Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[sfrench/cifs-2.6.git] / arch / blackfin / kernel / setup.c
1 /*
2  * Copyright 2004-2009 Analog Devices Inc.
3  *
4  * Licensed under the GPL-2 or later.
5  */
6
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
16
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
23
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
32
33 u16 _bfin_swrst;
34 EXPORT_SYMBOL(_bfin_swrst);
35
36 unsigned long memory_start, memory_end, physical_mem_end;
37 unsigned long _rambase, _ramstart, _ramend;
38 unsigned long reserved_mem_dcache_on;
39 unsigned long reserved_mem_icache_on;
40 EXPORT_SYMBOL(memory_start);
41 EXPORT_SYMBOL(memory_end);
42 EXPORT_SYMBOL(physical_mem_end);
43 EXPORT_SYMBOL(_ramend);
44 EXPORT_SYMBOL(reserved_mem_dcache_on);
45
46 #ifdef CONFIG_MTD_UCLINUX
47 extern struct map_info uclinux_ram_map;
48 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49 unsigned long _ebss;
50 EXPORT_SYMBOL(memory_mtd_end);
51 EXPORT_SYMBOL(memory_mtd_start);
52 EXPORT_SYMBOL(mtd_size);
53 #endif
54
55 char __initdata command_line[COMMAND_LINE_SIZE];
56 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57         *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
58
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX         128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM         1
62 #define BFIN_MEMMAP_RESERVED    2
63 static struct bfin_memmap {
64         int nr_map;
65         struct bfin_memmap_entry {
66                 unsigned long long addr; /* start of memory segment */
67                 unsigned long long size;
68                 unsigned long type;
69         } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
71
72 /* for memmap sanitization */
73 struct change_member {
74         struct bfin_memmap_entry *pentry; /* pointer to original entry */
75         unsigned long long addr; /* address for this change point */
76 };
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
81
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
83
84 static int early_init_clkin_hz(char *buf);
85
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
87 void __init generate_cplb_tables(void)
88 {
89         unsigned int cpu;
90
91         generate_cplb_tables_all();
92         /* Generate per-CPU I&D CPLB tables */
93         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94                 generate_cplb_tables_cpu(cpu);
95 }
96 #endif
97
98 void __cpuinit bfin_setup_caches(unsigned int cpu)
99 {
100 #ifdef CONFIG_BFIN_ICACHE
101         bfin_icache_init(icplb_tbl[cpu]);
102 #endif
103
104 #ifdef CONFIG_BFIN_DCACHE
105         bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
107
108         /*
109          * In cache coherence emulation mode, we need to have the
110          * D-cache enabled before running any atomic operation which
111          * might involve cache invalidation (i.e. spinlock, rwlock).
112          * So printk's are deferred until then.
113          */
114 #ifdef CONFIG_BFIN_ICACHE
115         printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
116         printk(KERN_INFO "  External memory:"
117 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
118                " cacheable"
119 # else
120                " uncacheable"
121 # endif
122                " in instruction cache\n");
123         if (L2_LENGTH)
124                 printk(KERN_INFO "  L2 SRAM        :"
125 # ifdef CONFIG_BFIN_L2_ICACHEABLE
126                        " cacheable"
127 # else
128                        " uncacheable"
129 # endif
130                        " in instruction cache\n");
131
132 #else
133         printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
134 #endif
135
136 #ifdef CONFIG_BFIN_DCACHE
137         printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
138         printk(KERN_INFO "  External memory:"
139 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
140                " cacheable (write-back)"
141 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
142                " cacheable (write-through)"
143 # else
144                " uncacheable"
145 # endif
146                " in data cache\n");
147         if (L2_LENGTH)
148                 printk(KERN_INFO "  L2 SRAM        :"
149 # if defined CONFIG_BFIN_L2_WRITEBACK
150                        " cacheable (write-back)"
151 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
152                        " cacheable (write-through)"
153 # else
154                        " uncacheable"
155 # endif
156                        " in data cache\n");
157 #else
158         printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
159 #endif
160 }
161
162 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
163 {
164         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
165
166         cpudata->idle = current;
167         cpudata->imemctl = bfin_read_IMEM_CONTROL();
168         cpudata->dmemctl = bfin_read_DMEM_CONTROL();
169 }
170
171 void __init bfin_cache_init(void)
172 {
173 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
174         generate_cplb_tables();
175 #endif
176         bfin_setup_caches(0);
177 }
178
179 void __init bfin_relocate_l1_mem(void)
180 {
181         unsigned long text_l1_len = (unsigned long)_text_l1_len;
182         unsigned long data_l1_len = (unsigned long)_data_l1_len;
183         unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
184         unsigned long l2_len = (unsigned long)_l2_len;
185
186         early_shadow_stamp();
187
188         /*
189          * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
190          * we know that everything about l1 text/data is nice and aligned,
191          * so copy by 4 byte chunks, and don't worry about overlapping
192          * src/dest.
