Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[sfrench/cifs-2.6.git] / arch / cris / arch-v32 / kernel / irq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2003, Axis Communications AB.
4  */
5
6 #include <asm/irq.h>
7 #include <linux/irq.h>
8 #include <linux/interrupt.h>
9 #include <linux/smp.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/init.h>
13 #include <linux/profile.h>
14 #include <linux/of.h>
15 #include <linux/of_irq.h>
16 #include <linux/proc_fs.h>
17 #include <linux/seq_file.h>
18 #include <linux/threads.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel_stat.h>
21 #include <hwregs/reg_map.h>
22 #include <hwregs/reg_rdwr.h>
23 #include <hwregs/intr_vect.h>
24 #include <hwregs/intr_vect_defs.h>
25
26 #define CPU_FIXED -1
27
28 /* IRQ masks (refer to comment for crisv32_do_multiple) */
29 #if TIMER0_INTR_VECT - FIRST_IRQ < 32
30 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ))
31 #undef TIMER_VECT1
32 #else
33 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ - 32))
34 #define TIMER_VECT1
35 #endif
36 #ifdef CONFIG_ETRAX_KGDB
37 #if defined(CONFIG_ETRAX_KGDB_PORT0)
38 #define IGNOREMASK (1 << (SER0_INTR_VECT - FIRST_IRQ))
39 #elif defined(CONFIG_ETRAX_KGDB_PORT1)
40 #define IGNOREMASK (1 << (SER1_INTR_VECT - FIRST_IRQ))
41 #elif defined(CONFIG_ETRAX_KGDB_PORT2)
42 #define IGNOREMASK (1 << (SER2_INTR_VECT - FIRST_IRQ))
43 #elif defined(CONFIG_ETRAX_KGDB_PORT3)
44 #define IGNOREMASK (1 << (SER3_INTR_VECT - FIRST_IRQ))
45 #endif
46 #endif
47
48 DEFINE_SPINLOCK(irq_lock);
49
50 struct cris_irq_allocation
51 {
52   int cpu; /* The CPU to which the IRQ is currently allocated. */
53   cpumask_t mask; /* The CPUs to which the IRQ may be allocated. */
54 };
55
56 struct cris_irq_allocation irq_allocations[NR_REAL_IRQS] =
57   { [0 ... NR_REAL_IRQS - 1] = {0, CPU_MASK_ALL} };
58
59 static unsigned long irq_regs[NR_CPUS] =
60 {
61   regi_irq,
62 };
63
64 #if NR_REAL_IRQS > 32
65 #define NBR_REGS 2
66 #else
67 #define NBR_REGS 1
68 #endif
69
70 unsigned long cpu_irq_counters[NR_CPUS];
71 unsigned long irq_counters[NR_REAL_IRQS];
72
73 /* From irq.c. */
74 extern void weird_irq(void);
75
76 /* From entry.S. */
77 extern void system_call(void);
78 extern void nmi_interrupt(void);
79 extern void multiple_interrupt(void);
80 extern void gdb_handle_exception(void);
81 extern void i_mmu_refill(void);
82 extern void i_mmu_invalid(void);
83 extern void i_mmu_access(void);
84 extern void i_mmu_execute(void);
85 extern void d_mmu_refill(void);
86 extern void d_mmu_invalid(void);
87 extern void d_mmu_access(void);
88 extern void d_mmu_write(void);
89
90 /* From kgdb.c. */
91 extern void kgdb_init(void);
92 extern void breakpoint(void);
93
94 /* From traps.c.  */
95 extern void breakh_BUG(void);
96
97 /*
98  * Build the IRQ handler stubs using macros from irq.h.
