Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[sfrench/cifs-2.6.git] / arch / blackfin / kernel / setup.c
1 /*
2  * arch/blackfin/kernel/setup.c
3  *
4  * Copyright 2004-2006 Analog Devices Inc.
5  *
6  * Enter bugs at http://blackfin.uclinux.org/
7  *
8  * Licensed under the GPL-2 or later.
9  */
10
11 #include <linux/delay.h>
12 #include <linux/console.h>
13 #include <linux/bootmem.h>
14 #include <linux/seq_file.h>
15 #include <linux/cpu.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/tty.h>
19 #include <linux/pfn.h>
20
21 #ifdef CONFIG_MTD_UCLINUX
22 #include <linux/mtd/map.h>
23 #include <linux/ext2_fs.h>
24 #include <linux/cramfs_fs.h>
25 #include <linux/romfs_fs.h>
26 #endif
27
28 #include <asm/cplb.h>
29 #include <asm/cacheflush.h>
30 #include <asm/blackfin.h>
31 #include <asm/cplbinit.h>
32 #include <asm/div64.h>
33 #include <asm/cpu.h>
34 #include <asm/fixed_code.h>
35 #include <asm/early_printk.h>
36
37 u16 _bfin_swrst;
38 EXPORT_SYMBOL(_bfin_swrst);
39
40 unsigned long memory_start, memory_end, physical_mem_end;
41 unsigned long _rambase, _ramstart, _ramend;
42 unsigned long reserved_mem_dcache_on;
43 unsigned long reserved_mem_icache_on;
44 EXPORT_SYMBOL(memory_start);
45 EXPORT_SYMBOL(memory_end);
46 EXPORT_SYMBOL(physical_mem_end);
47 EXPORT_SYMBOL(_ramend);
48 EXPORT_SYMBOL(reserved_mem_dcache_on);
49
50 #ifdef CONFIG_MTD_UCLINUX
51 extern struct map_info uclinux_ram_map;
52 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
53 unsigned long _ebss;
54 EXPORT_SYMBOL(memory_mtd_end);
55 EXPORT_SYMBOL(memory_mtd_start);
56 EXPORT_SYMBOL(mtd_size);
57 #endif
58
59 char __initdata command_line[COMMAND_LINE_SIZE];
60 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
61         *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
62
63 /* boot memmap, for parsing "memmap=" */
64 #define BFIN_MEMMAP_MAX         128 /* number of entries in bfin_memmap */
65 #define BFIN_MEMMAP_RAM         1
66 #define BFIN_MEMMAP_RESERVED    2
67 static struct bfin_memmap {
68         int nr_map;
69         struct bfin_memmap_entry {
70                 unsigned long long addr; /* start of memory segment */
71                 unsigned long long size;
72                 unsigned long type;
73         } map[BFIN_MEMMAP_MAX];
74 } bfin_memmap __initdata;
75
76 /* for memmap sanitization */
77 struct change_member {
78         struct bfin_memmap_entry *pentry; /* pointer to original entry */
79         unsigned long long addr; /* address for this change point */
80 };
81 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
82 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
83 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
84 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
85
86 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
87
88 static int early_init_clkin_hz(char *buf);
89
90 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
91 void __init generate_cplb_tables(void)
92 {
93         unsigned int cpu;
94
95         generate_cplb_tables_all();
96         /* Generate per-CPU I&D CPLB tables */
97         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
98                 generate_cplb_tables_cpu(cpu);
99 }
100 #endif
101
102 void __cpuinit bfin_setup_caches(unsigned int cpu)
103 {
104 #ifdef CONFIG_BFIN_ICACHE
105         bfin_icache_init(icplb_tbl[cpu]);
106 #endif
107
108 #ifdef CONFIG_BFIN_DCACHE
109         bfin_dcache_init(dcplb_tbl[cpu]);
110 #endif
111
112         /*
113          * In cache coherence emulation mode, we need to have the
114          * D-cache enabled before running any atomic operation which
115          * might involve cache invalidation (i.e. spinlock, rwlock).
116          * So printk's are deferred until then.
117          */
118 #ifdef CONFIG_BFIN_ICACHE
119         printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
120         printk(KERN_INFO "  External memory:"
121 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
122                " cacheable"
123 # else
124                " uncacheable"
125 # endif
126                " in instruction cache\n");
127         if (L2_LENGTH)
128                 printk(KERN_INFO "  L2 SRAM        :"
129 # ifdef CONFIG_BFIN_L2_ICACHEABLE
130                        " cacheable"
131 # else
132                        " uncacheable"
133 # endif
134                        " in instruction cache\n");
135
136 #else
137         printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
138 #endif
139
140 #ifdef CONFIG_BFIN_DCACHE
141         printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
142         printk(KERN_INFO "  External memory:"
143 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
144                " cacheable (write-back)"
145 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
146                " cacheable (write-through)"
147 # else
148                " uncacheable"
149 # endif
150                " in data cache\n");
151         if (L2_LENGTH)
152                 printk(KERN_INFO "  L2 SRAM        :"
153 # if defined CONFIG_BFIN_L2_WRITEBACK
154                        " cacheable (write-back)"
155 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
156                        " cacheable (write-through)"
157 # else
158                        " uncacheable"
159 # endif
160                        " in data cache\n");
161 #else
162         printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
163 #endif
164 }
165
166 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
167 {
168         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
169
170         cpudata->idle = current;
171         cpudata->imemctl = bfin_read_IMEM_CONTROL();
172         cpudata->dmemctl = bfin_read_DMEM_CONTROL();
173 }
174
175 void __init bfin_cache_init(void)
176 {
177 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
178         generate_cplb_tables();
179 #endif
180         bfin_setup_caches(0);
181 }
182
183 void __init bfin_relocate_l1_mem(void)
184 {
185         unsigned long l1_code_length;
186         unsigned long l1_data_a_length;
187         unsigned long l1_data_b_length;
188         unsigned long l2_length;
189
190         early_shadow_stamp();
191
192         /*
193          * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
194          * we know that everything about l1 text/data is nice and aligned,
195          * so copy by 4 byte chunks, and don't worry about overlapping
196          * src/dest.
