[PATCH] fix missing includes
[sfrench/cifs-2.6.git] / arch / i386 / kernel / cpu / cpufreq / powernow-k8.c
1 /*
2  *   (c) 2003, 2004, 2005 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Support : mark.langsdorf@amd.com
8  *
9  *  Based on the powernow-k7.c module written by Dave Jones.
10  *  (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
12  *  (C) 2004 Pavel Machek <pavel@suse.cz>
13  *  Licensed under the terms of the GNU GPL License version 2.
14  *  Based upon datasheets & sample CPUs kindly provided by AMD.
15  *
16  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
17  *  Dominik Brodowski, and others.
18  *  Originally developed by Paul Devriendt.
19  *  Processor information obtained from Chapter 9 (Power and Thermal Management)
20  *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21  *  Opteron Processors" available for download from www.amd.com
22  *
23  *  Tables for specific CPUs can be infrerred from
24  *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h>        /* for current / set_cpus_allowed() */
36
37 #include <asm/msr.h>
38 #include <asm/io.h>
39 #include <asm/delay.h>
40
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <acpi/processor.h>
44 #endif
45
46 #define PFX "powernow-k8: "
47 #define BFX PFX "BIOS error: "
48 #define VERSION "version 1.50.4"
49 #include "powernow-k8.h"
50
51 /* serialize freq changes  */
52 static DECLARE_MUTEX(fidvid_sem);
53
54 static struct powernow_k8_data *powernow_data[NR_CPUS];
55
56 #ifndef CONFIG_SMP
57 static cpumask_t cpu_core_map[1];
58 #endif
59
60 /* Return a frequency in MHz, given an input fid */
61 static u32 find_freq_from_fid(u32 fid)
62 {
63         return 800 + (fid * 100);
64 }
65
66 /* Return a frequency in KHz, given an input fid */
67 static u32 find_khz_freq_from_fid(u32 fid)
68 {
69         return 1000 * find_freq_from_fid(fid);
70 }
71
72 /* Return a voltage in miliVolts, given an input vid */
73 static u32 find_millivolts_from_vid(struct powernow_k8_data *data, u32 vid)
74 {
75         return 1550-vid*25;
76 }
77
78 /* Return the vco fid for an input fid
79  *
80  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
81  * only from corresponding high fids. This returns "high" fid corresponding to
82  * "low" one.
83  */
84 static u32 convert_fid_to_vco_fid(u32 fid)
85 {
86         if (fid < HI_FID_TABLE_BOTTOM) {
87                 return 8 + (2 * fid);
88         } else {
89                 return fid;
90         }
91 }
92
93 /*
94  * Return 1 if the pending bit is set. Unless we just instructed the processor
95  * to transition to a new state, seeing this bit set is really bad news.
96  */
97 static int pending_bit_stuck(void)
98 {
99         u32 lo, hi;
100
101         rdmsr(MSR_FIDVID_STATUS, lo, hi);
102         return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
103 }
104
105 /*
106  * Update the global current fid / vid values from the status msr.
107  * Returns 1 on error.
