Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux...
[sfrench/cifs-2.6.git] / arch / ia64 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *      David Mosberger-Tang <davidm@hpl.hp.com>
11  *      Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *      Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/time.h>
30 #include <linux/efi.h>
31 #include <linux/kexec.h>
32 #include <linux/mm.h>
33
34 #include <asm/io.h>
35 #include <asm/kregs.h>
36 #include <asm/meminit.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/mca.h>
40
41 #define EFI_DEBUG       0
42
43 extern efi_status_t efi_call_phys (void *, ...);
44
45 struct efi efi;
46 EXPORT_SYMBOL(efi);
47 static efi_runtime_services_t *runtime;
48 static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
49
50 #define efi_call_virt(f, args...)       (*(f))(args)
51
52 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
53 static efi_status_t                                                            \
54 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
55 {                                                                              \
56         struct ia64_fpreg fr[6];                                               \
57         efi_time_cap_t *atc = NULL;                                            \
58         efi_status_t ret;                                                      \
59                                                                                \
60         if (tc)                                                                \
61                 atc = adjust_arg(tc);                                          \
62         ia64_save_scratch_fpregs(fr);                                          \
63         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
64                                 adjust_arg(tm), atc);                          \
65         ia64_load_scratch_fpregs(fr);                                          \
66         return ret;                                                            \
67 }
68
69 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
70 static efi_status_t                                                            \
71 prefix##_set_time (efi_time_t *tm)                                             \
72 {                                                                              \
73         struct ia64_fpreg fr[6];                                               \
74         efi_status_t ret;                                                      \
75                                                                                \
76         ia64_save_scratch_fpregs(fr);                                          \
77         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
78                                 adjust_arg(tm));                               \
79         ia64_load_scratch_fpregs(fr);                                          \
80         return ret;                                                            \
81 }
82
83 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
84 static efi_status_t                                                            \
85 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
86                           efi_time_t *tm)                                      \
87 {                                                                              \
88         struct ia64_fpreg fr[6];                                               \
89         efi_status_t ret;                                                      \
90                                                                                \
91         ia64_save_scratch_fpregs(fr);                                          \
92         ret = efi_call_##prefix(                                               \
93                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
94                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
95         ia64_load_scratch_fpregs(fr);                                          \
96         return ret;                                                            \
97 }
98
99 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
100 static efi_status_t                                                            \
101 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
102 {                                                                              \
103         struct ia64_fpreg fr[6];                                               \
104         efi_time_t *atm = NULL;                                                \
105         efi_status_t ret;                                                      \
106                                                                                \
107         if (tm)                                                                \
108                 atm = adjust_arg(tm);                                          \
109         ia64_save_scratch_fpregs(fr);                                          \
110         ret = efi_call_##prefix(                                               \
111                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
112                 enabled, atm);                                                 \
113         ia64_load_scratch_fpregs(fr);                                          \
114         return ret;                                                            \
115 }
116
117 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
118 static efi_status_t                                                            \
119 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
120                        unsigned long *data_size, void *data)                   \
121 {                                                                              \
122         struct ia64_fpreg fr[6];                                               \
123         u32 *aattr = NULL;                                                     \
124         efi_status_t ret;                                                      \
125                                                                                \
126         if (attr)                                                              \
127                 aattr = adjust_arg(attr);                                      \
128         ia64_save_scratch_fpregs(fr);                                          \
129         ret = efi_call_##prefix(                                               \
130                 (efi_get_variable_t *) __va(runtime->get_variable),            \
131                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
132                 adjust_arg(data_size), adjust_arg(data));                      \
133         ia64_load_scratch_fpregs(fr);                                          \
134         return ret;                                                            \
135 }
136
137 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
138 static efi_status_t                                                            \
139 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
140                             efi_guid_t *vendor)                                \
141 {                                                                              \
142         struct ia64_fpreg fr[6];                                               \
143         efi_status_t ret;                                                      \
144                                                                                \
145         ia64_save_scratch_fpregs(fr);                                          \
146         ret = efi_call_##prefix(                                               \
147                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
148                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
149         ia64_load_scratch_fpregs(fr);                                          \
150         return ret;                                                            \
151 }
152
153 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
154 static efi_status_t                                                            \
155 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
156                        unsigned long attr, unsigned long data_size,            \
157                        void *data)                                             \