197          *
198          * We can't use the dma_memcpy functions, since they can call
199          * scheduler functions which might be in L1 :( and core writes
200          * into L1 instruction cause bad access errors, so we are stuck,
201          * we are required to use DMA, but can't use the common dma
202          * functions. We can't use memcpy either - since that might be
203          * going to be in the relocated L1
204          */
205
206         blackfin_dma_early_init();
207
208         /* if necessary, copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
209         l1_code_length = _etext_l1 - _stext_l1;
210         if (l1_code_length)
211                 early_dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
212
213         /* if necessary, copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
214         l1_data_a_length = _sbss_l1 - _sdata_l1;
215         if (l1_data_a_length)
216                 early_dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
217
218         /* if necessary, copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
219         l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
220         if (l1_data_b_length)
221                 early_dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
222                         l1_data_a_length, l1_data_b_length);
223
224         early_dma_memcpy_done();
225
226         /* if necessary, copy _stext_l2 to _edata_l2 to L2 SRAM */
227         if (L2_LENGTH != 0) {
228                 l2_length = _sbss_l2 - _stext_l2;
229                 if (l2_length)
230                         memcpy(_stext_l2, _l2_lma_start, l2_length);
231         }
232 }
233
234 /* add_memory_region to memmap */
235 static void __init add_memory_region(unsigned long long start,
236                               unsigned long long size, int type)
237 {
238         int i;
239
240         i = bfin_memmap.nr_map;
241
242         if (i == BFIN_MEMMAP_MAX) {
243                 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
244                 return;
245         }
246
247         bfin_memmap.map[i].addr = start;
248         bfin_memmap.map[i].size = size;
249         bfin_memmap.map[i].type = type;
250         bfin_memmap.nr_map++;
251 }
252
253 /*
254  * Sanitize the boot memmap, removing overlaps.
255  */
256 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
257 {
258         struct change_member *change_tmp;
259         unsigned long current_type, last_type;
260         unsigned long long last_addr;
261         int chgidx, still_changing;
262         int overlap_entries;
263         int new_entry;
264         int old_nr, new_nr, chg_nr;
265         int i;
266
267         /*
268                 Visually we're performing the following (1,2,3,4 = memory types)
269
270                 Sample memory map (w/overlaps):
271                    ____22__________________
272                    ______________________4_
273                    ____1111________________
274                    _44_____________________
275                    11111111________________
276                    ____________________33__
277                    ___________44___________
278                    __________33333_________
279                    ______________22________
280                    ___________________2222_
281                    _________111111111______
282                    _____________________11_
283                    _________________4______
284
285                 Sanitized equivalent (no overlap):
286                    1_______________________
287                    _44_____________________
288                    ___1____________________
289                    ____22__________________
290                    ______11________________
291                    _________1______________
292                    __________3_____________
293                    ___________44___________
294                    _____________33_________
295                    _______________2________
296                    ________________1_______
297                    _________________4______
298                    ___________________2____
299                    ____________________33__
300                    ______________________4_
301         */
302         /* if there's only one memory region, don't bother */
303         if (*pnr_map < 2)
304                 return -1;
305
306         old_nr = *pnr_map;
307
308         /* bail out if we find any unreasonable addresses in memmap */
309         for (i = 0; i < old_nr; i++)
310                 if (map[i].addr + map[i].size < map[i].addr)
311                         return -1;
312
313         /* create pointers for initial change-point information (for sorting) */
314         for (i = 0; i < 2*old_nr; i++)
315                 change_point[i] = &change_point_list[i];
316
317         /* record all known change-points (starting and ending addresses),
318            omitting those that are for empty memory regions */
319         chgidx = 0;
320         for (i = 0; i < old_nr; i++) {
321                 if (map[i].size != 0) {
322                         change_point[chgidx]->addr = map[i].addr;
323                         change_point[chgidx++]->pentry = &map[i];
324                         change_point[chgidx]->addr = map[i].addr + map[i].size;
325                         change_point[chgidx++]->pentry = &map[i];
326                 }
327         }
328         chg_nr = chgidx;        /* true number of change-points */
329
330         /* sort change-point list by memory addresses (low -> high) */
331         still_changing = 1;
332         while (still_changing) {
333                 still_changing = 0;
334                 for (i = 1; i < chg_nr; i++) {
335                         /* if <current_addr> > <last_addr>, swap */
336                         /* or, if current=<start_addr> & last=<end_addr>, swap */
337                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
338                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
339                                  (change_point[i]->addr == change_point[i]->pentry->addr) &&
340                                  (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
341                            ) {
342                                 change_tmp = change_point[i];
343                                 change_point[i] = change_point[i-1];
344                                 change_point[i-1] = change_tmp;
345                                 still_changing = 1;
346                         }
347                 }
348         }
349
350         /* create a new memmap, removing overlaps */
351         overlap_entries = 0;    /* number of entries in the overlap table */
352         new_entry = 0;          /* index for creating new memmap entries */
353         last_type = 0;          /* start with undefined memory type */