108  */
109 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
110 {
111         u32 lo, hi;
112         u32 i = 0;
113
114         do {
115                 if (i++ > 10000) {
116                         dprintk("detected change pending stuck\n");
117                         return 1;
118                 }
119                 rdmsr(MSR_FIDVID_STATUS, lo, hi);
120         } while (lo & MSR_S_LO_CHANGE_PENDING);
121
122         data->currvid = hi & MSR_S_HI_CURRENT_VID;
123         data->currfid = lo & MSR_S_LO_CURRENT_FID;
124
125         return 0;
126 }
127
128 /* the isochronous relief time */
129 static void count_off_irt(struct powernow_k8_data *data)
130 {
131         udelay((1 << data->irt) * 10);
132         return;
133 }
134
135 /* the voltage stabalization time */
136 static void count_off_vst(struct powernow_k8_data *data)
137 {
138         udelay(data->vstable * VST_UNITS_20US);
139         return;
140 }
141
142 /* need to init the control msr to a safe value (for each cpu) */
143 static void fidvid_msr_init(void)
144 {
145         u32 lo, hi;
146         u8 fid, vid;
147
148         rdmsr(MSR_FIDVID_STATUS, lo, hi);
149         vid = hi & MSR_S_HI_CURRENT_VID;
150         fid = lo & MSR_S_LO_CURRENT_FID;
151         lo = fid | (vid << MSR_C_LO_VID_SHIFT);
152         hi = MSR_C_HI_STP_GNT_BENIGN;
153         dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
154         wrmsr(MSR_FIDVID_CTL, lo, hi);
155 }
156
157
158 /* write the new fid value along with the other control fields to the msr */
159 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
160 {
161         u32 lo;
162         u32 savevid = data->currvid;
163         u32 i = 0;
164
165         if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
166                 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
167                 return 1;
168         }
169
170         lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
171
172         dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
173                 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
174
175         do {
176                 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
177                 if (i++ > 100) {
178                         printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
179                         return 1;
180                 }                       
181         } while (query_current_values_with_pending_wait(data));
182
183         count_off_irt(data);
184
185         if (savevid != data->currvid) {
186                 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
187                        savevid, data->currvid);
188                 return 1;
189         }
190
191         if (fid != data->currfid) {
192                 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
193                         data->currfid);
194                 return 1;
195         }
196
197         return 0;
198 }
199
200 /* Write a new vid to the hardware */
201 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
202 {
203         u32 lo;
204         u32 savefid = data->currfid;
205         int i = 0;
206
207         if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
208                 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
209                 return 1;
210         }
211
212         lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
213
214         dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
215                 vid, lo, STOP_GRANT_5NS);
216
217         do {
218                 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
219                 if (i++ > 100) {
220                         printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
221                         return 1;
222                 }
223         } while (query_current_values_with_pending_wait(data));
224
225         if (savefid != data->currfid) {
226                 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
227                        savefid, data->currfid);
228                 return 1;
229         }
230
231         if (vid != data->currvid) {
232                 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
233                                 data->currvid);
234                 return 1;
235         }
236
237         return 0;
238 }
239
240 /*
241  * Reduce the vid by the max of step or reqvid.
242  * Decreasing vid codes represent increasing voltages:
243  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
244  */
245 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
246 {
247         if ((data->currvid - reqvid) > step)
248                 reqvid = data->currvid - step;
249
250         if (write_new_vid(data, reqvid))
251                 return 1;
252
253         count_off_vst(data);
254
255         return 0;
256 }
257
258 /* Change the fid and vid, by the 3 phases. */
259 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
260 {
261         if (core_voltage_pre_transition(data, reqvid))
262                 return 1;
263
264         if (core_frequency_transition(data, reqfid))
265                 return 1;
266
267         if (core_voltage_post_transition(data, reqvid))
268                 return 1;
269
270         if (query_current_values_with_pending_wait(data))
271                 return 1;
272
273         if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
274                 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
275                                 smp_processor_id(),
276                                 reqfid, reqvid, data->currfid, data->currvid);
277                 return 1;
278         }
279
280         dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
281                 smp_processor_id(), data->currfid, data->currvid);
282
283         return 0;
284 }
285
286 /* Phase 1 - core voltage transition ... setup voltage */
287 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
288 {
289         u32 rvosteps = data->rvo;
290         u32 savefid = data->currfid;
291         u32 maxvid, lo;
292
293         dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
294                 smp_processor_id(),
295                 data->currfid, data->currvid, reqvid, data->rvo);
296
297         rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
298         maxvid = 0x1f & (maxvid >> 16);
299         dprintk("ph1 maxvid=0x%x\n", maxvid);
300         if (reqvid < maxvid) /* lower numbers are higher voltages */
301                 reqvid = maxvid;
302
303         while (data->currvid > reqvid) {
