Merge branch 'upstream-fixes'
[sfrench/cifs-2.6.git] / arch / i386 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/i386/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation ( includes contributions from
23  *              Rusty Russell).
24  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25  *              interface to access function arguments.
26  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28  *              <prasanna@in.ibm.com> added function-return probes.
29  */
30
31 #include <linux/config.h>
32 #include <linux/kprobes.h>
33 #include <linux/ptrace.h>
34 #include <linux/preempt.h>
35 #include <asm/cacheflush.h>
36 #include <asm/kdebug.h>
37 #include <asm/desc.h>
38
39 void jprobe_return_end(void);
40
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44 /*
45  * returns non-zero if opcode modifies the interrupt flag.
46  */
47 static inline int is_IF_modifier(kprobe_opcode_t opcode)
48 {
49         switch (opcode) {
50         case 0xfa:              /* cli */
51         case 0xfb:              /* sti */
52         case 0xcf:              /* iret/iretd */
53         case 0x9d:              /* popf/popfd */
54                 return 1;
55         }
56         return 0;
57 }
58
59 int __kprobes arch_prepare_kprobe(struct kprobe *p)
60 {
61         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
62         p->opcode = *p->addr;
63         return 0;
64 }
65
66 void __kprobes arch_arm_kprobe(struct kprobe *p)
67 {
68         *p->addr = BREAKPOINT_INSTRUCTION;
69         flush_icache_range((unsigned long) p->addr,
70                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
71 }
72
73 void __kprobes arch_disarm_kprobe(struct kprobe *p)
74 {
75         *p->addr = p->opcode;
76         flush_icache_range((unsigned long) p->addr,
77                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
78 }
79
80 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
81 {
82         kcb->prev_kprobe.kp = kprobe_running();
83         kcb->prev_kprobe.status = kcb->kprobe_status;
84         kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
85         kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
86 }
87
88 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
89 {
90         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
91         kcb->kprobe_status = kcb->prev_kprobe.status;
92         kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
93         kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
94 }
95
96 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
97                                 struct kprobe_ctlblk *kcb)
98 {
99         __get_cpu_var(current_kprobe) = p;
100         kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
101                 = (regs->eflags & (TF_MASK | IF_MASK));
102         if (is_IF_modifier(p->opcode))
103                 kcb->kprobe_saved_eflags &= ~IF_MASK;
104 }
105
106 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
107 {
108         regs->eflags |= TF_MASK;
109         regs->eflags &= ~IF_MASK;
110         /*single step inline if the instruction is an int3*/
111         if (p->opcode == BREAKPOINT_INSTRUCTION)
112                 regs->eip = (unsigned long)p->addr;
113         else
114                 regs->eip = (unsigned long)&p->ainsn.insn;
115 }
116
117 /* Called with kretprobe_lock held */
118 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
119                                       struct pt_regs *regs)
120 {
121         unsigned long *sara = (unsigned long *)&regs->esp;
122         struct kretprobe_instance *ri;
123
124         if ((ri = get_free_rp_inst(rp)) != NULL) {
125                 ri->rp = rp;
126                 ri->task = current;
127                 ri->ret_addr = (kprobe_opcode_t *) *sara;
128
129                 /* Replace the return addr with trampoline addr */
130                 *sara = (unsigned long) &kretprobe_trampoline;
131
132                 add_rp_inst(ri);
133         } else {
134                 rp->nmissed++;
135         }
136 }
137
138 /*
139  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
140  * remain disabled thorough out this function.
141  */
142 static int __kprobes kprobe_handler(struct pt_regs *regs)
143 {
144         struct kprobe *p;
145         int ret = 0;
146         kprobe_opcode_t *addr = NULL;
147         unsigned long *lp;
148         struct kprobe_ctlblk *kcb;
149
150         /*
151          * We don't want to be preempted for the entire
152          * duration of kprobe processing
153          */
154         preempt_disable();
155         kcb = get_kprobe_ctlblk();
156
157         /* Check if the application is using LDT entry for its code segment and
158          * calculate the address by reading the base address from the LDT entry.