354         last_addr = 0;          /* start with 0 as last starting address */
355         /* loop through change-points, determining affect on the new memmap */
356         for (chgidx = 0; chgidx < chg_nr; chgidx++) {
357                 /* keep track of all overlapping memmap entries */
358                 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
359                         /* add map entry to overlap list (> 1 entry implies an overlap) */
360                         overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
361                 } else {
362                         /* remove entry from list (order independent, so swap with last) */
363                         for (i = 0; i < overlap_entries; i++) {
364                                 if (overlap_list[i] == change_point[chgidx]->pentry)
365                                         overlap_list[i] = overlap_list[overlap_entries-1];
366                         }
367                         overlap_entries--;
368                 }
369                 /* if there are overlapping entries, decide which "type" to use */
370                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
371                 current_type = 0;
372                 for (i = 0; i < overlap_entries; i++)
373                         if (overlap_list[i]->type > current_type)
374                                 current_type = overlap_list[i]->type;
375                 /* continue building up new memmap based on this information */
376                 if (current_type != last_type) {
377                         if (last_type != 0) {
378                                 new_map[new_entry].size =
379                                         change_point[chgidx]->addr - last_addr;
380                                 /* move forward only if the new size was non-zero */
381                                 if (new_map[new_entry].size != 0)
382                                         if (++new_entry >= BFIN_MEMMAP_MAX)
383                                                 break;  /* no more space left for new entries */
384                         }
385                         if (current_type != 0) {
386                                 new_map[new_entry].addr = change_point[chgidx]->addr;
387                                 new_map[new_entry].type = current_type;
388                                 last_addr = change_point[chgidx]->addr;
389                         }
390                         last_type = current_type;
391                 }
392         }
393         new_nr = new_entry;     /* retain count for new entries */
394
395         /* copy new mapping into original location */
396         memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
397         *pnr_map = new_nr;
398
399         return 0;
400 }
401
402 static void __init print_memory_map(char *who)
403 {
404         int i;
405
406         for (i = 0; i < bfin_memmap.nr_map; i++) {
407                 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
408                         bfin_memmap.map[i].addr,
409                         bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
410                 switch (bfin_memmap.map[i].type) {
411                 case BFIN_MEMMAP_RAM:
412                         printk(KERN_CONT "(usable)\n");
413                         break;
414                 case BFIN_MEMMAP_RESERVED:
415                         printk(KERN_CONT "(reserved)\n");
416                         break;
417                 default:
418                         printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
419                         break;
420                 }
421         }
422 }
423
424 static __init int parse_memmap(char *arg)
425 {
426         unsigned long long start_at, mem_size;
427
428         if (!arg)
429                 return -EINVAL;
430
431         mem_size = memparse(arg, &arg);
432         if (*arg == '@') {
433                 start_at = memparse(arg+1, &arg);
434                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
435         } else if (*arg == '$') {
436                 start_at = memparse(arg+1, &arg);
437                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
438         }
439
440         return 0;
441 }
442
443 /*
444  * Initial parsing of the command line.  Currently, we support:
445  *  - Controlling the linux memory size: mem=xxx[KMG]
446  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
447  *       $ -> reserved memory is dcacheable
448  *       # -> reserved memory is icacheable
449  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
450  *       @ from <start> to <start>+<mem>, type RAM
451  *       $ from <start> to <start>+<mem>, type RESERVED
452  */
453 static __init void parse_cmdline_early(char *cmdline_p)
454 {
455         char c = ' ', *to = cmdline_p;
456         unsigned int memsize;
457         for (;;) {
458                 if (c == ' ') {
459                         if (!memcmp(to, "mem=", 4)) {
460                                 to += 4;
461                                 memsize = memparse(to, &to);
462                                 if (memsize)
463                                         _ramend = memsize;
464
465                         } else if (!memcmp(to, "max_mem=", 8)) {
466                                 to += 8;
467                                 memsize = memparse(to, &to);
468                                 if (memsize) {
469                                         physical_mem_end = memsize;
470                                         if (*to != ' ') {
471                                                 if (*to == '$'
472                                                     || *(to + 1) == '$')
473                                                         reserved_mem_dcache_on = 1;
474                                                 if (*to == '#'
475                                                     || *(to + 1) == '#')
476                                                         reserved_mem_icache_on = 1;
477                                         }
478                                 }
479                         } else if (!memcmp(to, "clkin_hz=", 9)) {
480                                 to += 9;
481                                 early_init_clkin_hz(to);
482 #ifdef CONFIG_EARLY_PRINTK
483                         } else if (!memcmp(to, "earlyprintk=", 12)) {
484                                 to += 12;
485                                 setup_early_printk(to);
486 #endif
487                         } else if (!memcmp(to, "memmap=", 7)) {
488                                 to += 7;
489                                 parse_memmap(to);
490                         }
491                 }
492                 c = *(to++);
493                 if (!c)
494                         break;
495         }
496 }
497
498 /*
499  * Setup memory defaults from user config.
