Input: linux-input mailing list moved to vger.kernel.org
[sfrench/cifs-2.6.git] / arch / ia64 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2003 Hewlett-Packard Co.
9  *      David Mosberger-Tang <davidm@hpl.hp.com>
10  *      Stephane Eranian <eranian@hpl.hp.com>
11  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
12  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
13  *
14  * All EFI Runtime Services are not implemented yet as EFI only
15  * supports physical mode addressing on SoftSDV. This is to be fixed
16  * in a future version.  --drummond 1999-07-20
17  *
18  * Implemented EFI runtime services and virtual mode calls.  --davidm
19  *
20  * Goutham Rao: <goutham.rao@intel.com>
21  *      Skip non-WB memory and ignore empty memory ranges.
22  */
23 #include <linux/module.h>
24 #include <linux/bootmem.h>
25 #include <linux/kernel.h>
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/time.h>
29 #include <linux/efi.h>
30 #include <linux/kexec.h>
31 #include <linux/mm.h>
32
33 #include <asm/io.h>
34 #include <asm/kregs.h>
35 #include <asm/meminit.h>
36 #include <asm/pgtable.h>
37 #include <asm/processor.h>
38 #include <asm/mca.h>
39
40 #define EFI_DEBUG       0
41
42 extern efi_status_t efi_call_phys (void *, ...);
43
44 struct efi efi;
45 EXPORT_SYMBOL(efi);
46 static efi_runtime_services_t *runtime;
47 static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
48
49 #define efi_call_virt(f, args...)       (*(f))(args)
50
51 #define STUB_GET_TIME(prefix, adjust_arg)                                                         \
52 static efi_status_t                                                                               \
53 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                                            \
54 {                                                                                                 \
55         struct ia64_fpreg fr[6];                                                                  \
56         efi_time_cap_t *atc = NULL;                                                               \
57         efi_status_t ret;                                                                         \
58                                                                                                   \
59         if (tc)                                                                                   \
60                 atc = adjust_arg(tc);                                                             \
61         ia64_save_scratch_fpregs(fr);                                                             \
62         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
63         ia64_load_scratch_fpregs(fr);                                                             \
64         return ret;                                                                               \
65 }
66
67 #define STUB_SET_TIME(prefix, adjust_arg)                                                       \
68 static efi_status_t                                                                             \
69 prefix##_set_time (efi_time_t *tm)                                                              \
70 {                                                                                               \
71         struct ia64_fpreg fr[6];                                                                \
72         efi_status_t ret;                                                                       \
73                                                                                                 \
74         ia64_save_scratch_fpregs(fr);                                                           \
75         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm));    \
76         ia64_load_scratch_fpregs(fr);                                                           \
77         return ret;                                                                             \
78 }
79
80 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                                                \
81 static efi_status_t                                                                             \
82 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm)             \
83 {                                                                                               \
84         struct ia64_fpreg fr[6];                                                                \
85         efi_status_t ret;                                                                       \
86                                                                                                 \
87         ia64_save_scratch_fpregs(fr);                                                           \
88         ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),       \
89                                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));      \
90         ia64_load_scratch_fpregs(fr);                                                           \
91         return ret;                                                                             \
92 }
93
94 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                                                \
95 static efi_status_t                                                                             \
96 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                                   \
97 {                                                                                               \
98         struct ia64_fpreg fr[6];                                                                \
99         efi_time_t *atm = NULL;                                                                 \
100         efi_status_t ret;                                                                       \
101                                                                                                 \
102         if (tm)                                                                                 \
103                 atm = adjust_arg(tm);                                                           \
104         ia64_save_scratch_fpregs(fr);                                                           \
105         ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),       \
106                                 enabled, atm);                                                  \
107         ia64_load_scratch_fpregs(fr);                                                           \
108         return ret;                                                                             \
109 }
110
111 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                           \
112 static efi_status_t                                                                     \
113 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,               \
114                        unsigned long *data_size, void *data)                            \
115 {                                                                                       \
116         struct ia64_fpreg fr[6];                                                        \
117         u32 *aattr = NULL;                                                                      \
118         efi_status_t ret;                                                               \
119                                                                                         \
120         if (attr)                                                                       \
121                 aattr = adjust_arg(attr);                                               \
122         ia64_save_scratch_fpregs(fr);                                                   \
123         ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable),     \
124                                 adjust_arg(name), adjust_arg(vendor), aattr,            \
125                                 adjust_arg(data_size), adjust_arg(data));               \
126         ia64_load_scratch_fpregs(fr);                                                   \
127         return ret;                                                                     \
128 }
129