158 {                                                                              \
159         struct ia64_fpreg fr[6];                                               \
160         efi_status_t ret;                                                      \
161                                                                                \
162         ia64_save_scratch_fpregs(fr);                                          \
163         ret = efi_call_##prefix(                                               \
164                 (efi_set_variable_t *) __va(runtime->set_variable),            \
165                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
166                 adjust_arg(data));                                             \
167         ia64_load_scratch_fpregs(fr);                                          \
168         return ret;                                                            \
169 }
170
171 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
172 static efi_status_t                                                            \
173 prefix##_get_next_high_mono_count (u32 *count)                                 \
174 {                                                                              \
175         struct ia64_fpreg fr[6];                                               \
176         efi_status_t ret;                                                      \
177                                                                                \
178         ia64_save_scratch_fpregs(fr);                                          \
179         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
180                                 __va(runtime->get_next_high_mono_count),       \
181                                 adjust_arg(count));                            \
182         ia64_load_scratch_fpregs(fr);                                          \
183         return ret;                                                            \
184 }
185
186 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
187 static void                                                                    \
188 prefix##_reset_system (int reset_type, efi_status_t status,                    \
189                        unsigned long data_size, efi_char16_t *data)            \
190 {                                                                              \
191         struct ia64_fpreg fr[6];                                               \
192         efi_char16_t *adata = NULL;                                            \
193                                                                                \
194         if (data)                                                              \
195                 adata = adjust_arg(data);                                      \
196                                                                                \
197         ia64_save_scratch_fpregs(fr);                                          \
198         efi_call_##prefix(                                                     \
199                 (efi_reset_system_t *) __va(runtime->reset_system),            \
200                 reset_type, status, data_size, adata);                         \
201         /* should not return, but just in case... */                           \
202         ia64_load_scratch_fpregs(fr);                                          \
203 }
204
205 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
206
207 STUB_GET_TIME(phys, phys_ptr)
208 STUB_SET_TIME(phys, phys_ptr)
209 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
210 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
211 STUB_GET_VARIABLE(phys, phys_ptr)
212 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
213 STUB_SET_VARIABLE(phys, phys_ptr)
214 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
215 STUB_RESET_SYSTEM(phys, phys_ptr)
216
217 #define id(arg) arg
218
219 STUB_GET_TIME(virt, id)
220 STUB_SET_TIME(virt, id)
221 STUB_GET_WAKEUP_TIME(virt, id)
222 STUB_SET_WAKEUP_TIME(virt, id)
223 STUB_GET_VARIABLE(virt, id)
224 STUB_GET_NEXT_VARIABLE(virt, id)
225 STUB_SET_VARIABLE(virt, id)
226 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
227 STUB_RESET_SYSTEM(virt, id)
228
229 void
230 efi_gettimeofday (struct timespec *ts)
231 {
232         efi_time_t tm;
233
234         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
235                 memset(ts, 0, sizeof(*ts));
236                 return;
237         }
238
239         ts->tv_sec = mktime(tm.year, tm.month, tm.day,
240                             tm.hour, tm.minute, tm.second);
241         ts->tv_nsec = tm.nanosecond;
242 }
243
244 static int
245 is_memory_available (efi_memory_desc_t *md)
246 {
247         if (!(md->attribute & EFI_MEMORY_WB))
248                 return 0;
249
250         switch (md->type) {
251               case EFI_LOADER_CODE:
252               case EFI_LOADER_DATA:
253               case EFI_BOOT_SERVICES_CODE:
254               case EFI_BOOT_SERVICES_DATA:
255               case EFI_CONVENTIONAL_MEMORY:
256                 return 1;
257         }
258         return 0;
259 }
260
261 typedef struct kern_memdesc {
262         u64 attribute;
263         u64 start;
264         u64 num_pages;
265 } kern_memdesc_t;
266
267 static kern_memdesc_t *kern_memmap;
268
269 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
270
271 static inline u64
272 kmd_end(kern_memdesc_t *kmd)
273 {
274         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
275 }
276
277 static inline u64
278 efi_md_end(efi_memory_desc_t *md)
279 {
280         return (md->phys_addr + efi_md_size(md));
281 }
282
283 static inline int
284 efi_wb(efi_memory_desc_t *md)
285 {
286         return (md->attribute & EFI_MEMORY_WB);
287 }
288
289 static inline int
290 efi_uc(efi_memory_desc_t *md)
291 {
292         return (md->attribute & EFI_MEMORY_UC);
293 }
294
295 static void
296 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
297 {
298         kern_memdesc_t *k;
299         u64 start, end, voff;
300
301         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
302         for (k = kern_memmap; k->start != ~0UL; k++) {
303                 if (k->attribute != attr)
304                         continue;
305                 start = PAGE_ALIGN(k->start);
306                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
307                 if (start < end)
308                         if ((*callback)(start + voff, end + voff, arg) < 0)
309                                 return;
310         }
311 }
312
313 /*
314  * Walk the EFI memory map and call CALLBACK once for each EFI memory
315  * descriptor that has memory that is available for OS use.
316  */
317 void
318 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
319 {
320         walk(callback, arg, EFI_MEMORY_WB);
321 }
322
323 /*
324  * Walk the EFI memory map and call CALLBACK once for each EFI memory
325  * descriptor that has memory that is available for uncached allocator.
326  */
327 void
328 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
329 {
330         walk(callback, arg, EFI_MEMORY_UC);
331 }
332
333 /*
334  * Look for the PAL_CODE region reported by EFI and map it using an
335  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
336  * Abstraction Layer chapter 11 in ADAG
337  */
338 void *
339 efi_get_pal_addr (void)
340 {
341         void *efi_map_start, *efi_map_end, *p;
342         efi_memory_desc_t *md;
343         u64 efi_desc_size;
344         int pal_code_count = 0;
345         u64 vaddr, mask;
346
347         efi_map_start = __va(ia64_boot_param->efi_memmap);
348         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
349         efi_desc_size = ia64_boot_param->efi_memdesc_size;
350
351         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
352                 md = p;
353                 if (md->type != EFI_PAL_CODE)
354                         continue;
355
356                 if (++pal_code_count > 1) {
357                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
358                                "dropped @ %lx\n", md->phys_addr);
359                         continue;
360                 }
361                 /*
362                  * The only ITLB entry in region 7 that is used is the one
363                  * installed by __start().  That entry covers a 64MB range.