500  * The physical memory layout looks like:
501  *
502  *  [_rambase, _ramstart]:              kernel image
503  *  [memory_start, memory_end]:         dynamic memory managed by kernel
504  *  [memory_end, _ramend]:              reserved memory
505  *      [memory_mtd_start(memory_end),
506  *              memory_mtd_start + mtd_size]:   rootfs (if any)
507  *      [_ramend - DMA_UNCACHED_REGION,
508  *              _ramend]:                       uncached DMA region
509  *  [_ramend, physical_mem_end]:        memory not managed by kernel
510  */
511 static __init void memory_setup(void)
512 {
513 #ifdef CONFIG_MTD_UCLINUX
514         unsigned long mtd_phys = 0;
515 #endif
516         unsigned long max_mem;
517
518         _rambase = (unsigned long)_stext;
519         _ramstart = (unsigned long)_end;
520
521         if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
522                 console_init();
523                 panic("DMA region exceeds memory limit: %lu.",
524                         _ramend - _ramstart);
525         }
526         max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
527
528 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
529         /* Due to a Hardware Anomaly we need to limit the size of usable
530          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
531          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
532          */
533 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
534         if (max_mem >= 56 * 1024 * 1024)
535                 max_mem = 56 * 1024 * 1024;
536 # else
537         if (max_mem >= 60 * 1024 * 1024)
538                 max_mem = 60 * 1024 * 1024;
539 # endif                         /* CONFIG_DEBUG_HUNT_FOR_ZERO */
540 #endif                          /* ANOMALY_05000263 */
541
542
543 #ifdef CONFIG_MPU
544         /* Round up to multiple of 4MB */
545         memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
546 #else
547         memory_start = PAGE_ALIGN(_ramstart);
548 #endif
549
550 #if defined(CONFIG_MTD_UCLINUX)
551         /* generic memory mapped MTD driver */
552         memory_mtd_end = memory_end;
553
554         mtd_phys = _ramstart;
555         mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
556
557 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
558         if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
559                 mtd_size =
560                     PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
561 # endif
562
563 # if defined(CONFIG_CRAMFS)
564         if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
565                 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
566 # endif
567
568 # if defined(CONFIG_ROMFS_FS)
569         if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
570             && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
571                 mtd_size =
572                     PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
573
574                 /* ROM_FS is XIP, so if we found it, we need to limit memory */
575                 if (memory_end > max_mem) {
576                         pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
577                         memory_end = max_mem;
578                 }
579         }
580 # endif                         /* CONFIG_ROMFS_FS */
581
582         /* Since the default MTD_UCLINUX has no magic number, we just blindly
583          * read 8 past the end of the kernel's image, and look at it.
584          * When no image is attached, mtd_size is set to a random number
585          * Do some basic sanity checks before operating on things
586          */
587         if (mtd_size == 0 || memory_end <= mtd_size) {
588                 pr_emerg("Could not find valid ram mtd attached.\n");
589         } else {
590                 memory_end -= mtd_size;
591
592                 /* Relocate MTD image to the top of memory after the uncached memory area */
593                 uclinux_ram_map.phys = memory_mtd_start = memory_end;
594                 uclinux_ram_map.size = mtd_size;
595                 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
596                         _end, mtd_size, (void *)memory_mtd_start);
597                 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
598         }
599 #endif                          /* CONFIG_MTD_UCLINUX */
600
601         /* We need lo limit memory, since everything could have a text section
602          * of userspace in it, and expose anomaly 05000263. If the anomaly
603          * doesn't exist, or we don't need to - then dont.