99  */
100 #ifdef CONFIG_CRIS_MACH_ARTPEC3
101 BUILD_TIMER_IRQ(0x31, 0)
102 #else
103 BUILD_IRQ(0x31)
104 #endif
105 BUILD_IRQ(0x32)
106 BUILD_IRQ(0x33)
107 BUILD_IRQ(0x34)
108 BUILD_IRQ(0x35)
109 BUILD_IRQ(0x36)
110 BUILD_IRQ(0x37)
111 BUILD_IRQ(0x38)
112 BUILD_IRQ(0x39)
113 BUILD_IRQ(0x3a)
114 BUILD_IRQ(0x3b)
115 BUILD_IRQ(0x3c)
116 BUILD_IRQ(0x3d)
117 BUILD_IRQ(0x3e)
118 BUILD_IRQ(0x3f)
119 BUILD_IRQ(0x40)
120 BUILD_IRQ(0x41)
121 BUILD_IRQ(0x42)
122 BUILD_IRQ(0x43)
123 BUILD_IRQ(0x44)
124 BUILD_IRQ(0x45)
125 BUILD_IRQ(0x46)
126 BUILD_IRQ(0x47)
127 BUILD_IRQ(0x48)
128 BUILD_IRQ(0x49)
129 BUILD_IRQ(0x4a)
130 #ifdef CONFIG_ETRAXFS
131 BUILD_TIMER_IRQ(0x4b, 0)
132 #else
133 BUILD_IRQ(0x4b)
134 #endif
135 BUILD_IRQ(0x4c)
136 BUILD_IRQ(0x4d)
137 BUILD_IRQ(0x4e)
138 BUILD_IRQ(0x4f)
139 BUILD_IRQ(0x50)
140 #if MACH_IRQS > 32
141 BUILD_IRQ(0x51)
142 BUILD_IRQ(0x52)
143 BUILD_IRQ(0x53)
144 BUILD_IRQ(0x54)
145 BUILD_IRQ(0x55)
146 BUILD_IRQ(0x56)
147 BUILD_IRQ(0x57)
148 BUILD_IRQ(0x58)
149 BUILD_IRQ(0x59)
150 BUILD_IRQ(0x5a)
151 BUILD_IRQ(0x5b)
152 BUILD_IRQ(0x5c)
153 BUILD_IRQ(0x5d)
154 BUILD_IRQ(0x5e)
155 BUILD_IRQ(0x5f)
156 BUILD_IRQ(0x60)
157 BUILD_IRQ(0x61)
158 BUILD_IRQ(0x62)
159 BUILD_IRQ(0x63)
160 BUILD_IRQ(0x64)
161 BUILD_IRQ(0x65)
162 BUILD_IRQ(0x66)
163 BUILD_IRQ(0x67)
164 BUILD_IRQ(0x68)
165 BUILD_IRQ(0x69)
166 BUILD_IRQ(0x6a)
167 BUILD_IRQ(0x6b)
168 BUILD_IRQ(0x6c)
169 BUILD_IRQ(0x6d)
170 BUILD_IRQ(0x6e)
171 BUILD_IRQ(0x6f)
172 BUILD_IRQ(0x70)
173 #endif
174
175 /* Pointers to the low-level handlers. */
176 static void (*interrupt[MACH_IRQS])(void) = {
177         IRQ0x31_interrupt, IRQ0x32_interrupt, IRQ0x33_interrupt,
178         IRQ0x34_interrupt, IRQ0x35_interrupt, IRQ0x36_interrupt,
179         IRQ0x37_interrupt, IRQ0x38_interrupt, IRQ0x39_interrupt,
180         IRQ0x3a_interrupt, IRQ0x3b_interrupt, IRQ0x3c_interrupt,
181         IRQ0x3d_interrupt, IRQ0x3e_interrupt, IRQ0x3f_interrupt,
182         IRQ0x40_interrupt, IRQ0x41_interrupt, IRQ0x42_interrupt,
183         IRQ0x43_interrupt, IRQ0x44_interrupt, IRQ0x45_interrupt,
184         IRQ0x46_interrupt, IRQ0x47_interrupt, IRQ0x48_interrupt,
185         IRQ0x49_interrupt, IRQ0x4a_interrupt, IRQ0x4b_interrupt,
186         IRQ0x4c_interrupt, IRQ0x4d_interrupt, IRQ0x4e_interrupt,
187         IRQ0x4f_interrupt, IRQ0x50_interrupt,
188 #if MACH_IRQS > 32
189         IRQ0x51_interrupt, IRQ0x52_interrupt, IRQ0x53_interrupt,
190         IRQ0x54_interrupt, IRQ0x55_interrupt, IRQ0x56_interrupt,
191         IRQ0x57_interrupt, IRQ0x58_interrupt, IRQ0x59_interrupt,
192         IRQ0x5a_interrupt, IRQ0x5b_interrupt, IRQ0x5c_interrupt,
193         IRQ0x5d_interrupt, IRQ0x5e_interrupt, IRQ0x5f_interrupt,
194         IRQ0x60_interrupt, IRQ0x61_interrupt, IRQ0x62_interrupt,
195         IRQ0x63_interrupt, IRQ0x64_interrupt, IRQ0x65_interrupt,
196         IRQ0x66_interrupt, IRQ0x67_interrupt, IRQ0x68_interrupt,
197         IRQ0x69_interrupt, IRQ0x6a_interrupt, IRQ0x6b_interrupt,
198         IRQ0x6c_interrupt, IRQ0x6d_interrupt, IRQ0x6e_interrupt,
199         IRQ0x6f_interrupt, IRQ0x70_interrupt,
200 #endif
201 };
202
203 void
204 block_irq(int irq, int cpu)
205 {
206         int intr_mask;
207         unsigned long flags;
208
209         spin_lock_irqsave(&irq_lock, flags);
210         /* Remember, 1 let thru, 0 block. */
211         if (irq - FIRST_IRQ < 32) {
212                 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
213                         rw_mask, 0);
214                 intr_mask &= ~(1 << (irq - FIRST_IRQ));
215                 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
216                         0, intr_mask);
217         } else {
218                 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
219                         rw_mask, 1);
220                 intr_mask &= ~(1 << (irq - FIRST_IRQ - 32));
221                 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