193          *
194          * We can't use the dma_memcpy functions, since they can call
195          * scheduler functions which might be in L1 :( and core writes
196          * into L1 instruction cause bad access errors, so we are stuck,
197          * we are required to use DMA, but can't use the common dma
198          * functions. We can't use memcpy either - since that might be
199          * going to be in the relocated L1
200          */
201
202         blackfin_dma_early_init();
203
204         /* if necessary, copy L1 text to L1 instruction SRAM */
205         if (L1_CODE_LENGTH && text_l1_len)
206                 early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
207
208         /* if necessary, copy L1 data to L1 data bank A SRAM */
209         if (L1_DATA_A_LENGTH && data_l1_len)
210                 early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
211
212         /* if necessary, copy L1 data B to L1 data bank B SRAM */
213         if (L1_DATA_B_LENGTH && data_b_l1_len)
214                 early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
215
216         early_dma_memcpy_done();
217
218         /* if necessary, copy L2 text/data to L2 SRAM */
219         if (L2_LENGTH && l2_len)
220                 memcpy(_stext_l2, _l2_lma, l2_len);
221 }
222
223 /* add_memory_region to memmap */
224 static void __init add_memory_region(unsigned long long start,
225                               unsigned long long size, int type)
226 {
227         int i;
228
229         i = bfin_memmap.nr_map;
230
231         if (i == BFIN_MEMMAP_MAX) {
232                 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
233                 return;
234         }
235
236         bfin_memmap.map[i].addr = start;
237         bfin_memmap.map[i].size = size;
238         bfin_memmap.map[i].type = type;
239         bfin_memmap.nr_map++;
240 }
241
242 /*
243  * Sanitize the boot memmap, removing overlaps.
244  */
245 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
246 {
247         struct change_member *change_tmp;
248         unsigned long current_type, last_type;
249         unsigned long long last_addr;
250         int chgidx, still_changing;
251         int overlap_entries;
252         int new_entry;
253         int old_nr, new_nr, chg_nr;
254         int i;
255
256         /*
257                 Visually we're performing the following (1,2,3,4 = memory types)
258
259                 Sample memory map (w/overlaps):
260                    ____22__________________
261                    ______________________4_
262                    ____1111________________
263                    _44_____________________
264                    11111111________________
265                    ____________________33__
266                    ___________44___________
267                    __________33333_________
268                    ______________22________
269                    ___________________2222_
270                    _________111111111______
271                    _____________________11_
272                    _________________4______
273
274                 Sanitized equivalent (no overlap):
275                    1_______________________
276                    _44_____________________
277                    ___1____________________
278                    ____22__________________
279                    ______11________________
280                    _________1______________
281                    __________3_____________
282                    ___________44___________
283                    _____________33_________
284                    _______________2________
285                    ________________1_______
286                    _________________4______
287                    ___________________2____
288                    ____________________33__
289                    ______________________4_
290         */
291         /* if there's only one memory region, don't bother */
292         if (*pnr_map < 2)
293                 return -1;
294
295         old_nr = *pnr_map;
296
297         /* bail out if we find any unreasonable addresses in memmap */
298         for (i = 0; i < old_nr; i++)
299                 if (map[i].addr + map[i].size < map[i].addr)
300                         return -1;
301
302         /* create pointers for initial change-point information (for sorting) */
303         for (i = 0; i < 2*old_nr; i++)
304                 change_point[i] = &change_point_list[i];
305
306         /* record all known change-points (starting and ending addresses),
307            omitting those that are for empty memory regions */
308         chgidx = 0;
309         for (i = 0; i < old_nr; i++) {
310                 if (map[i].size != 0) {
311                         change_point[chgidx]->addr = map[i].addr;
312                         change_point[chgidx++]->pentry = &map[i];
313                         change_point[chgidx]->addr = map[i].addr + map[i].size;
314                         change_point[chgidx++]->pentry = &map[i];
315                 }
316         }
317         chg_nr = chgidx;        /* true number of change-points */
318
319         /* sort change-point list by memory addresses (low -> high) */
320         still_changing = 1;
321         while (still_changing) {
322                 still_changing = 0;
323                 for (i = 1; i < chg_nr; i++) {
324                         /* if <current_addr> > <last_addr>, swap */
325                         /* or, if current=<start_addr> & last=<end_addr>, swap */
326                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
327                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
328                                  (change_point[i]->addr == change_point[i]->pentry->addr) &&
329                                  (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
330                            ) {
331                                 change_tmp = change_point[i];
332                                 change_point[i] = change_point[i-1];
333                                 change_point[i-1] = change_tmp;
334                                 still_changing = 1;
335                         }
336                 }
337         }
338
339         /* create a new memmap, removing overlaps */
340         overlap_entries = 0;    /* number of entries in the overlap table */
341         new_entry = 0;          /* index for creating new memmap entries */
342         last_type = 0;          /* start with undefined memory type */
343         last_addr = 0;          /* start with 0 as last starting address */
344         /* loop through change-points, determining affect on the new memmap */
345         for (chgidx = 0; chgidx < chg_nr; chgidx++) {
