Merge branch 'for-4.19/i2c-hid' into for-linus
[sfrench/cifs-2.6.git] / arch / arm64 / mm / dma-mapping.c
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/vmalloc.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pci.h>
32
33 #include <asm/cacheflush.h>
34
35 static int swiotlb __ro_after_init;
36
37 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
38                                  bool coherent)
39 {
40         if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
41                 return pgprot_writecombine(prot);
42         return prot;
43 }
44
45 static struct gen_pool *atomic_pool __ro_after_init;
46
47 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
48 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
49
50 static int __init early_coherent_pool(char *p)
51 {
52         atomic_pool_size = memparse(p, &p);
53         return 0;
54 }
55 early_param("coherent_pool", early_coherent_pool);
56
57 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
58 {
59         unsigned long val;
60         void *ptr = NULL;
61
62         if (!atomic_pool) {
63                 WARN(1, "coherent pool not initialised!\n");
64                 return NULL;
65         }
66
67         val = gen_pool_alloc(atomic_pool, size);
68         if (val) {
69                 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
70
71                 *ret_page = phys_to_page(phys);
72                 ptr = (void *)val;
73                 memset(ptr, 0, size);
74         }
75
76         return ptr;
77 }
78
79 static bool __in_atomic_pool(void *start, size_t size)
80 {
81         return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
82 }
83
84 static int __free_from_pool(void *start, size_t size)
85 {
86         if (!__in_atomic_pool(start, size))
87                 return 0;
88
89         gen_pool_free(atomic_pool, (unsigned long)start, size);
90
91         return 1;
92 }
93
94 static void *__dma_alloc(struct device *dev, size_t size,
95                          dma_addr_t *dma_handle, gfp_t flags,
96                          unsigned long attrs)
97 {
98         struct page *page;
99         void *ptr, *coherent_ptr;
100         bool coherent = is_device_dma_coherent(dev);
101         pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
102
103         size = PAGE_ALIGN(size);
104
105         if (!coherent && !gfpflags_allow_blocking(flags)) {
106                 struct page *page = NULL;
107                 void *addr = __alloc_from_pool(size, &page, flags);
108
109                 if (addr)
110                         *dma_handle = phys_to_dma(dev, page_to_phys(page));
111
112                 return addr;
113         }
114
115         ptr = swiotlb_alloc(dev, size, dma_handle, flags, attrs);
116         if (!ptr)
117                 goto no_mem;
118
119         /* no need for non-cacheable mapping if coherent */
120         if (coherent)
121                 return ptr;
122
123         /* remove any dirty cache lines on the kernel alias */
124         __dma_flush_area(ptr, size);
125
126         /* create a coherent mapping */
127         page = virt_to_page(ptr);
128         coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
129                                                    prot, __builtin_return_address(0));
130         if (!coherent_ptr)
131                 goto no_map;
132
133         return coherent_ptr;
134
135 no_map:
136         swiotlb_free(dev, size, ptr, *dma_handle, attrs);
137 no_mem:
138         return NULL;
139 }
140
141 static void __dma_free(struct device *dev, size_t size,
142                        void *vaddr, dma_addr_t dma_handle,
143                        unsigned long attrs)
144 {
145         void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
146
147         size = PAGE_ALIGN(size);
148
149         if (!is_device_dma_coherent(dev)) {
150                 if (__free_from_pool(vaddr, size))
151                         return;
152                 vunmap(vaddr);
153         }
154         swiotlb_free(dev, size, swiotlb_addr, dma_handle, attrs);
155 }
156
157 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
158                                      unsigned long offset, size_t size,
159                                      enum dma_data_direction dir,
160                                      unsigned long attrs)
161 {
162         dma_addr_t dev_addr;
163
164         dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
165         if (!is_device_dma_coherent(dev) &&
166             (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
167                 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
168
169         return dev_addr;
170 }
171
172
173 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
174                                  size_t size, enum dma_data_direction dir,
175                                  unsigned long attrs)
176 {
177         if (!is_device_dma_coherent(dev) &&
178             (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
179                 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
180         swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
181 }
182
183 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
184                                   int nelems, enum dma_data_direction dir,
185                                   unsigned long attrs)
186 {
187         struct scatterlist *sg;
188         int i, ret;
189
190         ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
191         if (!is_device_dma_coherent(dev) &&
192             (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
193                 for_each_sg(sgl, sg, ret, i)
