIFY_DONE;
1326 }
1327
1328 /*
1329  * C portion of the OS INIT handler
1330  *
1331  * Called from ia64_os_init_dispatch
1332  *
1333  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1334  * this event.  This code is used for both monarch and slave INIT events, see
1335  * sos->monarch.
1336  *
1337  * All INIT events switch to the INIT stack and change the previous process to
1338  * blocked status.  If one of the INIT events is the monarch then we are
1339  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1340  * the processes.  The slave INIT events all spin until the monarch cpu
1341  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1342  * process is the monarch.
1343  */
1344
1345 void
1346 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1347                   struct ia64_sal_os_state *sos)
1348 {
1349         static atomic_t slaves;
1350         static atomic_t monarchs;
1351         task_t *previous_current;
1352         int cpu = smp_processor_id();
1353
1354         oops_in_progress = 1;   /* FIXME: make printk NMI/MCA/INIT safe */
1355         console_loglevel = 15;  /* make sure printks make it to console */
1356
1357         printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1358                 sos->proc_state_param, cpu, sos->monarch);
1359         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1360
1361         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1362         sos->os_status = IA64_INIT_RESUME;
1363
1364         /* FIXME: Workaround for broken proms that drive all INIT events as
1365          * slaves.  The last slave that enters is promoted to be a monarch.
1366          * Remove this code in September 2006, that gives platforms a year to
1367          * fix their proms and get their customers updated.
1368          */
1369         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1370                 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1371                        __FUNCTION__, cpu);
1372                 atomic_dec(&slaves);
1373                 sos->monarch = 1;
1374         }
1375
1376         /* FIXME: Workaround for broken proms that drive all INIT events as
1377          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1378          * Remove this code in September 2006, that gives platforms a year to
1379          * fix their proms and get their customers updated.
1380          */
1381         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1382                 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1383                                __FUNCTION__, cpu);
1384                 atomic_dec(&monarchs);
1385                 sos->monarch = 0;
1386         }
1387
1388         if (!sos->monarch) {
1389                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1390                 while (monarch_cpu == -1)
1391                        cpu_relax();     /* spin until monarch enters */
1392                 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, 0, 0, 0)
1393                                 == NOTIFY_STOP)
1394                         ia64_mca_spin(__FUNCTION__);
1395                 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, 0, 0, 0)
1396                                 == NOTIFY_STOP)
1397                         ia64_mca_spin(__FUNCTION__);
1398                 while (monarch_cpu != -1)
1399                        cpu_relax();     /* spin until monarch leaves */
1400                 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, 0, 0, 0)
1401                                 == NOTIFY_STOP)
1402                         ia64_mca_spin(__FUNCTION__);
1403                 printk("Slave on cpu %d returning to normal service.\n", cpu);
1404                 set_curr_task(cpu, previous_current);
1405                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1406                 atomic_dec(&slaves);
1407                 return;
1408         }
1409
1410         monarch_cpu = cpu;
1411         if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, 0, 0, 0)
1412                         == NOTIFY_STOP)
1413                 ia64_mca_spin(__FUNCTION__);
1414
1415         /*
1416          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1417          * generated via the BMC's command-line interface, but since the console is on the
1418          * same serial line, the user will need some time to switch out of the BMC before
1419          * the dump begins.
1420          */
1421         printk("Delaying for 5 seconds...\n");
1422         udelay(5*1000000);
1423         ia64_wait_for_slaves(cpu);
1424         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1425          * to default_monarch_init_process() above and just print all the
1426          * tasks.