130 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                                              \
131 static efi_status_t                                                                             \
132 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor)   \
133 {                                                                                               \
134         struct ia64_fpreg fr[6];                                                                \
135         efi_status_t ret;                                                                       \
136                                                                                                 \
137         ia64_save_scratch_fpregs(fr);                                                           \
138         ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable),   \
139                                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));   \
140         ia64_load_scratch_fpregs(fr);                                                           \
141         return ret;                                                                             \
142 }
143
144 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                           \
145 static efi_status_t                                                                     \
146 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr,      \
147                        unsigned long data_size, void *data)                             \
148 {                                                                                       \
149         struct ia64_fpreg fr[6];                                                        \
150         efi_status_t ret;                                                               \
151                                                                                         \
152         ia64_save_scratch_fpregs(fr);                                                   \
153         ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable),     \
154                                 adjust_arg(name), adjust_arg(vendor), attr, data_size,  \
155                                 adjust_arg(data));                                      \
156         ia64_load_scratch_fpregs(fr);                                                   \
157         return ret;                                                                     \
158 }
159
160 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                                       \
161 static efi_status_t                                                                             \
162 prefix##_get_next_high_mono_count (u32 *count)                                                  \
163 {                                                                                               \
164         struct ia64_fpreg fr[6];                                                                \
165         efi_status_t ret;                                                                       \
166                                                                                                 \
167         ia64_save_scratch_fpregs(fr);                                                           \
168         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)                              \
169                                 __va(runtime->get_next_high_mono_count), adjust_arg(count));    \
170         ia64_load_scratch_fpregs(fr);                                                           \
171         return ret;                                                                             \
172 }
173
174 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                   \
175 static void                                                                     \
176 prefix##_reset_system (int reset_type, efi_status_t status,                     \
177                        unsigned long data_size, efi_char16_t *data)             \
178 {                                                                               \
179         struct ia64_fpreg fr[6];                                                \
180         efi_char16_t *adata = NULL;                                             \
181                                                                                 \
182         if (data)                                                               \
183                 adata = adjust_arg(data);                                       \
184                                                                                 \
185         ia64_save_scratch_fpregs(fr);                                           \
186         efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system),   \
187                           reset_type, status, data_size, adata);                \
188         /* should not return, but just in case... */                            \
189         ia64_load_scratch_fpregs(fr);                                           \
190 }
191
192 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
193
194 STUB_GET_TIME(phys, phys_ptr)
195 STUB_SET_TIME(phys, phys_ptr)
196 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
197 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
198 STUB_GET_VARIABLE(phys, phys_ptr)
199 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
200 STUB_SET_VARIABLE(phys, phys_ptr)
201 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
202 STUB_RESET_SYSTEM(phys, phys_ptr)
203
204 #define id(arg) arg
205
206 STUB_GET_TIME(virt, id)
207 STUB_SET_TIME(virt, id)
208 STUB_GET_WAKEUP_TIME(virt, id)
209 STUB_SET_WAKEUP_TIME(virt, id)
210 STUB_GET_VARIABLE(virt, id)
211 STUB_GET_NEXT_VARIABLE(virt, id)
212 STUB_SET_VARIABLE(virt, id)
213 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
214 STUB_RESET_SYSTEM(virt, id)
215
216 void
217 efi_gettimeofday (struct timespec *ts)
218 {
219         efi_time_t tm;
220
221         memset(ts, 0, sizeof(ts));
222         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
223                 return;
224
225         ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
226         ts->tv_nsec = tm.nanosecond;
227 }
228
229 static int
230 is_memory_available (efi_memory_desc_t *md)
231 {
232         if (!(md->attribute & EFI_MEMORY_WB))
233                 return 0;
234
235         switch (md->type) {
236               case EFI_LOADER_CODE:
237               case EFI_LOADER_DATA:
238               case EFI_BOOT_SERVICES_CODE:
239               case EFI_BOOT_SERVICES_DATA:
240               case EFI_CONVENTIONAL_MEMORY:
241                 return 1;
242         }
243         return 0;
244 }
245
246 typedef struct kern_memdesc {
247         u64 attribute;
248         u64 start;
249         u64 num_pages;
250 } kern_memdesc_t;
251
252 static kern_memdesc_t *kern_memmap;
253
254 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
255
256 static inline u64
257 kmd_end(kern_memdesc_t *kmd)
258 {
259         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
260 }
261
262 static inline u64
263 efi_md_end(efi_memory_desc_t *md)
264 {
265         return (md->phys_addr + efi_md_size(md));
266 }
267
268 static inline int
269 efi_wb(efi_memory_desc_t *md)
270 {
271         return (md->attribute & EFI_MEMORY_WB);
272 }
273
274 static inline int
275 efi_uc(efi_memory_desc_t *md)
276 {
277         return (md->attribute & EFI_MEMORY_UC);
278 }
279
280 static void
281 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
282 {
283         kern_memdesc_t *k;
284         u64 start, end, voff;
285
286         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
287         for (k = kern_memmap; k->start != ~0UL; k++) {
288                 if (k->attribute != attr)
289                         continue;
290                 start = PAGE_ALIGN(k->start);
291                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
292                 if (start < end)
293                         if ((*callback)(start + voff, end + voff, arg) < 0)
294                                 return;
295         }
296 }
297
298 /*
299  * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
300  * has memory that is available for OS use.
