HSI: hsi_char: Delete an error message for a failed memory allocation in hsc_probe()
[sfrench/cifs-2.6.git] / arch / cris / arch-v32 / mach-a3 / arbiter.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory arbiter functions. Allocates bandwidth through the
4  * arbiter and sets up arbiter breakpoints.
5  *
6  * The algorithm first assigns slots to the clients that has specified
7  * bandwidth (e.g. ethernet) and then the remaining slots are divided
8  * on all the active clients.
9  *
10  * Copyright (c) 2004-2007 Axis Communications AB.
11  *
12  * The artpec-3 has two arbiters. The memory hierarchy looks like this:
13  *
14  *
15  * CPU DMAs
16  *  |   |
17  *  |   |
18  * --------------    ------------------
19  * | foo arbiter|----| Internal memory|
20  * --------------    ------------------
21  *      |
22  * --------------
23  * | L2 cache   |
24  * --------------
25  *             |
26  * h264 etc    |
27  *    |        |
28  *    |        |
29  * --------------
30  * | bar arbiter|
31  * --------------
32  *       |
33  * ---------
34  * | SDRAM |
35  * ---------
36  *
37  */
38
39 #include <hwregs/reg_map.h>
40 #include <hwregs/reg_rdwr.h>
41 #include <hwregs/marb_foo_defs.h>
42 #include <hwregs/marb_bar_defs.h>
43 #include <arbiter.h>
44 #include <hwregs/intr_vect.h>
45 #include <linux/interrupt.h>
46 #include <linux/irq.h>
47 #include <linux/signal.h>
48 #include <linux/errno.h>
49 #include <linux/spinlock.h>
50 #include <asm/io.h>
51 #include <asm/irq_regs.h>
52
53 #define D(x)
54
55 struct crisv32_watch_entry {
56   unsigned long instance;
57   watch_callback *cb;
58   unsigned long start;
59   unsigned long end;
60   int used;
61 };
62
63 #define NUMBER_OF_BP 4
64 #define SDRAM_BANDWIDTH 400000000
65 #define INTMEM_BANDWIDTH 400000000
66 #define NBR_OF_SLOTS 64
67 #define NBR_OF_REGIONS 2
68 #define NBR_OF_CLIENTS 15
69 #define ARBITERS 2
70 #define UNASSIGNED 100
71
72 struct arbiter {
73   unsigned long instance;
74   int nbr_regions;
75   int nbr_clients;
76   int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
77   int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
78 };
79
80 static struct crisv32_watch_entry watches[ARBITERS][NUMBER_OF_BP] =
81 {
82   {
83   {regi_marb_foo_bp0},
84   {regi_marb_foo_bp1},
85   {regi_marb_foo_bp2},
86   {regi_marb_foo_bp3}
87   },
88   {
89   {regi_marb_bar_bp0},
90   {regi_marb_bar_bp1},
91   {regi_marb_bar_bp2},
92   {regi_marb_bar_bp3}
93   }
94 };
95
96 struct arbiter arbiters[ARBITERS] =
97 {
98   { /* L2 cache arbiter */
99     .instance = regi_marb_foo,
100     .nbr_regions = 2,
101     .nbr_clients = 15
102   },
103   { /* DDR2 arbiter */
104     .instance = regi_marb_bar,
105     .nbr_regions = 1,
106     .nbr_clients = 9
107   }
108 };
109
110 static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH};
111
112 DEFINE_SPINLOCK(arbiter_lock);
113
114 static irqreturn_t
115 crisv32_foo_arbiter_irq(int irq, void *dev_id);
116 static irqreturn_t
117 crisv32_bar_arbiter_irq(int irq, void *dev_id);
118
119 /*
120  * "I'm the arbiter, I know the score.
121  *  From square one I'll be watching all 64."