194                         __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
195                                        sg->length, dir);
196
197         return ret;
198 }
199
200 static void __swiotlb_unmap_sg_attrs(struct device *dev,
201                                      struct scatterlist *sgl, int nelems,
202                                      enum dma_data_direction dir,
203                                      unsigned long attrs)
204 {
205         struct scatterlist *sg;
206         int i;
207
208         if (!is_device_dma_coherent(dev) &&
209             (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
210                 for_each_sg(sgl, sg, nelems, i)
211                         __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
212                                          sg->length, dir);
213         swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
214 }
215
216 static void __swiotlb_sync_single_for_cpu(struct device *dev,
217                                           dma_addr_t dev_addr, size_t size,
218                                           enum dma_data_direction dir)
219 {
220         if (!is_device_dma_coherent(dev))
221                 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
222         swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
223 }
224
225 static void __swiotlb_sync_single_for_device(struct device *dev,
226                                              dma_addr_t dev_addr, size_t size,
227                                              enum dma_data_direction dir)
228 {
229         swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
230         if (!is_device_dma_coherent(dev))
231                 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
232 }
233
234 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
235                                       struct scatterlist *sgl, int nelems,
236                                       enum dma_data_direction dir)
237 {
238         struct scatterlist *sg;
239         int i;
240
241         if (!is_device_dma_coherent(dev))
242                 for_each_sg(sgl, sg, nelems, i)
243                         __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
244                                          sg->length, dir);
245         swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
246 }
247
248 static void __swiotlb_sync_sg_for_device(struct device *dev,
249                                          struct scatterlist *sgl, int nelems,
250                                          enum dma_data_direction dir)
251 {
252         struct scatterlist *sg;
253         int i;
254
255         swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
256         if (!is_device_dma_coherent(dev))
257                 for_each_sg(sgl, sg, nelems, i)
258                         __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
259                                        sg->length, dir);
260 }
261
262 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
263                               unsigned long pfn, size_t size)
264 {
265         int ret = -ENXIO;
266         unsigned long nr_vma_pages = vma_pages(vma);
267         unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
268         unsigned long off = vma->vm_pgoff;
269
270         if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
271                 ret = remap_pfn_range(vma, vma->vm_start,
272                                       pfn + off,
273                                       vma->vm_end - vma->vm_start,
274                                       vma->vm_page_prot);
275         }
276
277         return ret;
278 }
279
280 static int __swiotlb_mmap(struct device *dev,
281                           struct vm_area_struct *vma,
282                           void *cpu_addr, dma_addr_t dma_addr, size_t size,
283                           unsigned long attrs)
284 {
285         int ret;
286         unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
287
288         vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
289                                              is_device_dma_coherent(dev));
290
291         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
292                 return ret;
293
294         return __swiotlb_mmap_pfn(vma, pfn, size);
295 }
296
297 static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
298                                       struct page *page, size_t size)
299 {
300         int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
301
302         if (!ret)
303                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
304
305         return ret;
306 }
307
308 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
309                                  void *cpu_addr, dma_addr_t handle, size_t size,
310                                  unsigned long attrs)
311 {
312         struct page *page = phys_to_page(dma_to_phys(dev, handle));
313
314         return __swiotlb_get_sgtable_page(sgt, page, size);
315 }
316
317 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
318 {
319         if (swiotlb)
320                 return swiotlb_dma_supported(hwdev, mask);
321         return 1;
322 }
323
324 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
325 {
326         if (swiotlb)
327                 return swiotlb_dma_mapping_error(hwdev, addr);
328         return 0;
329 }
330
331 static const struct dma_map_ops arm64_swiotlb_dma_ops = {
332         .alloc = __dma_alloc,
333         .free = __dma_free,
334         .mmap = __swiotlb_mmap,
335         .get_sgtable = __swiotlb_get_sgtable,
336         .map_page = __swiotlb_map_page,
337         .unmap_page = __swiotlb_unmap_page,