604          */
605         if (memory_end > max_mem) {
606                 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
607                 memory_end = max_mem;
608         }
609
610 #ifdef CONFIG_MPU
611         page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
612         page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
613 #endif
614
615 #if !defined(CONFIG_MTD_UCLINUX)
616         /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
617         memory_end -= SIZE_4K;
618 #endif
619
620         init_mm.start_code = (unsigned long)_stext;
621         init_mm.end_code = (unsigned long)_etext;
622         init_mm.end_data = (unsigned long)_edata;
623         init_mm.brk = (unsigned long)0;
624
625         printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
626         printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
627
628         printk(KERN_INFO "Memory map:\n"
629                "  fixedcode = 0x%p-0x%p\n"
630                "  text      = 0x%p-0x%p\n"
631                "  rodata    = 0x%p-0x%p\n"
632                "  bss       = 0x%p-0x%p\n"
633                "  data      = 0x%p-0x%p\n"
634                "    stack   = 0x%p-0x%p\n"
635                "  init      = 0x%p-0x%p\n"
636                "  available = 0x%p-0x%p\n"
637 #ifdef CONFIG_MTD_UCLINUX
638                "  rootfs    = 0x%p-0x%p\n"
639 #endif
640 #if DMA_UNCACHED_REGION > 0
641                "  DMA Zone  = 0x%p-0x%p\n"
642 #endif
643                 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
644                 _stext, _etext,
645                 __start_rodata, __end_rodata,
646                 __bss_start, __bss_stop,
647                 _sdata, _edata,
648                 (void *)&init_thread_union,
649                 (void *)((int)(&init_thread_union) + 0x2000),
650                 __init_begin, __init_end,
651                 (void *)_ramstart, (void *)memory_end
652 #ifdef CONFIG_MTD_UCLINUX
653                 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
654 #endif
655 #if DMA_UNCACHED_REGION > 0
656                 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
657 #endif
658                 );
659 }
660
661 /*
662  * Find the lowest, highest page frame number we have available
663  */
664 void __init find_min_max_pfn(void)
665 {
666         int i;
667
668         max_pfn = 0;
669         min_low_pfn = memory_end;
670
671         for (i = 0; i < bfin_memmap.nr_map; i++) {
672                 unsigned long start, end;
673                 /* RAM? */
674                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
675                         continue;
676                 start = PFN_UP(bfin_memmap.map[i].addr);
677                 end = PFN_DOWN(bfin_memmap.map[i].addr +
678                                 bfin_memmap.map[i].size);
679                 if (start >= end)
680                         continue;
681                 if (end > max_pfn)
682                         max_pfn = end;
683                 if (start < min_low_pfn)
684                         min_low_pfn = start;
685         }
686 }
687
688 static __init void setup_bootmem_allocator(void)
689 {
690         int bootmap_size;
691         int i;
692         unsigned long start_pfn, end_pfn;
693         unsigned long curr_pfn, last_pfn, size;
694
695         /* mark memory between memory_start and memory_end usable */
696         add_memory_region(memory_start,
697                 memory_end - memory_start, BFIN_MEMMAP_RAM);
698         /* sanity check for overlap */
699         sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
700         print_memory_map("boot memmap");
701
702         /* initialize globals in linux/bootmem.h */
703         find_min_max_pfn();
704         /* pfn of the last usable page frame */
705         if (max_pfn > memory_end >> PAGE_SHIFT)
706                 max_pfn = memory_end >> PAGE_SHIFT;
707         /* pfn of last page frame directly mapped by kernel */
708         max_low_pfn = max_pfn;
709         /* pfn of the first usable page frame after kernel image*/
710         if (min_low_pfn < memory_start >> PAGE_SHIFT)
711                 min_low_pfn = memory_start >> PAGE_SHIFT;
712
713         start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
714         end_pfn = memory_end >> PAGE_SHIFT;
715
716         /*
717          * give all the memory to the bootmap allocator, tell it to put the
718          * boot mem_map at the start of memory.
719          */
720         bootmap_size = init_bootmem_node(NODE_DATA(0),
721                         memory_start >> PAGE_SHIFT,     /* map goes here */
722                         start_pfn, end_pfn);
723
724         /* register the memmap regions with the bootmem allocator */
725         for (i = 0; i < bfin_memmap.nr_map; i++) {
726                 /*
727                  * Reserve usable memory
728                  */
729                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
730                         continue;
731                 /*
732                  * We are rounding up the start address of usable memory:
733                  */
734                 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
735                 if (curr_pfn >= end_pfn)
736                         continue;
737                 /*
738                  * ... and at the end of the usable range downwards:
739                  */
740                 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
741                                          bfin_memmap.map[i].size);
742
743                 if (last_pfn > end_pfn)
744                         last_pfn = end_pfn;
745
746                 /*
747                  * .. finally, did all the rounding and playing
748                  * around just make the area go away?
749                  */
750                 if (last_pfn <= curr_pfn)
751                         continue;
752
753                 size = last_pfn - curr_pfn;
754                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
755         }
756
757         /* reserve memory before memory_start, including bootmap */
758         reserve_bootmem(PAGE_OFFSET,
759                 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
760                 BOOTMEM_DEFAULT);
761 }
762
763 #define EBSZ_TO_MEG(ebsz) \
764 ({ \
765         int meg = 0; \
766         switch (ebsz & 0xf) { \
767                 case 0x1: meg =  16; break; \