122  * (memory arbiter slots, that is)
123  *
124  *  Or in other words:
125  * Program the memory arbiter slots for "region" according to what's
126  * in requested_slots[] and active_clients[], while minimizing
127  * latency. A caller may pass a non-zero positive amount for
128  * "unused_slots", which must then be the unallocated, remaining
129  * number of slots, free to hand out to any client.
130  */
131
132 static void crisv32_arbiter_config(int arbiter, int region, int unused_slots)
133 {
134         int slot;
135         int client;
136         int interval = 0;
137
138         /*
139          * This vector corresponds to the hardware arbiter slots (see
140          * the hardware documentation for semantics). We initialize
141          * each slot with a suitable sentinel value outside the valid
142          * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
143          * client indexes. Then it's fed to the hardware.
144          */
145         s8 val[NBR_OF_SLOTS];
146
147         for (slot = 0; slot < NBR_OF_SLOTS; slot++)
148             val[slot] = -1;
149
150         for (client = 0; client < arbiters[arbiter].nbr_clients; client++) {
151             int pos;
152             /* Allocate the requested non-zero number of slots, but
153              * also give clients with zero-requests one slot each
154              * while stocks last. We do the latter here, in client
155              * order. This makes sure zero-request clients are the
156              * first to get to any spare slots, else those slots
157              * could, when bandwidth is allocated close to the limit,
158              * all be allocated to low-index non-zero-request clients
159              * in the default-fill loop below. Another positive but
160              * secondary effect is a somewhat better spread of the
161              * zero-bandwidth clients in the vector, avoiding some of
162              * the latency that could otherwise be caused by the
163              * partitioning of non-zero-bandwidth clients at low
164              * indexes and zero-bandwidth clients at high
165              * indexes. (Note that this spreading can only affect the
166              * unallocated bandwidth.)  All the above only matters for
167              * memory-intensive situations, of course.
168              */
169             if (!arbiters[arbiter].requested_slots[region][client]) {
170                 /*
171                  * Skip inactive clients. Also skip zero-slot
172                  * allocations in this pass when there are no known
173                  * free slots.
174                  */
175                 if (!arbiters[arbiter].active_clients[region][client] ||
176                                 unused_slots <= 0)
177                         continue;
178
179                 unused_slots--;
180
181                 /* Only allocate one slot for this client. */
182                 interval = NBR_OF_SLOTS;
183             } else
184                 interval = NBR_OF_SLOTS /
185                         arbiters[arbiter].requested_slots[region][client];
186
187             pos = 0;
188             while (pos < NBR_OF_SLOTS) {
189                 if (val[pos] >= 0)
190                    pos++;
191                 else {
192                         val[pos] = client;
193                         pos += interval;
194                 }
195             }
196         }
197
198         client = 0;
199         for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
200                 /*
201                  * Allocate remaining slots in round-robin
202                  * client-number order for active clients. For this
203                  * pass, we ignore requested bandwidth and previous
204                  * allocations.
205                  */
206                 if (val[slot] < 0) {
207                         int first = client;
208                         while (!arbiters[arbiter].active_clients[region][client]) {
209                                 client = (client + 1) %
210                                         arbiters[arbiter].nbr_clients;
211                                 if (client == first)
212                                    break;
213                         }
214                         val[slot] = client;
215                         client = (client + 1) % arbiters[arbiter].nbr_clients;
216                 }
217                 if (arbiter == 0) {
218                         if (region == EXT_REGION)
219                                 REG_WR_INT_VECT(marb_foo, regi_marb_foo,
220                                         rw_l2_slots, slot, val[slot]);
221                         else if (region == INT_REGION)
222                                 REG_WR_INT_VECT(marb_foo, regi_marb_foo,
223                                         rw_intm_slots, slot, val[slot]);
224                 } else {
225                         REG_WR_INT_VECT(marb_bar, regi_marb_bar,
226                                 rw_ddr2_slots, slot, val[slot]);
227                 }
228         }
229 }
230
231 extern char _stext[], _etext[];
232
233 static void crisv32_arbiter_init(void)
234 {
235         static int initialized;
236
237         if (initialized)
238                 return;
239
240         initialized = 1;
241
242         /*
243          * CPU caches are always set to active, but with zero
244          * bandwidth allocated. It should be ok to allocate zero
245          * bandwidth for the caches, because DMA for other channels
246          * will supposedly finish, once their programmed amount is
247          * done, and then the caches will get access according to the
248          * "fixed scheme" for unclaimed slots. Though, if for some
249          * use-case somewhere, there's a maximum CPU latency for
250          * e.g. some interrupt, we have to start allocating specific
251          * bandwidth for the CPU caches too.