364                  */
365                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
366                 vaddr = PAGE_OFFSET + md->phys_addr;
367
368                 /*
369                  * We must check that the PAL mapping won't overlap with the
370                  * kernel mapping.
371                  *
372                  * PAL code is guaranteed to be aligned on a power of 2 between
373                  * 4k and 256KB and that only one ITR is needed to map it. This
374                  * implies that the PAL code is always aligned on its size,
375                  * i.e., the closest matching page size supported by the TLB.
376                  * Therefore PAL code is guaranteed never to cross a 64MB unless
377                  * it is bigger than 64MB (very unlikely!).  So for now the
378                  * following test is enough to determine whether or not we need
379                  * a dedicated ITR for the PAL code.
380                  */
381                 if ((vaddr & mask) == (KERNEL_START & mask)) {
382                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
383                                __func__);
384                         continue;
385                 }
386
387                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
388                         panic("Whoa!  PAL code size bigger than a granule!");
389
390 #if EFI_DEBUG
391                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
392
393                 printk(KERN_INFO "CPU %d: mapping PAL code "
394                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
395                        smp_processor_id(), md->phys_addr,
396                        md->phys_addr + efi_md_size(md),
397                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
398 #endif
399                 return __va(md->phys_addr);
400         }
401         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
402                __func__);
403         return NULL;
404 }
405
406 void
407 efi_map_pal_code (void)
408 {
409         void *pal_vaddr = efi_get_pal_addr ();
410         u64 psr;
411
412         if (!pal_vaddr)
413                 return;
414
415         /*
416          * Cannot write to CRx with PSR.ic=1
417          */
418         psr = ia64_clear_ic();
419         ia64_itr(0x1, IA64_TR_PALCODE,
420                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
421                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
422                  IA64_GRANULE_SHIFT);
423         ia64_set_psr(psr);              /* restore psr */
424 }
425
426 void __init
427 efi_init (void)
428 {
429         void *efi_map_start, *efi_map_end;
430         efi_config_table_t *config_tables;
431         efi_char16_t *c16;
432         u64 efi_desc_size;
433         char *cp, vendor[100] = "unknown";
434         int i;
435
436         /*
437          * It's too early to be able to use the standard kernel command line
438          * support...
439          */
440         for (cp = boot_command_line; *cp; ) {
441                 if (memcmp(cp, "mem=", 4) == 0) {
442                         mem_limit = memparse(cp + 4, &cp);
443                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
444                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
445                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
446                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
447                 } else {
448                         while (*cp != ' ' && *cp)
449                                 ++cp;
450                         while (*cp == ' ')
451                                 ++cp;
452                 }
453         }
454         if (min_addr != 0UL)
455                 printk(KERN_INFO "Ignoring memory below %luMB\n",
456                        min_addr >> 20);
457         if (max_addr != ~0UL)
458                 printk(KERN_INFO "Ignoring memory above %luMB\n",
459                        max_addr >> 20);
460
461         efi.systab = __va(ia64_boot_param->efi_systab);
462
463         /*
464          * Verify the EFI Table
465          */
466         if (efi.systab == NULL)
467                 panic("Whoa! Can't find EFI system table.\n");
468         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
469                 panic("Whoa! EFI system table signature incorrect\n");
470         if ((efi.systab->hdr.revision >> 16) == 0)
471                 printk(KERN_WARNING "Warning: EFI system table version "
472                        "%d.%02d, expected 1.00 or greater\n",
473                        efi.systab->hdr.revision >> 16,
474                        efi.systab->hdr.revision & 0xffff);
475
476         config_tables = __va(efi.systab->tables);
477
478         /* Show what we know for posterity */
479         c16 = __va(efi.systab->fw_vendor);
480         if (c16) {
481                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
482                         vendor[i] = *c16++;
483                 vendor[i] = '\0';
484         }
485
486         printk(KERN_INFO "EFI v%u.%.02u by %s:",
487                efi.systab->hdr.revision >> 16,
488                efi.systab->hdr.revision & 0xffff, vendor);
489
490         efi.mps        = EFI_INVALID_TABLE_ADDR;
491         efi.acpi       = EFI_INVALID_TABLE_ADDR;
492         efi.acpi20     = EFI_INVALID_TABLE_ADDR;
493         efi.smbios     = EFI_INVALID_TABLE_ADDR;
494         efi.sal_systab = EFI_INVALID_TABLE_ADDR;
495         efi.boot_info  = EFI_INVALID_TABLE_ADDR;
496         efi.hcdp       = EFI_INVALID_TABLE_ADDR;
497         efi.uga        = EFI_INVALID_TABLE_ADDR;
498
499         for (i = 0; i < (int) efi.systab->nr_tables; i++) {
500                 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
501                         efi.mps = config_tables[i].table;
502                         printk(" MPS=0x%lx", config_tables[i].table);
503                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
504                         efi.acpi20 = config_tables[i].table;
505                         printk(" ACPI 2.0=0x%lx", config_tables[i].table);
506                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
507                         efi.acpi = config_tables[i].table;
508                         printk(" ACPI=0x%lx", config_tables[i].table);
509                 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
510                         efi.smbios = config_tables[i].table;
511                         printk(" SMBIOS=0x%lx", config_tables[i].table);
512                 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
513                         efi.sal_systab = config_tables[i].table;
