Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / blackfin / kernel / kgdb.c
1 /*
2  * arch/blackfin/kernel/kgdb.c - Blackfin kgdb pieces
3  *
4  * Copyright 2005-2008 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later.
7  */
8
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/smp.h>
13 #include <linux/spinlock.h>
14 #include <linux/delay.h>
15 #include <linux/ptrace.h>               /* for linux pt_regs struct */
16 #include <linux/kgdb.h>
17 #include <linux/console.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/irq.h>
21 #include <linux/uaccess.h>
22 #include <asm/system.h>
23 #include <asm/traps.h>
24 #include <asm/blackfin.h>
25 #include <asm/dma.h>
26
27 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
28 {
29         gdb_regs[BFIN_R0] = regs->r0;
30         gdb_regs[BFIN_R1] = regs->r1;
31         gdb_regs[BFIN_R2] = regs->r2;
32         gdb_regs[BFIN_R3] = regs->r3;
33         gdb_regs[BFIN_R4] = regs->r4;
34         gdb_regs[BFIN_R5] = regs->r5;
35         gdb_regs[BFIN_R6] = regs->r6;
36         gdb_regs[BFIN_R7] = regs->r7;
37         gdb_regs[BFIN_P0] = regs->p0;
38         gdb_regs[BFIN_P1] = regs->p1;
39         gdb_regs[BFIN_P2] = regs->p2;
40         gdb_regs[BFIN_P3] = regs->p3;
41         gdb_regs[BFIN_P4] = regs->p4;
42         gdb_regs[BFIN_P5] = regs->p5;
43         gdb_regs[BFIN_SP] = regs->reserved;
44         gdb_regs[BFIN_FP] = regs->fp;
45         gdb_regs[BFIN_I0] = regs->i0;
46         gdb_regs[BFIN_I1] = regs->i1;
47         gdb_regs[BFIN_I2] = regs->i2;
48         gdb_regs[BFIN_I3] = regs->i3;
49         gdb_regs[BFIN_M0] = regs->m0;
50         gdb_regs[BFIN_M1] = regs->m1;
51         gdb_regs[BFIN_M2] = regs->m2;
52         gdb_regs[BFIN_M3] = regs->m3;
53         gdb_regs[BFIN_B0] = regs->b0;
54         gdb_regs[BFIN_B1] = regs->b1;
55         gdb_regs[BFIN_B2] = regs->b2;
56         gdb_regs[BFIN_B3] = regs->b3;
57         gdb_regs[BFIN_L0] = regs->l0;
58         gdb_regs[BFIN_L1] = regs->l1;
59         gdb_regs[BFIN_L2] = regs->l2;
60         gdb_regs[BFIN_L3] = regs->l3;
61         gdb_regs[BFIN_A0_DOT_X] = regs->a0x;
62         gdb_regs[BFIN_A0_DOT_W] = regs->a0w;
63         gdb_regs[BFIN_A1_DOT_X] = regs->a1x;
64         gdb_regs[BFIN_A1_DOT_W] = regs->a1w;
65         gdb_regs[BFIN_ASTAT] = regs->astat;
66         gdb_regs[BFIN_RETS] = regs->rets;
67         gdb_regs[BFIN_LC0] = regs->lc0;
68         gdb_regs[BFIN_LT0] = regs->lt0;
69         gdb_regs[BFIN_LB0] = regs->lb0;
70         gdb_regs[BFIN_LC1] = regs->lc1;
71         gdb_regs[BFIN_LT1] = regs->lt1;
72         gdb_regs[BFIN_LB1] = regs->lb1;
73         gdb_regs[BFIN_CYCLES] = 0;
74         gdb_regs[BFIN_CYCLES2] = 0;
75         gdb_regs[BFIN_USP] = regs->usp;
76         gdb_regs[BFIN_SEQSTAT] = regs->seqstat;
77         gdb_regs[BFIN_SYSCFG] = regs->syscfg;
78         gdb_regs[BFIN_RETI] = regs->pc;
79         gdb_regs[BFIN_RETX] = regs->retx;
80         gdb_regs[BFIN_RETN] = regs->retn;
81         gdb_regs[BFIN_RETE] = regs->rete;
82         gdb_regs[BFIN_PC] = regs->pc;
83         gdb_regs[BFIN_CC] = 0;
84         gdb_regs[BFIN_EXTRA1] = 0;
85         gdb_regs[BFIN_EXTRA2] = 0;
86         gdb_regs[BFIN_EXTRA3] = 0;
87         gdb_regs[BFIN_IPEND] = regs->ipend;
88 }
89
90 /*
91  * Extracts ebp, esp and eip values understandable by gdb from the values
92  * saved by switch_to.