252          */
253         arbiters[0].active_clients[EXT_REGION][11] = 1;
254         arbiters[0].active_clients[EXT_REGION][12] = 1;
255         crisv32_arbiter_config(0, EXT_REGION, 0);
256         crisv32_arbiter_config(0, INT_REGION, 0);
257         crisv32_arbiter_config(1, EXT_REGION, 0);
258
259         if (request_irq(MEMARB_FOO_INTR_VECT, crisv32_foo_arbiter_irq,
260                         0, "arbiter", NULL))
261                 printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
262
263         if (request_irq(MEMARB_BAR_INTR_VECT, crisv32_bar_arbiter_irq,
264                         0, "arbiter", NULL))
265                 printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
266
267 #ifndef CONFIG_ETRAX_KGDB
268         /* Global watch for writes to kernel text segment. */
269         crisv32_arbiter_watch(virt_to_phys(_stext), _etext - _stext,
270                 MARB_CLIENTS(arbiter_all_clients, arbiter_bar_all_clients),
271                               arbiter_all_write, NULL);
272 #endif
273
274         /* Set up max burst sizes by default */
275         REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_rd_burst, 3);
276         REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_wr_burst, 3);
277         REG_WR_INT(marb_bar, regi_marb_bar, rw_ccd_burst, 3);
278         REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_wr_burst, 3);
279         REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_rd_burst, 3);
280         REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_rd_burst, 3);
281         REG_WR_INT(marb_bar, regi_marb_bar, rw_vout_burst, 3);
282         REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_fifo_burst, 3);
283         REG_WR_INT(marb_bar, regi_marb_bar, rw_l2cache_burst, 3);
284 }
285
286 int crisv32_arbiter_allocate_bandwidth(int client, int region,
287                                       unsigned long bandwidth)
288 {
289         int i;
290         int total_assigned = 0;
291         int total_clients = 0;
292         int req;
293         int arbiter = 0;
294
295         crisv32_arbiter_init();
296
297         if (client & 0xffff0000) {
298                 arbiter = 1;
299                 client >>= 16;
300         }
301
302         for (i = 0; i < arbiters[arbiter].nbr_clients; i++) {
303                 total_assigned += arbiters[arbiter].requested_slots[region][i];
304                 total_clients += arbiters[arbiter].active_clients[region][i];
305         }
306
307         /* Avoid division by 0 for 0-bandwidth requests. */
308         req = bandwidth == 0
309                 ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
310
311         /*
312          * We make sure that there are enough slots only for non-zero
313          * requests. Requesting 0 bandwidth *may* allocate slots,
314          * though if all bandwidth is allocated, such a client won't
315          * get any and will have to rely on getting memory access
316          * according to the fixed scheme that's the default when one
317          * of the slot-allocated clients doesn't claim their slot.
318          */
319         if (total_assigned + req > NBR_OF_SLOTS)
320            return -ENOMEM;
321
322         arbiters[arbiter].active_clients[region][client] = 1;
323         arbiters[arbiter].requested_slots[region][client] = req;
324         crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned);
325
326         /* Propagate allocation from foo to bar */
327         if (arbiter == 0)
328                 crisv32_arbiter_allocate_bandwidth(8 << 16,
329                         EXT_REGION, bandwidth);
330         return 0;
331 }
332
333 /*
334  * Main entry for bandwidth deallocation.