304                 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
305                         data->currvid, reqvid);
306                 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
307                         return 1;
308         }
309
310         while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
311                 if (data->currvid == maxvid) {
312                         rvosteps = 0;
313                 } else {
314                         dprintk("ph1: changing vid for rvo, req 0x%x\n",
315                                 data->currvid - 1);
316                         if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
317                                 return 1;
318                         rvosteps--;
319                 }
320         }
321
322         if (query_current_values_with_pending_wait(data))
323                 return 1;
324
325         if (savefid != data->currfid) {
326                 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
327                 return 1;
328         }
329
330         dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
331                 data->currfid, data->currvid);
332
333         return 0;
334 }
335
336 /* Phase 2 - core frequency transition */
337 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
338 {
339         u32 vcoreqfid, vcocurrfid, vcofiddiff, savevid = data->currvid;
340
341         if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
342                 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
343                         reqfid, data->currfid);
344                 return 1;
345         }
346
347         if (data->currfid == reqfid) {
348                 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
349                 return 0;
350         }
351
352         dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
353                 smp_processor_id(),
354                 data->currfid, data->currvid, reqfid);
355
356         vcoreqfid = convert_fid_to_vco_fid(reqfid);
357         vcocurrfid = convert_fid_to_vco_fid(data->currfid);
358         vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
359             : vcoreqfid - vcocurrfid;
360
361         while (vcofiddiff > 2) {
362                 if (reqfid > data->currfid) {
363                         if (data->currfid > LO_FID_TABLE_TOP) {
364                                 if (write_new_fid(data, data->currfid + 2)) {
365                                         return 1;
366                                 }
367                         } else {
368                                 if (write_new_fid
369                                     (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
370                                         return 1;
371                                 }
372                         }
373                 } else {
374                         if (write_new_fid(data, data->currfid - 2))
375                                 return 1;
376                 }
377
378                 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
379                 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
380                     : vcoreqfid - vcocurrfid;
381         }
382
383         if (write_new_fid(data, reqfid))
384                 return 1;
385
386         if (query_current_values_with_pending_wait(data))
387                 return 1;
388
389         if (data->currfid != reqfid) {
390                 printk(KERN_ERR PFX
391                         "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
392                         data->currfid, reqfid);
393                 return 1;
394         }
395
396         if (savevid != data->currvid) {
397                 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
398                         savevid, data->currvid);
399                 return 1;
400         }
401
402         dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
403                 data->currfid, data->currvid);
404
405         return 0;
406 }
407
408 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
409 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
410 {
411         u32 savefid = data->currfid;
412         u32 savereqvid = reqvid;
413
414         dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
415                 smp_processor_id(),
416                 data->currfid, data->currvid);
417
418         if (reqvid != data->currvid) {
419                 if (write_new_vid(data, reqvid))
420                         return 1;
421
422                 if (savefid != data->currfid) {
423                         printk(KERN_ERR PFX
424                                "ph3: bad fid change, save 0x%x, curr 0x%x\n",
425                                savefid, data->currfid);
426                         return 1;
427                 }
428
429                 if (data->currvid != reqvid) {
430                         printk(KERN_ERR PFX
431                                "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
432                                reqvid, data->currvid);
433                         return 1;
434                 }
435         }
436
437         if (query_current_values_with_pending_wait(data))
438                 return 1;
439
440         if (savereqvid != data->currvid) {
441                 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
442                 return 1;
443         }
444
445         if (savefid != data->currfid) {
446                 dprintk("ph3 failed, currfid changed 0x%x\n",
447                         data->currfid);
448                 return 1;
449         }
450
451         dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
452                 data->currfid, data->currvid);
453
454         return 0;
455 }
456
457 static int check_supported_cpu(unsigned int cpu)
458 {
459         cpumask_t oldmask = CPU_MASK_ALL;
460         u32 eax, ebx, ecx, edx;
461         unsigned int rc = 0;
462
463         oldmask = current->cpus_allowed;
464         set_cpus_allowed(current, cpumask_of_cpu(cpu));
465         schedule();
466
467         if (smp_processor_id() != cpu) {
468                 printk(KERN_ERR "limiting to cpu %u failed\n", cpu);
469                 goto out;
470         }
471
472         if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
473                 goto out;
474
475         eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
476         if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