514                         printk(" SALsystab=0x%lx", config_tables[i].table);
515                 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
516                         efi.hcdp = config_tables[i].table;
517                         printk(" HCDP=0x%lx", config_tables[i].table);
518                 }
519         }
520         printk("\n");
521
522         runtime = __va(efi.systab->runtime);
523         efi.get_time = phys_get_time;
524         efi.set_time = phys_set_time;
525         efi.get_wakeup_time = phys_get_wakeup_time;
526         efi.set_wakeup_time = phys_set_wakeup_time;
527         efi.get_variable = phys_get_variable;
528         efi.get_next_variable = phys_get_next_variable;
529         efi.set_variable = phys_set_variable;
530         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
531         efi.reset_system = phys_reset_system;
532
533         efi_map_start = __va(ia64_boot_param->efi_memmap);
534         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
535         efi_desc_size = ia64_boot_param->efi_memdesc_size;
536
537 #if EFI_DEBUG
538         /* print EFI memory map: */
539         {
540                 efi_memory_desc_t *md;
541                 void *p;
542
543                 for (i = 0, p = efi_map_start; p < efi_map_end;
544                      ++i, p += efi_desc_size)
545                 {
546                         const char *unit;
547                         unsigned long size;
548
549                         md = p;
550                         size = md->num_pages << EFI_PAGE_SHIFT;
551
552                         if ((size >> 40) > 0) {
553                                 size >>= 40;
554                                 unit = "TB";
555                         } else if ((size >> 30) > 0) {
556                                 size >>= 30;
557                                 unit = "GB";
558                         } else if ((size >> 20) > 0) {
559                                 size >>= 20;
560                                 unit = "MB";
561                         } else {
562                                 size >>= 10;
563                                 unit = "KB";
564                         }
565
566                         printk("mem%02d: type=%2u, attr=0x%016lx, "
567                                "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
568                                i, md->type, md->attribute, md->phys_addr,
569                                md->phys_addr + efi_md_size(md), size, unit);
570                 }
571         }
572 #endif
573
574         efi_map_pal_code();
575         efi_enter_virtual_mode();
576 }
577
578 void
579 efi_enter_virtual_mode (void)
580 {
581         void *efi_map_start, *efi_map_end, *p;
582         efi_memory_desc_t *md;
583         efi_status_t status;
584         u64 efi_desc_size;
585
586         efi_map_start = __va(ia64_boot_param->efi_memmap);
587         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
588         efi_desc_size = ia64_boot_param->efi_memdesc_size;
589
590         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
591                 md = p;
592                 if (md->attribute & EFI_MEMORY_RUNTIME) {
593                         /*
594                          * Some descriptors have multiple bits set, so the
595                          * order of the tests is relevant.
596                          */
597                         if (md->attribute & EFI_MEMORY_WB) {
598                                 md->virt_addr = (u64) __va(md->phys_addr);
599                         } else if (md->attribute & EFI_MEMORY_UC) {
600                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
601                         } else if (md->attribute & EFI_MEMORY_WC) {
602 #if 0
603                                 md->virt_addr = ia64_remap(md->phys_addr,
604                                                            (_PAGE_A |
605                                                             _PAGE_P |
606                                                             _PAGE_D |
607                                                             _PAGE_MA_WC |
608                                                             _PAGE_PL_0 |
609                                                             _PAGE_AR_RW));
610 #else
611                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
612                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
613 #endif
614                         } else if (md->attribute & EFI_MEMORY_WT) {
615 #if 0
616                                 md->virt_addr = ia64_remap(md->phys_addr,
617                                                            (_PAGE_A |
618                                                             _PAGE_P |
619                                                             _PAGE_D |
620                                                             _PAGE_MA_WT |
621                                                             _PAGE_PL_0 |
622                                                             _PAGE_AR_RW));
623 #else
624                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
625                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
626 #endif
627                         }
628                 }
629         }
630
631         status = efi_call_phys(__va(runtime->set_virtual_address_map),
632                                ia64_boot_param->efi_memmap_size,
633                                efi_desc_size,
634                                ia64_boot_param->efi_memdesc_version,
635                                ia64_boot_param->efi_memmap);
636         if (status != EFI_SUCCESS) {
637                 printk(KERN_WARNING "warning: unable to switch EFI into "
638                        "virtual mode (status=%lu)\n", status);
639                 return;
640         }
641
642         /*
643          * Now that EFI is in virtual mode, we call the EFI functions more
644          * efficiently:
645          */
646         efi.get_time = virt_get_time;
647         efi.set_time = virt_set_time;
648         efi.get_wakeup_time = virt_get_wakeup_time;
649         efi.set_wakeup_time = virt_set_wakeup_time;
650         efi.get_variable = virt_get_variable;
651         efi.get_next_variable = virt_get_next_variable;
652         efi.set_variable = virt_set_variable;
653         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
654         efi.reset_system = virt_reset_system;
655 }
656
657 /*
658  * Walk the EFI memory map looking for the I/O port range.  There can only be
659  * one entry of this type, other I/O port ranges should be described via ACPI.