335  *
336  * Strictly speaking, for a somewhat constant set of clients where
337  * each client gets a constant bandwidth and is just enabled or
338  * disabled (somewhat dynamically), no action is necessary here to
339  * avoid starvation for non-zero-allocation clients, as the allocated
340  * slots will just be unused. However, handing out those unused slots
341  * to active clients avoids needless latency if the "fixed scheme"
342  * would give unclaimed slots to an eager low-index client.
343  */
344
345 void crisv32_arbiter_deallocate_bandwidth(int client, int region)
346 {
347         int i;
348         int total_assigned = 0;
349         int arbiter = 0;
350
351         if (client & 0xffff0000)
352                 arbiter = 1;
353
354         arbiters[arbiter].requested_slots[region][client] = 0;
355         arbiters[arbiter].active_clients[region][client] = 0;
356
357         for (i = 0; i < arbiters[arbiter].nbr_clients; i++)
358                 total_assigned += arbiters[arbiter].requested_slots[region][i];
359
360         crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned);
361 }
362
363 int crisv32_arbiter_watch(unsigned long start, unsigned long size,
364                           unsigned long clients, unsigned long accesses,
365                           watch_callback *cb)
366 {
367         int i;
368         int arbiter;
369         int used[2];
370         int ret = 0;
371
372         crisv32_arbiter_init();
373
374         if (start > 0x80000000) {
375                 printk(KERN_ERR "Arbiter: %lX doesn't look like a "
376                         "physical address", start);
377                 return -EFAULT;
378         }
379
380         spin_lock(&arbiter_lock);
381
382         if (clients & 0xffff)
383                 used[0] = 1;
384         if (clients & 0xffff0000)
385                 used[1] = 1;
386
387         for (arbiter = 0; arbiter < ARBITERS; arbiter++) {
388                 if (!used[arbiter])
389                         continue;
390
391                 for (i = 0; i < NUMBER_OF_BP; i++) {
392                         if (!watches[arbiter][i].used) {
393                                 unsigned intr_mask;
394                                 if (arbiter)
395                                         intr_mask = REG_RD_INT(marb_bar,
396                                                 regi_marb_bar, rw_intr_mask);
397                                 else
398                                         intr_mask = REG_RD_INT(marb_foo,
399                                                 regi_marb_foo, rw_intr_mask);
400
401                                 watches[arbiter][i].used = 1;
402                                 watches[arbiter][i].start = start;
403                                 watches[arbiter][i].end = start + size;
404                                 watches[arbiter][i].cb = cb;
405
406                                 ret |= (i + 1) << (arbiter + 8);
407                                 if (arbiter) {
408                                         REG_WR_INT(marb_bar_bp,
409                                                 watches[arbiter][i].instance,
410                                                 rw_first_addr,
411                                                 watches[arbiter][i].start);
412                                         REG_WR_INT(marb_bar_bp,
413                                                 watches[arbiter][i].instance,
414                                                 rw_last_addr,
415                                                 watches[arbiter][i].end);
416                                         REG_WR_INT(marb_bar_bp,
417                                                 watches[arbiter][i].instance,
418                                                 rw_op, accesses);
419                                         REG_WR_INT(marb_bar_bp,
420                                                 watches[arbiter][i].instance,
421                                                 rw_clients,
422                                                 clients & 0xffff);
423                                 } else {
424                                         REG_WR_INT(marb_foo_bp,
425                                                 watches[arbiter][i].instance,
426                                                 rw_first_addr,
427                                                 watches[arbiter][i].start);
428                                         REG_WR_INT(marb_foo_bp,
