Merge tag 'filesystems_for_v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / c6x / kernel / setup.c
1 /*
2  *  Port on Texas Instruments TMS320C6x architecture
3  *
4  *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5  *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 as
9  *  published by the Free Software Foundation.
10  */
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
27 #include <linux/fs.h>
28 #include <linux/of.h>
29 #include <linux/console.h>
30 #include <linux/screen_info.h>
31
32 #include <asm/sections.h>
33 #include <asm/div64.h>
34 #include <asm/setup.h>
35 #include <asm/dscr.h>
36 #include <asm/clock.h>
37 #include <asm/soc.h>
38 #include <asm/special_insns.h>
39
40 static const char *c6x_soc_name;
41
42 struct screen_info screen_info;
43
44 int c6x_num_cores;
45 EXPORT_SYMBOL_GPL(c6x_num_cores);
46
47 unsigned int c6x_silicon_rev;
48 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
49
50 /*
51  * Device status register. This holds information
52  * about device configuration needed by some drivers.
53  */
54 unsigned int c6x_devstat;
55 EXPORT_SYMBOL_GPL(c6x_devstat);
56
57 /*
58  * Some SoCs have fuse registers holding a unique MAC
59  * address. This is parsed out of the device tree with
60  * the resulting MAC being held here.
61  */
62 unsigned char c6x_fuse_mac[6];
63
64 unsigned long memory_start;
65 unsigned long memory_end;
66 EXPORT_SYMBOL(memory_end);
67
68 unsigned long ram_start;
69 unsigned long ram_end;
70
71 /* Uncached memory for DMA consistent use (memdma=) */
72 static unsigned long dma_start __initdata;
73 static unsigned long dma_size __initdata;
74
75 struct cpuinfo_c6x {
76         const char *cpu_name;
77         const char *cpu_voltage;
78         const char *mmu;
79         const char *fpu;
80         char *cpu_rev;
81         unsigned int core_id;
82         char __cpu_rev[5];
83 };
84
85 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
86
87 unsigned int ticks_per_ns_scaled;
88 EXPORT_SYMBOL(ticks_per_ns_scaled);
89
90 unsigned int c6x_core_freq;
91
92 static void __init get_cpuinfo(void)
93 {
94         unsigned cpu_id, rev_id, csr;
95         struct clk *coreclk = clk_get_sys(NULL, "core");
96         unsigned long core_khz;
97         u64 tmp;
98         struct cpuinfo_c6x *p;
99         struct device_node *node;
100
101         p = &per_cpu(cpu_data, smp_processor_id());
102
103         if (!IS_ERR(coreclk))
104                 c6x_core_freq = clk_get_rate(coreclk);
105         else {
106                 printk(KERN_WARNING
107                        "Cannot find core clock frequency. Using 700MHz\n");
108                 c6x_core_freq = 700000000;
109         }
110
111         core_khz = c6x_core_freq / 1000;
112
113         tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
114         do_div(tmp, 1000000);
115         ticks_per_ns_scaled = tmp;
116
117         csr = get_creg(CSR);
118         cpu_id = csr >> 24;
119         rev_id = (csr >> 16) & 0xff;
120
121         p->mmu = "none";
122         p->fpu = "none";
123         p->cpu_voltage = "unknown";
124
125         switch (cpu_id) {
126         case 0:
127                 p->cpu_name = "C67x";
128                 p->fpu = "yes";
129                 break;
130         case 2:
131                 p->cpu_name = "C62x";
132                 break;
133         case 8:
134                 p->cpu_name = "C64x";
135                 break;
136         case 12:
137                 p->cpu_name = "C64x";
138                 break;
139         case 16:
140                 p->cpu_name = "C64x+";
141                 p->cpu_voltage = "1.2";
142                 break;
143         case 21:
144                 p->cpu_name = "C66X";
145                 p->cpu_voltage = "1.2";
146                 break;
147         default:
148                 p->cpu_name = "unknown";
149                 break;
150         }
151
152         if (cpu_id < 16) {
153                 switch (rev_id) {
154                 case 0x1:
155                         if (cpu_id > 8) {
156                                 p->cpu_rev = "DM640/DM641/DM642/DM643";
157                                 p->cpu_voltage = "1.2 - 1.4";
158                         } else {
159                                 p->cpu_rev = "C6201";
160                                 p->cpu_voltage = "2.5";
161                         }
162                         break;
163                 case 0x2:
164                         p->cpu_rev = "C6201B/C6202/C6211";
165                         p->cpu_voltage = "1.8";
166                         break;
167                 case 0x3:
168                         p->cpu_rev = "C6202B/C6203/C6204/C6205";
169                         p->cpu_voltage = "1.5";
170                         break;
171                 case 0x201:
172                         p->cpu_rev = "C6701 revision 0 (early CPU)";
173                         p->cpu_voltage = "1.8";
174                         break;
175                 case 0x202:
176                         p->cpu_rev = "C6701/C6711/C6712";
