Pull cpu-hotplug into release branch
[sfrench/cifs-2.6.git] / arch / i386 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/i386/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation ( includes contributions from
23  *              Rusty Russell).
24  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25  *              interface to access function arguments.
26  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28  *              <prasanna@in.ibm.com> added function-return probes.
29  */
30
31 #include <linux/config.h>
32 #include <linux/kprobes.h>
33 #include <linux/ptrace.h>
34 #include <linux/preempt.h>
35 #include <asm/cacheflush.h>
36 #include <asm/kdebug.h>
37 #include <asm/desc.h>
38 #include <asm/uaccess.h>
39
40 void jprobe_return_end(void);
41
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
43 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
44
45 /* insert a jmp code */
46 static __always_inline void set_jmp_op(void *from, void *to)
47 {
48         struct __arch_jmp_op {
49                 char op;
50                 long raddr;
51         } __attribute__((packed)) *jop;
52         jop = (struct __arch_jmp_op *)from;
53         jop->raddr = (long)(to) - ((long)(from) + 5);
54         jop->op = RELATIVEJUMP_INSTRUCTION;
55 }
56
57 /*
58  * returns non-zero if opcodes can be boosted.
59  */
60 static __always_inline int can_boost(kprobe_opcode_t opcode)
61 {
62         switch (opcode & 0xf0 ) {
63         case 0x70:
64                 return 0; /* can't boost conditional jump */
65         case 0x90:
66                 /* can't boost call and pushf */
67                 return opcode != 0x9a && opcode != 0x9c;
68         case 0xc0:
69                 /* can't boost undefined opcodes and soft-interruptions */
70                 return (0xc1 < opcode && opcode < 0xc6) ||
71                         (0xc7 < opcode && opcode < 0xcc) || opcode == 0xcf;
72         case 0xd0:
73                 /* can boost AA* and XLAT */
74                 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
75         case 0xe0:
76                 /* can boost in/out and (may be) jmps */
77                 return (0xe3 < opcode && opcode != 0xe8);
78         case 0xf0:
79                 /* clear and set flags can be boost */
80                 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
81         default:
82                 /* currently, can't boost 2 bytes opcodes */
83                 return opcode != 0x0f;
84         }
85 }
86
87
88 /*
89  * returns non-zero if opcode modifies the interrupt flag.
90  */
91 static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
92 {
93         switch (opcode) {
94         case 0xfa:              /* cli */
95         case 0xfb:              /* sti */
96         case 0xcf:              /* iret/iretd */
97         case 0x9d:              /* popf/popfd */
98                 return 1;
99         }
100         return 0;
101 }
102
103 int __kprobes arch_prepare_kprobe(struct kprobe *p)
104 {
105         /* insn: must be on special executable page on i386. */
106         p->ainsn.insn = get_insn_slot();
107         if (!p->ainsn.insn)
108                 return -ENOMEM;
109
110         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
111         p->opcode = *p->addr;
112         if (can_boost(p->opcode)) {
113                 p->ainsn.boostable = 0;
114         } else {
115                 p->ainsn.boostable = -1;
116         }
117         return 0;
118 }
119
120 void __kprobes arch_arm_kprobe(struct kprobe *p)
121 {
122         *p->addr = BREAKPOINT_INSTRUCTION;
123         flush_icache_range((unsigned long) p->addr,
124                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
125 }
126
127 void __kprobes arch_disarm_kprobe(struct kprobe *p)
128 {
129         *p->addr = p->opcode;
130         flush_icache_range((unsigned long) p->addr,
131                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
132 }
133
134 void __kprobes arch_remove_kprobe(struct kprobe *p)
135 {
136         mutex_lock(&kprobe_mutex);
137         free_insn_slot(p->ainsn.insn);
138         mutex_unlock(&kprobe_mutex);
139 }
140
141 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
142 {
143         kcb->prev_kprobe.kp = kprobe_running();
144         kcb->prev_kprobe.status = kcb->kprobe_status;
145         kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
146         kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
147 }
148
149 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
150 {
151         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
152         kcb->kprobe_status = kcb->prev_kprobe.status;
153         kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
154         kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
155 }
156
157 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
158                                 struct kprobe_ctlblk *kcb)
159 {
160         __get_cpu_var(current_kprobe) = p;
161         kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
162                 = (regs->eflags & (TF_MASK | IF_MASK));
163         if (is_IF_modifier(p->opcode))
164                 kcb->kprobe_saved_eflags &= ~IF_MASK;
165 }
166
167 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
168 {
169         regs->eflags |= TF_MASK;
170         regs->eflags &= ~IF_MASK;
171         /*single step inline if the instruction is an int3*/
172         if (p->opcode == BREAKPOINT_INSTRUCTION)
173                 regs->eip = (unsigned long)p->addr;
174         else
175                 regs->eip = (unsigned long)p->ainsn.insn;
176 }
177
178 /* Called with kretprobe_lock held */
179 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
180                                       struct pt_regs *regs)
181 {
182         unsigned long *sara = (unsigned long *)&regs->esp;
183         struct kretprobe_instance *ri;
184
185         if ((ri = get_free_rp_inst(rp)) != NULL) {
186                 ri->rp = rp;
187                 ri->task = current;
188                 ri->ret_addr = (kprobe_opcode_t *) *sara;
189
190                 /* Replace the return addr with trampoline addr */
191                 *sara = (unsigned long) &kretprobe_trampoline;
192
193                 add_rp_inst(ri);
194         } else {
195                 rp->nmissed++;
196         }
197 }
198
199 /*
200  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
201  * remain disabled thorough out this function.