346                 /* keep track of all overlapping memmap entries */
347                 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
348                         /* add map entry to overlap list (> 1 entry implies an overlap) */
349                         overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
350                 } else {
351                         /* remove entry from list (order independent, so swap with last) */
352                         for (i = 0; i < overlap_entries; i++) {
353                                 if (overlap_list[i] == change_point[chgidx]->pentry)
354                                         overlap_list[i] = overlap_list[overlap_entries-1];
355                         }
356                         overlap_entries--;
357                 }
358                 /* if there are overlapping entries, decide which "type" to use */
359                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
360                 current_type = 0;
361                 for (i = 0; i < overlap_entries; i++)
362                         if (overlap_list[i]->type > current_type)
363                                 current_type = overlap_list[i]->type;
364                 /* continue building up new memmap based on this information */
365                 if (current_type != last_type) {
366                         if (last_type != 0) {
367                                 new_map[new_entry].size =
368                                         change_point[chgidx]->addr - last_addr;
369                                 /* move forward only if the new size was non-zero */
370                                 if (new_map[new_entry].size != 0)
371                                         if (++new_entry >= BFIN_MEMMAP_MAX)
372                                                 break;  /* no more space left for new entries */
373                         }
374                         if (current_type != 0) {
375                                 new_map[new_entry].addr = change_point[chgidx]->addr;
376                                 new_map[new_entry].type = current_type;
377                                 last_addr = change_point[chgidx]->addr;
378                         }
379                         last_type = current_type;
380                 }
381         }
382         new_nr = new_entry;     /* retain count for new entries */
383
384         /* copy new mapping into original location */
385         memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
386         *pnr_map = new_nr;
387
388         return 0;
389 }
390
391 static void __init print_memory_map(char *who)
392 {
393         int i;
394
395         for (i = 0; i < bfin_memmap.nr_map; i++) {
396                 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
397                         bfin_memmap.map[i].addr,
398                         bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
399                 switch (bfin_memmap.map[i].type) {
400                 case BFIN_MEMMAP_RAM:
401                         printk(KERN_CONT "(usable)\n");
402                         break;
403                 case BFIN_MEMMAP_RESERVED:
404                         printk(KERN_CONT "(reserved)\n");
405                         break;
406                 default:
407                         printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
408                         break;
409                 }
410         }
411 }
412
413 static __init int parse_memmap(char *arg)
414 {
415         unsigned long long start_at, mem_size;
416
417         if (!arg)
418                 return -EINVAL;
419
420         mem_size = memparse(arg, &arg);
421         if (*arg == '@') {
422                 start_at = memparse(arg+1, &arg);
423                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
424         } else if (*arg == '$') {
425                 start_at = memparse(arg+1, &arg);
426                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
427         }
428
429         return 0;
430 }
431
432 /*
433  * Initial parsing of the command line.  Currently, we support:
434  *  - Controlling the linux memory size: mem=xxx[KMG]
435  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
436  *       $ -> reserved memory is dcacheable
437  *       # -> reserved memory is icacheable
438  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
439  *       @ from <start> to <start>+<mem>, type RAM
440  *       $ from <start> to <start>+<mem>, type RESERVED
441  */
442 static __init void parse_cmdline_early(char *cmdline_p)
443 {
444         char c = ' ', *to = cmdline_p;
445         unsigned int memsize;
446         for (;;) {
447                 if (c == ' ') {
448                         if (!memcmp(to, "mem=", 4)) {
449                                 to += 4;
450                                 memsize = memparse(to, &to);
451                                 if (memsize)
452                                         _ramend = memsize;
453
454                         } else if (!memcmp(to, "max_mem=", 8)) {
455                                 to += 8;
456                                 memsize = memparse(to, &to);
457                                 if (memsize) {
458                                         physical_mem_end = memsize;
459                                         if (*to != ' ') {
460                                                 if (*to == '$'
461                                                     || *(to + 1) == '$')
462                                                         reserved_mem_dcache_on = 1;
463                                                 if (*to == '#'
464                                                     || *(to + 1) == '#')
465                                                         reserved_mem_icache_on = 1;
466                                         }
467                                 }
468                         } else if (!memcmp(to, "clkin_hz=", 9)) {
469                                 to += 9;
470                                 early_init_clkin_hz(to);
471 #ifdef CONFIG_EARLY_PRINTK
472                         } else if (!memcmp(to, "earlyprintk=", 12)) {
473                                 to += 12;
474                                 setup_early_printk(to);
475 #endif
476                         } else if (!memcmp(to, "memmap=", 7)) {
477                                 to += 7;
478                                 parse_memmap(to);
479                         }
480                 }
481                 c = *(to++);
482                 if (!c)
483                         break;
484         }
485 }
486
487 /*
488  * Setup memory defaults from user config.