768                 case 0x3: meg =  32; break; \
769                 case 0x5: meg =  64; break; \
770                 case 0x7: meg = 128; break; \
771                 case 0x9: meg = 256; break; \
772                 case 0xb: meg = 512; break; \
773         } \
774         meg; \
775 })
776 static inline int __init get_mem_size(void)
777 {
778 #if defined(EBIU_SDBCTL)
779 # if defined(BF561_FAMILY)
780         int ret = 0;
781         u32 sdbctl = bfin_read_EBIU_SDBCTL();
782         ret += EBSZ_TO_MEG(sdbctl >>  0);
783         ret += EBSZ_TO_MEG(sdbctl >>  8);
784         ret += EBSZ_TO_MEG(sdbctl >> 16);
785         ret += EBSZ_TO_MEG(sdbctl >> 24);
786         return ret;
787 # else
788         return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
789 # endif
790 #elif defined(EBIU_DDRCTL1)
791         u32 ddrctl = bfin_read_EBIU_DDRCTL1();
792         int ret = 0;
793         switch (ddrctl & 0xc0000) {
794                 case DEVSZ_64:  ret = 64 / 8;
795                 case DEVSZ_128: ret = 128 / 8;
796                 case DEVSZ_256: ret = 256 / 8;
797                 case DEVSZ_512: ret = 512 / 8;
798         }
799         switch (ddrctl & 0x30000) {
800                 case DEVWD_4:  ret *= 2;
801                 case DEVWD_8:  ret *= 2;
802                 case DEVWD_16: break;
803         }
804         if ((ddrctl & 0xc000) == 0x4000)
805                 ret *= 2;
806         return ret;
807 #endif
808         BUG();
809 }
810
811 void __init setup_arch(char **cmdline_p)
812 {
813         unsigned long sclk, cclk;
814
815         enable_shadow_console();
816
817         /* Check to make sure we are running on the right processor */
818         if (unlikely(CPUID != bfin_cpuid()))
819                 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
820                         CPU, bfin_cpuid(), bfin_revid());
821
822 #ifdef CONFIG_DUMMY_CONSOLE
823         conswitchp = &dummy_con;
824 #endif
825
826 #if defined(CONFIG_CMDLINE_BOOL)
827         strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
828         command_line[sizeof(command_line) - 1] = 0;
829 #endif
830
831         /* Keep a copy of command line */
832         *cmdline_p = &command_line[0];
833         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
834         boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
835
836         memset(&bfin_memmap, 0, sizeof(bfin_memmap));
837
838         /* If the user does not specify things on the command line, use
839          * what the bootloader set things up as
840          */
841         physical_mem_end = 0;
842         parse_cmdline_early(&command_line[0]);
843
844         if (_ramend == 0)
845                 _ramend = get_mem_size() * 1024 * 1024;
846
847         if (physical_mem_end == 0)
848                 physical_mem_end = _ramend;
849
850         memory_setup();
851
852         /* Initialize Async memory banks */
853         bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
854         bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
855         bfin_write_EBIU_AMGCTL(AMGCTLVAL);
856 #ifdef CONFIG_EBIU_MBSCTLVAL
857         bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
858         bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
859         bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
860 #endif
861
862         cclk = get_cclk();
863         sclk = get_sclk();
864
865         if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
866                 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
867
868 #ifdef BF561_FAMILY
869         if (ANOMALY_05000266) {
870                 bfin_read_IMDMA_D0_IRQ_STATUS();
871                 bfin_read_IMDMA_D1_IRQ_STATUS();
872         }
873 #endif
874         printk(KERN_INFO "Hardware Trace ");
875         if (bfin_read_TBUFCTL() & 0x1)
876                 printk(KERN_CONT "Active ");
877         else
878                 printk(KERN_CONT "Off ");
879         if (bfin_read_TBUFCTL() & 0x2)
880                 printk(KERN_CONT "and Enabled\n");
881         else
882                 printk(KERN_CONT "and Disabled\n");
883
884         printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
885
886         /* Newer parts mirror SWRST bits in SYSCR */
887 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
888     defined(CONFIG_BF538) || defined(CONFIG_BF539)
889         _bfin_swrst = bfin_read_SWRST();
890 #else
891         /* Clear boot mode field */
892         _bfin_swrst = bfin_read_SYSCR() & ~0xf;
893 #endif
894
895 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
896         bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
897 #endif
898 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
899         bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
900 #endif
901
902 #ifdef CONFIG_SMP
903         if (_bfin_swrst & SWRST_DBL_FAULT_A) {
904 #else
905         if (_bfin_swrst & RESET_DOUBLE) {
906 #endif
907                 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
908 #ifdef CONFIG_DEBUG_DOUBLEFAULT
909                 /* We assume the crashing kernel, and the current symbol table match */
910                 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
911                         (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
912                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
913                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
914 #endif
915                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
916                         init_retx);
917         } else if (_bfin_swrst & RESET_WDOG)
918                 printk(KERN_INFO "Recovering from Watchdog event\n");
919         else if (_bfin_swrst & RESET_SOFTWARE)
920                 printk(KERN_NOTICE "Reset caused by Software reset\n");
921
922         printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
923         if (bfin_compiled_revid() == 0xffff)
924                 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
925         else if (bfin_compiled_revid() == -1)
926                 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
927         else
928                 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
929
930         if (likely(CPUID == bfin_cpuid())) {
931                 if (bfin_revid() != bfin_compiled_revid()) {
932                         if (bfin_compiled_revid() == -1)
933                                 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