222                         1, intr_mask);
223         }
224         spin_unlock_irqrestore(&irq_lock, flags);
225 }
226
227 void
228 unblock_irq(int irq, int cpu)
229 {
230         int intr_mask;
231         unsigned long flags;
232
233         spin_lock_irqsave(&irq_lock, flags);
234         /* Remember, 1 let thru, 0 block. */
235         if (irq - FIRST_IRQ < 32) {
236                 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
237                         rw_mask, 0);
238                 intr_mask |= (1 << (irq - FIRST_IRQ));
239                 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
240                         0, intr_mask);
241         } else {
242                 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
243                         rw_mask, 1);
244                 intr_mask |= (1 << (irq - FIRST_IRQ - 32));
245                 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
246                         1, intr_mask);
247         }
248         spin_unlock_irqrestore(&irq_lock, flags);
249 }
250
251 /* Find out which CPU the irq should be allocated to. */
252 static int irq_cpu(int irq)
253 {
254         int cpu;
255         unsigned long flags;
256
257         spin_lock_irqsave(&irq_lock, flags);
258         cpu = irq_allocations[irq - FIRST_IRQ].cpu;
259
260         /* Fixed interrupts stay on the local CPU. */
261         if (cpu == CPU_FIXED)
262         {
263                 spin_unlock_irqrestore(&irq_lock, flags);
264                 return smp_processor_id();
265         }
266
267
268         /* Let the interrupt stay if possible */
269         if (cpumask_test_cpu(cpu, &irq_allocations[irq - FIRST_IRQ].mask))
270                 goto out;
271
272         /* IRQ must be moved to another CPU. */
273         cpu = cpumask_first(&irq_allocations[irq - FIRST_IRQ].mask);
274         irq_allocations[irq - FIRST_IRQ].cpu = cpu;
275 out:
276         spin_unlock_irqrestore(&irq_lock, flags);
277         return cpu;
278 }
279
280 void crisv32_mask_irq(int irq)
281 {
282         int cpu;
283
284         for (cpu = 0; cpu < NR_CPUS; cpu++)
285                 block_irq(irq, cpu);
286 }
287
288 void crisv32_unmask_irq(int irq)
289 {
290         unblock_irq(irq, irq_cpu(irq));
291 }
292
293
294 static void enable_crisv32_irq(struct irq_data *data)
295 {
296         crisv32_unmask_irq(data->irq);
297 }
298
299 static void disable_crisv32_irq(struct irq_data *data)
300 {
301         crisv32_mask_irq(data->irq);
302 }
303
304 static int set_affinity_crisv32_irq(struct irq_data *data,
305                                     const struct cpumask *dest, bool force)
306 {
307         unsigned long flags;
308
309         spin_lock_irqsave(&irq_lock, flags);
310         irq_allocations[data->irq - FIRST_IRQ].mask = *dest;
311         spin_unlock_irqrestore(&irq_lock, flags);
312         return 0;
313 }
314
315 static struct irq_chip crisv32_irq_type = {
316         .name                   = "CRISv32",
317         .irq_shutdown           = disable_crisv32_irq,
318         .irq_enable             = enable_crisv32_irq,
319         .irq_disable            = disable_crisv32_irq,
320         .irq_set_affinity       = set_affinity_crisv32_irq,
321 };
322
323 void
324 set_exception_vector(int n, irqvectptr addr)
325 {
326         etrax_irv->v[n] = (irqvectptr) addr;
327 }
328
329 extern void do_IRQ(int irq, struct pt_regs * regs);
330
331 void
332 crisv32_do_IRQ(int irq, int block, struct pt_regs* regs)
333 {
334         /* Interrupts that may not be moved to another CPU may
335          * skip blocking. This is currently only valid for the
336          * timer IRQ and the IPI and is used for the timer
337          * interrupt to avoid watchdog starvation.
338          */
339         if (!block) {
340                 do_IRQ(irq, regs);
341                 return;
342         }
