Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[sfrench/cifs-2.6.git] / arch / c6x / kernel / setup.c
1 /*
2  *  Port on Texas Instruments TMS320C6x architecture
3  *
4  *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5  *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 as
9  *  published by the Free Software Foundation.
10  */
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/clkdev.h>
15 #include <linux/initrd.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of_fdt.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/clk.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/console.h>
29 #include <linux/screen_info.h>
30
31 #include <asm/sections.h>
32 #include <asm/div64.h>
33 #include <asm/setup.h>
34 #include <asm/dscr.h>
35 #include <asm/clock.h>
36 #include <asm/soc.h>
37 #include <asm/special_insns.h>
38
39 static const char *c6x_soc_name;
40
41 struct screen_info screen_info;
42
43 int c6x_num_cores;
44 EXPORT_SYMBOL_GPL(c6x_num_cores);
45
46 unsigned int c6x_silicon_rev;
47 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
48
49 /*
50  * Device status register. This holds information
51  * about device configuration needed by some drivers.
52  */
53 unsigned int c6x_devstat;
54 EXPORT_SYMBOL_GPL(c6x_devstat);
55
56 /*
57  * Some SoCs have fuse registers holding a unique MAC
58  * address. This is parsed out of the device tree with
59  * the resulting MAC being held here.
60  */
61 unsigned char c6x_fuse_mac[6];
62
63 unsigned long memory_start;
64 unsigned long memory_end;
65 EXPORT_SYMBOL(memory_end);
66
67 unsigned long ram_start;
68 unsigned long ram_end;
69
70 /* Uncached memory for DMA consistent use (memdma=) */
71 static unsigned long dma_start __initdata;
72 static unsigned long dma_size __initdata;
73
74 struct cpuinfo_c6x {
75         const char *cpu_name;
76         const char *cpu_voltage;
77         const char *mmu;
78         const char *fpu;
79         char *cpu_rev;
80         unsigned int core_id;
81         char __cpu_rev[5];
82 };
83
84 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
85
86 unsigned int ticks_per_ns_scaled;
87 EXPORT_SYMBOL(ticks_per_ns_scaled);
88
89 unsigned int c6x_core_freq;
90
91 static void __init get_cpuinfo(void)
92 {
93         unsigned cpu_id, rev_id, csr;
94         struct clk *coreclk = clk_get_sys(NULL, "core");
95         unsigned long core_khz;
96         u64 tmp;
97         struct cpuinfo_c6x *p;
98         struct device_node *node;
99
100         p = &per_cpu(cpu_data, smp_processor_id());
101
102         if (!IS_ERR(coreclk))
103                 c6x_core_freq = clk_get_rate(coreclk);
104         else {
105                 printk(KERN_WARNING
106                        "Cannot find core clock frequency. Using 700MHz\n");
107                 c6x_core_freq = 700000000;
108         }
109
110         core_khz = c6x_core_freq / 1000;
111
112         tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
113         do_div(tmp, 1000000);
114         ticks_per_ns_scaled = tmp;
115
116         csr = get_creg(CSR);
117         cpu_id = csr >> 24;
118         rev_id = (csr >> 16) & 0xff;
119
120         p->mmu = "none";
121         p->fpu = "none";
122         p->cpu_voltage = "unknown";
123
124         switch (cpu_id) {
125         case 0:
126                 p->cpu_name = "C67x";
127                 p->fpu = "yes";
128                 break;
129         case 2:
130                 p->cpu_name = "C62x";
131                 break;
132         case 8:
133                 p->cpu_name = "C64x";
134                 break;
135         case 12:
136                 p->cpu_name = "C64x";
137                 break;
138         case 16:
139                 p->cpu_name = "C64x+";
140                 p->cpu_voltage = "1.2";
141                 break;
142         case 21:
143                 p->cpu_name = "C66X";
144                 p->cpu_voltage = "1.2";
145                 break;
146         default:
147                 p->cpu_name = "unknown";
148                 break;
149         }
150
151         if (cpu_id < 16) {
152                 switch (rev_id) {
153                 case 0x1:
154                         if (cpu_id > 8) {
155                                 p->cpu_rev = "DM640/DM641/DM642/DM643";
156                                 p->cpu_voltage = "1.2 - 1.4";
157                         } else {
158                                 p->cpu_rev = "C6201";
159                                 p->cpu_voltage = "2.5";
160                         }
161                         break;
162                 case 0x2:
163                         p->cpu_rev = "C6201B/C6202/C6211";
164                         p->cpu_voltage = "1.8";
165                         break;
166                 case 0x3:
167                         p->cpu_rev = "C6202B/C6203/C6204/C6205";
168                         p->cpu_voltage = "1.5";
169                         break;
170                 case 0x201:
171                         p->cpu_rev = "C6701 revision 0 (early CPU)";
172                         p->cpu_voltage = "1.8";
173                         break;
174                 case 0x202:
175                         p->cpu_rev = "C6701/C6711/C6712";
176                         p->cpu_voltage = "1.8";
177                         break;
178                 case 0x801:
179                         p->cpu_rev = "C64x";
180                         p->cpu_voltage = "1.5";
181                         break;
182                 default:
183                         p->cpu_rev = "unknown";
184                 }
185         } else {
186                 p->cpu_rev = p->__cpu_rev;
187                 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
188         }
189
190         p->core_id = get_coreid();
191
192         for_each_of_cpu_node(node)
193                 ++c6x_num_cores;
194
195         node = of_find_node_by_name(NULL, "soc");
196         if (node) {
197                 if (of_property_read_string(node, "model", &c6x_soc_name))
198                         c6x_soc_name = "unknown";
199                 of_node_put(node);
200         } else
201                 c6x_soc_name = "unknown";
202
203         printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
204                p->core_id, p->cpu_name, p->cpu_rev,
205                p->cpu_voltage, c6x_core_freq / 1000000);
206 }
207
208 /*
209  * Early parsing of the command line
210  */
211 static u32 mem_size __initdata;
212
213 /* "mem=" parsing. */
214 static int __init early_mem(char *p)
215 {
216         if (!p)
217                 return -EINVAL;
218
219         mem_size = memparse(p, &p);
220         /* don't remove all of memory when handling "mem={invalid}" */
221         if (mem_size == 0)
222                 return -EINVAL;
223
224         return 0;
225 }
226 early_param("mem", early_mem);
227
228 /* "memdma=<size>[@<address>]" parsing. */
229 static int __init early_memdma(char *p)
230 {
231         if (!p)
232                 return -EINVAL;
233
234         dma_size = memparse(p, &p);
235         if (*p == '@')
236                 dma_start = memparse(p, &p);
237
238         return 0;
239 }
240 early_param("memdma", early_memdma);
241
242 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
243 {
244         static int ram_found __initdata;
245
246         /* We only handle one bank (the one with PAGE_OFFSET) for now */
247         if (ram_found)
248                 return -EINVAL;
249
250         if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
251                 return 0;
252
253         ram_start = start;
254         ram_end = start + size;
255
256         ram_found = 1;
257         return 0;
258 }
259
260 /*
261  * Do early machine setup and device tree parsing. This is called very
262  * early on the boot process.
263  */
264 notrace void __init machine_init(unsigned long dt_ptr)
265 {
266         void *dtb = __va(dt_ptr);
267         void *fdt = __dtb_start;
268
269         /* interrupts must be masked */
270         set_creg(IER, 2);
271
272         /*
273          * Set the Interrupt Service Table (IST) to the beginning of the
274          * vector table.
275          */
276         set_ist(_vectors_start);
277
278         /*
279          * dtb is passed in from bootloader.
280          * fdt is linked in blob.
281          */
282         if (dtb && dtb != fdt)
283                 fdt = dtb;
284
285         /* Do some early initialization based on the flat device tree */
286         early_init_dt_scan(fdt);
287
288         parse_early_param();
289 }
290
291 void __init setup_arch(char **cmdline_p)
292 {
293         int bootmap_size;
294         struct memblock_region *reg;
295
296         printk(KERN_INFO "Initializing kernel\n");
297
298         /* Initialize command line */
299         *cmdline_p = boot_command_line;
300
301         memory_end = ram_end;
302         memory_end &= ~(PAGE_SIZE - 1);
303
304         if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
305                 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
306
307         /* add block that this kernel can use */
308         memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
309
310         /* reserve kernel text/data/bss */
311         memblock_reserve(PAGE_OFFSET,
312                          PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
313
314         if (dma_size) {
315                 /* align to cacheability granularity */
316                 dma_size = CACHE_REGION_END(dma_size);
317
318                 if (!dma_start)
319                         dma_start = memory_end - dma_size;
320
321                 /* align to cacheability granularity */
322                 dma_start = CACHE_REGION_START(dma_start);
323
324                 /* reserve DMA memory taken from kernel memory */
325                 if (memblock_is_region_memory(dma_start, dma_size))
326                         memblock_reserve(dma_start, dma_size);
327         }
328
329         memory_start = PAGE_ALIGN((unsigned int) &_end);
330
331         printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
332                memory_start, memory_end);
333
334 #ifdef CONFIG_BLK_DEV_INITRD
335         /*
336          * Reserve initrd memory if in kernel memory.