489  * The physical memory layout looks like:
490  *
491  *  [_rambase, _ramstart]:              kernel image
492  *  [memory_start, memory_end]:         dynamic memory managed by kernel
493  *  [memory_end, _ramend]:              reserved memory
494  *      [memory_mtd_start(memory_end),
495  *              memory_mtd_start + mtd_size]:   rootfs (if any)
496  *      [_ramend - DMA_UNCACHED_REGION,
497  *              _ramend]:                       uncached DMA region
498  *  [_ramend, physical_mem_end]:        memory not managed by kernel
499  */
500 static __init void memory_setup(void)
501 {
502 #ifdef CONFIG_MTD_UCLINUX
503         unsigned long mtd_phys = 0;
504 #endif
505         unsigned long max_mem;
506
507         _rambase = (unsigned long)_stext;
508         _ramstart = (unsigned long)_end;
509
510         if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
511                 console_init();
512                 panic("DMA region exceeds memory limit: %lu.",
513                         _ramend - _ramstart);
514         }
515         max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
516
517 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
518         /* Due to a Hardware Anomaly we need to limit the size of usable
519          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
520          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
521          */
522 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
523         if (max_mem >= 56 * 1024 * 1024)
524                 max_mem = 56 * 1024 * 1024;
525 # else
526         if (max_mem >= 60 * 1024 * 1024)
527                 max_mem = 60 * 1024 * 1024;
528 # endif                         /* CONFIG_DEBUG_HUNT_FOR_ZERO */
529 #endif                          /* ANOMALY_05000263 */
530
531
532 #ifdef CONFIG_MPU
533         /* Round up to multiple of 4MB */
534         memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
535 #else
536         memory_start = PAGE_ALIGN(_ramstart);
537 #endif
538
539 #if defined(CONFIG_MTD_UCLINUX)
540         /* generic memory mapped MTD driver */
541         memory_mtd_end = memory_end;
542
543         mtd_phys = _ramstart;
544         mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
545
546 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
547         if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
548                 mtd_size =
549                     PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
550 # endif
551
552 # if defined(CONFIG_CRAMFS)
553         if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
554                 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
555 # endif
556
557 # if defined(CONFIG_ROMFS_FS)
558         if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
559             && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
560                 mtd_size =
561                     PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
562
563                 /* ROM_FS is XIP, so if we found it, we need to limit memory */
564                 if (memory_end > max_mem) {
565                         pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
566                         memory_end = max_mem;
567                 }
568         }
569 # endif                         /* CONFIG_ROMFS_FS */
570
571         /* Since the default MTD_UCLINUX has no magic number, we just blindly
572          * read 8 past the end of the kernel's image, and look at it.
573          * When no image is attached, mtd_size is set to a random number
574          * Do some basic sanity checks before operating on things
575          */
576         if (mtd_size == 0 || memory_end <= mtd_size) {
577                 pr_emerg("Could not find valid ram mtd attached.\n");
578         } else {
579                 memory_end -= mtd_size;
580
581                 /* Relocate MTD image to the top of memory after the uncached memory area */
582                 uclinux_ram_map.phys = memory_mtd_start = memory_end;
583                 uclinux_ram_map.size = mtd_size;
584                 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
585                         _end, mtd_size, (void *)memory_mtd_start);
586                 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
587         }
588 #endif                          /* CONFIG_MTD_UCLINUX */
589
590         /* We need lo limit memory, since everything could have a text section
591          * of userspace in it, and expose anomaly 05000263. If the anomaly
592          * doesn't exist, or we don't need to - then dont.
593          */
594         if (memory_end > max_mem) {
595                 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
596                 memory_end = max_mem;
597         }
598
599 #ifdef CONFIG_MPU
600         page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
601         page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
602 #endif
603
604         init_mm.start_code = (unsigned long)_stext;
605         init_mm.end_code = (unsigned long)_etext;
606         init_mm.end_data = (unsigned long)_edata;
607         init_mm.brk = (unsigned long)0;
608
609         printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
610         printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
611
612         printk(KERN_INFO "Memory map:\n"
613                "  fixedcode = 0x%p-0x%p\n"
614                "  text      = 0x%p-0x%p\n"
615                "  rodata    = 0x%p-0x%p\n"
616                "  bss       = 0x%p-0x%p\n"
617                "  data      = 0x%p-0x%p\n"
618                "    stack   = 0x%p-0x%p\n"
619                "  init      = 0x%p-0x%p\n"
620                "  available = 0x%p-0x%p\n"
621 #ifdef CONFIG_MTD_UCLINUX
622                "  rootfs    = 0x%p-0x%p\n"
623 #endif
624 #if DMA_UNCACHED_REGION > 0
625                "  DMA Zone  = 0x%p-0x%p\n"
626 #endif
627                 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
628                 _stext, _etext,
629                 __start_rodata, __end_rodata,
630                 __bss_start, __bss_stop,
631                 _sdata, _edata,
632                 (void *)&init_thread_union,
633                 (void *)((int)(&init_thread_union) + 0x2000),
634                 __init_begin, __init_end,
635                 (void *)_ramstart, (void *)memory_end
636 #ifdef CONFIG_MTD_UCLINUX
637                 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
638 #endif
639 #if DMA_UNCACHED_REGION > 0
640                 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
641 #endif
642                 );
643 }
644
645 /*
646  * Find the lowest, highest page frame number we have available
647  */
648 void __init find_min_max_pfn(void)
649 {
650         int i;
651
652         max_pfn = 0;
653         min_low_pfn = memory_end;
654
655         for (i = 0; i < bfin_memmap.nr_map; i++) {
656                 unsigned long start, end;
657                 /* RAM? */
658                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