338         .map_sg = __swiotlb_map_sg_attrs,
339         .unmap_sg = __swiotlb_unmap_sg_attrs,
340         .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
341         .sync_single_for_device = __swiotlb_sync_single_for_device,
342         .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
343         .sync_sg_for_device = __swiotlb_sync_sg_for_device,
344         .dma_supported = __swiotlb_dma_supported,
345         .mapping_error = __swiotlb_dma_mapping_error,
346 };
347
348 static int __init atomic_pool_init(void)
349 {
350         pgprot_t prot = __pgprot(PROT_NORMAL_NC);
351         unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
352         struct page *page;
353         void *addr;
354         unsigned int pool_size_order = get_order(atomic_pool_size);
355
356         if (dev_get_cma_area(NULL))
357                 page = dma_alloc_from_contiguous(NULL, nr_pages,
358                                                  pool_size_order, GFP_KERNEL);
359         else
360                 page = alloc_pages(GFP_DMA32, pool_size_order);
361
362         if (page) {
363                 int ret;
364                 void *page_addr = page_address(page);
365
366                 memset(page_addr, 0, atomic_pool_size);
367                 __dma_flush_area(page_addr, atomic_pool_size);
368
369                 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
370                 if (!atomic_pool)
371                         goto free_page;
372
373                 addr = dma_common_contiguous_remap(page, atomic_pool_size,
374                                         VM_USERMAP, prot, atomic_pool_init);
375
376                 if (!addr)
377                         goto destroy_genpool;
378
379                 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
380                                         page_to_phys(page),
381                                         atomic_pool_size, -1);
382                 if (ret)
383                         goto remove_mapping;
384
385                 gen_pool_set_algo(atomic_pool,
386                                   gen_pool_first_fit_order_align,
387                                   NULL);
388
389                 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
390                         atomic_pool_size / 1024);
391                 return 0;
392         }
393         goto out;
394
395 remove_mapping:
396         dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
397 destroy_genpool:
398         gen_pool_destroy(atomic_pool);
399         atomic_pool = NULL;
400 free_page:
401         if (!dma_release_from_contiguous(NULL, page, nr_pages))
402                 __free_pages(page, pool_size_order);
403 out:
404         pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
405                 atomic_pool_size / 1024);
406         return -ENOMEM;
407 }
408
409 /********************************************
410  * The following APIs are for dummy DMA ops *
411  ********************************************/
412
413 static void *__dummy_alloc(struct device *dev, size_t size,
414                            dma_addr_t *dma_handle, gfp_t flags,
415                            unsigned long attrs)
416 {
417         return NULL;
418 }
419
420 static void __dummy_free(struct device *dev, size_t size,
421                          void *vaddr, dma_addr_t dma_handle,
422                          unsigned long attrs)
423 {
424 }
425
426 static int __dummy_mmap(struct device *dev,
427                         struct vm_area_struct *vma,
428                         void *cpu_addr, dma_addr_t dma_addr, size_t size,
429                         unsigned long attrs)
430 {
431         return -ENXIO;
432 }
433
434 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
435                                    unsigned long offset, size_t size,
436                                    enum dma_data_direction dir,
437                                    unsigned long attrs)
438 {
439         return 0;
440 }
441
442 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
443                                size_t size, enum dma_data_direction dir,
444                                unsigned long attrs)
445 {
446 }
447
448 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
449                           int nelems, enum dma_data_direction dir,
450                           unsigned long attrs)
451 {
452         return 0;
453 }
454
455 static void __dummy_unmap_sg(struct device *dev,
456                              struct scatterlist *sgl, int nelems,
457                              enum dma_data_direction dir,
458                              unsigned long attrs)
459 {
460 }
461
462 static void __dummy_sync_single(struct device *dev,
463                                 dma_addr_t dev_addr, size_t size,
464                                 enum dma_data_direction dir)
465 {
466 }
467
468 static void __dummy_sync_sg(struct device *dev,
469                             struct scatterlist *sgl, int nelems,
470                             enum dma_data_direction dir)
471 {
472 }
473
474 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
475 {
476         return 1;
477 }
478
479 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
480 {
481         return 0;
482 }
483
484 const struct dma_map_ops dummy_dma_ops = {
485         .alloc                  = __dummy_alloc,
486         .free                   = __dummy_free,
487         .mmap                   = __dummy_mmap,
488         .map_page               = __dummy_map_page,
489         .unmap_page             = __dummy_unmap_page,
490         .map_sg                 = __dummy_map_sg,
491         .unmap_sg               = __dummy_unmap_sg,