337          */
338         if (initrd_start < initrd_end)
339                 if (memblock_is_region_memory(initrd_start,
340                                               initrd_end - initrd_start))
341                         memblock_reserve(initrd_start,
342                                          initrd_end - initrd_start);
343 #endif
344
345         init_mm.start_code = (unsigned long) &_stext;
346         init_mm.end_code   = (unsigned long) &_etext;
347         init_mm.end_data   = memory_start;
348         init_mm.brk        = memory_start;
349
350         /*
351          * Give all the memory to the bootmap allocator,  tell it to put the
352          * boot mem_map at the start of memory
353          */
354         bootmap_size = init_bootmem_node(NODE_DATA(0),
355                                          memory_start >> PAGE_SHIFT,
356                                          PAGE_OFFSET >> PAGE_SHIFT,
357                                          memory_end >> PAGE_SHIFT);
358         memblock_reserve(memory_start, bootmap_size);
359
360         unflatten_and_copy_device_tree();
361
362         c6x_cache_init();
363
364         /* Set the whole external memory as non-cacheable */
365         disable_caching(ram_start, ram_end - 1);
366
367         /* Set caching of external RAM used by Linux */
368         for_each_memblock(memory, reg)
369                 enable_caching(CACHE_REGION_START(reg->base),
370                                CACHE_REGION_START(reg->base + reg->size - 1));
371
372 #ifdef CONFIG_BLK_DEV_INITRD
373         /*
374          * Enable caching for initrd which falls outside kernel memory.
375          */
376         if (initrd_start < initrd_end) {
377                 if (!memblock_is_region_memory(initrd_start,
378                                                initrd_end - initrd_start))
379                         enable_caching(CACHE_REGION_START(initrd_start),
380                                        CACHE_REGION_START(initrd_end - 1));
381         }
382 #endif
383
384         /*
385          * Disable caching for dma coherent memory taken from kernel memory.
386          */
387         if (dma_size && memblock_is_region_memory(dma_start, dma_size))
388                 disable_caching(dma_start,
389                                 CACHE_REGION_START(dma_start + dma_size - 1));
390
391         /* Initialize the coherent memory allocator */
392         coherent_mem_init(dma_start, dma_size);
393
394         /*
395          * Free all memory as a starting point.
396          */
397         free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
398
399         /*
400          * Then reserve memory which is already being used.
401          */
402         for_each_memblock(reserved, reg) {
403                 pr_debug("reserved - 0x%08x-0x%08x\n",
404                          (u32) reg->base, (u32) reg->size);
405                 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
406         }
407
408         max_low_pfn = PFN_DOWN(memory_end);
409         min_low_pfn = PFN_UP(memory_start);
410         max_mapnr = max_low_pfn - min_low_pfn;
411
412         /* Get kmalloc into gear */
413         paging_init();
414
415         /*
416          * Probe for Device State Configuration Registers.
417          * We have to do this early in case timer needs to be enabled
418          * through DSCR.
419          */
420         dscr_probe();
421
422         /* We do this early for timer and core clock frequency */
423         c64x_setup_clocks();
424
425         /* Get CPU info */
426         get_cpuinfo();
427
428 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
429         conswitchp = &dummy_con;
430 #endif
431 }
432
433 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
434 #define ptr_to_cpu(p) ((long)(p) - 1)
435
436 static int show_cpuinfo(struct seq_file *m, void *v)
437 {
438         int n = ptr_to_cpu(v);
439         struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
440
441         if (n == 0) {
442                 seq_printf(m,
443                            "soc\t\t: %s\n"
444                            "soc revision\t: 0x%x\n"
445                            "soc cores\t: %d\n",
446                            c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
447         }
448
449         seq_printf(m,
450                    "\n"
451                    "processor\t: %d\n"
452                    "cpu\t\t: %s\n"
453                    "core revision\t: %s\n"
454                    "core voltage\t: %s\n"
455                    "core id\t\t: %d\n"
456                    "mmu\t\t: %s\n"
457                    "fpu\t\t: %s\n"
458                    "cpu MHz\t\t: %u\n"
459                    "bogomips\t: %lu.%02lu\n\n",
460                    n,
461                    p->cpu_name, p->cpu_rev, p->cpu_voltage,
462                    p->core_id, p->mmu, p->fpu,
463                    (c6x_core_freq + 500000) / 1000000,
464                    (loops_per_jiffy/(500000/HZ)),
465                    (loops_per_jiffy/(5000/HZ))%100);
466
467         return 0;
468 }
469
470 static void *c_start(struct seq_file *m, loff_t *pos)
471 {
472         return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
473 }
474 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
475 {
476         ++*pos;
477         return NULL;
478 }
479 static void c_stop(struct seq_file *m, void *v)
480 {
481 }
482
483 const struct seq_operations cpuinfo_op = {
484         c_start,
485         c_stop,
486         c_next,
487         show_cpuinfo
488 };
489
490 static struct cpu cpu_devices[NR_CPUS];
491
492 static int __init topology_init(void)
493 {
494         int i;
495
496         for_each_present_cpu(i)
497                 register_cpu(&cpu_devices[i], i);
498
499         return 0;
500 }
501
502 subsys_initcall(topology_init);