1427          */
1428         if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, 0, 0, 0)
1429                         == NOTIFY_STOP)
1430                 ia64_mca_spin(__FUNCTION__);
1431         if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, 0, 0, 0)
1432                         == NOTIFY_STOP)
1433                 ia64_mca_spin(__FUNCTION__);
1434         printk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1435         atomic_dec(&monarchs);
1436         set_curr_task(cpu, previous_current);
1437         monarch_cpu = -1;
1438         return;
1439 }
1440
1441 static int __init
1442 ia64_mca_disable_cpe_polling(char *str)
1443 {
1444         cpe_poll_enabled = 0;
1445         return 1;
1446 }
1447
1448 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1449
1450 static struct irqaction cmci_irqaction = {
1451         .handler =      ia64_mca_cmc_int_handler,
1452         .flags =        SA_INTERRUPT,
1453         .name =         "cmc_hndlr"
1454 };
1455
1456 static struct irqaction cmcp_irqaction = {
1457         .handler =      ia64_mca_cmc_int_caller,
1458         .flags =        SA_INTERRUPT,
1459         .name =         "cmc_poll"
1460 };
1461
1462 static struct irqaction mca_rdzv_irqaction = {
1463         .handler =      ia64_mca_rendez_int_handler,
1464         .flags =        SA_INTERRUPT,
1465         .name =         "mca_rdzv"
1466 };
1467
1468 static struct irqaction mca_wkup_irqaction = {
1469         .handler =      ia64_mca_wakeup_int_handler,
1470         .flags =        SA_INTERRUPT,
1471         .name =         "mca_wkup"
1472 };
1473
1474 #ifdef CONFIG_ACPI
1475 static struct irqaction mca_cpe_irqaction = {
1476         .handler =      ia64_mca_cpe_int_handler,
1477         .flags =        SA_INTERRUPT,
1478         .name =         "cpe_hndlr"
1479 };
1480
1481 static struct irqaction mca_cpep_irqaction = {
1482         .handler =      ia64_mca_cpe_int_caller,
1483         .flags =        SA_INTERRUPT,
1484         .name =         "cpe_poll"
1485 };
1486 #endif /* CONFIG_ACPI */
1487
1488 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1489  * these stacks can never sleep, they cannot return from the kernel to user
1490  * space, they do not appear in a normal ps listing.  So there is no need to
1491  * format most of the fields.
1492  */
1493
1494 static void __cpuinit
1495 format_mca_init_stack(void *mca_data, unsigned long offset,
1496                 const char *type, int cpu)
1497 {
1498         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1499         struct thread_info *ti;
1500         memset(p, 0, KERNEL_STACK_SIZE);
1501         ti = task_thread_info(p);
1502         ti->flags = _TIF_MCA_INIT;
1503         ti->preempt_count = 1;
1504         ti->task = p;
1505         ti->cpu = cpu;
1506         p->thread_info = ti;
1507         p->state = TASK_UNINTERRUPTIBLE;
1508         __set_bit(cpu, &p->cpus_allowed);
1509         INIT_LIST_HEAD(&p->tasks);
1510         p->parent = p->real_parent = p->group_leader = p;
1511         INIT_LIST_HEAD(&p->children);
1512         INIT_LIST_HEAD(&p->sibling);
1513         strncpy(p->comm, type, sizeof(p->comm)-1);
1514 }
1515
1516 /* Do per-CPU MCA-related initialization.  */
1517
1518 void __cpuinit
1519 ia64_mca_cpu_init(void *cpu_data)
1520 {
1521         void *pal_vaddr;
1522         static int first_time = 1;
1523
1524         if (first_time) {
1525                 void *mca_data;
1526                 int cpu;
1527
1528                 first_time = 0;
1529                 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1530                                          * NR_CPUS + KERNEL_STACK_SIZE);
1531                 mca_data = (void *)(((unsigned long)mca_data +
1532                                         KERNEL_STACK_SIZE - 1) &
1533                                 (-KERNEL_STACK_SIZE));
1534                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1535                         format_mca_init_stack(mca_data,
1536                                         offsetof(struct ia64_mca_cpu, mca_stack),
1537                                         "MCA", cpu);
1538                         format_mca_init_stack(mca_data,
1539                                         offsetof(struct ia64_mca_cpu, init_stack),
1540                                         "INIT", cpu);
1541                         __per_cpu_mca[cpu] = __pa(mca_data);
1542                         mca_data += sizeof(struct ia64_mca_cpu);
1543                 }
1544         }
1545
1546         /*
1547          * The MCA info structure was allocated earlier and its
1548          * physical address saved in __per_cpu_mca[cpu].  Copy that
1549          * address * to ia64_mca_data so we can access it as a per-CPU
1550          * variable.