492         .sync_single_for_cpu    = __dummy_sync_single,
493         .sync_single_for_device = __dummy_sync_single,
494         .sync_sg_for_cpu        = __dummy_sync_sg,
495         .sync_sg_for_device     = __dummy_sync_sg,
496         .mapping_error          = __dummy_mapping_error,
497         .dma_supported          = __dummy_dma_supported,
498 };
499 EXPORT_SYMBOL(dummy_dma_ops);
500
501 static int __init arm64_dma_init(void)
502 {
503         if (swiotlb_force == SWIOTLB_FORCE ||
504             max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
505                 swiotlb = 1;
506
507         WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(),
508                    TAINT_CPU_OUT_OF_SPEC,
509                    "ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)",
510                    ARCH_DMA_MINALIGN, cache_line_size());
511
512         return atomic_pool_init();
513 }
514 arch_initcall(arm64_dma_init);
515
516 #ifdef CONFIG_IOMMU_DMA
517 #include <linux/dma-iommu.h>
518 #include <linux/platform_device.h>
519 #include <linux/amba/bus.h>
520
521 /* Thankfully, all cache ops are by VA so we can ignore phys here */
522 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
523 {
524         __dma_flush_area(virt, PAGE_SIZE);
525 }
526
527 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
528                                  dma_addr_t *handle, gfp_t gfp,
529                                  unsigned long attrs)
530 {
531         bool coherent = is_device_dma_coherent(dev);
532         int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
533         size_t iosize = size;
534         void *addr;
535
536         if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
537                 return NULL;
538
539         size = PAGE_ALIGN(size);
540
541         /*
542          * Some drivers rely on this, and we probably don't want the
543          * possibility of stale kernel data being read by devices anyway.
544          */
545         gfp |= __GFP_ZERO;
546
547         if (!gfpflags_allow_blocking(gfp)) {
548                 struct page *page;
549                 /*
550                  * In atomic context we can't remap anything, so we'll only
551                  * get the virtually contiguous buffer we need by way of a
552                  * physically contiguous allocation.
553                  */
554                 if (coherent) {
555                         page = alloc_pages(gfp, get_order(size));
556                         addr = page ? page_address(page) : NULL;
557                 } else {
558                         addr = __alloc_from_pool(size, &page, gfp);
559                 }
560                 if (!addr)
561                         return NULL;
562
563                 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
564                 if (iommu_dma_mapping_error(dev, *handle)) {
565                         if (coherent)
566                                 __free_pages(page, get_order(size));
567                         else
568                                 __free_from_pool(addr, size);
569                         addr = NULL;
570                 }
571         } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
572                 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
573                 struct page *page;
574
575                 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
576                                                  get_order(size), gfp);
577                 if (!page)
578                         return NULL;
579
580                 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
581                 if (iommu_dma_mapping_error(dev, *handle)) {
582                         dma_release_from_contiguous(dev, page,
583                                                     size >> PAGE_SHIFT);
584                         return NULL;
585                 }
586                 addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
587                                                    prot,
588                                                    __builtin_return_address(0));
589                 if (addr) {
590                         memset(addr, 0, size);
591                         if (!coherent)
592                                 __dma_flush_area(page_to_virt(page), iosize);
593                 } else {
594                         iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
595                         dma_release_from_contiguous(dev, page,
596                                                     size >> PAGE_SHIFT);
597                 }
598         } else {
599                 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
600                 struct page **pages;
601
602                 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
603                                         handle, flush_page);
604                 if (!pages)
605                         return NULL;
606
607                 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
608                                               __builtin_return_address(0));
609                 if (!addr)
610                         iommu_dma_free(dev, pages, iosize, handle);
611         }
612         return addr;
613 }
614
615 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
616                                dma_addr_t handle, unsigned long attrs)
617 {
618         size_t iosize = size;
619
620         size = PAGE_ALIGN(size);
621         /*
622          * @cpu_addr will be one of 4 things depending on how it was allocated:
623          * - A remapped array of pages for contiguous allocations.