429                                                 watches[arbiter][i].instance,
430                                                 rw_last_addr,
431                                                 watches[arbiter][i].end);
432                                         REG_WR_INT(marb_foo_bp,
433                                                 watches[arbiter][i].instance,
434                                                 rw_op, accesses);
435                                         REG_WR_INT(marb_foo_bp,
436                                                 watches[arbiter][i].instance,
437                                                 rw_clients, clients >> 16);
438                                 }
439
440                                 if (i == 0)
441                                         intr_mask |= 1;
442                                 else if (i == 1)
443                                         intr_mask |= 2;
444                                 else if (i == 2)
445                                         intr_mask |= 4;
446                                 else if (i == 3)
447                                         intr_mask |= 8;
448
449                                 if (arbiter)
450                                         REG_WR_INT(marb_bar, regi_marb_bar,
451                                                 rw_intr_mask, intr_mask);
452                                 else
453                                         REG_WR_INT(marb_foo, regi_marb_foo,
454                                                 rw_intr_mask, intr_mask);
455
456                                 spin_unlock(&arbiter_lock);
457
458                                 break;
459                         }
460                 }
461         }
462         spin_unlock(&arbiter_lock);
463         if (ret)
464                 return ret;
465         else
466                 return -ENOMEM;
467 }
468
469 int crisv32_arbiter_unwatch(int id)
470 {
471         int arbiter;
472         int intr_mask;
473
474         crisv32_arbiter_init();
475
476         spin_lock(&arbiter_lock);
477
478         for (arbiter = 0; arbiter < ARBITERS; arbiter++) {
479                 int id2;
480
481                 if (arbiter)
482                         intr_mask = REG_RD_INT(marb_bar, regi_marb_bar,
483                                 rw_intr_mask);
484                 else
485                         intr_mask = REG_RD_INT(marb_foo, regi_marb_foo,
486                                 rw_intr_mask);
487
488                 id2 = (id & (0xff << (arbiter + 8))) >> (arbiter + 8);
489                 if (id2 == 0)
490                         continue;
491                 id2--;
492                 if ((id2 >= NUMBER_OF_BP) || (!watches[arbiter][id2].used)) {
493                         spin_unlock(&arbiter_lock);
494                         return -EINVAL;
495                 }
496
497                 memset(&watches[arbiter][id2], 0,
498                         sizeof(struct crisv32_watch_entry));
499
500                 if (id2 == 0)
501                         intr_mask &= ~1;
502                 else if (id2 == 1)
503                         intr_mask &= ~2;
504                 else if (id2 == 2)
505                         intr_mask &= ~4;
506                 else if (id2 == 3)
507                         intr_mask &= ~8;
508
509                 if (arbiter)
510                         REG_WR_INT(marb_bar, regi_marb_bar, rw_intr_mask,
511                                 intr_mask);
512                 else
513                         REG_WR_INT(marb_foo, regi_marb_foo, rw_intr_mask,
514                                 intr_mask);
515         }
516
517         spin_unlock(&arbiter_lock);
518         return 0;
519 }
520
521 extern void show_registers(struct pt_regs *regs);
522
523
524 static irqreturn_t
525 crisv32_foo_arbiter_irq(int irq, void *dev_id)
526 {
527         reg_marb_foo_r_masked_intr masked_intr =
528                 REG_RD(marb_foo, regi_marb_foo, r_masked_intr);
529         reg_marb_foo_bp_r_brk_clients r_clients;
530         reg_marb_foo_bp_r_brk_addr r_addr;
531         reg_marb_foo_bp_r_brk_op r_op;
532         reg_marb_foo_bp_r_brk_first_client r_first;
533         reg_marb_foo_bp_r_brk_size r_size;
534         reg_marb_foo_bp_rw_ack ack = {0};
535         reg_marb_foo_rw_ack_intr ack_intr = {
536                 .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
537         };