202  */
203 static int __kprobes kprobe_handler(struct pt_regs *regs)
204 {
205         struct kprobe *p;
206         int ret = 0;
207         kprobe_opcode_t *addr;
208         struct kprobe_ctlblk *kcb;
209 #ifdef CONFIG_PREEMPT
210         unsigned pre_preempt_count = preempt_count();
211 #endif /* CONFIG_PREEMPT */
212
213         addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
214
215         /*
216          * We don't want to be preempted for the entire
217          * duration of kprobe processing
218          */
219         preempt_disable();
220         kcb = get_kprobe_ctlblk();
221
222         /* Check we're not actually recursing */
223         if (kprobe_running()) {
224                 p = get_kprobe(addr);
225                 if (p) {
226                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
227                                 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
228                                 regs->eflags &= ~TF_MASK;
229                                 regs->eflags |= kcb->kprobe_saved_eflags;
230                                 goto no_kprobe;
231                         }
232                         /* We have reentered the kprobe_handler(), since
233                          * another probe was hit while within the handler.
234                          * We here save the original kprobes variables and
235                          * just single step on the instruction of the new probe
236                          * without calling any user handlers.
237                          */
238                         save_previous_kprobe(kcb);
239                         set_current_kprobe(p, regs, kcb);
240                         kprobes_inc_nmissed_count(p);
241                         prepare_singlestep(p, regs);
242                         kcb->kprobe_status = KPROBE_REENTER;
243                         return 1;
244                 } else {
245                         if (*addr != BREAKPOINT_INSTRUCTION) {
246                         /* The breakpoint instruction was removed by
247                          * another cpu right after we hit, no further
248                          * handling of this interrupt is appropriate
249                          */
250                                 regs->eip -= sizeof(kprobe_opcode_t);
251                                 ret = 1;
252                                 goto no_kprobe;
253                         }
254                         p = __get_cpu_var(current_kprobe);
255                         if (p->break_handler && p->break_handler(p, regs)) {
256                                 goto ss_probe;
257                         }
258                 }
259                 goto no_kprobe;
260         }
261
262         p = get_kprobe(addr);
263         if (!p) {
264                 if (*addr != BREAKPOINT_INSTRUCTION) {
265                         /*
266                          * The breakpoint instruction was removed right
267                          * after we hit it.  Another cpu has removed
268                          * either a probepoint or a debugger breakpoint
269                          * at this address.  In either case, no further
270                          * handling of this interrupt is appropriate.
271                          * Back up over the (now missing) int3 and run
272                          * the original instruction.
273                          */
274                         regs->eip -= sizeof(kprobe_opcode_t);
275                         ret = 1;
276                 }
277                 /* Not one of ours: let kernel handle it */
278                 goto no_kprobe;
279         }
280
281         set_current_kprobe(p, regs, kcb);
282         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
283
284         if (p->pre_handler && p->pre_handler(p, regs))
285                 /* handler has already set things up, so skip ss setup */
286                 return 1;
287
288         if (p->ainsn.boostable == 1 &&
289 #ifdef CONFIG_PREEMPT
290             !(pre_preempt_count) && /*
291                                        * This enables booster when the direct
292                                        * execution path aren't preempted.