624          * - A remapped array of pages from iommu_dma_alloc(), for all
625          *   non-atomic allocations.
626          * - A non-cacheable alias from the atomic pool, for atomic
627          *   allocations by non-coherent devices.
628          * - A normal lowmem address, for atomic allocations by
629          *   coherent devices.
630          * Hence how dodgy the below logic looks...
631          */
632         if (__in_atomic_pool(cpu_addr, size)) {
633                 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
634                 __free_from_pool(cpu_addr, size);
635         } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
636                 struct page *page = vmalloc_to_page(cpu_addr);
637
638                 iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
639                 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
640                 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
641         } else if (is_vmalloc_addr(cpu_addr)){
642                 struct vm_struct *area = find_vm_area(cpu_addr);
643
644                 if (WARN_ON(!area || !area->pages))
645                         return;
646                 iommu_dma_free(dev, area->pages, iosize, &handle);
647                 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
648         } else {
649                 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
650                 __free_pages(virt_to_page(cpu_addr), get_order(size));
651         }
652 }
653
654 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
655                               void *cpu_addr, dma_addr_t dma_addr, size_t size,
656                               unsigned long attrs)
657 {
658         struct vm_struct *area;
659         int ret;
660
661         vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
662                                              is_device_dma_coherent(dev));
663
664         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
665                 return ret;
666
667         if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
668                 /*
669                  * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
670                  * hence in the vmalloc space.
671                  */
672                 unsigned long pfn = vmalloc_to_pfn(cpu_addr);
673                 return __swiotlb_mmap_pfn(vma, pfn, size);
674         }
675
676         area = find_vm_area(cpu_addr);
677         if (WARN_ON(!area || !area->pages))
678                 return -ENXIO;
679
680         return iommu_dma_mmap(area->pages, size, vma);
681 }
682
683 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
684                                void *cpu_addr, dma_addr_t dma_addr,
685                                size_t size, unsigned long attrs)
686 {
687         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
688         struct vm_struct *area = find_vm_area(cpu_addr);
689
690         if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
691                 /*
692                  * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
693                  * hence in the vmalloc space.
694                  */
695                 struct page *page = vmalloc_to_page(cpu_addr);
696                 return __swiotlb_get_sgtable_page(sgt, page, size);
697         }
698
699         if (WARN_ON(!area || !area->pages))
700                 return -ENXIO;
701
702         return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
703                                          GFP_KERNEL);
704 }
705
706 static void __iommu_sync_single_for_cpu(struct device *dev,
707                                         dma_addr_t dev_addr, size_t size,
708                                         enum dma_data_direction dir)
709 {
710         phys_addr_t phys;
711
712         if (is_device_dma_coherent(dev))
713                 return;
714
715         phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
716         __dma_unmap_area(phys_to_virt(phys), size, dir);
717 }
718
719 static void __iommu_sync_single_for_device(struct device *dev,
720                                            dma_addr_t dev_addr, size_t size,
721                                            enum dma_data_direction dir)
722 {
723         phys_addr_t phys;
724
725         if (is_device_dma_coherent(dev))
726                 return;
727
728         phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
729         __dma_map_area(phys_to_virt(phys), size, dir);
730 }
731
732 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
733                                    unsigned long offset, size_t size,
734                                    enum dma_data_direction dir,
735                                    unsigned long attrs)
736 {
737         bool coherent = is_device_dma_coherent(dev);
738         int prot = dma_info_to_prot(dir, coherent, attrs);
739         dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
740
741         if (!iommu_dma_mapping_error(dev, dev_addr) &&
742             (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
743                 __iommu_sync_single_for_device(dev, dev_addr, size, dir);
744