659                         continue;
660                 start = PFN_UP(bfin_memmap.map[i].addr);
661                 end = PFN_DOWN(bfin_memmap.map[i].addr +
662                                 bfin_memmap.map[i].size);
663                 if (start >= end)
664                         continue;
665                 if (end > max_pfn)
666                         max_pfn = end;
667                 if (start < min_low_pfn)
668                         min_low_pfn = start;
669         }
670 }
671
672 static __init void setup_bootmem_allocator(void)
673 {
674         int bootmap_size;
675         int i;
676         unsigned long start_pfn, end_pfn;
677         unsigned long curr_pfn, last_pfn, size;
678
679         /* mark memory between memory_start and memory_end usable */
680         add_memory_region(memory_start,
681                 memory_end - memory_start, BFIN_MEMMAP_RAM);
682         /* sanity check for overlap */
683         sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
684         print_memory_map("boot memmap");
685
686         /* initialize globals in linux/bootmem.h */
687         find_min_max_pfn();
688         /* pfn of the last usable page frame */
689         if (max_pfn > memory_end >> PAGE_SHIFT)
690                 max_pfn = memory_end >> PAGE_SHIFT;
691         /* pfn of last page frame directly mapped by kernel */
692         max_low_pfn = max_pfn;
693         /* pfn of the first usable page frame after kernel image*/
694         if (min_low_pfn < memory_start >> PAGE_SHIFT)
695                 min_low_pfn = memory_start >> PAGE_SHIFT;
696
697         start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
698         end_pfn = memory_end >> PAGE_SHIFT;
699
700         /*
701          * give all the memory to the bootmap allocator, tell it to put the
702          * boot mem_map at the start of memory.
703          */
704         bootmap_size = init_bootmem_node(NODE_DATA(0),
705                         memory_start >> PAGE_SHIFT,     /* map goes here */
706                         start_pfn, end_pfn);
707
708         /* register the memmap regions with the bootmem allocator */
709         for (i = 0; i < bfin_memmap.nr_map; i++) {
710                 /*
711                  * Reserve usable memory
712                  */
713                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
714                         continue;
715                 /*
716                  * We are rounding up the start address of usable memory:
717                  */
718                 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
719                 if (curr_pfn >= end_pfn)
720                         continue;
721                 /*
722                  * ... and at the end of the usable range downwards:
723                  */
724                 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
725                                          bfin_memmap.map[i].size);
726
727                 if (last_pfn > end_pfn)
728                         last_pfn = end_pfn;
729
730                 /*
731                  * .. finally, did all the rounding and playing
732                  * around just make the area go away?
733                  */
734                 if (last_pfn <= curr_pfn)
735                         continue;
736
737                 size = last_pfn - curr_pfn;
738                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
739         }
740
741         /* reserve memory before memory_start, including bootmap */
742         reserve_bootmem(PAGE_OFFSET,
743                 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
744                 BOOTMEM_DEFAULT);
745 }
746
747 #define EBSZ_TO_MEG(ebsz) \
748 ({ \
749         int meg = 0; \
750         switch (ebsz & 0xf) { \
751                 case 0x1: meg =  16; break; \
752                 case 0x3: meg =  32; break; \
753                 case 0x5: meg =  64; break; \
754                 case 0x7: meg = 128; break; \
755                 case 0x9: meg = 256; break; \
756                 case 0xb: meg = 512; break; \
757         } \
758         meg; \
759 })
760 static inline int __init get_mem_size(void)
761 {
762 #if defined(EBIU_SDBCTL)
763 # if defined(BF561_FAMILY)
764         int ret = 0;
765         u32 sdbctl = bfin_read_EBIU_SDBCTL();
766         ret += EBSZ_TO_MEG(sdbctl >>  0);
767         ret += EBSZ_TO_MEG(sdbctl >>  8);
768         ret += EBSZ_TO_MEG(sdbctl >> 16);
769         ret += EBSZ_TO_MEG(sdbctl >> 24);
770         return ret;
771 # else
772         return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
773 # endif
774 #elif defined(EBIU_DDRCTL1)
775         u32 ddrctl = bfin_read_EBIU_DDRCTL1();
776         int ret = 0;
777         switch (ddrctl & 0xc0000) {
778                 case DEVSZ_64:  ret = 64 / 8;
779                 case DEVSZ_128: ret = 128 / 8;
780                 case DEVSZ_256: ret = 256 / 8;
781                 case DEVSZ_512: ret = 512 / 8;
782         }
783         switch (ddrctl & 0x30000) {
784                 case DEVWD_4:  ret *= 2;
785                 case DEVWD_8:  ret *= 2;
786                 case DEVWD_16: break;
787         }
788         if ((ddrctl & 0xc000) == 0x4000)
789                 ret *= 2;
790         return ret;
791 #endif
792         BUG();
793 }
794
795 void __init setup_arch(char **cmdline_p)
796 {
797         unsigned long sclk, cclk;
798
799         enable_shadow_console();
800
801         /* Check to make sure we are running on the right processor */
802         if (unlikely(CPUID != bfin_cpuid()))
803                 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
804                         CPU, bfin_cpuid(), bfin_revid());
805
806 #ifdef CONFIG_DUMMY_CONSOLE
807         conswitchp = &dummy_con;
808 #endif
809
810 #if defined(CONFIG_CMDLINE_BOOL)
811         strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
812         command_line[sizeof(command_line) - 1] = 0;
813 #endif
814
815         /* Keep a copy of command line */
816         *cmdline_p = &command_line[0];
817         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
818         boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
819
820         memset(&bfin_memmap, 0, sizeof(bfin_memmap));
821
822         /* If the user does not specify things on the command line, use
823          * what the bootloader set things up as
824          */
825         physical_mem_end = 0;
826         parse_cmdline_early(&command_line[0]);
827
828         if (_ramend == 0)
829                 _ramend = get_mem_size() * 1024 * 1024;
830
831         if (physical_mem_end == 0)
832                 physical_mem_end = _ramend;
833
834         memory_setup();
835
836         /* Initialize Async memory banks */
837         bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
838         bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
839         bfin_write_EBIU_AMGCTL(AMGCTLVAL);
840 #ifdef CONFIG_EBIU_MBSCTLVAL
841         bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
842         bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