477             ((eax & CPUID_XFAM) != CPUID_XFAM_K8) ||
478             ((eax & CPUID_XMOD) > CPUID_XMOD_REV_F)) {
479                 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
480                 goto out;
481         }
482
483         eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
484         if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
485                 printk(KERN_INFO PFX
486                        "No frequency change capabilities detected\n");
487                 goto out;
488         }
489
490         cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
491         if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
492                 printk(KERN_INFO PFX "Power state transitions not supported\n");
493                 goto out;
494         }
495
496         rc = 1;
497
498 out:
499         set_cpus_allowed(current, oldmask);
500         schedule();
501         return rc;
502
503 }
504
505 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
506 {
507         unsigned int j;
508         u8 lastfid = 0xff;
509
510         for (j = 0; j < data->numps; j++) {
511                 if (pst[j].vid > LEAST_VID) {
512                         printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
513                         return -EINVAL;
514                 }
515                 if (pst[j].vid < data->rvo) {   /* vid + rvo >= 0 */
516                         printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
517                         return -ENODEV;
518                 }
519                 if (pst[j].vid < maxvid + data->rvo) {  /* vid + rvo >= maxvid */
520                         printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
521                         return -ENODEV;
522                 }
523                 if ((pst[j].fid > MAX_FID)
524                     || (pst[j].fid & 1)
525                     || (j && (pst[j].fid < HI_FID_TABLE_BOTTOM))) {
526                         /* Only first fid is allowed to be in "low" range */
527                         printk(KERN_ERR PFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
528                         return -EINVAL;
529                 }
530                 if (pst[j].fid < lastfid)
531                         lastfid = pst[j].fid;
532         }
533         if (lastfid & 1) {
534                 printk(KERN_ERR PFX "lastfid invalid\n");
535                 return -EINVAL;
536         }
537         if (lastfid > LO_FID_TABLE_TOP)
538                 printk(KERN_INFO PFX  "first fid not from lo freq table\n");
539
540         return 0;
541 }
542
543 static void print_basics(struct powernow_k8_data *data)
544 {
545         int j;
546         for (j = 0; j < data->numps; j++) {
547                 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID)
548                         printk(KERN_INFO PFX "   %d : fid 0x%x (%d MHz), vid 0x%x (%d mV)\n", j,
549                                 data->powernow_table[j].index & 0xff,
550                                 data->powernow_table[j].frequency/1000,
551                                 data->powernow_table[j].index >> 8,
552                                 find_millivolts_from_vid(data, data->powernow_table[j].index >> 8));
553         }
554         if (data->batps)
555                 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
556 }
557
558 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
559 {
560         struct cpufreq_frequency_table *powernow_table;
561         unsigned int j;
562
563         if (data->batps) {    /* use ACPI support to get full speed on mains power */
564                 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
565                 data->numps = data->batps;
566         }
567
568         for ( j=1; j<data->numps; j++ ) {
569                 if (pst[j-1].fid >= pst[j].fid) {
570                         printk(KERN_ERR PFX "PST out of sequence\n");
571                         return -EINVAL;
572                 }
573         }
574
575         if (data->numps < 2) {
576                 printk(KERN_ERR PFX "no p states to transition\n");
577                 return -ENODEV;
578         }
579
580         if (check_pst_table(data, pst, maxvid))
581                 return -EINVAL;
582
583         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
584                 * (data->numps + 1)), GFP_KERNEL);
585         if (!powernow_table) {
586                 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
587                 return -ENOMEM;
588         }
589
590         for (j = 0; j < data->numps; j++) {
591                 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
592                 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
593                 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
594         }
595         powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
596         powernow_table[data->numps].index = 0;
597
598         if (query_current_values_with_pending_wait(data)) {
599                 kfree(powernow_table);
600                 return -EIO;
601         }
602
603         dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
604         data->powernow_table = powernow_table;
605         print_basics(data);
606
607         for (j = 0; j < data->numps; j++)
608                 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
609                         return 0;
610
611         dprintk("currfid/vid do not match PST, ignoring\n");
612         return 0;
613 }
614
615 /* Find and validate the PSB/PST table in BIOS. */
616 static int find_psb_table(struct powernow_k8_data *data)
617 {
618         struct psb_s *psb;
619         unsigned int i;
620         u32 mvs;
621         u8 maxvid;
622         u32 cpst = 0;
623         u32 thiscpuid;
624
625         for (i = 0xc0000; i < 0xffff0; i += 0x10) {
626                 /* Scan BIOS looking for the signature. */
627                 /* It can not be at ffff0 - it is too big. */
628
629                 psb = phys_to_virt(i);
630                 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
631                         continue;
632
633                 dprintk("found PSB header at 0x%p\n", psb);
634
635                 dprintk("table vers: 0x%x\n", psb->tableversion);
636                 if (psb->tableversion != PSB_VERSION_1_4) {
637                         printk(KERN_INFO BFX "PSB table is not v1.4\n");
638                         return -ENODEV;
639                 }
640
641                 dprintk("flags: 0x%x\n", psb->flags1);