301  */
302 void
303 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
304 {
305         walk(callback, arg, EFI_MEMORY_WB);
306 }
307
308 /*
309  * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
310  * has memory that is available for uncached allocator.
311  */
312 void
313 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
314 {
315         walk(callback, arg, EFI_MEMORY_UC);
316 }
317
318 /*
319  * Look for the PAL_CODE region reported by EFI and maps it using an
320  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
321  * Abstraction Layer chapter 11 in ADAG
322  */
323
324 void *
325 efi_get_pal_addr (void)
326 {
327         void *efi_map_start, *efi_map_end, *p;
328         efi_memory_desc_t *md;
329         u64 efi_desc_size;
330         int pal_code_count = 0;
331         u64 vaddr, mask;
332
333         efi_map_start = __va(ia64_boot_param->efi_memmap);
334         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
335         efi_desc_size = ia64_boot_param->efi_memdesc_size;
336
337         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
338                 md = p;
339                 if (md->type != EFI_PAL_CODE)
340                         continue;
341
342                 if (++pal_code_count > 1) {
343                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
344                                md->phys_addr);
345                         continue;
346                 }
347                 /*
348                  * The only ITLB entry in region 7 that is used is the one installed by
349                  * __start().  That entry covers a 64MB range.
350                  */
351                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
352                 vaddr = PAGE_OFFSET + md->phys_addr;
353
354                 /*
355                  * We must check that the PAL mapping won't overlap with the kernel
356                  * mapping.
357                  *
358                  * PAL code is guaranteed to be aligned on a power of 2 between 4k and
359                  * 256KB and that only one ITR is needed to map it. This implies that the
360                  * PAL code is always aligned on its size, i.e., the closest matching page
361                  * size supported by the TLB. Therefore PAL code is guaranteed never to
362                  * cross a 64MB unless it is bigger than 64MB (very unlikely!).  So for
363                  * now the following test is enough to determine whether or not we need a
364                  * dedicated ITR for the PAL code.
365                  */
366                 if ((vaddr & mask) == (KERNEL_START & mask)) {
367                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
368                                __FUNCTION__);
369                         continue;
370                 }
371
372                 if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
373                         panic("Woah!  PAL code size bigger than a granule!");
374
375 #if EFI_DEBUG
376                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
377
378                 printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
379                         smp_processor_id(), md->phys_addr,
380                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
381                         vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
382 #endif
383                 return __va(md->phys_addr);
384         }
385         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
386                __FUNCTION__);
387         return NULL;
388 }
389
390 void
391 efi_map_pal_code (void)
392 {
393         void *pal_vaddr = efi_get_pal_addr ();
394         u64 psr;
395
396         if (!pal_vaddr)
397                 return;
398
399         /*
400          * Cannot write to CRx with PSR.ic=1
401          */
402         psr = ia64_clear_ic();
403         ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
404                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
405                  IA64_GRANULE_SHIFT);
406         ia64_set_psr(psr);              /* restore psr */
407         ia64_srlz_i();
408 }
409
410 void __init
411 efi_init (void)
412 {
413         void *efi_map_start, *efi_map_end;
414         efi_config_table_t *config_tables;
415         efi_char16_t *c16;
416         u64 efi_desc_size;
417         char *cp, vendor[100] = "unknown";
418         int i;
419
420         /* it's too early to be able to use the standard kernel command line support... */
421         for (cp = boot_command_line; *cp; ) {
422                 if (memcmp(cp, "mem=", 4) == 0) {
423                         mem_limit = memparse(cp + 4, &cp);
424                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
425                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
426                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
427                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
428                 } else {
429                         while (*cp != ' ' && *cp)
430                                 ++cp;
431                         while (*cp == ' ')
432                                 ++cp;
433                 }
434         }
435         if (min_addr != 0UL)
436                 printk(KERN_INFO "Ignoring memory below %luMB\n", min_addr >> 20);
437         if (max_addr != ~0UL)
438                 printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
439
440         efi.systab = __va(ia64_boot_param->efi_systab);
441
442         /*
443          * Verify the EFI Table
444          */
445         if (efi.systab == NULL)
446                 panic("Woah! Can't find EFI system table.\n");
447         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
448                 panic("Woah! EFI system table signature incorrect\n");
449         if ((efi.systab->hdr.revision >> 16) == 0)
450                 printk(KERN_WARNING "Warning: EFI system table version "
451                        "%d.%02d, expected 1.00 or greater\n",
452                        efi.systab->hdr.revision >> 16,
453                        efi.systab->hdr.revision & 0xffff);
454
455         config_tables = __va(efi.systab->tables);
456
457         /* Show what we know for posterity */
458         c16 = __va(efi.systab->fw_vendor);
459         if (c16) {
460                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
461                         vendor[i] = *c16++;
462                 vendor[i] = '\0';
463         }
464
465         printk(KERN_INFO "EFI v%u.%.02u by %s:",
466                efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
467
468         efi.mps        = EFI_INVALID_TABLE_ADDR;
469         efi.acpi       = EFI_INVALID_TABLE_ADDR;
470         efi.acpi20     = EFI_INVALID_TABLE_ADDR;