159          */
160         if ((regs->xcs & 4) && (current->mm)) {
161                 lp = (unsigned long *) ((unsigned long)((regs->xcs >> 3) * 8)
162                                         + (char *) current->mm->context.ldt);
163                 addr = (kprobe_opcode_t *) (get_desc_base(lp) + regs->eip -
164                                                 sizeof(kprobe_opcode_t));
165         } else {
166                 addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
167         }
168         /* Check we're not actually recursing */
169         if (kprobe_running()) {
170                 p = get_kprobe(addr);
171                 if (p) {
172                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
173                                 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
174                                 regs->eflags &= ~TF_MASK;
175                                 regs->eflags |= kcb->kprobe_saved_eflags;
176                                 goto no_kprobe;
177                         }
178                         /* We have reentered the kprobe_handler(), since
179                          * another probe was hit while within the handler.
180                          * We here save the original kprobes variables and
181                          * just single step on the instruction of the new probe
182                          * without calling any user handlers.
183                          */
184                         save_previous_kprobe(kcb);
185                         set_current_kprobe(p, regs, kcb);
186                         kprobes_inc_nmissed_count(p);
187                         prepare_singlestep(p, regs);
188                         kcb->kprobe_status = KPROBE_REENTER;
189                         return 1;
190                 } else {
191                         if (regs->eflags & VM_MASK) {
192                         /* We are in virtual-8086 mode. Return 0 */
193                                 goto no_kprobe;
194                         }
195                         if (*addr != BREAKPOINT_INSTRUCTION) {
196                         /* The breakpoint instruction was removed by
197                          * another cpu right after we hit, no further
198                          * handling of this interrupt is appropriate
199                          */
200                                 regs->eip -= sizeof(kprobe_opcode_t);
201                                 ret = 1;
202                                 goto no_kprobe;
203                         }
204                         p = __get_cpu_var(current_kprobe);
205                         if (p->break_handler && p->break_handler(p, regs)) {
206                                 goto ss_probe;
207                         }
208                 }
209                 goto no_kprobe;
210         }
211
212         p = get_kprobe(addr);
213         if (!p) {
214                 if (regs->eflags & VM_MASK) {
215                         /* We are in virtual-8086 mode. Return 0 */
216                         goto no_kprobe;
217                 }
218
219                 if (*addr != BREAKPOINT_INSTRUCTION) {
220                         /*
221                          * The breakpoint instruction was removed right
222                          * after we hit it.  Another cpu has removed
223                          * either a probepoint or a debugger breakpoint
224                          * at this address.  In either case, no further
225                          * handling of this interrupt is appropriate.
226                          * Back up over the (now missing) int3 and run
227                          * the original instruction.
228                          */
229                         regs->eip -= sizeof(kprobe_opcode_t);
230                         ret = 1;
231                 }
232                 /* Not one of ours: let kernel handle it */
233                 goto no_kprobe;
234         }
235
236         set_current_kprobe(p, regs, kcb);
237         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
238
239         if (p->pre_handler && p->pre_handler(p, regs))
240                 /* handler has already set things up, so skip ss setup */
241                 return 1;
242
243 ss_probe:
244         prepare_singlestep(p, regs);
245         kcb->kprobe_status = KPROBE_HIT_SS;
246         return 1;
247
248 no_kprobe:
249         preempt_enable_no_resched();
250         return ret;
251 }
252
253 /*
254  * For function-return probes, init_kprobes() establishes a probepoint
255  * here. When a retprobed function returns, this probe is hit and
256  * trampoline_probe_handler() runs, calling the kretprobe's handler.
257  */
258  void kretprobe_trampoline_holder(void)
259  {
260         asm volatile (  ".global kretprobe_trampoline\n"
261                         "kretprobe_trampoline: \n"
262                         "nop\n");
263  }
264
265 /*
266  * Called when we hit the probe point at kretprobe_trampoline
267  */
268 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
269 {
270         struct kretprobe_instance *ri = NULL;
271         struct hlist_head *head;
272         struct hlist_node *node, *tmp;
273         unsigned long flags, orig_ret_address = 0;
274         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
275
276         spin_lock_irqsave(&kretprobe_lock, flags);
277         head = kretprobe_inst_table_head(current);
278
279         /*
280          * It is possible to have multiple instances associated with a given
281          * task either because an multiple functions in the call path
282          * have a return probe installed on them, and/or more then one return
283          * return probe was registered for a target function.