93  * thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp
94  * prior to entering switch_to is 8 greater than the value that is saved.
95  * If switch_to changes, change following code appropriately.
96  */
97 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
98 {
99         gdb_regs[BFIN_SP] = p->thread.ksp;
100         gdb_regs[BFIN_PC] = p->thread.pc;
101         gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat;
102 }
103
104 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
105 {
106         regs->r0 = gdb_regs[BFIN_R0];
107         regs->r1 = gdb_regs[BFIN_R1];
108         regs->r2 = gdb_regs[BFIN_R2];
109         regs->r3 = gdb_regs[BFIN_R3];
110         regs->r4 = gdb_regs[BFIN_R4];
111         regs->r5 = gdb_regs[BFIN_R5];
112         regs->r6 = gdb_regs[BFIN_R6];
113         regs->r7 = gdb_regs[BFIN_R7];
114         regs->p0 = gdb_regs[BFIN_P0];
115         regs->p1 = gdb_regs[BFIN_P1];
116         regs->p2 = gdb_regs[BFIN_P2];
117         regs->p3 = gdb_regs[BFIN_P3];
118         regs->p4 = gdb_regs[BFIN_P4];
119         regs->p5 = gdb_regs[BFIN_P5];
120         regs->fp = gdb_regs[BFIN_FP];
121         regs->i0 = gdb_regs[BFIN_I0];
122         regs->i1 = gdb_regs[BFIN_I1];
123         regs->i2 = gdb_regs[BFIN_I2];
124         regs->i3 = gdb_regs[BFIN_I3];
125         regs->m0 = gdb_regs[BFIN_M0];
126         regs->m1 = gdb_regs[BFIN_M1];
127         regs->m2 = gdb_regs[BFIN_M2];
128         regs->m3 = gdb_regs[BFIN_M3];
129         regs->b0 = gdb_regs[BFIN_B0];
130         regs->b1 = gdb_regs[BFIN_B1];
131         regs->b2 = gdb_regs[BFIN_B2];
132         regs->b3 = gdb_regs[BFIN_B3];
133         regs->l0 = gdb_regs[BFIN_L0];
134         regs->l1 = gdb_regs[BFIN_L1];
135         regs->l2 = gdb_regs[BFIN_L2];
136         regs->l3 = gdb_regs[BFIN_L3];
137         regs->a0x = gdb_regs[BFIN_A0_DOT_X];
138         regs->a0w = gdb_regs[BFIN_A0_DOT_W];
139         regs->a1x = gdb_regs[BFIN_A1_DOT_X];
140         regs->a1w = gdb_regs[BFIN_A1_DOT_W];
141         regs->rets = gdb_regs[BFIN_RETS];
142         regs->lc0 = gdb_regs[BFIN_LC0];
143         regs->lt0 = gdb_regs[BFIN_LT0];
144         regs->lb0 = gdb_regs[BFIN_LB0];
145         regs->lc1 = gdb_regs[BFIN_LC1];
146         regs->lt1 = gdb_regs[BFIN_LT1];
147         regs->lb1 = gdb_regs[BFIN_LB1];
148         regs->usp = gdb_regs[BFIN_USP];
149         regs->syscfg = gdb_regs[BFIN_SYSCFG];
150         regs->retx = gdb_regs[BFIN_PC];
151         regs->retn = gdb_regs[BFIN_RETN];
152         regs->rete = gdb_regs[BFIN_RETE];
153         regs->pc = gdb_regs[BFIN_PC];
154
155 #if 0                           /* can't change these */
156         regs->astat = gdb_regs[BFIN_ASTAT];
157         regs->seqstat = gdb_regs[BFIN_SEQSTAT];
158         regs->ipend = gdb_regs[BFIN_IPEND];
159 #endif
160 }
161
162 struct hw_breakpoint {
163         unsigned int occupied:1;
164         unsigned int skip:1;
165         unsigned int enabled:1;
166         unsigned int type:1;
167         unsigned int dataacc:2;
168         unsigned short count;
169         unsigned int addr;
170 } breakinfo[HW_WATCHPOINT_NUM];
171
172 int bfin_set_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
173 {
174         int breakno;
175         int bfin_type;
176         int dataacc = 0;
177
178         switch (type) {
179         case BP_HARDWARE_BREAKPOINT:
180                 bfin_type = TYPE_INST_WATCHPOINT;
181                 break;
182         case BP_WRITE_WATCHPOINT:
183                 dataacc = 1;
184                 bfin_type = TYPE_DATA_WATCHPOINT;
185                 break;
186         case BP_READ_WATCHPOINT:
187                 dataacc = 2;
188                 bfin_type = TYPE_DATA_WATCHPOINT;
189                 break;
190         case BP_ACCESS_WATCHPOINT:
191                 dataacc = 3;
192                 bfin_type = TYPE_DATA_WATCHPOINT;
193                 break;
194         default:
195                 return -ENOSPC;
196         }
197
198         /* Becasue hardware data watchpoint impelemented in current
199          * Blackfin can not trigger an exception event as the hardware
200          * instrction watchpoint does, we ignaore all data watch point here.