177                         p->cpu_voltage = "1.8";
178                         break;
179                 case 0x801:
180                         p->cpu_rev = "C64x";
181                         p->cpu_voltage = "1.5";
182                         break;
183                 default:
184                         p->cpu_rev = "unknown";
185                 }
186         } else {
187                 p->cpu_rev = p->__cpu_rev;
188                 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
189         }
190
191         p->core_id = get_coreid();
192
193         for_each_of_cpu_node(node)
194                 ++c6x_num_cores;
195
196         node = of_find_node_by_name(NULL, "soc");
197         if (node) {
198                 if (of_property_read_string(node, "model", &c6x_soc_name))
199                         c6x_soc_name = "unknown";
200                 of_node_put(node);
201         } else
202                 c6x_soc_name = "unknown";
203
204         printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
205                p->core_id, p->cpu_name, p->cpu_rev,
206                p->cpu_voltage, c6x_core_freq / 1000000);
207 }
208
209 /*
210  * Early parsing of the command line
211  */
212 static u32 mem_size __initdata;
213
214 /* "mem=" parsing. */
215 static int __init early_mem(char *p)
216 {
217         if (!p)
218                 return -EINVAL;
219
220         mem_size = memparse(p, &p);
221         /* don't remove all of memory when handling "mem={invalid}" */
222         if (mem_size == 0)
223                 return -EINVAL;
224
225         return 0;
226 }
227 early_param("mem", early_mem);
228
229 /* "memdma=<size>[@<address>]" parsing. */
230 static int __init early_memdma(char *p)
231 {
232         if (!p)
233                 return -EINVAL;
234
235         dma_size = memparse(p, &p);
236         if (*p == '@')
237                 dma_start = memparse(p, &p);
238
239         return 0;
240 }
241 early_param("memdma", early_memdma);
242
243 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
244 {
245         static int ram_found __initdata;
246
247         /* We only handle one bank (the one with PAGE_OFFSET) for now */
248         if (ram_found)
249                 return -EINVAL;
250
251         if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
252                 return 0;
253
254         ram_start = start;
255         ram_end = start + size;
256
257         ram_found = 1;
258         return 0;
259 }
260
261 /*
262  * Do early machine setup and device tree parsing. This is called very
263  * early on the boot process.
264  */
265 notrace void __init machine_init(unsigned long dt_ptr)
266 {
267         void *dtb = __va(dt_ptr);
268         void *fdt = __dtb_start;
269
270         /* interrupts must be masked */
271         set_creg(IER, 2);
272
273         /*
274          * Set the Interrupt Service Table (IST) to the beginning of the
275          * vector table.
276          */
277         set_ist(_vectors_start);
278
279         /*
280          * dtb is passed in from bootloader.
281          * fdt is linked in blob.
282          */
283         if (dtb && dtb != fdt)
284                 fdt = dtb;
285
286         /* Do some early initialization based on the flat device tree */
287         early_init_dt_scan(fdt);
288
289         parse_early_param();
290 }
291
292 void __init setup_arch(char **cmdline_p)
293 {
294         int bootmap_size;
295         struct memblock_region *reg;
296
297         printk(KERN_INFO "Initializing kernel\n");
298
299         /* Initialize command line */
300         *cmdline_p = boot_command_line;
301
302         memory_end = ram_end;
303         memory_end &= ~(PAGE_SIZE - 1);
304
305         if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
306                 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
307
308         /* add block that this kernel can use */
309         memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
310
311         /* reserve kernel text/data/bss */
312         memblock_reserve(PAGE_OFFSET,
313                          PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
314
315         if (dma_size) {
316                 /* align to cacheability granularity */
317                 dma_size = CACHE_REGION_END(dma_size);
318
319                 if (!dma_start)
320                         dma_start = memory_end - dma_size;
321
322                 /* align to cacheability granularity */
323                 dma_start = CACHE_REGION_START(dma_start);
324
325                 /* reserve DMA memory taken from kernel memory */
326                 if (memblock_is_region_memory(dma_start, dma_size))
327                         memblock_reserve(dma_start, dma_size);
328         }
329
330         memory_start = PAGE_ALIGN((unsigned int) &_end);
331
332         printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
333                memory_start, memory_end);
334
335 #ifdef CONFIG_BLK_DEV_INITRD
336         /*
337          * Reserve initrd memory if in kernel memory.