284          *
285          * We can handle this because:
286          *     - instances are always inserted at the head of the list
287          *     - when multiple return probes are registered for the same
288          *       function, the first instance's ret_addr will point to the
289          *       real return address, and all the rest will point to
290          *       kretprobe_trampoline
291          */
292         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
293                 if (ri->task != current)
294                         /* another task is sharing our hash bucket */
295                         continue;
296
297                 if (ri->rp && ri->rp->handler)
298                         ri->rp->handler(ri, regs);
299
300                 orig_ret_address = (unsigned long)ri->ret_addr;
301                 recycle_rp_inst(ri);
302
303                 if (orig_ret_address != trampoline_address)
304                         /*
305                          * This is the real return address. Any other
306                          * instances associated with this task are for
307                          * other calls deeper on the call stack
308                          */
309                         break;
310         }
311
312         BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
313         regs->eip = orig_ret_address;
314
315         reset_current_kprobe();
316         spin_unlock_irqrestore(&kretprobe_lock, flags);
317         preempt_enable_no_resched();
318
319         /*
320          * By returning a non-zero value, we are telling
321          * kprobe_handler() that we don't want the post_handler
322          * to run (and have re-enabled preemption)
323          */
324         return 1;
325 }
326
327 /*
328  * Called after single-stepping.  p->addr is the address of the
329  * instruction whose first byte has been replaced by the "int 3"
330  * instruction.  To avoid the SMP problems that can occur when we
331  * temporarily put back the original opcode to single-step, we
332  * single-stepped a copy of the instruction.  The address of this
333  * copy is p->ainsn.insn.
334  *
335  * This function prepares to return from the post-single-step
336  * interrupt.  We have to fix up the stack as follows:
337  *
338  * 0) Except in the case of absolute or indirect jump or call instructions,
339  * the new eip is relative to the copied instruction.  We need to make
340  * it relative to the original instruction.
341  *
342  * 1) If the single-stepped instruction was pushfl, then the TF and IF
343  * flags are set in the just-pushed eflags, and may need to be cleared.
344  *
345  * 2) If the single-stepped instruction was a call, the return address
346  * that is atop the stack is the address following the copied instruction.
347  * We need to make it the address following the original instruction.
348  */
349 static void __kprobes resume_execution(struct kprobe *p,
350                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
351 {
352         unsigned long *tos = (unsigned long *)&regs->esp;
353         unsigned long next_eip = 0;
354         unsigned long copy_eip = (unsigned long)&p->ainsn.insn;
355         unsigned long orig_eip = (unsigned long)p->addr;
356
357         switch (p->ainsn.insn[0]) {
358         case 0x9c:              /* pushfl */
359                 *tos &= ~(TF_MASK | IF_MASK);
360                 *tos |= kcb->kprobe_old_eflags;
361                 break;
362         case 0xc3:              /* ret/lret */
363         case 0xcb:
364         case 0xc2:
365         case 0xca:
366                 regs->eflags &= ~TF_MASK;
367                 /* eip is already adjusted, no more changes required*/
368                 return;
369         case 0xe8:              /* call relative - Fix return addr */
370                 *tos = orig_eip + (*tos - copy_eip);
371                 break;
372         case 0xff:
373                 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
374                         /* call absolute, indirect */
375                         /* Fix return addr; eip is correct. */
376                         next_eip = regs->eip;
377                         *tos = orig_eip + (*tos - copy_eip);
378                 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) ||       /* jmp near, absolute indirect */
379                            ((p->ainsn.insn[1] & 0x31) == 0x21)) {       /* jmp far, absolute indirect */
380                         /* eip is correct. */
381                         next_eip = regs->eip;
382                 }
383                 break;
384         case 0xea:              /* jmp absolute -- eip is correct */
385                 next_eip = regs->eip;
386                 break;
387         default:
388                 break;
389         }
390
391         regs->eflags &= ~TF_MASK;
392         if (next_eip) {
393                 regs->eip = next_eip;
394         } else {
395                 regs->eip = orig_eip + (regs->eip - copy_eip);
396         }
397 }
398
399 /*
400  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
401  * remain disabled thoroughout this function.
402  */
403 static inline int post_kprobe_handler(struct pt_regs *regs)
404 {
405         struct kprobe *cur = kprobe_running();
406         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
407
408         if (!cur)
409                 return 0;
410
411         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
412                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
413                 cur->post_handler(cur, regs, 0);
414         }
415
416         resume_execution(cur, regs, kcb);
417         regs->eflags |= kcb->kprobe_saved_eflags;
418
419         /*Restore back the original saved kprobes variables and continue. */
420         if (kcb->kprobe_status == KPROBE_REENTER) {
421                 restore_previous_kprobe(kcb);
422                 goto out;
423         }
424         reset_current_kprobe();
425 out:
426         preempt_enable_no_resched();
427
428         /*
429          * if somebody else is singlestepping across a probe point, eflags
430          * will have TF set, in which case, continue the remaining processing
431          * of do_debug, as if this is not a probe hit.