471         efi.smbios     = EFI_INVALID_TABLE_ADDR;
472         efi.sal_systab = EFI_INVALID_TABLE_ADDR;
473         efi.boot_info  = EFI_INVALID_TABLE_ADDR;
474         efi.hcdp       = EFI_INVALID_TABLE_ADDR;
475         efi.uga        = EFI_INVALID_TABLE_ADDR;
476
477         for (i = 0; i < (int) efi.systab->nr_tables; i++) {
478                 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
479                         efi.mps = config_tables[i].table;
480                         printk(" MPS=0x%lx", config_tables[i].table);
481                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
482                         efi.acpi20 = config_tables[i].table;
483                         printk(" ACPI 2.0=0x%lx", config_tables[i].table);
484                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
485                         efi.acpi = config_tables[i].table;
486                         printk(" ACPI=0x%lx", config_tables[i].table);
487                 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
488                         efi.smbios = config_tables[i].table;
489                         printk(" SMBIOS=0x%lx", config_tables[i].table);
490                 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
491                         efi.sal_systab = config_tables[i].table;
492                         printk(" SALsystab=0x%lx", config_tables[i].table);
493                 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
494                         efi.hcdp = config_tables[i].table;
495                         printk(" HCDP=0x%lx", config_tables[i].table);
496                 }
497         }
498         printk("\n");
499
500         runtime = __va(efi.systab->runtime);
501         efi.get_time = phys_get_time;
502         efi.set_time = phys_set_time;
503         efi.get_wakeup_time = phys_get_wakeup_time;
504         efi.set_wakeup_time = phys_set_wakeup_time;
505         efi.get_variable = phys_get_variable;
506         efi.get_next_variable = phys_get_next_variable;
507         efi.set_variable = phys_set_variable;
508         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
509         efi.reset_system = phys_reset_system;
510
511         efi_map_start = __va(ia64_boot_param->efi_memmap);
512         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
513         efi_desc_size = ia64_boot_param->efi_memdesc_size;
514
515 #if EFI_DEBUG
516         /* print EFI memory map: */
517         {
518                 efi_memory_desc_t *md;
519                 void *p;
520
521                 for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
522                         md = p;
523                         printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
524                                i, md->type, md->attribute, md->phys_addr,
525                                md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
526                                md->num_pages >> (20 - EFI_PAGE_SHIFT));
527                 }
528         }
529 #endif
530
531         efi_map_pal_code();
532         efi_enter_virtual_mode();
533 }
534
535 void
536 efi_enter_virtual_mode (void)
537 {
538         void *efi_map_start, *efi_map_end, *p;
539         efi_memory_desc_t *md;
540         efi_status_t status;
541         u64 efi_desc_size;
542
543         efi_map_start = __va(ia64_boot_param->efi_memmap);
544         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
545         efi_desc_size = ia64_boot_param->efi_memdesc_size;
546
547         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
548                 md = p;
549                 if (md->attribute & EFI_MEMORY_RUNTIME) {
550                         /*
551                          * Some descriptors have multiple bits set, so the order of
552                          * the tests is relevant.
553                          */
554                         if (md->attribute & EFI_MEMORY_WB) {
555                                 md->virt_addr = (u64) __va(md->phys_addr);
556                         } else if (md->attribute & EFI_MEMORY_UC) {
557                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
558                         } else if (md->attribute & EFI_MEMORY_WC) {
559 #if 0
560                                 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
561                                                                            | _PAGE_D
562                                                                            | _PAGE_MA_WC
563                                                                            | _PAGE_PL_0
564                                                                            | _PAGE_AR_RW));
565 #else
566                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
567                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
568 #endif
569                         } else if (md->attribute & EFI_MEMORY_WT) {
570 #if 0
571                                 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
572                                                                            | _PAGE_D | _PAGE_MA_WT
573                                                                            | _PAGE_PL_0
574                                                                            | _PAGE_AR_RW));
575 #else
576                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
577                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
578 #endif
579                         }
580                 }
581         }
582
583         status = efi_call_phys(__va(runtime->set_virtual_address_map),
584                                ia64_boot_param->efi_memmap_size,
585                                efi_desc_size, ia64_boot_param->efi_memdesc_version,
586                                ia64_boot_param->efi_memmap);
587         if (status != EFI_SUCCESS) {
588                 printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
589                        "(status=%lu)\n", status);
590                 return;
591         }
592
593         /*
594          * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
595          */
596         efi.get_time = virt_get_time;
597         efi.set_time = virt_set_time;
598         efi.get_wakeup_time = virt_get_wakeup_time;
599         efi.set_wakeup_time = virt_set_wakeup_time;
600         efi.get_variable = virt_get_variable;
601         efi.get_next_variable = virt_get_next_variable;
602         efi.set_variable = virt_set_variable;
603         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
604         efi.reset_system = virt_reset_system;
605 }
606
607 /*
608  * Walk the EFI memory map looking for the I/O port range.  There can only be one entry of
609  * this type, other I/O port ranges should be described via ACPI.