293                                        */
294 #endif /* CONFIG_PREEMPT */
295             !p->post_handler && !p->break_handler ) {
296                 /* Boost up -- we can execute copied instructions directly */
297                 reset_current_kprobe();
298                 regs->eip = (unsigned long)p->ainsn.insn;
299                 preempt_enable_no_resched();
300                 return 1;
301         }
302
303 ss_probe:
304         prepare_singlestep(p, regs);
305         kcb->kprobe_status = KPROBE_HIT_SS;
306         return 1;
307
308 no_kprobe:
309         preempt_enable_no_resched();
310         return ret;
311 }
312
313 /*
314  * For function-return probes, init_kprobes() establishes a probepoint
315  * here. When a retprobed function returns, this probe is hit and
316  * trampoline_probe_handler() runs, calling the kretprobe's handler.
317  */
318  void __kprobes kretprobe_trampoline_holder(void)
319  {
320         asm volatile ( ".global kretprobe_trampoline\n"
321                         "kretprobe_trampoline: \n"
322                         "       pushf\n"
323                         /* skip cs, eip, orig_eax, es, ds */
324                         "       subl $20, %esp\n"
325                         "       pushl %eax\n"
326                         "       pushl %ebp\n"
327                         "       pushl %edi\n"
328                         "       pushl %esi\n"
329                         "       pushl %edx\n"
330                         "       pushl %ecx\n"
331                         "       pushl %ebx\n"
332                         "       movl %esp, %eax\n"
333                         "       call trampoline_handler\n"
334                         /* move eflags to cs */
335                         "       movl 48(%esp), %edx\n"
336                         "       movl %edx, 44(%esp)\n"
337                         /* save true return address on eflags */
338                         "       movl %eax, 48(%esp)\n"
339                         "       popl %ebx\n"
340                         "       popl %ecx\n"
341                         "       popl %edx\n"
342                         "       popl %esi\n"
343                         "       popl %edi\n"
344                         "       popl %ebp\n"
345                         "       popl %eax\n"
346                         /* skip eip, orig_eax, es, ds */
347                         "       addl $16, %esp\n"
348                         "       popf\n"
349                         "       ret\n");
350 }
351
352 /*
353  * Called from kretprobe_trampoline
354  */
355 fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
356 {
357         struct kretprobe_instance *ri = NULL;
358         struct hlist_head *head;
359         struct hlist_node *node, *tmp;
360         unsigned long flags, orig_ret_address = 0;
361         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
362
363         spin_lock_irqsave(&kretprobe_lock, flags);
364         head = kretprobe_inst_table_head(current);
365
366         /*
367          * It is possible to have multiple instances associated with a given
368          * task either because an multiple functions in the call path
369          * have a return probe installed on them, and/or more then one return
370          * return probe was registered for a target function.
371          *
372          * We can handle this because:
373          *     - instances are always inserted at the head of the list
374          *     - when multiple return probes are registered for the same
375          *       function, the first instance's ret_addr will point to the
376          *       real return address, and all the rest will point to
377          *       kretprobe_trampoline
378          */
379         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
380                 if (ri->task != current)
381                         /* another task is sharing our hash bucket */
382                         continue;
383
384                 if (ri->rp && ri->rp->handler){
385                         __get_cpu_var(current_kprobe) = &ri->rp->kp;
386                         ri->rp->handler(ri, regs);
387                         __get_cpu_var(current_kprobe) = NULL;
388                 }
389
390                 orig_ret_address = (unsigned long)ri->ret_addr;
391                 recycle_rp_inst(ri);
392
393                 if (orig_ret_address != trampoline_address)
394                         /*
395                          * This is the real return address. Any other
396                          * instances associated with this task are for
397                          * other calls deeper on the call stack
398                          */
399                         break;
400         }
401
402         BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
403
404         spin_unlock_irqrestore(&kretprobe_lock, flags);
405
406         return (void*)orig_ret_address;
407 }
408
409 /*
410  * Called after single-stepping.  p->addr is the address of the
411  * instruction whose first byte has been replaced by the "int 3"
412  * instruction.  To avoid the SMP problems that can occur when we
413  * temporarily put back the original opcode to single-step, we
414  * single-stepped a copy of the instruction.  The address of this
415  * copy is p->ainsn.insn.
416  *
417  * This function prepares to return from the post-single-step
418  * interrupt.  We have to fix up the stack as follows:
419  *
420  * 0) Except in the case of absolute or indirect jump or call instructions,
421  * the new eip is relative to the copied instruction.  We need to make
422  * it relative to the original instruction.