338          */
339         if (initrd_start < initrd_end)
340                 if (memblock_is_region_memory(initrd_start,
341                                               initrd_end - initrd_start))
342                         memblock_reserve(initrd_start,
343                                          initrd_end - initrd_start);
344 #endif
345
346         init_mm.start_code = (unsigned long) &_stext;
347         init_mm.end_code   = (unsigned long) &_etext;
348         init_mm.end_data   = memory_start;
349         init_mm.brk        = memory_start;
350
351         /*
352          * Give all the memory to the bootmap allocator,  tell it to put the
353          * boot mem_map at the start of memory
354          */
355         bootmap_size = init_bootmem_node(NODE_DATA(0),
356                                          memory_start >> PAGE_SHIFT,
357                                          PAGE_OFFSET >> PAGE_SHIFT,
358                                          memory_end >> PAGE_SHIFT);
359         memblock_reserve(memory_start, bootmap_size);
360
361         unflatten_and_copy_device_tree();
362
363         c6x_cache_init();
364
365         /* Set the whole external memory as non-cacheable */
366         disable_caching(ram_start, ram_end - 1);
367
368         /* Set caching of external RAM used by Linux */
369         for_each_memblock(memory, reg)
370                 enable_caching(CACHE_REGION_START(reg->base),
371                                CACHE_REGION_START(reg->base + reg->size - 1));
372
373 #ifdef CONFIG_BLK_DEV_INITRD
374         /*
375          * Enable caching for initrd which falls outside kernel memory.
376          */
377         if (initrd_start < initrd_end) {
378                 if (!memblock_is_region_memory(initrd_start,
379                                                initrd_end - initrd_start))
380                         enable_caching(CACHE_REGION_START(initrd_start),
381                                        CACHE_REGION_START(initrd_end - 1));
382         }
383 #endif
384
385         /*
386          * Disable caching for dma coherent memory taken from kernel memory.
387          */
388         if (dma_size && memblock_is_region_memory(dma_start, dma_size))
389                 disable_caching(dma_start,
390                                 CACHE_REGION_START(dma_start + dma_size - 1));
391
392         /* Initialize the coherent memory allocator */
393         coherent_mem_init(dma_start, dma_size);
394
395         /*
396          * Free all memory as a starting point.
397          */
398         free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
399
400         /*
401          * Then reserve memory which is already being used.
402          */
403         for_each_memblock(reserved, reg) {
404                 pr_debug("reserved - 0x%08x-0x%08x\n",
405                          (u32) reg->base, (u32) reg->size);
406                 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
407         }
408
409         max_low_pfn = PFN_DOWN(memory_end);
410         min_low_pfn = PFN_UP(memory_start);
411         max_mapnr = max_low_pfn - min_low_pfn;
412
413         /* Get kmalloc into gear */
414         paging_init();
415
416         /*
417          * Probe for Device State Configuration Registers.
418          * We have to do this early in case timer needs to be enabled
419          * through DSCR.
420          */
421         dscr_probe();
422
423         /* We do this early for timer and core clock frequency */
424         c64x_setup_clocks();
425
426         /* Get CPU info */
427         get_cpuinfo();
428
429 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
430         conswitchp = &dummy_con;
431 #endif
432 }
433
434 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
435 #define ptr_to_cpu(p) ((long)(p) - 1)
436
437 static int show_cpuinfo(struct seq_file *m, void *v)
438 {
439         int n = ptr_to_cpu(v);
440         struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
441
442         if (n == 0) {
443                 seq_printf(m,
444                            "soc\t\t: %s\n"
445                            "soc revision\t: 0x%x\n"
446                            "soc cores\t: %d\n",
447                            c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
448         }
449
450         seq_printf(m,
451                    "\n"
452                    "processor\t: %d\n"
453                    "cpu\t\t: %s\n"
454                    "core revision\t: %s\n"
455                    "core voltage\t: %s\n"
456                    "core id\t\t: %d\n"
457                    "mmu\t\t: %s\n"
458                    "fpu\t\t: %s\n"
459                    "cpu MHz\t\t: %u\n"
460                    "bogomips\t: %lu.%02lu\n\n",
461                    n,
462                    p->cpu_name, p->cpu_rev, p->cpu_voltage,
463                    p->core_id, p->mmu, p->fpu,
464                    (c6x_core_freq + 500000) / 1000000,
465                    (loops_per_jiffy/(500000/HZ)),
466                    (loops_per_jiffy/(5000/HZ))%100);
467
468         return 0;
469 }
470
471 static void *c_start(struct seq_file *m, loff_t *pos)
472 {
473         return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
474 }
475 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
476 {
477         ++*pos;
478         return NULL;
479 }
480 static void c_stop(struct seq_file *m, void *v)
481 {
482 }
483
484 const struct seq_operations cpuinfo_op = {
485         c_start,
486         c_stop,
487         c_next,
488         show_cpuinfo
489 };
490
491 static struct cpu cpu_devices[NR_CPUS];
492
493 static int __init topology_init(void)
494 {
495         int i;
496
497         for_each_present_cpu(i)
498                 register_cpu(&cpu_devices[i], i);
499
500         return 0;
501 }
502
503 subsys_initcall(topology_init);