642                 if (psb->flags1) {
643                         printk(KERN_ERR BFX "unknown flags\n");
644                         return -ENODEV;
645                 }
646
647                 data->vstable = psb->vstable;
648                 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
649
650                 dprintk("flags2: 0x%x\n", psb->flags2);
651                 data->rvo = psb->flags2 & 3;
652                 data->irt = ((psb->flags2) >> 2) & 3;
653                 mvs = ((psb->flags2) >> 4) & 3;
654                 data->vidmvs = 1 << mvs;
655                 data->batps = ((psb->flags2) >> 6) & 3;
656
657                 dprintk("ramp voltage offset: %d\n", data->rvo);
658                 dprintk("isochronous relief time: %d\n", data->irt);
659                 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
660
661                 dprintk("numpst: 0x%x\n", psb->num_tables);
662                 cpst = psb->num_tables;
663                 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
664                         thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
665                         if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
666                                 cpst = 1;
667                         }
668                 }
669                 if (cpst != 1) {
670                         printk(KERN_ERR BFX "numpst must be 1\n");
671                         return -ENODEV;
672                 }
673
674                 data->plllock = psb->plllocktime;
675                 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
676                 dprintk("maxfid: 0x%x\n", psb->maxfid);
677                 dprintk("maxvid: 0x%x\n", psb->maxvid);
678                 maxvid = psb->maxvid;
679
680                 data->numps = psb->numps;
681                 dprintk("numpstates: 0x%x\n", data->numps);
682                 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
683         }
684         /*
685          * If you see this message, complain to BIOS manufacturer. If
686          * he tells you "we do not support Linux" or some similar
687          * nonsense, remember that Windows 2000 uses the same legacy
688          * mechanism that the old Linux PSB driver uses. Tell them it
689          * is broken with Windows 2000.
690          *
691          * The reference to the AMD documentation is chapter 9 in the
692          * BIOS and Kernel Developer's Guide, which is available on
693          * www.amd.com
694          */
695         printk(KERN_INFO PFX "BIOS error - no PSB or ACPI _PSS objects\n");
696         return -ENODEV;
697 }
698
699 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
700 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
701 {
702         if (!data->acpi_data.state_count)
703                 return;
704
705         data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
706         data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
707         data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
708         data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
709         data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
710         data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
711 }
712
713 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
714 {
715         int i;
716         int cntlofreq = 0;
717         struct cpufreq_frequency_table *powernow_table;
718
719         if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
720                 dprintk("register performance failed: bad ACPI data\n");
721                 return -EIO;
722         }
723
724         /* verify the data contained in the ACPI structures */
725         if (data->acpi_data.state_count <= 1) {
726                 dprintk("No ACPI P-States\n");
727                 goto err_out;
728         }
729
730         if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
731                 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
732                 dprintk("Invalid control/status registers (%x - %x)\n",
733                         data->acpi_data.control_register.space_id,
734                         data->acpi_data.status_register.space_id);
735                 goto err_out;
736         }
737
738         /* fill in data->powernow_table */
739         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
740                 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
741         if (!powernow_table) {
742                 dprintk("powernow_table memory alloc failure\n");
743                 goto err_out;
744         }
745
746         for (i = 0; i < data->acpi_data.state_count; i++) {
747                 u32 fid;
748                 u32 vid;
749
750                 if (data->exttype) {
751                         fid = data->acpi_data.states[i].status & FID_MASK;
752                         vid = (data->acpi_data.states[i].status >> VID_SHIFT) & VID_MASK;
753                 } else {
754                         fid = data->acpi_data.states[i].control & FID_MASK;
755                         vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
756                 }
757
758                 dprintk("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
759
760                 powernow_table[i].index = fid; /* lower 8 bits */
761                 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
762                 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
763
764                 /* verify frequency is OK */
765                 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
766                         (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
767                         dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
768                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
769                         continue;
770                 }
771
772                 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
773                 if (vid == VID_OFF) {
774                         dprintk("invalid vid %u, ignoring\n", vid);
775                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
776                         continue;
777                 }
778
779                 /* verify only 1 entry from the lo frequency table */
780                 if (fid < HI_FID_TABLE_BOTTOM) {
781                         if (cntlofreq) {
782                                 /* if both entries are the same, ignore this
783                                  * one... 