432          */
433         if (regs->eflags & TF_MASK)
434                 return 0;
435
436         return 1;
437 }
438
439 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
440 {
441         struct kprobe *cur = kprobe_running();
442         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
443
444         if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
445                 return 1;
446
447         if (kcb->kprobe_status & KPROBE_HIT_SS) {
448                 resume_execution(cur, regs, kcb);
449                 regs->eflags |= kcb->kprobe_old_eflags;
450
451                 reset_current_kprobe();
452                 preempt_enable_no_resched();
453         }
454         return 0;
455 }
456
457 /*
458  * Wrapper routine to for handling exceptions.
459  */
460 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
461                                        unsigned long val, void *data)
462 {
463         struct die_args *args = (struct die_args *)data;
464         int ret = NOTIFY_DONE;
465
466         switch (val) {
467         case DIE_INT3:
468                 if (kprobe_handler(args->regs))
469                         ret = NOTIFY_STOP;
470                 break;
471         case DIE_DEBUG:
472                 if (post_kprobe_handler(args->regs))
473                         ret = NOTIFY_STOP;
474                 break;
475         case DIE_GPF:
476         case DIE_PAGE_FAULT:
477                 /* kprobe_running() needs smp_processor_id() */
478                 preempt_disable();
479                 if (kprobe_running() &&
480                     kprobe_fault_handler(args->regs, args->trapnr))
481                         ret = NOTIFY_STOP;
482                 preempt_enable();
483                 break;
484         default:
485                 break;
486         }
487         return ret;
488 }
489
490 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
491 {
492         struct jprobe *jp = container_of(p, struct jprobe, kp);
493         unsigned long addr;
494         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
495
496         kcb->jprobe_saved_regs = *regs;
497         kcb->jprobe_saved_esp = &regs->esp;
498         addr = (unsigned long)(kcb->jprobe_saved_esp);
499
500         /*
501          * TBD: As Linus pointed out, gcc assumes that the callee
502          * owns the argument space and could overwrite it, e.g.
503          * tailcall optimization. So, to be absolutely safe
504          * we also save and restore enough stack bytes to cover
505          * the argument area.
506          */
507         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
508                         MIN_STACK_SIZE(addr));
509         regs->eflags &= ~IF_MASK;
510         regs->eip = (unsigned long)(jp->entry);
511         return 1;
512 }
513
514 void __kprobes jprobe_return(void)
515 {
516         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
517
518         asm volatile ("       xchgl   %%ebx,%%esp     \n"
519                       "       int3                      \n"
520                       "       .globl jprobe_return_end  \n"
521                       "       jprobe_return_end:        \n"
522                       "       nop                       \n"::"b"
523                       (kcb->jprobe_saved_esp):"memory");
524 }
525
526 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
527 {
528         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
529         u8 *addr = (u8 *) (regs->eip - 1);
530         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
531         struct jprobe *jp = container_of(p, struct jprobe, kp);
532
533         if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
534                 if (&regs->esp != kcb->jprobe_saved_esp) {
535                         struct pt_regs *saved_regs =
536                             container_of(kcb->jprobe_saved_esp,
537                                             struct pt_regs, esp);
538                         printk("current esp %p does not match saved esp %p\n",
539                                &regs->esp, kcb->jprobe_saved_esp);
540                         printk("Saved registers for jprobe %p\n", jp);
541                         show_registers(saved_regs);
542                         printk("Current registers\n");
543                         show_registers(regs);
544                         BUG();
545                 }
546                 *regs = kcb->jprobe_saved_regs;
547                 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
548                        MIN_STACK_SIZE(stack_addr));
549                 preempt_enable_no_resched();
550                 return 1;
551         }
552         return 0;
553 }
554
555 static struct kprobe trampoline_p = {
556         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
557         .pre_handler = trampoline_probe_handler
558 };
559
560 int __init arch_init_kprobes(void)
561 {
562         return register_kprobe(&trampoline_p);
563 }