423  *
424  * 1) If the single-stepped instruction was pushfl, then the TF and IF
425  * flags are set in the just-pushed eflags, and may need to be cleared.
426  *
427  * 2) If the single-stepped instruction was a call, the return address
428  * that is atop the stack is the address following the copied instruction.
429  * We need to make it the address following the original instruction.
430  *
431  * This function also checks instruction size for preparing direct execution.
432  */
433 static void __kprobes resume_execution(struct kprobe *p,
434                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
435 {
436         unsigned long *tos = (unsigned long *)&regs->esp;
437         unsigned long copy_eip = (unsigned long)p->ainsn.insn;
438         unsigned long orig_eip = (unsigned long)p->addr;
439
440         regs->eflags &= ~TF_MASK;
441         switch (p->ainsn.insn[0]) {
442         case 0x9c:              /* pushfl */
443                 *tos &= ~(TF_MASK | IF_MASK);
444                 *tos |= kcb->kprobe_old_eflags;
445                 break;
446         case 0xc2:              /* iret/ret/lret */
447         case 0xc3:
448         case 0xca:
449         case 0xcb:
450         case 0xcf:
451         case 0xea:              /* jmp absolute -- eip is correct */
452                 /* eip is already adjusted, no more changes required */
453                 p->ainsn.boostable = 1;
454                 goto no_change;
455         case 0xe8:              /* call relative - Fix return addr */
456                 *tos = orig_eip + (*tos - copy_eip);
457                 break;
458         case 0x9a:              /* call absolute -- same as call absolute, indirect */
459                 *tos = orig_eip + (*tos - copy_eip);
460                 goto no_change;
461         case 0xff:
462                 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
463                         /*
464                          * call absolute, indirect
465                          * Fix return addr; eip is correct.
466                          * But this is not boostable
467                          */
468                         *tos = orig_eip + (*tos - copy_eip);
469                         goto no_change;
470                 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) ||       /* jmp near, absolute indirect */
471                            ((p->ainsn.insn[1] & 0x31) == 0x21)) {       /* jmp far, absolute indirect */
472                         /* eip is correct. And this is boostable */
473                         p->ainsn.boostable = 1;
474                         goto no_change;
475                 }
476         default:
477                 break;
478         }
479
480         if (p->ainsn.boostable == 0) {
481                 if ((regs->eip > copy_eip) &&
482                     (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
483                         /*
484                          * These instructions can be executed directly if it
485                          * jumps back to correct address.
486                          */
487                         set_jmp_op((void *)regs->eip,
488                                    (void *)orig_eip + (regs->eip - copy_eip));
489                         p->ainsn.boostable = 1;
490                 } else {
491                         p->ainsn.boostable = -1;
492                 }
493         }
494
495         regs->eip = orig_eip + (regs->eip - copy_eip);
496
497 no_change:
498         return;
499 }
500
501 /*
502  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
503  * remain disabled thoroughout this function.
504  */
505 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
506 {
507         struct kprobe *cur = kprobe_running();
508         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
509
510         if (!cur)
511                 return 0;
512
513         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
514                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
515                 cur->post_handler(cur, regs, 0);
516         }
517
518         resume_execution(cur, regs, kcb);
519         regs->eflags |= kcb->kprobe_saved_eflags;
520
521         /*Restore back the original saved kprobes variables and continue. */
522         if (kcb->kprobe_status == KPROBE_REENTER) {
523                 restore_previous_kprobe(kcb);
524                 goto out;
525         }
526         reset_current_kprobe();
527 out:
528         preempt_enable_no_resched();
529
530         /*
531          * if somebody else is singlestepping across a probe point, eflags
532          * will have TF set, in which case, continue the remaining processing
533          * of do_debug, as if this is not a probe hit.
534          */
535         if (regs->eflags & TF_MASK)
536                 return 0;
537
538         return 1;
539 }
540
541 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
542 {
543         struct kprobe *cur = kprobe_running();
544         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
545
546         switch(kcb->kprobe_status) {
547         case KPROBE_HIT_SS:
548         case KPROBE_REENTER:
549                 /*
550                  * We are here because the instruction being single
551                  * stepped caused a page fault. We reset the current
552                  * kprobe and the eip points back to the probe address
553                  * and allow the page fault handler to continue as a
554                  * normal page fault.