784                                  */
785                                 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
786                                     (powernow_table[i].index != powernow_table[cntlofreq].index)) {
787                                         printk(KERN_ERR PFX "Too many lo freq table entries\n");
788                                         goto err_out_mem;
789                                 }
790
791                                 dprintk("double low frequency table entry, ignoring it.\n");
792                                 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
793                                 continue;
794                         } else
795                                 cntlofreq = i;
796                 }
797
798                 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
799                         printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
800                                 powernow_table[i].frequency,
801                                 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
802                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
803                         continue;
804                 }
805         }
806
807         powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
808         powernow_table[data->acpi_data.state_count].index = 0;
809         data->powernow_table = powernow_table;
810
811         /* fill in data */
812         data->numps = data->acpi_data.state_count;
813         print_basics(data);
814         powernow_k8_acpi_pst_values(data, 0);
815
816         /* notify BIOS that we exist */
817         acpi_processor_notify_smm(THIS_MODULE);
818
819         return 0;
820
821 err_out_mem:
822         kfree(powernow_table);
823
824 err_out:
825         acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
826
827         /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
828         data->acpi_data.state_count = 0;
829
830         return -ENODEV;
831 }
832
833 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
834 {
835         if (data->acpi_data.state_count)
836                 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
837 }
838
839 #else
840 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
841 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
842 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
843 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
844
845 /* Take a frequency, and issue the fid/vid transition command */
846 static int transition_frequency(struct powernow_k8_data *data, unsigned int index)
847 {
848         u32 fid;
849         u32 vid;
850         int res, i;
851         struct cpufreq_freqs freqs;
852
853         dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
854
855         /* fid are the lower 8 bits of the index we stored into
856          * the cpufreq frequency table in find_psb_table, vid are 
857          * the upper 8 bits.
858          */
859
860         fid = data->powernow_table[index].index & 0xFF;
861         vid = (data->powernow_table[index].index & 0xFF00) >> 8;
862
863         dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
864
865         if (query_current_values_with_pending_wait(data))
866                 return 1;
867
868         if ((data->currvid == vid) && (data->currfid == fid)) {
869                 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
870                         fid, vid);
871                 return 0;
872         }
873
874         if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
875                 printk(KERN_ERR PFX
876                        "ignoring illegal change in lo freq table-%x to 0x%x\n",
877                        data->currfid, fid);
878                 return 1;
879         }
880
881         dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
882                 smp_processor_id(), fid, vid);
883
884         freqs.cpu = data->cpu;
885         freqs.old = find_khz_freq_from_fid(data->currfid);
886         freqs.new = find_khz_freq_from_fid(fid);
887         for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
888                 freqs.cpu = i;
889                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
890         }
891
892         res = transition_fid_vid(data, fid, vid);
893
894         freqs.new = find_khz_freq_from_fid(data->currfid);
895         for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
896                 freqs.cpu = i;
897                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
898         }
899         return res;
900 }
901
902 /* Driver entry point to switch to the target frequency */
903 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
904 {
905         cpumask_t oldmask = CPU_MASK_ALL;
906         struct powernow_k8_data *data = powernow_data[pol->cpu];
907         u32 checkfid = data->currfid;
908         u32 checkvid = data->currvid;
909         unsigned int newstate;
910         int ret = -EIO;
911         int i;
912