343
344         block_irq(irq, smp_processor_id());
345         do_IRQ(irq, regs);
346
347         unblock_irq(irq, irq_cpu(irq));
348 }
349
350 /* If multiple interrupts occur simultaneously we get a multiple
351  * interrupt from the CPU and software has to sort out which
352  * interrupts that happened. There are two special cases here:
353  *
354  * 1. Timer interrupts may never be blocked because of the
355  *    watchdog (refer to comment in include/asr/arch/irq.h)
356  * 2. GDB serial port IRQs are unhandled here and will be handled
357  *    as a single IRQ when it strikes again because the GDB
358  *    stubb wants to save the registers in its own fashion.
359  */
360 void
361 crisv32_do_multiple(struct pt_regs* regs)
362 {
363         int cpu;
364         int mask;
365         int masked[NBR_REGS];
366         int bit;
367         int i;
368
369         cpu = smp_processor_id();
370
371         /* An extra irq_enter here to prevent softIRQs to run after
372          * each do_IRQ. This will decrease the interrupt latency.
373          */
374         irq_enter();
375
376         for (i = 0; i < NBR_REGS; i++) {
377                 /* Get which IRQs that happened. */
378                 masked[i] = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
379                         r_masked_vect, i);
380
381                 /* Calculate new IRQ mask with these IRQs disabled. */
382                 mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i);
383                 mask &= ~masked[i];
384
385         /* Timer IRQ is never masked */
386 #ifdef TIMER_VECT1
387                 if ((i == 1) && (masked[0] & TIMER_MASK))
388                         mask |= TIMER_MASK;
389 #else
390                 if ((i == 0) && (masked[0] & TIMER_MASK))
391                         mask |= TIMER_MASK;
392 #endif
393                 /* Block all the IRQs */
394                 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask);
395
396         /* Check for timer IRQ and handle it special. */
397 #ifdef TIMER_VECT1
398                 if ((i == 1) && (masked[i] & TIMER_MASK)) {
399                         masked[i] &= ~TIMER_MASK;
400                         do_IRQ(TIMER0_INTR_VECT, regs);
401                 }
402 #else
403                 if ((i == 0) && (masked[i] & TIMER_MASK)) {
404                          masked[i] &= ~TIMER_MASK;
405                          do_IRQ(TIMER0_INTR_VECT, regs);
406                 }
407 #endif
408         }
409
410 #ifdef IGNORE_MASK
411         /* Remove IRQs that can't be handled as multiple. */
412         masked[0] &= ~IGNORE_MASK;
413 #endif
414
415         /* Handle the rest of the IRQs. */
416         for (i = 0; i < NBR_REGS; i++) {
417                 for (bit = 0; bit < 32; bit++) {
418                         if (masked[i] & (1 << bit))
419                                 do_IRQ(bit + FIRST_IRQ + i*32, regs);
420                 }
421         }
422
423         /* Unblock all the IRQs. */
424         for (i = 0; i < NBR_REGS; i++) {
425                 mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i);
426                 mask |= masked[i];
427                 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask);
428         }
429
430         /* This irq_exit() will trigger the soft IRQs. */
431         irq_exit();
432 }
433
434 static int crisv32_irq_map(struct irq_domain *h, unsigned int virq,
435                            irq_hw_number_t hw_irq_num)
436 {
437         irq_set_chip_and_handler(virq, &crisv32_irq_type, handle_simple_irq);
438
439         return 0;
440 }
441
442 static struct irq_domain_ops crisv32_irq_ops = {
443         .map    = crisv32_irq_map,
444         .xlate  = irq_domain_xlate_onecell,
445 };
446
447 /*
448  * This is called by start_kernel. It fixes the IRQ masks and setup the
449  * interrupt vector table to point to bad_interrupt pointers.
