Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[sfrench/cifs-2.6.git] / arch / arm64 / mm / dma-mapping.c
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/gfp.h>
21 #include <linux/export.h>
22 #include <linux/slab.h>
23 #include <linux/genalloc.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dma-contiguous.h>
26 #include <linux/vmalloc.h>
27 #include <linux/swiotlb.h>
28
29 #include <asm/cacheflush.h>
30
31 struct dma_map_ops *dma_ops;
32 EXPORT_SYMBOL(dma_ops);
33
34 static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot,
35                                  bool coherent)
36 {
37         if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
38                 return pgprot_writecombine(prot);
39         return prot;
40 }
41
42 static struct gen_pool *atomic_pool;
43
44 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
45 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
46
47 static int __init early_coherent_pool(char *p)
48 {
49         atomic_pool_size = memparse(p, &p);
50         return 0;
51 }
52 early_param("coherent_pool", early_coherent_pool);
53
54 static void *__alloc_from_pool(size_t size, struct page **ret_page)
55 {
56         unsigned long val;
57         void *ptr = NULL;
58
59         if (!atomic_pool) {
60                 WARN(1, "coherent pool not initialised!\n");
61                 return NULL;
62         }
63
64         val = gen_pool_alloc(atomic_pool, size);
65         if (val) {
66                 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
67
68                 *ret_page = phys_to_page(phys);
69                 ptr = (void *)val;
70         }
71
72         return ptr;
73 }
74
75 static bool __in_atomic_pool(void *start, size_t size)
76 {
77         return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
78 }
79
80 static int __free_from_pool(void *start, size_t size)
81 {
82         if (!__in_atomic_pool(start, size))
83                 return 0;
84
85         gen_pool_free(atomic_pool, (unsigned long)start, size);
86
87         return 1;
88 }
89
90 static void *__dma_alloc_coherent(struct device *dev, size_t size,
91                                   dma_addr_t *dma_handle, gfp_t flags,
92                                   struct dma_attrs *attrs)
93 {
94         if (dev == NULL) {
95                 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
96                 return NULL;
97         }
98
99         if (IS_ENABLED(CONFIG_ZONE_DMA) &&
100             dev->coherent_dma_mask <= DMA_BIT_MASK(32))
101                 flags |= GFP_DMA;
102         if (IS_ENABLED(CONFIG_DMA_CMA) && (flags & __GFP_WAIT)) {
103                 struct page *page;
104
105                 size = PAGE_ALIGN(size);
106                 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
107                                                         get_order(size));
108                 if (!page)
109                         return NULL;
110
111                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
112                 return page_address(page);
113         } else {
114                 return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
115         }
116 }
117
118 static void __dma_free_coherent(struct device *dev, size_t size,
119                                 void *vaddr, dma_addr_t dma_handle,
120                                 struct dma_attrs *attrs)
121 {
122         bool freed;
123         phys_addr_t paddr = dma_to_phys(dev, dma_handle);
124
125         if (dev == NULL) {
126                 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
127                 return;
128         }
129
130         freed = dma_release_from_contiguous(dev,
131                                         phys_to_page(paddr),
132                                         size >> PAGE_SHIFT);
133         if (!freed)
134                 swiotlb_free_coherent(dev, size, vaddr, dma_handle);
135 }
136
137 static void *__dma_alloc_noncoherent(struct device *dev, size_t size,
138                                      dma_addr_t *dma_handle, gfp_t flags,
139                                      struct dma_attrs *attrs)
140 {
141         struct page *page;
142         void *ptr, *coherent_ptr;
143
144         size = PAGE_ALIGN(size);
145
146         if (!(flags & __GFP_WAIT)) {
147                 struct page *page = NULL;
148                 void *addr = __alloc_from_pool(size, &page);
149
150                 if (addr)
151                         *dma_handle = phys_to_dma(dev, page_to_phys(page));
152
153                 return addr;
154
155         }
156
157         ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
158         if (!ptr)
159                 goto no_mem;
160
161         /* remove any dirty cache lines on the kernel alias */
162         __dma_flush_range(ptr, ptr + size);
163
164         /* create a coherent mapping */
165         page = virt_to_page(ptr);
166         coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
167                                 __get_dma_pgprot(attrs,
168                                         __pgprot(PROT_NORMAL_NC), false),
169                                         NULL);
170         if (!coherent_ptr)
171                 goto no_map;
172
173         return coherent_ptr;
174
175 no_map:
176         __dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
177 no_mem:
178         *dma_handle = DMA_ERROR_CODE;
179         return NULL;
180 }
181