201          * They can be turned on easily after future blackfin design
202          * supports this feature.
203          */
204         for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
205                 if (bfin_type == breakinfo[breakno].type
206                         && !breakinfo[breakno].occupied) {
207                         breakinfo[breakno].occupied = 1;
208                         breakinfo[breakno].skip = 0;
209                         breakinfo[breakno].enabled = 1;
210                         breakinfo[breakno].addr = addr;
211                         breakinfo[breakno].dataacc = dataacc;
212                         breakinfo[breakno].count = 0;
213                         return 0;
214                 }
215
216         return -ENOSPC;
217 }
218
219 int bfin_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
220 {
221         int breakno;
222         int bfin_type;
223
224         switch (type) {
225         case BP_HARDWARE_BREAKPOINT:
226                 bfin_type = TYPE_INST_WATCHPOINT;
227                 break;
228         case BP_WRITE_WATCHPOINT:
229         case BP_READ_WATCHPOINT:
230         case BP_ACCESS_WATCHPOINT:
231                 bfin_type = TYPE_DATA_WATCHPOINT;
232                 break;
233         default:
234                 return 0;
235         }
236         for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
237                 if (bfin_type == breakinfo[breakno].type
238                         && breakinfo[breakno].occupied
239                         && breakinfo[breakno].addr == addr) {
240                         breakinfo[breakno].occupied = 0;
241                         breakinfo[breakno].enabled = 0;
242                 }
243
244         return 0;
245 }
246
247 void bfin_remove_all_hw_break(void)
248 {
249         int breakno;
250
251         memset(breakinfo, 0, sizeof(struct hw_breakpoint)*HW_WATCHPOINT_NUM);
252
253         for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
254                 breakinfo[breakno].type = TYPE_INST_WATCHPOINT;
255         for (; breakno < HW_WATCHPOINT_NUM; breakno++)
256                 breakinfo[breakno].type = TYPE_DATA_WATCHPOINT;
257 }
258
259 void bfin_correct_hw_break(void)
260 {
261         int breakno;
262         unsigned int wpiactl = 0;
263         unsigned int wpdactl = 0;
264         int enable_wp = 0;
265
266         for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
267                 if (breakinfo[breakno].enabled) {
268                         enable_wp = 1;
269
270                         switch (breakno) {
271                         case 0:
272                                 wpiactl |= WPIAEN0|WPICNTEN0;
273                                 bfin_write_WPIA0(breakinfo[breakno].addr);
274                                 bfin_write_WPIACNT0(breakinfo[breakno].count
275                                         + breakinfo->skip);
276                                 break;
277                         case 1:
278                                 wpiactl |= WPIAEN1|WPICNTEN1;
279                                 bfin_write_WPIA1(breakinfo[breakno].addr);
280                                 bfin_write_WPIACNT1(breakinfo[breakno].count
281                                         + breakinfo->skip);
282                                 break;
283                         case 2:
284                                 wpiactl |= WPIAEN2|WPICNTEN2;
285                                 bfin_write_WPIA2(breakinfo[breakno].addr);
286                                 bfin_write_WPIACNT2(breakinfo[breakno].count
287                                         + breakinfo->skip);
288                                 break;
289                         case 3:
290                                 wpiactl |= WPIAEN3|WPICNTEN3;
291                                 bfin_write_WPIA3(breakinfo[breakno].addr);
292                                 bfin_write_WPIACNT3(breakinfo[breakno].count
293                                         + breakinfo->skip);
294                                 break;
295                         case 4:
296                                 wpiactl |= WPIAEN4|WPICNTEN4;
297                                 bfin_write_WPIA4(breakinfo[breakno].addr);
298                                 bfin_write_WPIACNT4(breakinfo[breakno].count