843         bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
844 #endif
845
846         cclk = get_cclk();
847         sclk = get_sclk();
848
849         if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
850                 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
851
852 #ifdef BF561_FAMILY
853         if (ANOMALY_05000266) {
854                 bfin_read_IMDMA_D0_IRQ_STATUS();
855                 bfin_read_IMDMA_D1_IRQ_STATUS();
856         }
857 #endif
858         printk(KERN_INFO "Hardware Trace ");
859         if (bfin_read_TBUFCTL() & 0x1)
860                 printk(KERN_CONT "Active ");
861         else
862                 printk(KERN_CONT "Off ");
863         if (bfin_read_TBUFCTL() & 0x2)
864                 printk(KERN_CONT "and Enabled\n");
865         else
866                 printk(KERN_CONT "and Disabled\n");
867
868         printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
869
870         /* Newer parts mirror SWRST bits in SYSCR */
871 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
872     defined(CONFIG_BF538) || defined(CONFIG_BF539)
873         _bfin_swrst = bfin_read_SWRST();
874 #else
875         /* Clear boot mode field */
876         _bfin_swrst = bfin_read_SYSCR() & ~0xf;
877 #endif
878
879 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
880         bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
881 #endif
882 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
883         bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
884 #endif
885
886 #ifdef CONFIG_SMP
887         if (_bfin_swrst & SWRST_DBL_FAULT_A) {
888 #else
889         if (_bfin_swrst & RESET_DOUBLE) {
890 #endif
891                 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
892 #ifdef CONFIG_DEBUG_DOUBLEFAULT
893                 /* We assume the crashing kernel, and the current symbol table match */
894                 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
895                         (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
896                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
897                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
898 #endif
899                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
900                         init_retx);
901         } else if (_bfin_swrst & RESET_WDOG)
902                 printk(KERN_INFO "Recovering from Watchdog event\n");
903         else if (_bfin_swrst & RESET_SOFTWARE)
904                 printk(KERN_NOTICE "Reset caused by Software reset\n");
905
906         printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
907         if (bfin_compiled_revid() == 0xffff)
908                 printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
909         else if (bfin_compiled_revid() == -1)
910                 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
911         else
912                 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
913
914         if (likely(CPUID == bfin_cpuid())) {
915                 if (bfin_revid() != bfin_compiled_revid()) {
916                         if (bfin_compiled_revid() == -1)
917                                 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
918                                        bfin_revid());
919                         else if (bfin_compiled_revid() != 0xffff) {
920                                 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
921                                        bfin_compiled_revid(), bfin_revid());
922                                 if (bfin_compiled_revid() > bfin_revid())
923                                         panic("Error: you are missing anomaly workarounds for this rev");
924                         }
925                 }
926                 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
927                         printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
928                                CPU, bfin_revid());
929         }
930
931         printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
932
933         printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
934                cclk / 1000000, sclk / 1000000);
935
936         setup_bootmem_allocator();
937
938         paging_init();
939
940         /* Copy atomic sequences to their fixed location, and sanity check that
941            these locations are the ones that we advertise to userspace.  */
942         memcpy((void *)FIXED_CODE_START, &fixed_code_start,
943                FIXED_CODE_END - FIXED_CODE_START);
944         BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
945                != SIGRETURN_STUB - FIXED_CODE_START);
946         BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
947                != ATOMIC_XCHG32 - FIXED_CODE_START);
948         BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
949                != ATOMIC_CAS32 - FIXED_CODE_START);
950         BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
951                != ATOMIC_ADD32 - FIXED_CODE_START);
952         BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
953                != ATOMIC_SUB32 - FIXED_CODE_START);
954         BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
955                != ATOMIC_IOR32 - FIXED_CODE_START);
956         BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
957                != ATOMIC_AND32 - FIXED_CODE_START);
958         BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
959                != ATOMIC_XOR32 - FIXED_CODE_START);
960         BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
961                 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
962
963 #ifdef CONFIG_SMP
964         platform_init_cpus();
965 #endif
966         init_exception_vectors();
967         bfin_cache_init();      /* Initialize caches for the boot CPU */
968 }
969
970 static int __init topology_init(void)
971 {
972         unsigned int cpu;
973         /* Record CPU-private information for the boot processor. */
974         bfin_setup_cpudata(0);
975
976         for_each_possible_cpu(cpu) {
977                 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
978         }
979
980         return 0;
981 }
982
983 subsys_initcall(topology_init);
984
985 /* Get the input clock frequency */
986 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
987 static u_long get_clkin_hz(void)
988 {
989         return cached_clkin_hz;
990 }
991 static int __init early_init_clkin_hz(char *buf)
992 {
993         cached_clkin_hz = simple_strtoul(buf, NULL, 0);
994 #ifdef BFIN_KERNEL_CLOCK
995         if (cached_clkin_hz != CONFIG_CLKIN_HZ)
996                 panic("cannot change clkin_hz when reprogramming clocks");
997 #endif
998         return 1;
999 }
1000 early_param("clkin_hz=", early_init_clkin_hz);
1001
1002 /* Get the voltage input multiplier */
1003 static u_long get_vco(void)
1004 {
1005         static u_long cached_vco;
1006         u_long msel, pll_ctl;
1007
1008         /* The assumption here is that VCO never changes at runtime.