913         /* only run on specific CPU from here on */
914         oldmask = current->cpus_allowed;
915         set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
916         schedule();
917
918         if (smp_processor_id() != pol->cpu) {
919                 printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu);
920                 goto err_out;
921         }
922
923         if (pending_bit_stuck()) {
924                 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
925                 goto err_out;
926         }
927
928         dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
929                 pol->cpu, targfreq, pol->min, pol->max, relation);
930
931         if (query_current_values_with_pending_wait(data)) {
932                 ret = -EIO;
933                 goto err_out;
934         }
935
936         dprintk("targ: curr fid 0x%x, vid 0x%x\n",
937                 data->currfid, data->currvid);
938
939         if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
940                 printk(KERN_INFO PFX
941                         "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
942                         checkfid, data->currfid, checkvid, data->currvid);
943         }
944
945         if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
946                 goto err_out;
947
948         down(&fidvid_sem);
949
950         powernow_k8_acpi_pst_values(data, newstate);
951
952         if (transition_frequency(data, newstate)) {
953                 printk(KERN_ERR PFX "transition frequency failed\n");
954                 ret = 1;
955                 up(&fidvid_sem);
956                 goto err_out;
957         }
958
959         /* Update all the fid/vids of our siblings */
960         for_each_cpu_mask(i, cpu_core_map[pol->cpu]) {
961                 powernow_data[i]->currvid = data->currvid;
962                 powernow_data[i]->currfid = data->currfid;
963         }       
964         up(&fidvid_sem);
965
966         pol->cur = find_khz_freq_from_fid(data->currfid);
967         ret = 0;
968
969 err_out:
970         set_cpus_allowed(current, oldmask);
971         schedule();
972
973         return ret;
974 }
975
976 /* Driver entry point to verify the policy and range of frequencies */
977 static int powernowk8_verify(struct cpufreq_policy *pol)
978 {
979         struct powernow_k8_data *data = powernow_data[pol->cpu];
980
981         return cpufreq_frequency_table_verify(pol, data->powernow_table);
982 }
983
984 /* per CPU init entry point to the driver */
985 static int __init powernowk8_cpu_init(struct cpufreq_policy *pol)
986 {
987         struct powernow_k8_data *data;
988         cpumask_t oldmask = CPU_MASK_ALL;
989         int rc, i;
990
991         if (!check_supported_cpu(pol->cpu))
992                 return -ENODEV;
993
994         data = kmalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
995         if (!data) {
996                 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
997                 return -ENOMEM;
998         }
999         memset(data,0,sizeof(struct powernow_k8_data));
1000
1001         data->cpu = pol->cpu;
1002
1003         if (powernow_k8_cpu_init_acpi(data)) {
1004                 /*
1005                  * Use the PSB BIOS structure. This is only availabe on
1006                  * an UP version, and is deprecated by AMD.
1007                  */
1008
1009                 if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) {
1010                         printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
1011                         kfree(data);
1012                         return -ENODEV;
1013                 }
1014                 if (pol->cpu != 0) {
1015                         printk(KERN_ERR PFX "init not cpu 0\n");
1016                         kfree(data);
1017                         return -ENODEV;
1018                 }
1019                 rc = find_psb_table(data);
1020                 if (rc) {
1021                         kfree(data);
1022                         return -ENODEV;
1023                 }
1024         }
1025
1026         /* only run on specific CPU from here on */
1027         oldmask = current->cpus_allowed;
1028         set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1029         schedule();
1030
1031         if (smp_processor_id() != pol->cpu) {
1032                 printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu);
1033                 goto err_out;
1034         }
1035
1036         if (pending_bit_stuck()) {
1037                 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1038                 goto err_out;
1039         }
1040
1041         if (query_current_values_with_pending_wait(data))
1042                 goto err_out;
1043
1044         fidvid_msr_init();
1045
1046         /* run on any CPU again */
1047         set_cpus_allowed(current, oldmask);
1048         schedule();
1049
1050         pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
1051         pol->cpus = cpu_core_map[pol->cpu];
1052
1053         /* Take a crude guess here. 