660  */
661 u64
662 efi_get_iobase (void)
663 {
664         void *efi_map_start, *efi_map_end, *p;
665         efi_memory_desc_t *md;
666         u64 efi_desc_size;
667
668         efi_map_start = __va(ia64_boot_param->efi_memmap);
669         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
670         efi_desc_size = ia64_boot_param->efi_memdesc_size;
671
672         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
673                 md = p;
674                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
675                         if (md->attribute & EFI_MEMORY_UC)
676                                 return md->phys_addr;
677                 }
678         }
679         return 0;
680 }
681
682 static struct kern_memdesc *
683 kern_memory_descriptor (unsigned long phys_addr)
684 {
685         struct kern_memdesc *md;
686
687         for (md = kern_memmap; md->start != ~0UL; md++) {
688                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
689                          return md;
690         }
691         return NULL;
692 }
693
694 static efi_memory_desc_t *
695 efi_memory_descriptor (unsigned long phys_addr)
696 {
697         void *efi_map_start, *efi_map_end, *p;
698         efi_memory_desc_t *md;
699         u64 efi_desc_size;
700
701         efi_map_start = __va(ia64_boot_param->efi_memmap);
702         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
703         efi_desc_size = ia64_boot_param->efi_memdesc_size;
704
705         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
706                 md = p;
707
708                 if (phys_addr - md->phys_addr < efi_md_size(md))
709                          return md;
710         }
711         return NULL;
712 }
713
714 static int
715 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
716 {
717         void *efi_map_start, *efi_map_end, *p;
718         efi_memory_desc_t *md;
719         u64 efi_desc_size;
720         unsigned long end;
721
722         efi_map_start = __va(ia64_boot_param->efi_memmap);
723         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
724         efi_desc_size = ia64_boot_param->efi_memdesc_size;
725
726         end = phys_addr + size;
727
728         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
729                 md = p;
730                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
731                         return 1;
732         }
733         return 0;
734 }
735
736 u32
737 efi_mem_type (unsigned long phys_addr)
738 {
739         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
740
741         if (md)
742                 return md->type;
743         return 0;
744 }
745
746 u64
747 efi_mem_attributes (unsigned long phys_addr)
748 {
749         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
750
751         if (md)
752                 return md->attribute;
753         return 0;
754 }
755 EXPORT_SYMBOL(efi_mem_attributes);
756
757 u64
758 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
759 {
760         unsigned long end = phys_addr + size;
761         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
762         u64 attr;
763
764         if (!md)
765                 return 0;
766
767         /*
768          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
769          * the kernel that firmware needs this region mapped.
770          */
771         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
772         do {
773                 unsigned long md_end = efi_md_end(md);
774
775                 if (end <= md_end)
776                         return attr;
777
778                 md = efi_memory_descriptor(md_end);
779                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
780                         return 0;
781         } while (md);
782         return 0;       /* never reached */
783 }
784
785 u64
786 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
787 {
788         unsigned long end = phys_addr + size;
789         struct kern_memdesc *md;
790         u64 attr;
791
792         /*
793          * This is a hack for ioremap calls before we set up kern_memmap.
794          * Maybe we should do efi_memmap_init() earlier instead.
795          */
796         if (!kern_memmap) {
797                 attr = efi_mem_attribute(phys_addr, size);
798                 if (attr & EFI_MEMORY_WB)
799                         return EFI_MEMORY_WB;
800                 return 0;
801         }
802
803         md = kern_memory_descriptor(phys_addr);
804         if (!md)
805                 return 0;
806
807         attr = md->attribute;
808         do {
809                 unsigned long md_end = kmd_end(md);
810
811                 if (end <= md_end)
812                         return attr;
813
814                 md = kern_memory_descriptor(md_end);
815                 if (!md || md->attribute != attr)
816                         return 0;
817         } while (md);
818         return 0;       /* never reached */
819 }
820 EXPORT_SYMBOL(kern_mem_attribute);
821
822 int
823 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
824 {
825         u64 attr;
826
827         /*
828          * /dev/mem reads and writes use copy_to_user(), which implicitly
829          * uses a granule-sized kernel identity mapping.  It's really
830          * only safe to do this for regions in kern_memmap.  For more
831          * details, see Documentation/ia64/aliasing.txt.
832          */
833         attr = kern_mem_attribute(phys_addr, size);
834         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
835                 return 1;
836         return 0;
837 }
838
839 int
840 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
841 {
842         unsigned long phys_addr = pfn << PAGE_SHIFT;
843         u64 attr;
844
845         attr = efi_mem_attribute(phys_addr, size);
846
847         /*
848          * /dev/mem mmap uses normal user pages, so we don't need the entire
849          * granule, but the entire region we're mapping must support the same
850          * attribute.
851          */
852         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
853                 return 1;
854
855         /*
856          * Intel firmware doesn't tell us about all the MMIO regions, so
857          * in general we have to allow mmap requests.  But if EFI *does*
858          * tell us about anything inside this region, we should deny it.