450  */
451 void __init
452 init_IRQ(void)
453 {
454         int i;
455         int j;
456         reg_intr_vect_rw_mask vect_mask = {0};
457         struct device_node *np;
458         struct irq_domain *domain;
459
460         /* Clear all interrupts masks. */
461         for (i = 0; i < NBR_REGS; i++)
462                 REG_WR_VECT(intr_vect, regi_irq, rw_mask, i, vect_mask);
463
464         for (i = 0; i < 256; i++)
465                 etrax_irv->v[i] = weird_irq;
466
467         np = of_find_compatible_node(NULL, NULL, "axis,crisv32-intc");
468         domain = irq_domain_add_legacy(np, NBR_INTR_VECT - FIRST_IRQ,
469                                        FIRST_IRQ, FIRST_IRQ,
470                                        &crisv32_irq_ops, NULL);
471         BUG_ON(!domain);
472         irq_set_default_host(domain);
473         of_node_put(np);
474
475         for (i = FIRST_IRQ, j = 0; j < NBR_INTR_VECT && j < MACH_IRQS; i++, j++)
476                 set_exception_vector(i, interrupt[j]);
477
478         /* Mark Timer and IPI IRQs as CPU local */
479         irq_allocations[TIMER0_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED;
480         irq_set_status_flags(TIMER0_INTR_VECT, IRQ_PER_CPU);
481         irq_allocations[IPI_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED;
482         irq_set_status_flags(IPI_INTR_VECT, IRQ_PER_CPU);
483
484         set_exception_vector(0x00, nmi_interrupt);
485         set_exception_vector(0x30, multiple_interrupt);
486
487         /* Set up handler for various MMU bus faults. */
488         set_exception_vector(0x04, i_mmu_refill);
489         set_exception_vector(0x05, i_mmu_invalid);
490         set_exception_vector(0x06, i_mmu_access);
491         set_exception_vector(0x07, i_mmu_execute);
492         set_exception_vector(0x08, d_mmu_refill);
493         set_exception_vector(0x09, d_mmu_invalid);
494         set_exception_vector(0x0a, d_mmu_access);
495         set_exception_vector(0x0b, d_mmu_write);
496
497 #ifdef CONFIG_BUG
498         /* Break 14 handler, used to implement cheap BUG().  */
499         set_exception_vector(0x1e, breakh_BUG);
500 #endif
501
502         /* The system-call trap is reached by "break 13". */
503         set_exception_vector(0x1d, system_call);
504
505         /* Exception handlers for debugging, both user-mode and kernel-mode. */
506
507         /* Break 8. */
508         set_exception_vector(0x18, gdb_handle_exception);
509         /* Hardware single step. */
510         set_exception_vector(0x3, gdb_handle_exception);
511         /* Hardware breakpoint. */
512         set_exception_vector(0xc, gdb_handle_exception);
513
514 #ifdef CONFIG_ETRAX_KGDB
515         kgdb_init();
516         /* Everything is set up; now trap the kernel. */
517         breakpoint();
518 #endif
519 }
520