1551          */
1552         __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1553
1554         /*
1555          * Stash away a copy of the PTE needed to map the per-CPU page.
1556          * We may need it during MCA recovery.
1557          */
1558         __get_cpu_var(ia64_mca_per_cpu_pte) =
1559                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1560
1561         /*
1562          * Also, stash away a copy of the PAL address and the PTE
1563          * needed to map it.
1564          */
1565         pal_vaddr = efi_get_pal_addr();
1566         if (!pal_vaddr)
1567                 return;
1568         __get_cpu_var(ia64_mca_pal_base) =
1569                 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1570         __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1571                                                               PAGE_KERNEL));
1572 }
1573
1574 /*
1575  * ia64_mca_init
1576  *
1577  *  Do all the system level mca specific initialization.
1578  *
1579  *      1. Register spinloop and wakeup request interrupt vectors
1580  *
1581  *      2. Register OS_MCA handler entry point
1582  *
1583  *      3. Register OS_INIT handler entry point
1584  *
1585  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1586  *
1587  *  Note that this initialization is done very early before some kernel
1588  *  services are available.
1589  *
1590  *  Inputs  :   None
1591  *
1592  *  Outputs :   None
1593  */
1594 void __init
1595 ia64_mca_init(void)
1596 {
1597         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1598         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1599         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1600         int i;
1601         s64 rc;
1602         struct ia64_sal_retval isrv;
1603         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1604         static struct notifier_block default_init_monarch_nb = {
1605                 .notifier_call = default_monarch_init_process,
1606                 .priority = 0/* we need to notified last */
1607         };
1608
1609         IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1610
1611         /* Clear the Rendez checkin flag for all cpus */
1612         for(i = 0 ; i < NR_CPUS; i++)
1613                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1614
1615         /*
1616          * Register the rendezvous spinloop and wakeup mechanism with SAL
1617          */
1618
1619         /* Register the rendezvous interrupt vector with SAL */
1620         while (1) {
1621                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1622                                               SAL_MC_PARAM_MECHANISM_INT,
1623                                               IA64_MCA_RENDEZ_VECTOR,
1624                                               timeout,
1625                                               SAL_MC_PARAM_RZ_ALWAYS);
1626                 rc = isrv.status;
1627                 if (rc == 0)
1628                         break;
1629                 if (rc == -2) {
1630                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1631                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1632                         timeout = isrv.v0;
1633                         continue;
1634                 }
1635                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1636                        "with SAL (status %ld)\n", rc);
1637                 return;
1638         }
1639
1640         /* Register the wakeup interrupt vector with SAL */
1641         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1642                                       SAL_MC_PARAM_MECHANISM_INT,
1643                                       IA64_MCA_WAKEUP_VECTOR,
1644                                       0, 0);
1645         rc = isrv.status;
1646         if (rc) {
1647                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1648                        "(status %ld)\n", rc);
1649                 return;
1650         }
1651
1652         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1653
1654         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1655         /*
1656          * XXX - disable SAL checksum by setting size to 0; should be
1657          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1658          */
1659         ia64_mc_info.imi_mca_handler_size       = 0;
1660
1661         /* Register the os mca handler with SAL */
1662         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1663                                        ia64_mc_info.imi_mca_handler,
1664                                        ia64_tpa(mca_hldlr_ptr->gp),
1665                                        ia64_mc_info.imi_mca_handler_size,
1666                                        0, 0, 0)))
1667         {
1668                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1669                        "(status %ld)\n", rc);
1670                 return;
1671         }
1672
1673         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1674                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1675
1676         /*
1677          * XXX - disable SAL checksum by setting size to 0, should be
1678          * size of the actual init handler in mca_asm.S.