299                                         + breakinfo->skip);
300                                 break;
301                         case 5:
302                                 wpiactl |= WPIAEN5|WPICNTEN5;
303                                 bfin_write_WPIA5(breakinfo[breakno].addr);
304                                 bfin_write_WPIACNT5(breakinfo[breakno].count
305                                         + breakinfo->skip);
306                                 break;
307                         case 6:
308                                 wpdactl |= WPDAEN0|WPDCNTEN0|WPDSRC0;
309                                 wpdactl |= breakinfo[breakno].dataacc
310                                         << WPDACC0_OFFSET;
311                                 bfin_write_WPDA0(breakinfo[breakno].addr);
312                                 bfin_write_WPDACNT0(breakinfo[breakno].count
313                                         + breakinfo->skip);
314                                 break;
315                         case 7:
316                                 wpdactl |= WPDAEN1|WPDCNTEN1|WPDSRC1;
317                                 wpdactl |= breakinfo[breakno].dataacc
318                                         << WPDACC1_OFFSET;
319                                 bfin_write_WPDA1(breakinfo[breakno].addr);
320                                 bfin_write_WPDACNT1(breakinfo[breakno].count
321                                         + breakinfo->skip);
322                                 break;
323                         }
324                 }
325
326         /* Should enable WPPWR bit first before set any other
327          * WPIACTL and WPDACTL bits */
328         if (enable_wp) {
329                 bfin_write_WPIACTL(WPPWR);
330                 CSYNC();
331                 bfin_write_WPIACTL(wpiactl|WPPWR);
332                 bfin_write_WPDACTL(wpdactl);
333                 CSYNC();
334         }
335 }
336
337 void kgdb_disable_hw_debug(struct pt_regs *regs)
338 {
339         /* Disable hardware debugging while we are in kgdb */
340         bfin_write_WPIACTL(0);
341         bfin_write_WPDACTL(0);
342         CSYNC();
343 }
344
345 #ifdef CONFIG_SMP
346 void kgdb_passive_cpu_callback(void *info)
347 {
348         kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
349 }
350
351 void kgdb_roundup_cpus(unsigned long flags)
352 {
353         smp_call_function(kgdb_passive_cpu_callback, NULL, 0);
354 }
355
356 void kgdb_roundup_cpu(int cpu, unsigned long flags)
357 {
358         smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0);
359 }
360 #endif
361
362 int kgdb_arch_handle_exception(int vector, int signo,
363                                int err_code, char *remcom_in_buffer,
364                                char *remcom_out_buffer,
365                                struct pt_regs *regs)
366 {
367         long addr;
368         char *ptr;
369         int newPC;
370         int i;
371
372         switch (remcom_in_buffer[0]) {
373         case 'c':
374         case 's':
375                 if (kgdb_contthread && kgdb_contthread != current) {
376                         strcpy(remcom_out_buffer, "E00");
377                         break;
378                 }
379
380                 kgdb_contthread = NULL;
381
382                 /* try to read optional parameter, pc unchanged if no parm */
383                 ptr = &remcom_in_buffer[1];
384                 if (kgdb_hex2long(&ptr, &addr)) {
385                         regs->retx = addr;
386                 }
387                 newPC = regs->retx;
388
389                 /* clear the trace bit */
390                 regs->syscfg &= 0xfffffffe;
391
392                 /* set the trace bit if we're stepping */
393                 if (remcom_in_buffer[0] == 's') {
394                         regs->syscfg |= 0x1;
395                         kgdb_single_step = regs->ipend;
396                         kgdb_single_step >>= 6;
397                         for (i = 10; i > 0; i--, kgdb_single_step >>= 1)
398                                 if (kgdb_single_step & 1)
399                                         break;
400                         /* i indicate event priority of current stopped instruction
401                          * user space instruction is 0, IVG15 is 1, IVTMR is 10.