610  */
611 u64
612 efi_get_iobase (void)
613 {
614         void *efi_map_start, *efi_map_end, *p;
615         efi_memory_desc_t *md;
616         u64 efi_desc_size;
617
618         efi_map_start = __va(ia64_boot_param->efi_memmap);
619         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
620         efi_desc_size = ia64_boot_param->efi_memdesc_size;
621
622         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
623                 md = p;
624                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
625                         if (md->attribute & EFI_MEMORY_UC)
626                                 return md->phys_addr;
627                 }
628         }
629         return 0;
630 }
631
632 static struct kern_memdesc *
633 kern_memory_descriptor (unsigned long phys_addr)
634 {
635         struct kern_memdesc *md;
636
637         for (md = kern_memmap; md->start != ~0UL; md++) {
638                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
639                          return md;
640         }
641         return NULL;
642 }
643
644 static efi_memory_desc_t *
645 efi_memory_descriptor (unsigned long phys_addr)
646 {
647         void *efi_map_start, *efi_map_end, *p;
648         efi_memory_desc_t *md;
649         u64 efi_desc_size;
650
651         efi_map_start = __va(ia64_boot_param->efi_memmap);
652         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
653         efi_desc_size = ia64_boot_param->efi_memdesc_size;
654
655         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
656                 md = p;
657
658                 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
659                          return md;
660         }
661         return NULL;
662 }
663
664 static int
665 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
666 {
667         void *efi_map_start, *efi_map_end, *p;
668         efi_memory_desc_t *md;
669         u64 efi_desc_size;
670         unsigned long end;
671
672         efi_map_start = __va(ia64_boot_param->efi_memmap);
673         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
674         efi_desc_size = ia64_boot_param->efi_memdesc_size;
675
676         end = phys_addr + size;
677
678         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
679                 md = p;
680
681                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
682                         return 1;
683         }
684         return 0;
685 }
686
687 u32
688 efi_mem_type (unsigned long phys_addr)
689 {
690         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
691
692         if (md)
693                 return md->type;
694         return 0;
695 }
696
697 u64
698 efi_mem_attributes (unsigned long phys_addr)
699 {
700         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
701
702         if (md)
703                 return md->attribute;
704         return 0;
705 }
706 EXPORT_SYMBOL(efi_mem_attributes);
707
708 u64
709 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
710 {
711         unsigned long end = phys_addr + size;
712         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
713         u64 attr;
714
715         if (!md)
716                 return 0;
717
718         /*
719          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
720          * the kernel that firmware needs this region mapped.
721          */
722         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
723         do {
724                 unsigned long md_end = efi_md_end(md);
725
726                 if (end <= md_end)
727                         return attr;
728
729                 md = efi_memory_descriptor(md_end);
730                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
731                         return 0;
732         } while (md);
733         return 0;
734 }
735
736 u64
737 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
738 {
739         unsigned long end = phys_addr + size;
740         struct kern_memdesc *md;
741         u64 attr;
742
743         /*
744          * This is a hack for ioremap calls before we set up kern_memmap.
745          * Maybe we should do efi_memmap_init() earlier instead.
746          */
747         if (!kern_memmap) {
748                 attr = efi_mem_attribute(phys_addr, size);
749                 if (attr & EFI_MEMORY_WB)
750                         return EFI_MEMORY_WB;
751                 return 0;
752         }
753
754         md = kern_memory_descriptor(phys_addr);
755         if (!md)
756                 return 0;
757
758         attr = md->attribute;
759         do {
760                 unsigned long md_end = kmd_end(md);
761
762                 if (end <= md_end)
763                         return attr;
764
765                 md = kern_memory_descriptor(md_end);
766                 if (!md || md->attribute != attr)
767                         return 0;
768         } while (md);
769         return 0;
770 }
771 EXPORT_SYMBOL(kern_mem_attribute);
772
773 int
774 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
775 {
776         u64 attr;
777
778         /*
779          * /dev/mem reads and writes use copy_to_user(), which implicitly
780          * uses a granule-sized kernel identity mapping.  It's really
781          * only safe to do this for regions in kern_memmap.  For more
782          * details, see Documentation/ia64/aliasing.txt.
783          */
784         attr = kern_mem_attribute(phys_addr, size);
785         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
786                 return 1;
787         return 0;
788 }
789
790 int
791 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
792 {
793         unsigned long phys_addr = pfn << PAGE_SHIFT;
794         u64 attr;
795
796         attr = efi_mem_attribute(phys_addr, size);
797
798         /*
799          * /dev/mem mmap uses normal user pages, so we don't need the entire
800          * granule, but the entire region we're mapping must support the same
801          * attribute.