859          * The user can always map a smaller region to avoid the overlap.
860          */
861         if (efi_memmap_intersects(phys_addr, size))
862                 return 0;
863
864         return 1;
865 }
866
867 pgprot_t
868 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
869                      pgprot_t vma_prot)
870 {
871         unsigned long phys_addr = pfn << PAGE_SHIFT;
872         u64 attr;
873
874         /*
875          * For /dev/mem mmap, we use user mappings, but if the region is
876          * in kern_memmap (and hence may be covered by a kernel mapping),
877          * we must use the same attribute as the kernel mapping.
878          */
879         attr = kern_mem_attribute(phys_addr, size);
880         if (attr & EFI_MEMORY_WB)
881                 return pgprot_cacheable(vma_prot);
882         else if (attr & EFI_MEMORY_UC)
883                 return pgprot_noncached(vma_prot);
884
885         /*
886          * Some chipsets don't support UC access to memory.  If
887          * WB is supported, we prefer that.
888          */
889         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
890                 return pgprot_cacheable(vma_prot);
891
892         return pgprot_noncached(vma_prot);
893 }
894
895 int __init
896 efi_uart_console_only(void)
897 {
898         efi_status_t status;
899         char *s, name[] = "ConOut";
900         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
901         efi_char16_t *utf16, name_utf16[32];
902         unsigned char data[1024];
903         unsigned long size = sizeof(data);
904         struct efi_generic_dev_path *hdr, *end_addr;
905         int uart = 0;
906
907         /* Convert to UTF-16 */
908         utf16 = name_utf16;
909         s = name;
910         while (*s)
911                 *utf16++ = *s++ & 0x7f;
912         *utf16 = 0;
913
914         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
915         if (status != EFI_SUCCESS) {
916                 printk(KERN_ERR "No EFI %s variable?\n", name);
917                 return 0;
918         }
919
920         hdr = (struct efi_generic_dev_path *) data;
921         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
922         while (hdr < end_addr) {
923                 if (hdr->type == EFI_DEV_MSG &&
924                     hdr->sub_type == EFI_DEV_MSG_UART)
925                         uart = 1;
926                 else if (hdr->type == EFI_DEV_END_PATH ||
927                           hdr->type == EFI_DEV_END_PATH2) {
928                         if (!uart)
929                                 return 0;
930                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
931                                 return 1;
932                         uart = 0;
933                 }
934                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
935         }
936         printk(KERN_ERR "Malformed %s value\n", name);
937         return 0;
938 }
939
940 /*
941  * Look for the first granule aligned memory descriptor memory
942  * that is big enough to hold EFI memory map. Make sure this
943  * descriptor is atleast granule sized so it does not get trimmed
944  */
945 struct kern_memdesc *
946 find_memmap_space (void)
947 {
948         u64     contig_low=0, contig_high=0;
949         u64     as = 0, ae;
950         void *efi_map_start, *efi_map_end, *p, *q;
951         efi_memory_desc_t *md, *pmd = NULL, *check_md;
952         u64     space_needed, efi_desc_size;
953         unsigned long total_mem = 0;
954
955         efi_map_start = __va(ia64_boot_param->efi_memmap);
956         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
957         efi_desc_size = ia64_boot_param->efi_memdesc_size;
958
959         /*
960          * Worst case: we need 3 kernel descriptors for each efi descriptor
961          * (if every entry has a WB part in the middle, and UC head and tail),
962          * plus one for the end marker.
963          */
964         space_needed = sizeof(kern_memdesc_t) *
965                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
966
967         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
968                 md = p;
969                 if (!efi_wb(md)) {
970                         continue;
971                 }
972                 if (pmd == NULL || !efi_wb(pmd) ||
973                     efi_md_end(pmd) != md->phys_addr) {
974                         contig_low = GRANULEROUNDUP(md->phys_addr);
975                         contig_high = efi_md_end(md);
976                         for (q = p + efi_desc_size; q < efi_map_end;
977                              q += efi_desc_size) {
978                                 check_md = q;
979                                 if (!efi_wb(check_md))
980                                         break;
981                                 if (contig_high != check_md->phys_addr)
982                                         break;
983                                 contig_high = efi_md_end(check_md);
984                         }
985                         contig_high = GRANULEROUNDDOWN(contig_high);
986                 }
987                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
988                         continue;
989
990                 /* Round ends inward to granule boundaries */
991                 as = max(contig_low, md->phys_addr);
992                 ae = min(contig_high, efi_md_end(md));
993
994                 /* keep within max_addr= and min_addr= command line arg */
995                 as = max(as, min_addr);
996                 ae = min(ae, max_addr);
997                 if (ae <= as)
998                         continue;
999
1000                 /* avoid going over mem= command line arg */
1001                 if (total_mem + (ae - as) > mem_limit)
1002                         ae -= total_mem + (ae - as) - mem_limit;
1003
1004                 if (ae <= as)
1005                         continue;
1006
1007                 if (ae - as > space_needed)
1008                         break;
1009         }
1010         if (p >= efi_map_end)
1011                 panic("Can't allocate space for kernel memory descriptors");
1012
1013         return __va(as);
1014 }
1015
1016 /*
1017  * Walk the EFI memory map and gather all memory available for kernel
1018  * to use.  We can allocate partial granules only if the unavailable
1019  * parts exist, and are WB.