1054          * That guess was in microseconds, so multiply with 1000 */
1055         pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1056             + (3 * (1 << data->irt) * 10)) * 1000;
1057
1058         pol->cur = find_khz_freq_from_fid(data->currfid);
1059         dprintk("policy current frequency %d kHz\n", pol->cur);
1060
1061         /* min/max the cpu is capable of */
1062         if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1063                 printk(KERN_ERR PFX "invalid powernow_table\n");
1064                 powernow_k8_cpu_exit_acpi(data);
1065                 kfree(data->powernow_table);
1066                 kfree(data);
1067                 return -EINVAL;
1068         }
1069
1070         cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1071
1072         printk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1073                data->currfid, data->currvid);
1074
1075         for_each_cpu_mask(i, cpu_core_map[pol->cpu]) {
1076                 powernow_data[i] = data;
1077         }
1078
1079         return 0;
1080
1081 err_out:
1082         set_cpus_allowed(current, oldmask);
1083         schedule();
1084         powernow_k8_cpu_exit_acpi(data);
1085
1086         kfree(data);
1087         return -ENODEV;
1088 }
1089
1090 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1091 {
1092         struct powernow_k8_data *data = powernow_data[pol->cpu];
1093
1094         if (!data)
1095                 return -EINVAL;
1096
1097         powernow_k8_cpu_exit_acpi(data);
1098
1099         cpufreq_frequency_table_put_attr(pol->cpu);
1100
1101         kfree(data->powernow_table);
1102         kfree(data);
1103
1104         return 0;
1105 }
1106
1107 static unsigned int powernowk8_get (unsigned int cpu)
1108 {
1109         struct powernow_k8_data *data = powernow_data[cpu];
1110         cpumask_t oldmask = current->cpus_allowed;
1111         unsigned int khz = 0;
1112
1113         set_cpus_allowed(current, cpumask_of_cpu(cpu));
1114         if (smp_processor_id() != cpu) {
1115                 printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu);
1116                 set_cpus_allowed(current, oldmask);
1117                 return 0;
1118         }
1119         preempt_disable();
1120         
1121         if (query_current_values_with_pending_wait(data))
1122                 goto out;
1123
1124         khz = find_khz_freq_from_fid(data->currfid);
1125
1126  out:
1127         preempt_enable_no_resched();
1128         set_cpus_allowed(current, oldmask);
1129
1130         return khz;
1131 }
1132
1133 static struct freq_attr* powernow_k8_attr[] = {
1134         &cpufreq_freq_attr_scaling_available_freqs,
1135         NULL,
1136 };
1137
1138 static struct cpufreq_driver cpufreq_amd64_driver = {
1139         .verify = powernowk8_verify,
1140         .target = powernowk8_target,
1141         .init = powernowk8_cpu_init,
1142         .exit = __devexit_p(powernowk8_cpu_exit),
1143         .get = powernowk8_get,
1144         .name = "powernow-k8",
1145         .owner = THIS_MODULE,
1146         .attr = powernow_k8_attr,
1147 };
1148
1149 /* driver entry point for init */
1150 static int __init powernowk8_init(void)
1151 {
1152         unsigned int i, supported_cpus = 0;
1153
1154         for (i=0; i<NR_CPUS; i++) {
1155                 if (!cpu_online(i))
1156                         continue;
1157                 if (check_supported_cpu(i))
1158                         supported_cpus++;
1159         }
1160
1161         if (supported_cpus == num_online_cpus()) {
1162                 printk(KERN_INFO PFX "Found %d AMD Athlon 64 / Opteron processors (" VERSION ")\n",
1163                         supported_cpus);
1164                 return cpufreq_register_driver(&cpufreq_amd64_driver);
1165         }
1166
1167         return -ENODEV;
1168 }
1169
1170 /* driver entry point for term */
1171 static void __exit powernowk8_exit(void)
1172 {
1173         dprintk("exit\n");
1174
1175         cpufreq_unregister_driver(&cpufreq_amd64_driver);
1176 }
1177
1178 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com.");
1179 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1180 MODULE_LICENSE("GPL");
1181
1182 late_initcall(powernowk8_init);
1183 module_exit(powernowk8_exit);
1184