802          */
803         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
804                 return 1;
805
806         /*
807          * Intel firmware doesn't tell us about all the MMIO regions, so
808          * in general we have to allow mmap requests.  But if EFI *does*
809          * tell us about anything inside this region, we should deny it.
810          * The user can always map a smaller region to avoid the overlap.
811          */
812         if (efi_memmap_intersects(phys_addr, size))
813                 return 0;
814
815         return 1;
816 }
817
818 pgprot_t
819 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
820                      pgprot_t vma_prot)
821 {
822         unsigned long phys_addr = pfn << PAGE_SHIFT;
823         u64 attr;
824
825         /*
826          * For /dev/mem mmap, we use user mappings, but if the region is
827          * in kern_memmap (and hence may be covered by a kernel mapping),
828          * we must use the same attribute as the kernel mapping.
829          */
830         attr = kern_mem_attribute(phys_addr, size);
831         if (attr & EFI_MEMORY_WB)
832                 return pgprot_cacheable(vma_prot);
833         else if (attr & EFI_MEMORY_UC)
834                 return pgprot_noncached(vma_prot);
835
836         /*
837          * Some chipsets don't support UC access to memory.  If
838          * WB is supported, we prefer that.
839          */
840         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
841                 return pgprot_cacheable(vma_prot);
842
843         return pgprot_noncached(vma_prot);
844 }
845
846 int __init
847 efi_uart_console_only(void)
848 {
849         efi_status_t status;
850         char *s, name[] = "ConOut";
851         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
852         efi_char16_t *utf16, name_utf16[32];
853         unsigned char data[1024];
854         unsigned long size = sizeof(data);
855         struct efi_generic_dev_path *hdr, *end_addr;
856         int uart = 0;
857
858         /* Convert to UTF-16 */
859         utf16 = name_utf16;
860         s = name;
861         while (*s)
862                 *utf16++ = *s++ & 0x7f;
863         *utf16 = 0;
864
865         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
866         if (status != EFI_SUCCESS) {
867                 printk(KERN_ERR "No EFI %s variable?\n", name);
868                 return 0;
869         }
870
871         hdr = (struct efi_generic_dev_path *) data;
872         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
873         while (hdr < end_addr) {
874                 if (hdr->type == EFI_DEV_MSG &&
875                     hdr->sub_type == EFI_DEV_MSG_UART)
876                         uart = 1;
877                 else if (hdr->type == EFI_DEV_END_PATH ||
878                           hdr->type == EFI_DEV_END_PATH2) {
879                         if (!uart)
880                                 return 0;
881                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
882                                 return 1;
883                         uart = 0;
884                 }
885                 hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
886         }
887         printk(KERN_ERR "Malformed %s value\n", name);
888         return 0;
889 }
890
891 /*
892  * Look for the first granule aligned memory descriptor memory
893  * that is big enough to hold EFI memory map. Make sure this
894  * descriptor is atleast granule sized so it does not get trimmed
895  */
896 struct kern_memdesc *
897 find_memmap_space (void)
898 {
899         u64     contig_low=0, contig_high=0;
900         u64     as = 0, ae;
901         void *efi_map_start, *efi_map_end, *p, *q;
902         efi_memory_desc_t *md, *pmd = NULL, *check_md;
903         u64     space_needed, efi_desc_size;
904         unsigned long total_mem = 0;
905
906         efi_map_start = __va(ia64_boot_param->efi_memmap);
907         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
908         efi_desc_size = ia64_boot_param->efi_memdesc_size;
909
910         /*
911          * Worst case: we need 3 kernel descriptors for each efi descriptor
912          * (if every entry has a WB part in the middle, and UC head and tail),
913          * plus one for the end marker.
914          */
915         space_needed = sizeof(kern_memdesc_t) *
916                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
917
918         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
919                 md = p;
920                 if (!efi_wb(md)) {
921                         continue;
922                 }
923                 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
924                         contig_low = GRANULEROUNDUP(md->phys_addr);
925                         contig_high = efi_md_end(md);
926                         for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
927                                 check_md = q;
928                                 if (!efi_wb(check_md))
929                                         break;
930                                 if (contig_high != check_md->phys_addr)
931                                         break;
932                                 contig_high = efi_md_end(check_md);
933                         }
934                         contig_high = GRANULEROUNDDOWN(contig_high);
935                 }
936                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
937                         continue;
938
939                 /* Round ends inward to granule boundaries */
940                 as = max(contig_low, md->phys_addr);
941                 ae = min(contig_high, efi_md_end(md));
942
943                 /* keep within max_addr= and min_addr= command line arg */
944                 as = max(as, min_addr);
945                 ae = min(ae, max_addr);
946                 if (ae <= as)
947                         continue;
948
949                 /* avoid going over mem= command line arg */
950                 if (total_mem + (ae - as) > mem_limit)
951                         ae -= total_mem + (ae - as) - mem_limit;
952
953                 if (ae <= as)
954                         continue;
955
956                 if (ae - as > space_needed)
957                         break;
958         }
959         if (p >= efi_map_end)
960                 panic("Can't allocate space for kernel memory descriptors");
961
962         return __va(as);
963 }
964
965 /*
966  * Walk the EFI memory map and gather all memory available for kernel
967  * to use.  We can allocate partial granules only if the unavailable
968  * parts exist, and are WB.