934                                        bfin_revid());
935                         else if (bfin_compiled_revid() != 0xffff) {
936                                 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
937                                        bfin_compiled_revid(), bfin_revid());
938                                 if (bfin_compiled_revid() > bfin_revid())
939                                         panic("Error: you are missing anomaly workarounds for this rev");
940                         }
941                 }
942                 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
943                         printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
944                                CPU, bfin_revid());
945         }
946
947         printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
948
949         printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
950                cclk / 1000000, sclk / 1000000);
951
952         setup_bootmem_allocator();
953
954         paging_init();
955
956         /* Copy atomic sequences to their fixed location, and sanity check that
957            these locations are the ones that we advertise to userspace.  */
958         memcpy((void *)FIXED_CODE_START, &fixed_code_start,
959                FIXED_CODE_END - FIXED_CODE_START);
960         BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
961                != SIGRETURN_STUB - FIXED_CODE_START);
962         BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
963                != ATOMIC_XCHG32 - FIXED_CODE_START);
964         BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
965                != ATOMIC_CAS32 - FIXED_CODE_START);
966         BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
967                != ATOMIC_ADD32 - FIXED_CODE_START);
968         BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
969                != ATOMIC_SUB32 - FIXED_CODE_START);
970         BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
971                != ATOMIC_IOR32 - FIXED_CODE_START);
972         BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
973                != ATOMIC_AND32 - FIXED_CODE_START);
974         BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
975                != ATOMIC_XOR32 - FIXED_CODE_START);
976         BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
977                 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
978
979 #ifdef CONFIG_SMP
980         platform_init_cpus();
981 #endif
982         init_exception_vectors();
983         bfin_cache_init();      /* Initialize caches for the boot CPU */
984 }
985
986 static int __init topology_init(void)
987 {
988         unsigned int cpu;
989         /* Record CPU-private information for the boot processor. */
990         bfin_setup_cpudata(0);
991
992         for_each_possible_cpu(cpu) {
993                 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
994         }
995
996         return 0;
997 }
998
999 subsys_initcall(topology_init);
1000
1001 /* Get the input clock frequency */
1002 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1003 static u_long get_clkin_hz(void)
1004 {
1005         return cached_clkin_hz;
1006 }
1007 static int __init early_init_clkin_hz(char *buf)
1008 {
1009         cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1010 #ifdef BFIN_KERNEL_CLOCK
1011         if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1012                 panic("cannot change clkin_hz when reprogramming clocks");
1013 #endif
1014         return 1;
1015 }
1016 early_param("clkin_hz=", early_init_clkin_hz);
1017
1018 /* Get the voltage input multiplier */
1019 static u_long get_vco(void)
1020 {
1021         static u_long cached_vco;
1022         u_long msel, pll_ctl;
1023
1024         /* The assumption here is that VCO never changes at runtime.
1025          * If, someday, we support that, then we'll have to change this.
1026          */
1027         if (cached_vco)
1028                 return cached_vco;
1029
1030         pll_ctl = bfin_read_PLL_CTL();
1031         msel = (pll_ctl >> 9) & 0x3F;
1032         if (0 == msel)
1033                 msel = 64;
1034
1035         cached_vco = get_clkin_hz();
1036         cached_vco >>= (1 & pll_ctl);   /* DF bit */
1037         cached_vco *= msel;
1038         return cached_vco;
1039 }
1040
1041 /* Get the Core clock */
1042 u_long get_cclk(void)
1043 {
1044         static u_long cached_cclk_pll_div, cached_cclk;
1045         u_long csel, ssel;
1046
1047         if (bfin_read_PLL_STAT() & 0x1)
1048                 return get_clkin_hz();
1049
1050         ssel = bfin_read_PLL_DIV();
1051         if (ssel == cached_cclk_pll_div)
1052                 return cached_cclk;
1053         else
1054                 cached_cclk_pll_div = ssel;
1055
1056         csel = ((ssel >> 4) & 0x03);
1057         ssel &= 0xf;
1058         if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1059                 cached_cclk = get_vco() / ssel;
1060         else
1061                 cached_cclk = get_vco() >> csel;
1062         return cached_cclk;
1063 }
1064 EXPORT_SYMBOL(get_cclk);
1065
1066 /* Get the System clock */
1067 u_long get_sclk(void)
1068 {
1069         static u_long cached_sclk;
1070         u_long ssel;
1071
1072         /* The assumption here is that SCLK never changes at runtime.
1073          * If, someday, we support that, then we'll have to change this.
1074          */
1075         if (cached_sclk)
1076                 return cached_sclk;
1077
1078         if (bfin_read_PLL_STAT() & 0x1)
1079                 return get_clkin_hz();
1080
1081         ssel = bfin_read_PLL_DIV() & 0xf;
1082         if (0 == ssel) {
1083                 printk(KERN_WARNING "Invalid System Clock\n");
1084                 ssel = 1;
1085         }
1086
1087         cached_sclk = get_vco() / ssel;
1088         return cached_sclk;
1089 }
1090 EXPORT_SYMBOL(get_sclk);
1091
1092 unsigned long sclk_to_usecs(unsigned long sclk)
1093 {
1094         u64 tmp = USEC_PER_SEC * (u64)sclk;
1095         do_div(tmp, get_sclk());
1096         return tmp;
1097 }
1098 EXPORT_SYMBOL(sclk_to_usecs);
1099
1100 unsigned long usecs_to_sclk(unsigned long usecs)
1101 {
1102         u64 tmp = get_sclk() * (u64)usecs;
1103         do_div(tmp, USEC_PER_SEC);
1104         return tmp;
1105 }
1106 EXPORT_SYMBOL(usecs_to_sclk);
1107
1108 /*
1109  *      Get CPU information for use by the procfs.