1009          * If, someday, we support that, then we'll have to change this.
1010          */
1011         if (cached_vco)
1012                 return cached_vco;
1013
1014         pll_ctl = bfin_read_PLL_CTL();
1015         msel = (pll_ctl >> 9) & 0x3F;
1016         if (0 == msel)
1017                 msel = 64;
1018
1019         cached_vco = get_clkin_hz();
1020         cached_vco >>= (1 & pll_ctl);   /* DF bit */
1021         cached_vco *= msel;
1022         return cached_vco;
1023 }
1024
1025 /* Get the Core clock */
1026 u_long get_cclk(void)
1027 {
1028         static u_long cached_cclk_pll_div, cached_cclk;
1029         u_long csel, ssel;
1030
1031         if (bfin_read_PLL_STAT() & 0x1)
1032                 return get_clkin_hz();
1033
1034         ssel = bfin_read_PLL_DIV();
1035         if (ssel == cached_cclk_pll_div)
1036                 return cached_cclk;
1037         else
1038                 cached_cclk_pll_div = ssel;
1039
1040         csel = ((ssel >> 4) & 0x03);
1041         ssel &= 0xf;
1042         if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1043                 cached_cclk = get_vco() / ssel;
1044         else
1045                 cached_cclk = get_vco() >> csel;
1046         return cached_cclk;
1047 }
1048 EXPORT_SYMBOL(get_cclk);
1049
1050 /* Get the System clock */
1051 u_long get_sclk(void)
1052 {
1053         static u_long cached_sclk;
1054         u_long ssel;
1055
1056         /* The assumption here is that SCLK never changes at runtime.
1057          * If, someday, we support that, then we'll have to change this.
1058          */
1059         if (cached_sclk)
1060                 return cached_sclk;
1061
1062         if (bfin_read_PLL_STAT() & 0x1)
1063                 return get_clkin_hz();
1064
1065         ssel = bfin_read_PLL_DIV() & 0xf;
1066         if (0 == ssel) {
1067                 printk(KERN_WARNING "Invalid System Clock\n");
1068                 ssel = 1;
1069         }
1070
1071         cached_sclk = get_vco() / ssel;
1072         return cached_sclk;
1073 }
1074 EXPORT_SYMBOL(get_sclk);
1075
1076 unsigned long sclk_to_usecs(unsigned long sclk)
1077 {
1078         u64 tmp = USEC_PER_SEC * (u64)sclk;
1079         do_div(tmp, get_sclk());
1080         return tmp;
1081 }
1082 EXPORT_SYMBOL(sclk_to_usecs);
1083
1084 unsigned long usecs_to_sclk(unsigned long usecs)
1085 {
1086         u64 tmp = get_sclk() * (u64)usecs;
1087         do_div(tmp, USEC_PER_SEC);
1088         return tmp;
1089 }
1090 EXPORT_SYMBOL(usecs_to_sclk);
1091
1092 /*
1093  *      Get CPU information for use by the procfs.