969  */
970 unsigned long
971 efi_memmap_init(unsigned long *s, unsigned long *e)
972 {
973         struct kern_memdesc *k, *prev = NULL;
974         u64     contig_low=0, contig_high=0;
975         u64     as, ae, lim;
976         void *efi_map_start, *efi_map_end, *p, *q;
977         efi_memory_desc_t *md, *pmd = NULL, *check_md;
978         u64     efi_desc_size;
979         unsigned long total_mem = 0;
980
981         k = kern_memmap = find_memmap_space();
982
983         efi_map_start = __va(ia64_boot_param->efi_memmap);
984         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
985         efi_desc_size = ia64_boot_param->efi_memdesc_size;
986
987         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
988                 md = p;
989                 if (!efi_wb(md)) {
990                         if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
991                                            md->type == EFI_BOOT_SERVICES_DATA)) {
992                                 k->attribute = EFI_MEMORY_UC;
993                                 k->start = md->phys_addr;
994                                 k->num_pages = md->num_pages;
995                                 k++;
996                         }
997                         continue;
998                 }
999                 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
1000                         contig_low = GRANULEROUNDUP(md->phys_addr);
1001                         contig_high = efi_md_end(md);
1002                         for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
1003                                 check_md = q;
1004                                 if (!efi_wb(check_md))
1005                                         break;
1006                                 if (contig_high != check_md->phys_addr)
1007                                         break;
1008                                 contig_high = efi_md_end(check_md);
1009                         }
1010                         contig_high = GRANULEROUNDDOWN(contig_high);
1011                 }
1012                 if (!is_memory_available(md))
1013                         continue;
1014
1015 #ifdef CONFIG_CRASH_DUMP
1016                 /* saved_max_pfn should ignore max_addr= command line arg */
1017                 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1018                         saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1019 #endif
1020                 /*
1021                  * Round ends inward to granule boundaries
1022                  * Give trimmings to uncached allocator
1023                  */
1024                 if (md->phys_addr < contig_low) {
1025                         lim = min(efi_md_end(md), contig_low);
1026                         if (efi_uc(md)) {
1027                                 if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
1028                                     kmd_end(k-1) == md->phys_addr) {
1029                                         (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
1030                                 } else {
1031                                         k->attribute = EFI_MEMORY_UC;
1032                                         k->start = md->phys_addr;
1033                                         k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
1034                                         k++;
1035                                 }
1036                         }
1037                         as = contig_low;
1038                 } else
1039                         as = md->phys_addr;
1040
1041                 if (efi_md_end(md) > contig_high) {
1042                         lim = max(md->phys_addr, contig_high);
1043                         if (efi_uc(md)) {
1044                                 if (lim == md->phys_addr && k > kern_memmap &&
1045                                     (k-1)->attribute == EFI_MEMORY_UC &&
1046                                     kmd_end(k-1) == md->phys_addr) {
1047                                         (k-1)->num_pages += md->num_pages;
1048                                 } else {
1049                                         k->attribute = EFI_MEMORY_UC;
1050                                         k->start = lim;
1051                                         k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
1052                                         k++;
1053                                 }
1054                         }
1055                         ae = contig_high;
1056                 } else
1057                         ae = efi_md_end(md);
1058
1059                 /* keep within max_addr= and min_addr= command line arg */
1060                 as = max(as, min_addr);
1061                 ae = min(ae, max_addr);
1062                 if (ae <= as)
1063                         continue;
1064
1065                 /* avoid going over mem= command line arg */
1066                 if (total_mem + (ae - as) > mem_limit)
1067                         ae -= total_mem + (ae - as) - mem_limit;
1068
1069                 if (ae <= as)
1070                         continue;
1071                 if (prev && kmd_end(prev) == md->phys_addr) {
1072                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1073                         total_mem += ae - as;
1074                         continue;
1075                 }
1076                 k->attribute = EFI_MEMORY_WB;
1077                 k->start = as;
1078                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1079                 total_mem += ae - as;
1080                 prev = k++;
1081         }
1082         k->start = ~0L; /* end-marker */
1083
1084         /* reserve the memory we are using for kern_memmap */
1085         *s = (u64)kern_memmap;
1086         *e = (u64)++k;
1087
1088         return total_mem;
1089 }
1090
1091 void
1092 efi_initialize_iomem_resources(struct resource *code_resource,
1093                                struct resource *data_resource,
1094                                struct resource *bss_resource)
1095 {
1096         struct resource *res;
1097         void *efi_map_start, *efi_map_end, *p;
1098         efi_memory_desc_t *md;
1099         u64 efi_desc_size;
1100         char *name;
1101         unsigned long flags;
1102
1103         efi_map_start = __va(ia64_boot_param->efi_memmap);