555                  */
556                 regs->eip = (unsigned long)cur->addr;
557                 regs->eflags |= kcb->kprobe_old_eflags;
558                 if (kcb->kprobe_status == KPROBE_REENTER)
559                         restore_previous_kprobe(kcb);
560                 else
561                         reset_current_kprobe();
562                 preempt_enable_no_resched();
563                 break;
564         case KPROBE_HIT_ACTIVE:
565         case KPROBE_HIT_SSDONE:
566                 /*
567                  * We increment the nmissed count for accounting,
568                  * we can also use npre/npostfault count for accouting
569                  * these specific fault cases.
570                  */
571                 kprobes_inc_nmissed_count(cur);
572
573                 /*
574                  * We come here because instructions in the pre/post
575                  * handler caused the page_fault, this could happen
576                  * if handler tries to access user space by
577                  * copy_from_user(), get_user() etc. Let the
578                  * user-specified handler try to fix it first.
579                  */
580                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
581                         return 1;
582
583                 /*
584                  * In case the user-specified fault handler returned
585                  * zero, try to fix up.
586                  */
587                 if (fixup_exception(regs))
588                         return 1;
589
590                 /*
591                  * fixup_exception() could not handle it,
592                  * Let do_page_fault() fix it.
593                  */
594                 break;
595         default:
596                 break;
597         }
598         return 0;
599 }
600
601 /*
602  * Wrapper routine to for handling exceptions.
603  */
604 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
605                                        unsigned long val, void *data)
606 {
607         struct die_args *args = (struct die_args *)data;
608         int ret = NOTIFY_DONE;
609
610         if (args->regs && user_mode(args->regs))
611                 return ret;
612
613         switch (val) {
614         case DIE_INT3:
615                 if (kprobe_handler(args->regs))
616                         ret = NOTIFY_STOP;
617                 break;
618         case DIE_DEBUG:
619                 if (post_kprobe_handler(args->regs))
620                         ret = NOTIFY_STOP;
621                 break;
622         case DIE_GPF:
623         case DIE_PAGE_FAULT:
624                 /* kprobe_running() needs smp_processor_id() */
625                 preempt_disable();
626                 if (kprobe_running() &&
627                     kprobe_fault_handler(args->regs, args->trapnr))
628                         ret = NOTIFY_STOP;
629                 preempt_enable();
630                 break;
631         default:
632                 break;
633         }
634         return ret;
635 }
636
637 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
638 {
639         struct jprobe *jp = container_of(p, struct jprobe, kp);
640         unsigned long addr;
641         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
642
643         kcb->jprobe_saved_regs = *regs;
644         kcb->jprobe_saved_esp = &regs->esp;
645         addr = (unsigned long)(kcb->jprobe_saved_esp);
646
647         /*
648          * TBD: As Linus pointed out, gcc assumes that the callee
649          * owns the argument space and could overwrite it, e.g.
650          * tailcall optimization. So, to be absolutely safe
651          * we also save and restore enough stack bytes to cover
652          * the argument area.
653          */
654         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
655                         MIN_STACK_SIZE(addr));
656         regs->eflags &= ~IF_MASK;
657         regs->eip = (unsigned long)(jp->entry);
658         return 1;
659 }
660
661 void __kprobes jprobe_return(void)
662 {
663         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
664
665         asm volatile ("       xchgl   %%ebx,%%esp     \n"
666                       "       int3                      \n"
667                       "       .globl jprobe_return_end  \n"
668                       "       jprobe_return_end:        \n"
669                       "       nop                       \n"::"b"
670                       (kcb->jprobe_saved_esp):"memory");
671 }
672
673 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
674 {
675         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
676         u8 *addr = (u8 *) (regs->eip - 1);
677         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
678         struct jprobe *jp = container_of(p, struct jprobe, kp);
679
680         if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
681                 if (&regs->esp != kcb->jprobe_saved_esp) {
682                         struct pt_regs *saved_regs =
683                             container_of(kcb->jprobe_saved_esp,
684                                             struct pt_regs, esp);
685                         printk("current esp %p does not match saved esp %p\n",
686                                &regs->esp, kcb->jprobe_saved_esp);
687                         printk("Saved registers for jprobe %p\n", jp);
688                         show_registers(saved_regs);
689                         printk("Current registers\n");
690                         show_registers(regs);
691                         BUG();
692                 }
693                 *regs = kcb->jprobe_saved_regs;
694                 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
695                        MIN_STACK_SIZE(stack_addr));
696                 preempt_enable_no_resched();
697                 return 1;
698         }
699         return 0;
700 }
701
702 int __init arch_init_kprobes(void)
703 {
704         return 0;
705 }