1094  */
1095 static int show_cpuinfo(struct seq_file *m, void *v)
1096 {
1097         char *cpu, *mmu, *fpu, *vendor, *cache;
1098         uint32_t revid;
1099         int cpu_num = *(unsigned int *)v;
1100         u_long sclk, cclk;
1101         u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1102         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1103
1104         cpu = CPU;
1105         mmu = "none";
1106         fpu = "none";
1107         revid = bfin_revid();
1108
1109         sclk = get_sclk();
1110         cclk = get_cclk();
1111
1112         switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1113         case 0xca:
1114                 vendor = "Analog Devices";
1115                 break;
1116         default:
1117                 vendor = "unknown";
1118                 break;
1119         }
1120
1121         seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1122
1123         if (CPUID == bfin_cpuid())
1124                 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1125         else
1126                 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1127                         CPUID, bfin_cpuid());
1128
1129         seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1130                 "stepping\t: %d ",
1131                 cpu, cclk/1000000, sclk/1000000,
1132 #ifdef CONFIG_MPU
1133                 "mpu on",
1134 #else
1135                 "mpu off",
1136 #endif
1137                 revid);
1138
1139         if (bfin_revid() != bfin_compiled_revid()) {
1140                 if (bfin_compiled_revid() == -1)
1141                         seq_printf(m, "(Compiled for Rev none)");
1142                 else if (bfin_compiled_revid() == 0xffff)
1143                         seq_printf(m, "(Compiled for Rev any)");
1144                 else
1145                         seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1146         }
1147
1148         seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1149                 cclk/1000000, cclk%1000000,
1150                 sclk/1000000, sclk%1000000);
1151         seq_printf(m, "bogomips\t: %lu.%02lu\n"
1152                 "Calibration\t: %lu loops\n",
1153                 (loops_per_jiffy * HZ) / 500000,
1154                 ((loops_per_jiffy * HZ) / 5000) % 100,
1155                 (loops_per_jiffy * HZ));
1156
1157         /* Check Cache configutation */
1158         switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1159         case ACACHE_BSRAM:
1160                 cache = "dbank-A/B\t: cache/sram";
1161                 dcache_size = 16;
1162                 dsup_banks = 1;
1163                 break;
1164         case ACACHE_BCACHE:
1165                 cache = "dbank-A/B\t: cache/cache";
1166                 dcache_size = 32;
1167                 dsup_banks = 2;
1168                 break;
1169         case ASRAM_BSRAM:
1170                 cache = "dbank-A/B\t: sram/sram";
1171                 dcache_size = 0;
1172                 dsup_banks = 0;
1173                 break;
1174         default:
1175                 cache = "unknown";
1176                 dcache_size = 0;
1177                 dsup_banks = 0;
1178                 break;
1179         }
1180
1181         /* Is it turned on? */
1182         if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1183                 dcache_size = 0;
1184
1185         if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1186                 icache_size = 0;
1187
1188         seq_printf(m, "cache size\t: %d KB(L1 icache) "
1189                 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1190                 icache_size, dcache_size, 0);
1191         seq_printf(m, "%s\n", cache);
1192         seq_printf(m, "external memory\t: "
1193 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1194                    "cacheable"
1195 #else
1196                    "uncacheable"
1197 #endif
1198                    " in instruction cache\n");
1199         seq_printf(m, "external memory\t: "
1200 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1201                       "cacheable (write-back)"
1202 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1203                       "cacheable (write-through)"
1204 #else
1205                       "uncacheable"
1206 #endif
1207                       " in data cache\n");
1208
1209         if (icache_size)
1210                 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1211                            BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1212         else
1213                 seq_printf(m, "icache setup\t: off\n");
1214
1215         seq_printf(m,
1216                    "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1217                    dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1218                    BFIN_DLINES);
1219 #ifdef __ARCH_SYNC_CORE_DCACHE
1220         seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1221 #endif
1222 #ifdef __ARCH_SYNC_CORE_ICACHE
1223         seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count);
1224 #endif
1225
1226         if (cpu_num != num_possible_cpus() - 1)
1227                 return 0;
1228
1229         if (L2_LENGTH) {
1230                 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1231                 seq_printf(m, "L2 SRAM\t\t: "
1232 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1233                               "cacheable"
1234 #else
1235                               "uncacheable"
1236 #endif
1237                               " in instruction cache\n");
1238                 seq_printf(m, "L2 SRAM\t\t: "
1239 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1240                               "cacheable (write-back)"
1241 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1242                               "cacheable (write-through)"
1243 #else
1244                               "uncacheable"
1245 #endif
1246                               " in data cache\n");
1247         }
1248         seq_printf(m, "board name\t: %s\n", bfin_board_name);
1249         seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1250                  physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1251         seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1252                 ((int)memory_end - (int)_stext) >> 10,
1253                 _stext,
1254                 (void *)memory_end);
1255         seq_printf(m, "\n");
1256
1257         return 0;
1258 }
1259
1260 static void *c_start(struct seq_file *m, loff_t *pos)
1261 {
1262         if (*pos == 0)
1263                 *pos = first_cpu(cpu_online_map);
1264         if (*pos >= num_online_cpus())
1265                 return NULL;
1266
1267         return pos;
1268 }
1269
1270 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1271 {
1272         *pos = next_cpu(*pos, cpu_online_map);
1273
1274         return c_start(m, pos);
1275 }
1276
1277 static void c_stop(struct seq_file *m, void *v)
1278 {
1279 }
1280
1281 const struct seq_operations cpuinfo_op = {
1282         .start = c_start,
1283         .next = c_next,
1284         .stop = c_stop,
1285         .show = show_cpuinfo,
1286 };
1287
1288 void __init cmdline_init(const char *r0)
1289 {
1290         early_shadow_stamp();
1291         if (r0)
1292                 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1293 }