1679          */
1680         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1681         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1682         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1683         ia64_mc_info.imi_slave_init_handler_size        = 0;
1684
1685         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1686                        ia64_mc_info.imi_monarch_init_handler);
1687
1688         /* Register the os init handler with SAL */
1689         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1690                                        ia64_mc_info.imi_monarch_init_handler,
1691                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1692                                        ia64_mc_info.imi_monarch_init_handler_size,
1693                                        ia64_mc_info.imi_slave_init_handler,
1694                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1695                                        ia64_mc_info.imi_slave_init_handler_size)))
1696         {
1697                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1698                        "(status %ld)\n", rc);
1699                 return;
1700         }
1701         if (register_die_notifier(&default_init_monarch_nb)) {
1702                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1703                 return;
1704         }
1705
1706         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1707
1708         /*
1709          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1710          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1711          */
1712         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1713         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1714         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1715
1716         /* Setup the MCA rendezvous interrupt vector */
1717         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1718
1719         /* Setup the MCA wakeup interrupt vector */
1720         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1721
1722 #ifdef CONFIG_ACPI
1723         /* Setup the CPEI/P handler */
1724         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1725 #endif
1726
1727         /* Initialize the areas set aside by the OS to buffer the
1728          * platform/processor error states for MCA/INIT/CMC
1729          * handling.
1730          */
1731         ia64_log_init(SAL_INFO_TYPE_MCA);
1732         ia64_log_init(SAL_INFO_TYPE_INIT);
1733         ia64_log_init(SAL_INFO_TYPE_CMC);
1734         ia64_log_init(SAL_INFO_TYPE_CPE);
1735
1736         mca_init = 1;
1737         printk(KERN_INFO "MCA related initialization done\n");
1738 }
1739
1740 /*
1741  * ia64_mca_late_init
1742  *
1743  *      Opportunity to setup things that require initialization later
1744  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
1745  *      platform doesn't support an interrupt driven mechanism.
1746  *
1747  *  Inputs  :   None
1748  *  Outputs :   Status
1749  */
1750 static int __init
1751 ia64_mca_late_init(void)
1752 {
1753         if (!mca_init)
1754                 return 0;
1755
1756         /* Setup the CMCI/P vector and handler */
1757         init_timer(&cmc_poll_timer);
1758         cmc_poll_timer.function = ia64_mca_cmc_poll;
1759
1760         /* Unmask/enable the vector */
1761         cmc_polling_enabled = 0;
1762         schedule_work(&cmc_enable_work);
1763
1764         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1765
1766 #ifdef CONFIG_ACPI
1767         /* Setup the CPEI/P vector and handler */
1768         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1769         init_timer(&cpe_poll_timer);
1770         cpe_poll_timer.function = ia64_mca_cpe_poll;
1771
1772         {
1773                 irq_desc_t *desc;
1774                 unsigned int irq;
1775
1776                 if (cpe_vector >= 0) {
1777                         /* If platform supports CPEI, enable the irq. */
1778                         cpe_poll_enabled = 0;
1779                         for (irq = 0; irq < NR_IRQS; ++irq)
1780                                 if (irq_to_vector(irq) == cpe_vector) {
1781                                         desc = irq_descp(irq);
1782                                         desc->status |= IRQ_PER_CPU;
1783                                         setup_irq(irq, &mca_cpe_irqaction);
1784                                         ia64_cpe_irq = irq;
1785                                 }
1786                         ia64_mca_register_cpev(cpe_vector);
1787                         IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1788                 } else {
1789                         /* If platform doesn't support CPEI, get the timer going. */
1790                         if (cpe_poll_enabled) {
1791                                 ia64_mca_cpe_poll(0UL);
1792                                 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1793                         }
1794                 }
1795         }
1796 #endif
1797
1798         return 0;
1799 }
1800
1801 device_initcall(ia64_mca_late_init);