538         struct crisv32_watch_entry *watch;
539         unsigned arbiter = (unsigned)dev_id;
540
541         masked_intr = REG_RD(marb_foo, regi_marb_foo, r_masked_intr);
542
543         if (masked_intr.bp0)
544                 watch = &watches[arbiter][0];
545         else if (masked_intr.bp1)
546                 watch = &watches[arbiter][1];
547         else if (masked_intr.bp2)
548                 watch = &watches[arbiter][2];
549         else if (masked_intr.bp3)
550                 watch = &watches[arbiter][3];
551         else
552                 return IRQ_NONE;
553
554         /* Retrieve all useful information and print it. */
555         r_clients = REG_RD(marb_foo_bp, watch->instance, r_brk_clients);
556         r_addr = REG_RD(marb_foo_bp, watch->instance, r_brk_addr);
557         r_op = REG_RD(marb_foo_bp, watch->instance, r_brk_op);
558         r_first = REG_RD(marb_foo_bp, watch->instance, r_brk_first_client);
559         r_size = REG_RD(marb_foo_bp, watch->instance, r_brk_size);
560
561         printk(KERN_DEBUG "Arbiter IRQ\n");
562         printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n",
563                REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_clients, r_clients),
564                REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_addr, r_addr),
565                REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_op, r_op),
566                REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_first_client, r_first),
567                REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_size, r_size));
568
569         REG_WR(marb_foo_bp, watch->instance, rw_ack, ack);
570         REG_WR(marb_foo, regi_marb_foo, rw_ack_intr, ack_intr);
571
572         printk(KERN_DEBUG "IRQ occurred at %X\n", (unsigned)get_irq_regs());
573
574         if (watch->cb)
575                 watch->cb();
576
577         return IRQ_HANDLED;
578 }
579
580 static irqreturn_t
581 crisv32_bar_arbiter_irq(int irq, void *dev_id)
582 {
583         reg_marb_bar_r_masked_intr masked_intr =
584                 REG_RD(marb_bar, regi_marb_bar, r_masked_intr);
585         reg_marb_bar_bp_r_brk_clients r_clients;
586         reg_marb_bar_bp_r_brk_addr r_addr;
587         reg_marb_bar_bp_r_brk_op r_op;
588         reg_marb_bar_bp_r_brk_first_client r_first;
589         reg_marb_bar_bp_r_brk_size r_size;
590         reg_marb_bar_bp_rw_ack ack = {0};
591         reg_marb_bar_rw_ack_intr ack_intr = {
592                 .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
593         };
594         struct crisv32_watch_entry *watch;
595         unsigned arbiter = (unsigned)dev_id;
596
597         masked_intr = REG_RD(marb_bar, regi_marb_bar, r_masked_intr);
598
599         if (masked_intr.bp0)
600                 watch = &watches[arbiter][0];
601         else if (masked_intr.bp1)
602                 watch = &watches[arbiter][1];
603         else if (masked_intr.bp2)
604                 watch = &watches[arbiter][2];
605         else if (masked_intr.bp3)
606                 watch = &watches[arbiter][3];
607         else
608                 return IRQ_NONE;
609
610         /* Retrieve all useful information and print it. */
611         r_clients = REG_RD(marb_bar_bp, watch->instance, r_brk_clients);
612         r_addr = REG_RD(marb_bar_bp, watch->instance, r_brk_addr);
613         r_op = REG_RD(marb_bar_bp, watch->instance, r_brk_op);
614         r_first = REG_RD(marb_bar_bp, watch->instance, r_brk_first_client);
615         r_size = REG_RD(marb_bar_bp, watch->instance, r_brk_size);
616
617         printk(KERN_DEBUG "Arbiter IRQ\n");
618         printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n",
619                REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_clients, r_clients),
620                REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_addr, r_addr),
621                REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_op, r_op),
622                REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_first_client, r_first),
623                REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_size, r_size));
624
625         REG_WR(marb_bar_bp, watch->instance, rw_ack, ack);
626         REG_WR(marb_bar, regi_marb_bar, rw_ack_intr, ack_intr);
627
628         printk(KERN_DEBUG "IRQ occurred at %X\n", (unsigned)get_irq_regs()->erp);
629
630         if (watch->cb)
631                 watch->cb();
632
633         return IRQ_HANDLED;
634 }
635