1110  */
1111 static int show_cpuinfo(struct seq_file *m, void *v)
1112 {
1113         char *cpu, *mmu, *fpu, *vendor, *cache;
1114         uint32_t revid;
1115         int cpu_num = *(unsigned int *)v;
1116         u_long sclk, cclk;
1117         u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1118         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1119
1120         cpu = CPU;
1121         mmu = "none";
1122         fpu = "none";
1123         revid = bfin_revid();
1124
1125         sclk = get_sclk();
1126         cclk = get_cclk();
1127
1128         switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1129         case 0xca:
1130                 vendor = "Analog Devices";
1131                 break;
1132         default:
1133                 vendor = "unknown";
1134                 break;
1135         }
1136
1137         seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1138
1139         if (CPUID == bfin_cpuid())
1140                 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1141         else
1142                 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1143                         CPUID, bfin_cpuid());
1144
1145         seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1146                 "stepping\t: %d ",
1147                 cpu, cclk/1000000, sclk/1000000,
1148 #ifdef CONFIG_MPU
1149                 "mpu on",
1150 #else
1151                 "mpu off",
1152 #endif
1153                 revid);
1154
1155         if (bfin_revid() != bfin_compiled_revid()) {
1156                 if (bfin_compiled_revid() == -1)
1157                         seq_printf(m, "(Compiled for Rev none)");
1158                 else if (bfin_compiled_revid() == 0xffff)
1159                         seq_printf(m, "(Compiled for Rev any)");
1160                 else
1161                         seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1162         }
1163
1164         seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1165                 cclk/1000000, cclk%1000000,
1166                 sclk/1000000, sclk%1000000);
1167         seq_printf(m, "bogomips\t: %lu.%02lu\n"
1168                 "Calibration\t: %lu loops\n",
1169                 (loops_per_jiffy * HZ) / 500000,
1170                 ((loops_per_jiffy * HZ) / 5000) % 100,
1171                 (loops_per_jiffy * HZ));
1172
1173         /* Check Cache configutation */
1174         switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1175         case ACACHE_BSRAM:
1176                 cache = "dbank-A/B\t: cache/sram";
1177                 dcache_size = 16;
1178                 dsup_banks = 1;
1179                 break;
1180         case ACACHE_BCACHE:
1181                 cache = "dbank-A/B\t: cache/cache";
1182                 dcache_size = 32;
1183                 dsup_banks = 2;
1184                 break;
1185         case ASRAM_BSRAM:
1186                 cache = "dbank-A/B\t: sram/sram";
1187                 dcache_size = 0;
1188                 dsup_banks = 0;
1189                 break;
1190         default:
1191                 cache = "unknown";
1192                 dcache_size = 0;
1193                 dsup_banks = 0;
1194                 break;
1195         }
1196
1197         /* Is it turned on? */
1198         if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1199                 dcache_size = 0;
1200
1201         if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1202                 icache_size = 0;
1203
1204         seq_printf(m, "cache size\t: %d KB(L1 icache) "
1205                 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1206                 icache_size, dcache_size, 0);
1207         seq_printf(m, "%s\n", cache);
1208         seq_printf(m, "external memory\t: "
1209 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1210                    "cacheable"
1211 #else
1212                    "uncacheable"
1213 #endif
1214                    " in instruction cache\n");
1215         seq_printf(m, "external memory\t: "
1216 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1217                       "cacheable (write-back)"
1218 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1219                       "cacheable (write-through)"
1220 #else
1221                       "uncacheable"
1222 #endif
1223                       " in data cache\n");
1224
1225         if (icache_size)
1226                 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1227                            BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1228         else
1229                 seq_printf(m, "icache setup\t: off\n");
1230
1231         seq_printf(m,
1232                    "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1233                    dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1234                    BFIN_DLINES);
1235 #ifdef __ARCH_SYNC_CORE_DCACHE
1236         seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1237 #endif
1238 #ifdef __ARCH_SYNC_CORE_ICACHE
1239         seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count);
1240 #endif
1241
1242         if (cpu_num != num_possible_cpus() - 1)
1243                 return 0;
1244
1245         if (L2_LENGTH) {
1246                 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1247                 seq_printf(m, "L2 SRAM\t\t: "
1248 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1249                               "cacheable"
1250 #else
1251                               "uncacheable"
1252 #endif
1253                               " in instruction cache\n");
1254                 seq_printf(m, "L2 SRAM\t\t: "
1255 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1256                               "cacheable (write-back)"
1257 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1258                               "cacheable (write-through)"
1259 #else
1260                               "uncacheable"
1261 #endif
1262                               " in data cache\n");
1263         }
1264         seq_printf(m, "board name\t: %s\n", bfin_board_name);
1265         seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1266                  physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1267         seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1268                 ((int)memory_end - (int)_stext) >> 10,
1269                 _stext,
1270                 (void *)memory_end);
1271         seq_printf(m, "\n");
1272
1273         return 0;
1274 }
1275
1276 static void *c_start(struct seq_file *m, loff_t *pos)
1277 {
1278         if (*pos == 0)
1279                 *pos = first_cpu(cpu_online_map);
1280         if (*pos >= num_online_cpus())
1281                 return NULL;
1282
1283         return pos;
1284 }
1285
1286 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1287 {
1288         *pos = next_cpu(*pos, cpu_online_map);
1289
1290         return c_start(m, pos);
1291 }
1292
1293 static void c_stop(struct seq_file *m, void *v)
1294 {
1295 }
1296
1297 const struct seq_operations cpuinfo_op = {
1298         .start = c_start,
1299         .next = c_next,
1300         .stop = c_stop,
1301         .show = show_cpuinfo,
1302 };
1303
1304 void __init cmdline_init(const char *r0)
1305 {
1306         early_shadow_stamp();
1307         if (r0)
1308                 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1309 }