1020  */
1021 unsigned long
1022 efi_memmap_init(unsigned long *s, unsigned long *e)
1023 {
1024         struct kern_memdesc *k, *prev = NULL;
1025         u64     contig_low=0, contig_high=0;
1026         u64     as, ae, lim;
1027         void *efi_map_start, *efi_map_end, *p, *q;
1028         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1029         u64     efi_desc_size;
1030         unsigned long total_mem = 0;
1031
1032         k = kern_memmap = find_memmap_space();
1033
1034         efi_map_start = __va(ia64_boot_param->efi_memmap);
1035         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1036         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1037
1038         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1039                 md = p;
1040                 if (!efi_wb(md)) {
1041                         if (efi_uc(md) &&
1042                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1043                              md->type == EFI_BOOT_SERVICES_DATA)) {
1044                                 k->attribute = EFI_MEMORY_UC;
1045                                 k->start = md->phys_addr;
1046                                 k->num_pages = md->num_pages;
1047                                 k++;
1048                         }
1049                         continue;
1050                 }
1051                 if (pmd == NULL || !efi_wb(pmd) ||
1052                     efi_md_end(pmd) != md->phys_addr) {
1053                         contig_low = GRANULEROUNDUP(md->phys_addr);
1054                         contig_high = efi_md_end(md);
1055                         for (q = p + efi_desc_size; q < efi_map_end;
1056                              q += efi_desc_size) {
1057                                 check_md = q;
1058                                 if (!efi_wb(check_md))
1059                                         break;
1060                                 if (contig_high != check_md->phys_addr)
1061                                         break;
1062                                 contig_high = efi_md_end(check_md);
1063                         }
1064                         contig_high = GRANULEROUNDDOWN(contig_high);
1065                 }
1066                 if (!is_memory_available(md))
1067                         continue;
1068
1069 #ifdef CONFIG_CRASH_DUMP
1070                 /* saved_max_pfn should ignore max_addr= command line arg */
1071                 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1072                         saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1073 #endif
1074                 /*
1075                  * Round ends inward to granule boundaries
1076                  * Give trimmings to uncached allocator
1077                  */
1078                 if (md->phys_addr < contig_low) {
1079                         lim = min(efi_md_end(md), contig_low);
1080                         if (efi_uc(md)) {
1081                                 if (k > kern_memmap &&
1082                                     (k-1)->attribute == EFI_MEMORY_UC &&
1083                                     kmd_end(k-1) == md->phys_addr) {
1084                                         (k-1)->num_pages +=
1085                                                 (lim - md->phys_addr)
1086                                                 >> EFI_PAGE_SHIFT;
1087                                 } else {
1088                                         k->attribute = EFI_MEMORY_UC;
1089                                         k->start = md->phys_addr;
1090                                         k->num_pages = (lim - md->phys_addr)
1091                                                 >> EFI_PAGE_SHIFT;
1092                                         k++;
1093                                 }
1094                         }
1095                         as = contig_low;
1096                 } else
1097                         as = md->phys_addr;
1098
1099                 if (efi_md_end(md) > contig_high) {
1100                         lim = max(md->phys_addr, contig_high);
1101                         if (efi_uc(md)) {
1102                                 if (lim == md->phys_addr && k > kern_memmap &&
1103                                     (k-1)->attribute == EFI_MEMORY_UC &&
1104                                     kmd_end(k-1) == md->phys_addr) {
1105                                         (k-1)->num_pages += md->num_pages;
1106                                 } else {
1107                                         k->attribute = EFI_MEMORY_UC;
1108                                         k->start = lim;
1109                                         k->num_pages = (efi_md_end(md) - lim)
1110                                                 >> EFI_PAGE_SHIFT;
1111                                         k++;
1112                                 }
1113                         }
1114                         ae = contig_high;
1115                 } else
1116                         ae = efi_md_end(md);
1117
1118                 /* keep within max_addr= and min_addr= command line arg */
1119                 as = max(as, min_addr);
1120                 ae = min(ae, max_addr);
1121                 if (ae <= as)
1122                         continue;
1123
1124                 /* avoid going over mem= command line arg */
1125                 if (total_mem + (ae - as) > mem_limit)
1126                         ae -= total_mem + (ae - as) - mem_limit;
1127
1128                 if (ae <= as)
1129                         continue;
1130                 if (prev && kmd_end(prev) == md->phys_addr) {
1131                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1132                         total_mem += ae - as;
1133                         continue;
1134                 }
1135                 k->attribute = EFI_MEMORY_WB;
1136                 k->start = as;
1137                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1138                 total_mem += ae - as;
1139                 prev = k++;
1140         }
1141         k->start = ~0L; /* end-marker */
1142
1143         /* reserve the memory we are using for kern_memmap */
1144         *s = (u64)kern_memmap;
1145         *e = (u64)++k;
1146
1147         return total_mem;
1148 }
1149
1150 void
1151 efi_initialize_iomem_resources(struct resource *code_resource,
1152                                struct resource *data_resource,
1153                                struct resource *bss_resource)
1154 {
1155         struct resource *res;
1156         void *efi_map_start, *efi_map_end, *p;
1157         efi_memory_desc_t *md;
1158         u64 efi_desc_size;
1159         char *name;