1104         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1105         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1106
1107         res = NULL;
1108
1109         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1110                 md = p;
1111
1112                 if (md->num_pages == 0) /* should not happen */
1113                         continue;
1114
1115                 flags = IORESOURCE_MEM;
1116                 switch (md->type) {
1117
1118                         case EFI_MEMORY_MAPPED_IO:
1119                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1120                                 continue;
1121
1122                         case EFI_LOADER_CODE:
1123                         case EFI_LOADER_DATA:
1124                         case EFI_BOOT_SERVICES_DATA:
1125                         case EFI_BOOT_SERVICES_CODE:
1126                         case EFI_CONVENTIONAL_MEMORY:
1127                                 if (md->attribute & EFI_MEMORY_WP) {
1128                                         name = "System ROM";
1129                                         flags |= IORESOURCE_READONLY;
1130                                 } else {
1131                                         name = "System RAM";
1132                                 }
1133                                 break;
1134
1135                         case EFI_ACPI_MEMORY_NVS:
1136                                 name = "ACPI Non-volatile Storage";
1137                                 flags |= IORESOURCE_BUSY;
1138                                 break;
1139
1140                         case EFI_UNUSABLE_MEMORY:
1141                                 name = "reserved";
1142                                 flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
1143                                 break;
1144
1145                         case EFI_RESERVED_TYPE:
1146                         case EFI_RUNTIME_SERVICES_CODE:
1147                         case EFI_RUNTIME_SERVICES_DATA:
1148                         case EFI_ACPI_RECLAIM_MEMORY:
1149                         default:
1150                                 name = "reserved";
1151                                 flags |= IORESOURCE_BUSY;
1152                                 break;
1153                 }
1154
1155                 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
1156                         printk(KERN_ERR "failed to alocate resource for iomem\n");
1157                         return;
1158                 }
1159
1160                 res->name = name;
1161                 res->start = md->phys_addr;
1162                 res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
1163                 res->flags = flags;
1164
1165                 if (insert_resource(&iomem_resource, res) < 0)
1166                         kfree(res);
1167                 else {
1168                         /*
1169                          * We don't know which region contains
1170                          * kernel data so we try it repeatedly and
1171                          * let the resource manager test it.
1172                          */
1173                         insert_resource(res, code_resource);
1174                         insert_resource(res, data_resource);
1175                         insert_resource(res, bss_resource);
1176 #ifdef CONFIG_KEXEC
1177                         insert_resource(res, &efi_memmap_res);
1178                         insert_resource(res, &boot_param_res);
1179                         if (crashk_res.end > crashk_res.start)
1180                                 insert_resource(res, &crashk_res);
1181 #endif
1182                 }
1183         }
1184 }
1185
1186 #ifdef CONFIG_KEXEC
1187 /* find a block of memory aligned to 64M exclude reserved regions
1188    rsvd_regions are sorted
1189  */
1190 unsigned long __init
1191 kdump_find_rsvd_region (unsigned long size,
1192                 struct rsvd_region *r, int n)
1193 {
1194   int i;
1195   u64 start, end;
1196   u64 alignment = 1UL << _PAGE_SIZE_64M;
1197   void *efi_map_start, *efi_map_end, *p;
1198   efi_memory_desc_t *md;
1199   u64 efi_desc_size;
1200
1201   efi_map_start = __va(ia64_boot_param->efi_memmap);
1202   efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1203   efi_desc_size = ia64_boot_param->efi_memdesc_size;
1204
1205   for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1206           md = p;
1207           if (!efi_wb(md))
1208                   continue;
1209           start = ALIGN(md->phys_addr, alignment);
1210           end = efi_md_end(md);
1211           for (i = 0; i < n; i++) {
1212                 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1213                         if (__pa(r[i].start) > start + size)
1214                                 return start;
1215                         start = ALIGN(__pa(r[i].end), alignment);
1216                         if (i < n-1 && __pa(r[i+1].start) < start + size)
1217                                 continue;
1218                         else
1219                                 break;
1220                 }
1221           }
1222           if (end > start + size)
1223                 return start;
1224   }
1225
1226   printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n",
1227         size);
1228   return ~0UL;
1229 }
1230 #endif
1231
1232 #ifdef CONFIG_PROC_VMCORE
1233 /* locate the size find a the descriptor at a certain address */
1234 unsigned long
1235 vmcore_find_descriptor_size (unsigned long address)
1236 {
1237         void *efi_map_start, *efi_map_end, *p;
1238         efi_memory_desc_t *md;
1239         u64 efi_desc_size;
1240         unsigned long ret = 0;
1241
1242         efi_map_start = __va(ia64_boot_param->efi_memmap);
1243         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1244         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1245
1246         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1247                 md = p;
1248                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1249                     && md->phys_addr == address) {
1250                         ret = efi_md_size(md);
1251                         break;
1252                 }
1253         }
1254
1255         if (ret == 0)
1256                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1257
1258         return ret;
1259 }
1260 #endif