745         return dev_addr;
746 }
747
748 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
749                                size_t size, enum dma_data_direction dir,
750                                unsigned long attrs)
751 {
752         if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
753                 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
754
755         iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
756 }
757
758 static void __iommu_sync_sg_for_cpu(struct device *dev,
759                                     struct scatterlist *sgl, int nelems,
760                                     enum dma_data_direction dir)
761 {
762         struct scatterlist *sg;
763         int i;
764
765         if (is_device_dma_coherent(dev))
766                 return;
767
768         for_each_sg(sgl, sg, nelems, i)
769                 __dma_unmap_area(sg_virt(sg), sg->length, dir);
770 }
771
772 static void __iommu_sync_sg_for_device(struct device *dev,
773                                        struct scatterlist *sgl, int nelems,
774                                        enum dma_data_direction dir)
775 {
776         struct scatterlist *sg;
777         int i;
778
779         if (is_device_dma_coherent(dev))
780                 return;
781
782         for_each_sg(sgl, sg, nelems, i)
783                 __dma_map_area(sg_virt(sg), sg->length, dir);
784 }
785
786 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
787                                 int nelems, enum dma_data_direction dir,
788                                 unsigned long attrs)
789 {
790         bool coherent = is_device_dma_coherent(dev);
791
792         if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
793                 __iommu_sync_sg_for_device(dev, sgl, nelems, dir);
794
795         return iommu_dma_map_sg(dev, sgl, nelems,
796                                 dma_info_to_prot(dir, coherent, attrs));
797 }
798
799 static void __iommu_unmap_sg_attrs(struct device *dev,
800                                    struct scatterlist *sgl, int nelems,
801                                    enum dma_data_direction dir,
802                                    unsigned long attrs)
803 {
804         if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
805                 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
806
807         iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
808 }
809
810 static const struct dma_map_ops iommu_dma_ops = {
811         .alloc = __iommu_alloc_attrs,
812         .free = __iommu_free_attrs,
813         .mmap = __iommu_mmap_attrs,
814         .get_sgtable = __iommu_get_sgtable,
815         .map_page = __iommu_map_page,
816         .unmap_page = __iommu_unmap_page,
817         .map_sg = __iommu_map_sg_attrs,
818         .unmap_sg = __iommu_unmap_sg_attrs,
819         .sync_single_for_cpu = __iommu_sync_single_for_cpu,
820         .sync_single_for_device = __iommu_sync_single_for_device,
821         .sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
822         .sync_sg_for_device = __iommu_sync_sg_for_device,
823         .map_resource = iommu_dma_map_resource,
824         .unmap_resource = iommu_dma_unmap_resource,
825         .mapping_error = iommu_dma_mapping_error,
826 };
827
828 static int __init __iommu_dma_init(void)
829 {
830         return iommu_dma_init();
831 }
832 arch_initcall(__iommu_dma_init);
833
834 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
835                                   const struct iommu_ops *ops)
836 {
837         struct iommu_domain *domain;
838
839         if (!ops)
840                 return;
841
842         /*
843          * The IOMMU core code allocates the default DMA domain, which the
844          * underlying IOMMU driver needs to support via the dma-iommu layer.
845          */
846         domain = iommu_get_domain_for_dev(dev);
847
848         if (!domain)
849                 goto out_err;
850
851         if (domain->type == IOMMU_DOMAIN_DMA) {
852                 if (iommu_dma_init_domain(domain, dma_base, size, dev))
853                         goto out_err;
854
855                 dev->dma_ops = &iommu_dma_ops;
856         }
857
858         return;
859
860 out_err:
861          pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
862                  dev_name(dev));
863 }
864
865 void arch_teardown_dma_ops(struct device *dev)
866 {
867         dev->dma_ops = NULL;
868 }
869
870 #else
871
872 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
873                                   const struct iommu_ops *iommu)
874 { }
875
876 #endif  /* CONFIG_IOMMU_DMA */
877
878 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
879                         const struct iommu_ops *iommu, bool coherent)
880 {
881         if (!dev->dma_ops)
882                 dev->dma_ops = &arm64_swiotlb_dma_ops;
883
884         dev->archdata.dma_coherent = coherent;
885         __iommu_setup_dma_ops(dev, dma_base, size, iommu);
886
887 #ifdef CONFIG_XEN
888         if (xen_initial_domain()) {
889                 dev->archdata.dev_dma_ops = dev->dma_ops;
890                 dev->dma_ops = xen_dma_ops;
891         }
892 #endif
893 }