402                          * kgdb_single_step > 0 means in single step mode
403                          */
404                         kgdb_single_step = i + 1;
405                 }
406
407                 bfin_correct_hw_break();
408
409                 return 0;
410         }                       /* switch */
411         return -1;              /* this means that we do not want to exit from the handler */
412 }
413
414 struct kgdb_arch arch_kgdb_ops = {
415         .gdb_bpt_instr = {0xa1},
416 #ifdef CONFIG_SMP
417         .flags = KGDB_HW_BREAKPOINT|KGDB_THR_PROC_SWAP,
418 #else
419         .flags = KGDB_HW_BREAKPOINT,
420 #endif
421         .set_hw_breakpoint = bfin_set_hw_break,
422         .remove_hw_breakpoint = bfin_remove_hw_break,
423         .remove_all_hw_break = bfin_remove_all_hw_break,
424         .correct_hw_break = bfin_correct_hw_break,
425 };
426
427 static int hex(char ch)
428 {
429         if ((ch >= 'a') && (ch <= 'f'))
430                 return ch - 'a' + 10;
431         if ((ch >= '0') && (ch <= '9'))
432                 return ch - '0';
433         if ((ch >= 'A') && (ch <= 'F'))
434                 return ch - 'A' + 10;
435         return -1;
436 }
437
438 static int validate_memory_access_address(unsigned long addr, int size)
439 {
440         if (size < 0 || addr == 0)
441                 return -EFAULT;
442         return bfin_mem_access_type(addr, size);
443 }
444
445 static int bfin_probe_kernel_read(char *dst, char *src, int size)
446 {
447         unsigned long lsrc = (unsigned long)src;
448         int mem_type;
449
450         mem_type = validate_memory_access_address(lsrc, size);
451         if (mem_type < 0)
452                 return mem_type;
453
454         if (lsrc >= SYSMMR_BASE) {
455                 if (size == 2 && lsrc % 2 == 0) {
456                         u16 mmr = bfin_read16(src);
457                         memcpy(dst, &mmr, sizeof(mmr));
458                         return 0;
459                 } else if (size == 4 && lsrc % 4 == 0) {
460                         u32 mmr = bfin_read32(src);
461                         memcpy(dst, &mmr, sizeof(mmr));
462                         return 0;
463                 }
464         } else {
465                 switch (mem_type) {
466                         case BFIN_MEM_ACCESS_CORE:
467                         case BFIN_MEM_ACCESS_CORE_ONLY:
468                                 return probe_kernel_read(dst, src, size);
469                         /* XXX: should support IDMA here with SMP */
470                         case BFIN_MEM_ACCESS_DMA:
471                                 if (dma_memcpy(dst, src, size))
472                                         return 0;
473                                 break;
474                         case BFIN_MEM_ACCESS_ITEST:
475                                 if (isram_memcpy(dst, src, size))
476                                         return 0;
477                                 break;
478                 }
479         }
480
481         return -EFAULT;
482 }
483
484 static int bfin_probe_kernel_write(char *dst, char *src, int size)
485 {
486         unsigned long ldst = (unsigned long)dst;
487         int mem_type;
488
489         mem_type = validate_memory_access_address(ldst, size);
490         if (mem_type < 0)
491                 return mem_type;
492
493         if (ldst >= SYSMMR_BASE) {
494                 if (size == 2 && ldst % 2 == 0) {
495                         u16 mmr;
496                         memcpy(&mmr, src, sizeof(mmr));
497                         bfin_write16(dst, mmr);
498                         return 0;
499                 } else if (size == 4 && ldst % 4 == 0) {
500                         u32 mmr;
501                         memcpy(&mmr, src, sizeof(mmr));
502                         bfin_write32(dst, mmr);
503                         return 0;
504                 }
505         } else {
506                 switch (mem_type) {
507                         case BFIN_MEM_ACCESS_CORE:
508                         case BFIN_MEM_ACCESS_CORE_ONLY:
509                                 return probe_kernel_write(dst, src, size);
510                         /* XXX: should support IDMA here with SMP */
511                         case BFIN_MEM_ACCESS_DMA:
512                                 if (dma_memcpy(dst, src, size))
513                                         return 0;
514                                 break;
515                         case BFIN_MEM_ACCESS_ITEST:
516                                 if (isram_memcpy(dst, src, size))
517                                         return 0;
518                                 break;
519                 }
520         }
521
522         return -EFAULT;
523 }
524
525 /*
526  * Convert the memory pointed to by mem into hex, placing result in buf.