182 static void __dma_free_noncoherent(struct device *dev, size_t size,
183                                    void *vaddr, dma_addr_t dma_handle,
184                                    struct dma_attrs *attrs)
185 {
186         void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
187
188         if (__free_from_pool(vaddr, size))
189                 return;
190         vunmap(vaddr);
191         __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
192 }
193
194 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
195                                      unsigned long offset, size_t size,
196                                      enum dma_data_direction dir,
197                                      struct dma_attrs *attrs)
198 {
199         dma_addr_t dev_addr;
200
201         dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
202         __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
203
204         return dev_addr;
205 }
206
207
208 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
209                                  size_t size, enum dma_data_direction dir,
210                                  struct dma_attrs *attrs)
211 {
212         __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
213         swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
214 }
215
216 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
217                                   int nelems, enum dma_data_direction dir,
218                                   struct dma_attrs *attrs)
219 {
220         struct scatterlist *sg;
221         int i, ret;
222
223         ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
224         for_each_sg(sgl, sg, ret, i)
225                 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
226                                sg->length, dir);
227
228         return ret;
229 }
230
231 static void __swiotlb_unmap_sg_attrs(struct device *dev,
232                                      struct scatterlist *sgl, int nelems,
233                                      enum dma_data_direction dir,
234                                      struct dma_attrs *attrs)
235 {
236         struct scatterlist *sg;
237         int i;
238
239         for_each_sg(sgl, sg, nelems, i)
240                 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
241                                  sg->length, dir);
242         swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
243 }
244
245 static void __swiotlb_sync_single_for_cpu(struct device *dev,
246                                           dma_addr_t dev_addr, size_t size,
247                                           enum dma_data_direction dir)
248 {
249         __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
250         swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
251 }
252
253 static void __swiotlb_sync_single_for_device(struct device *dev,
254                                              dma_addr_t dev_addr, size_t size,
255                                              enum dma_data_direction dir)
256 {
257         swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
258         __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
259 }
260
261 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
262                                       struct scatterlist *sgl, int nelems,
263                                       enum dma_data_direction dir)
264 {
265         struct scatterlist *sg;
266         int i;
267
268         for_each_sg(sgl, sg, nelems, i)
269                 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
270                                  sg->length, dir);
271         swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
272 }
273
274 static void __swiotlb_sync_sg_for_device(struct device *dev,
275                                          struct scatterlist *sgl, int nelems,
276                                          enum dma_data_direction dir)
277 {
278         struct scatterlist *sg;
279         int i;
280
281         swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
282         for_each_sg(sgl, sg, nelems, i)
283                 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
284                                sg->length, dir);
285 }
286
287 /* vma->vm_page_prot must be set appropriately before calling this function */
288 static int __dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
289                              void *cpu_addr, dma_addr_t dma_addr, size_t size)
290 {
291         int ret = -ENXIO;
292         unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
293                                         PAGE_SHIFT;
294         unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
295         unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
296         unsigned long off = vma->vm_pgoff;
297
298         if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
299                 return ret;
300
301         if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
302                 ret = remap_pfn_range(vma, vma->vm_start,
303                                       pfn + off,
304                                       vma->vm_end - vma->vm_start,
305                                       vma->vm_page_prot);
306         }
307
308         return ret;
309 }
310
311 static int __swiotlb_mmap_noncoherent(struct device *dev,
312                 struct vm_area_struct *vma,
313                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