1160         unsigned long flags;
1161
1162         efi_map_start = __va(ia64_boot_param->efi_memmap);
1163         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1164         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1165
1166         res = NULL;
1167
1168         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1169                 md = p;
1170
1171                 if (md->num_pages == 0) /* should not happen */
1172                         continue;
1173
1174                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1175                 switch (md->type) {
1176
1177                         case EFI_MEMORY_MAPPED_IO:
1178                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1179                                 continue;
1180
1181                         case EFI_LOADER_CODE:
1182                         case EFI_LOADER_DATA:
1183                         case EFI_BOOT_SERVICES_DATA:
1184                         case EFI_BOOT_SERVICES_CODE:
1185                         case EFI_CONVENTIONAL_MEMORY:
1186                                 if (md->attribute & EFI_MEMORY_WP) {
1187                                         name = "System ROM";
1188                                         flags |= IORESOURCE_READONLY;
1189                                 } else {
1190                                         name = "System RAM";
1191                                 }
1192                                 break;
1193
1194                         case EFI_ACPI_MEMORY_NVS:
1195                                 name = "ACPI Non-volatile Storage";
1196                                 break;
1197
1198                         case EFI_UNUSABLE_MEMORY:
1199                                 name = "reserved";
1200                                 flags |= IORESOURCE_DISABLED;
1201                                 break;
1202
1203                         case EFI_RESERVED_TYPE:
1204                         case EFI_RUNTIME_SERVICES_CODE:
1205                         case EFI_RUNTIME_SERVICES_DATA:
1206                         case EFI_ACPI_RECLAIM_MEMORY:
1207                         default:
1208                                 name = "reserved";
1209                                 break;
1210                 }
1211
1212                 if ((res = kzalloc(sizeof(struct resource),
1213                                    GFP_KERNEL)) == NULL) {
1214                         printk(KERN_ERR
1215                                "failed to allocate resource for iomem\n");
1216                         return;
1217                 }
1218
1219                 res->name = name;
1220                 res->start = md->phys_addr;
1221                 res->end = md->phys_addr + efi_md_size(md) - 1;
1222                 res->flags = flags;
1223
1224                 if (insert_resource(&iomem_resource, res) < 0)
1225                         kfree(res);
1226                 else {
1227                         /*
1228                          * We don't know which region contains
1229                          * kernel data so we try it repeatedly and
1230                          * let the resource manager test it.
1231                          */
1232                         insert_resource(res, code_resource);
1233                         insert_resource(res, data_resource);
1234                         insert_resource(res, bss_resource);
1235 #ifdef CONFIG_KEXEC
1236                         insert_resource(res, &efi_memmap_res);
1237                         insert_resource(res, &boot_param_res);
1238                         if (crashk_res.end > crashk_res.start)
1239                                 insert_resource(res, &crashk_res);
1240 #endif
1241                 }
1242         }
1243 }
1244
1245 #ifdef CONFIG_KEXEC
1246 /* find a block of memory aligned to 64M exclude reserved regions
1247    rsvd_regions are sorted
1248  */
1249 unsigned long __init
1250 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1251 {
1252         int i;
1253         u64 start, end;
1254         u64 alignment = 1UL << _PAGE_SIZE_64M;
1255         void *efi_map_start, *efi_map_end, *p;
1256         efi_memory_desc_t *md;
1257         u64 efi_desc_size;
1258
1259         efi_map_start = __va(ia64_boot_param->efi_memmap);
1260         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1261         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1262
1263         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1264                 md = p;
1265                 if (!efi_wb(md))
1266                         continue;
1267                 start = ALIGN(md->phys_addr, alignment);
1268                 end = efi_md_end(md);
1269                 for (i = 0; i < n; i++) {
1270                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1271                                 if (__pa(r[i].start) > start + size)
1272                                         return start;
1273                                 start = ALIGN(__pa(r[i].end), alignment);
1274                                 if (i < n-1 &&
1275                                     __pa(r[i+1].start) < start + size)
1276                                         continue;
1277                                 else
1278                                         break;
1279                         }
1280                 }
1281                 if (end > start + size)
1282                         return start;
1283         }
1284
1285         printk(KERN_WARNING
1286                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1287         return ~0UL;
1288 }
1289 #endif
1290
1291 #ifdef CONFIG_PROC_VMCORE
1292 /* locate the size find a the descriptor at a certain address */
1293 unsigned long __init
1294 vmcore_find_descriptor_size (unsigned long address)
1295 {
1296         void *efi_map_start, *efi_map_end, *p;
1297         efi_memory_desc_t *md;
1298         u64 efi_desc_size;
1299         unsigned long ret = 0;
1300
1301         efi_map_start = __va(ia64_boot_param->efi_memmap);
1302         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1303         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1304
1305         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1306                 md = p;
1307                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1308                     && md->phys_addr == address) {
1309                         ret = efi_md_size(md);
1310                         break;
1311                 }
1312         }
1313
1314         if (ret == 0)
1315                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1316
1317         return ret;
1318 }
1319 #endif