527  * Return a pointer to the last char put in buf (null). May return an error.
528  */
529 int kgdb_mem2hex(char *mem, char *buf, int count)
530 {
531         char *tmp;
532         int err;
533
534         /*
535          * We use the upper half of buf as an intermediate buffer for the
536          * raw memory copy.  Hex conversion will work against this one.
537          */
538         tmp = buf + count;
539
540         err = bfin_probe_kernel_read(tmp, mem, count);
541         if (!err) {
542                 while (count > 0) {
543                         buf = pack_hex_byte(buf, *tmp);
544                         tmp++;
545                         count--;
546                 }
547
548                 *buf = 0;
549         }
550
551         return err;
552 }
553
554 /*
555  * Copy the binary array pointed to by buf into mem.  Fix $, #, and
556  * 0x7d escaped with 0x7d.  Return a pointer to the character after
557  * the last byte written.
558  */
559 int kgdb_ebin2mem(char *buf, char *mem, int count)
560 {
561         char *tmp_old, *tmp_new;
562         int size;
563
564         tmp_old = tmp_new = buf;
565
566         for (size = 0; size < count; ++size) {
567                 if (*tmp_old == 0x7d)
568                         *tmp_new = *(++tmp_old) ^ 0x20;
569                 else
570                         *tmp_new = *tmp_old;
571                 tmp_new++;
572                 tmp_old++;
573         }
574
575         return bfin_probe_kernel_write(mem, buf, count);
576 }
577
578 /*
579  * Convert the hex array pointed to by buf into binary to be placed in mem.
580  * Return a pointer to the character AFTER the last byte written.
581  * May return an error.
582  */
583 int kgdb_hex2mem(char *buf, char *mem, int count)
584 {
585         char *tmp_raw, *tmp_hex;
586
587         /*
588          * We use the upper half of buf as an intermediate buffer for the
589          * raw memory that is converted from hex.
590          */
591         tmp_raw = buf + count * 2;
592
593         tmp_hex = tmp_raw - 1;
594         while (tmp_hex >= buf) {
595                 tmp_raw--;
596                 *tmp_raw = hex(*tmp_hex--);
597                 *tmp_raw |= hex(*tmp_hex--) << 4;
598         }
599
600         return bfin_probe_kernel_write(mem, tmp_raw, count);
601 }
602
603 #define IN_MEM(addr, size, l1_addr, l1_size) \
604 ({ \
605         unsigned long __addr = (unsigned long)(addr); \
606         (l1_size && __addr >= l1_addr && __addr + (size) <= l1_addr + l1_size); \
607 })
608 #define ASYNC_BANK_SIZE \
609         (ASYNC_BANK0_SIZE + ASYNC_BANK1_SIZE + \
610          ASYNC_BANK2_SIZE + ASYNC_BANK3_SIZE)
611
612 int kgdb_validate_break_address(unsigned long addr)
613 {
614         int cpu = raw_smp_processor_id();
615
616         if (addr >= 0x1000 && (addr + BREAK_INSTR_SIZE) <= physical_mem_end)
617                 return 0;
618         if (IN_MEM(addr, BREAK_INSTR_SIZE, ASYNC_BANK0_BASE, ASYNC_BANK_SIZE))
619                 return 0;
620         if (cpu == 0 && IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH))
621                 return 0;
622 #ifdef CONFIG_SMP
623         else if (cpu == 1 && IN_MEM(addr, BREAK_INSTR_SIZE, COREB_L1_CODE_START, L1_CODE_LENGTH))
624                 return 0;
625 #endif
626         if (IN_MEM(addr, BREAK_INSTR_SIZE, L2_START, L2_LENGTH))
627                 return 0;
628
629         return -EFAULT;
630 }
631
632 int kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
633 {
634         int err = bfin_probe_kernel_read(saved_instr, (char *)addr,
635                                          BREAK_INSTR_SIZE);
636         if (err)
637                 return err;
638         return bfin_probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr,
639                                        BREAK_INSTR_SIZE);
640 }
641
642 int kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
643 {
644         return bfin_probe_kernel_write((char *)addr, bundle, BREAK_INSTR_SIZE);
645 }
646
647 int kgdb_arch_init(void)
648 {
649         kgdb_single_step = 0;
650
651         bfin_remove_all_hw_break();
652         return 0;
653 }
654
655 void kgdb_arch_exit(void)
656 {
657 }