314                 struct dma_attrs *attrs)
315 {
316         vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, false);
317         return __dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
318 }
319
320 static int __swiotlb_mmap_coherent(struct device *dev,
321                 struct vm_area_struct *vma,
322                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
323                 struct dma_attrs *attrs)
324 {
325         /* Just use whatever page_prot attributes were specified */
326         return __dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
327 }
328
329 struct dma_map_ops noncoherent_swiotlb_dma_ops = {
330         .alloc = __dma_alloc_noncoherent,
331         .free = __dma_free_noncoherent,
332         .mmap = __swiotlb_mmap_noncoherent,
333         .map_page = __swiotlb_map_page,
334         .unmap_page = __swiotlb_unmap_page,
335         .map_sg = __swiotlb_map_sg_attrs,
336         .unmap_sg = __swiotlb_unmap_sg_attrs,
337         .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
338         .sync_single_for_device = __swiotlb_sync_single_for_device,
339         .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
340         .sync_sg_for_device = __swiotlb_sync_sg_for_device,
341         .dma_supported = swiotlb_dma_supported,
342         .mapping_error = swiotlb_dma_mapping_error,
343 };
344 EXPORT_SYMBOL(noncoherent_swiotlb_dma_ops);
345
346 struct dma_map_ops coherent_swiotlb_dma_ops = {
347         .alloc = __dma_alloc_coherent,
348         .free = __dma_free_coherent,
349         .mmap = __swiotlb_mmap_coherent,
350         .map_page = swiotlb_map_page,
351         .unmap_page = swiotlb_unmap_page,
352         .map_sg = swiotlb_map_sg_attrs,
353         .unmap_sg = swiotlb_unmap_sg_attrs,
354         .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
355         .sync_single_for_device = swiotlb_sync_single_for_device,
356         .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
357         .sync_sg_for_device = swiotlb_sync_sg_for_device,
358         .dma_supported = swiotlb_dma_supported,
359         .mapping_error = swiotlb_dma_mapping_error,
360 };
361 EXPORT_SYMBOL(coherent_swiotlb_dma_ops);
362
363 extern int swiotlb_late_init_with_default_size(size_t default_size);
364
365 static int __init atomic_pool_init(void)
366 {
367         pgprot_t prot = __pgprot(PROT_NORMAL_NC);
368         unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
369         struct page *page;
370         void *addr;
371         unsigned int pool_size_order = get_order(atomic_pool_size);
372
373         if (dev_get_cma_area(NULL))
374                 page = dma_alloc_from_contiguous(NULL, nr_pages,
375                                                         pool_size_order);
376         else
377                 page = alloc_pages(GFP_DMA, pool_size_order);
378
379         if (page) {
380                 int ret;
381                 void *page_addr = page_address(page);
382
383                 memset(page_addr, 0, atomic_pool_size);
384                 __dma_flush_range(page_addr, page_addr + atomic_pool_size);
385
386                 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
387                 if (!atomic_pool)
388                         goto free_page;
389
390                 addr = dma_common_contiguous_remap(page, atomic_pool_size,
391                                         VM_USERMAP, prot, atomic_pool_init);
392
393                 if (!addr)
394                         goto destroy_genpool;
395
396                 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
397                                         page_to_phys(page),
398                                         atomic_pool_size, -1);
399                 if (ret)
400                         goto remove_mapping;
401
402                 gen_pool_set_algo(atomic_pool,
403                                   gen_pool_first_fit_order_align,
404                                   (void *)PAGE_SHIFT);
405
406                 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
407                         atomic_pool_size / 1024);
408                 return 0;
409         }
410         goto out;
411
412 remove_mapping:
413         dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
414 destroy_genpool:
415         gen_pool_destroy(atomic_pool);
416         atomic_pool = NULL;
417 free_page:
418         if (!dma_release_from_contiguous(NULL, page, nr_pages))
419                 __free_pages(page, pool_size_order);
420 out:
421         pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
422                 atomic_pool_size / 1024);
423         return -ENOMEM;
424 }
425
426 static int __init swiotlb_late_init(void)
427 {
428         size_t swiotlb_size = min(SZ_64M, MAX_ORDER_NR_PAGES << PAGE_SHIFT);
429
430         dma_ops = &noncoherent_swiotlb_dma_ops;
431
432         return swiotlb_late_init_with_default_size(swiotlb_size);
433 }
434
435 static int __init arm64_dma_init(void)
436 {
437         int ret = 0;
438
439         ret |= swiotlb_late_init();
440         ret |= atomic_pool_init();
441
442         return ret;
443 }
444 arch_initcall(arm64_dma_init);
445
446 #define PREALLOC_DMA_DEBUG_ENTRIES      4096
447
448 static int __init dma_debug_do_init(void)
449 {
450         dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
451         return 0;
452 }
453 fs_initcall(dma_debug_do_init);