Merge branch 'for-5.4/ish' into for-linus
[sfrench/cifs-2.6.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/perf_event.h>
29 #include <asm/sysreg.h>
30
31 #include <trace/events/kvm.h>
32
33 #include "sys_regs.h"
34
35 #include "trace.h"
36
37 /*
38  * All of this file is extremly similar to the ARM coproc.c, but the
39  * types are different. My gut feeling is that it should be pretty
40  * easy to merge, but that would be an ABI breakage -- again. VFP
41  * would also need to be abstracted.
42  *
43  * For AArch32, we only take care of what is being trapped. Anything
44  * that has to do with init and userspace access has to go via the
45  * 64bit interface.
46  */
47
48 static bool read_from_write_only(struct kvm_vcpu *vcpu,
49                                  struct sys_reg_params *params,
50                                  const struct sys_reg_desc *r)
51 {
52         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53         print_sys_reg_instr(params);
54         kvm_inject_undefined(vcpu);
55         return false;
56 }
57
58 static bool write_to_read_only(struct kvm_vcpu *vcpu,
59                                struct sys_reg_params *params,
60                                const struct sys_reg_desc *r)
61 {
62         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63         print_sys_reg_instr(params);
64         kvm_inject_undefined(vcpu);
65         return false;
66 }
67
68 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
69 {
70         if (!vcpu->arch.sysregs_loaded_on_cpu)
71                 goto immediate_read;
72
73         /*
74          * System registers listed in the switch are not saved on every
75          * exit from the guest but are only saved on vcpu_put.
76          *
77          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
78          * should never be listed below, because the guest cannot modify its
79          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
80          * thread when emulating cross-VCPU communication.
81          */
82         switch (reg) {
83         case CSSELR_EL1:        return read_sysreg_s(SYS_CSSELR_EL1);
84         case SCTLR_EL1:         return read_sysreg_s(SYS_SCTLR_EL12);
85         case ACTLR_EL1:         return read_sysreg_s(SYS_ACTLR_EL1);
86         case CPACR_EL1:         return read_sysreg_s(SYS_CPACR_EL12);
87         case TTBR0_EL1:         return read_sysreg_s(SYS_TTBR0_EL12);
88         case TTBR1_EL1:         return read_sysreg_s(SYS_TTBR1_EL12);
89         case TCR_EL1:           return read_sysreg_s(SYS_TCR_EL12);
90         case ESR_EL1:           return read_sysreg_s(SYS_ESR_EL12);
91         case AFSR0_EL1:         return read_sysreg_s(SYS_AFSR0_EL12);
92         case AFSR1_EL1:         return read_sysreg_s(SYS_AFSR1_EL12);
93         case FAR_EL1:           return read_sysreg_s(SYS_FAR_EL12);
94         case MAIR_EL1:          return read_sysreg_s(SYS_MAIR_EL12);
95         case VBAR_EL1:          return read_sysreg_s(SYS_VBAR_EL12);
96         case CONTEXTIDR_EL1:    return read_sysreg_s(SYS_CONTEXTIDR_EL12);
97         case TPIDR_EL0:         return read_sysreg_s(SYS_TPIDR_EL0);
98         case TPIDRRO_EL0:       return read_sysreg_s(SYS_TPIDRRO_EL0);
99         case TPIDR_EL1:         return read_sysreg_s(SYS_TPIDR_EL1);
100         case AMAIR_EL1:         return read_sysreg_s(SYS_AMAIR_EL12);
101         case CNTKCTL_EL1:       return read_sysreg_s(SYS_CNTKCTL_EL12);
102         case PAR_EL1:           return read_sysreg_s(SYS_PAR_EL1);
103         case DACR32_EL2:        return read_sysreg_s(SYS_DACR32_EL2);
104         case IFSR32_EL2:        return read_sysreg_s(SYS_IFSR32_EL2);
105         case DBGVCR32_EL2:      return read_sysreg_s(SYS_DBGVCR32_EL2);
106         }
107
108 immediate_read:
109         return __vcpu_sys_reg(vcpu, reg);
110 }
111
112 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
113 {
114         if (!vcpu->arch.sysregs_loaded_on_cpu)
115                 goto immediate_write;
116
117         /*
118          * System registers listed in the switch are not restored on every
119          * entry to the guest but are only restored on vcpu_load.
120          *
121          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
122          * should never be listed below, because the the MPIDR should only be
123          * set once, before running the VCPU, and never changed later.
124          */
125         switch (reg) {
126         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    return;
127         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    return;
128         case ACTLR_EL1:         write_sysreg_s(val, SYS_ACTLR_EL1);     return;
129         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    return;
130         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    return;
131         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    return;
132         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      return;
133         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      return;
134         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    return;
135         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    return;
136         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      return;
137         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     return;
138         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     return;
139         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12); return;
140         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     return;
141         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   return;
142         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     return;
143         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    return;
144         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  return;
145         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       return;
146         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    return;
147         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    return;
148         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  return;
149         }
150
151 immediate_write:
152          __vcpu_sys_reg(vcpu, reg) = val;
153 }
154
155 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
156 static u32 cache_levels;
157
158 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
159 #define CSSELR_MAX 12
160
161 /* Which cache CCSIDR represents depends on CSSELR value. */
162 static u32 get_ccsidr(u32 csselr)
163 {
164         u32 ccsidr;
165
166         /* Make sure noone else changes CSSELR during this! */
167         local_irq_disable();
168         write_sysreg(csselr, csselr_el1);
169         isb();
170         ccsidr = read_sysreg(ccsidr_el1);
171         local_irq_enable();
172
173         return ccsidr;
174 }
175
176 /*
177  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
178  */
179 static bool access_dcsw(struct kvm_vcpu *vcpu,
180                         struct sys_reg_params *p,
181                         const struct sys_reg_desc *r)
182 {
183         if (!p->is_write)
184                 return read_from_write_only(vcpu, p, r);
185
186         /*
187          * Only track S/W ops if we don't have FWB. It still indicates
188          * that the guest is a bit broken (S/W operations should only
189          * be done by firmware, knowing that there is only a single
190          * CPU left in the system, and certainly not from non-secure
191          * software).
192          */
193         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
194                 kvm_set_way_flush(vcpu);
195
196         return true;
197 }
198
199 /*
200  * Generic accessor for VM registers. Only called as long as HCR_TVM
201  * is set. If the guest enables the MMU, we stop trapping the VM
202  * sys_regs and leave it in complete control of the caches.
203  */
204 static bool access_vm_reg(struct kvm_vcpu *vcpu,
205                           struct sys_reg_params *p,
206                           const struct sys_reg_desc *r)
207 {
208         bool was_enabled = vcpu_has_cache_enabled(vcpu);
209         u64 val;
210         int reg = r->reg;
211
212         BUG_ON(!p->is_write);
213
214         /* See the 32bit mapping in kvm_host.h */
215         if (p->is_aarch32)
216                 reg = r->reg / 2;
217
218         if (!p->is_aarch32 || !p->is_32bit) {
219                 val = p->regval;
220         } else {
221                 val = vcpu_read_sys_reg(vcpu, reg);
222                 if (r->reg % 2)
223                         val = (p->regval << 32) | (u64)lower_32_bits(val);
224                 else
225                         val = ((u64)upper_32_bits(val) << 32) |
226                                 lower_32_bits(p->regval);
227         }
228         vcpu_write_sys_reg(vcpu, val, reg);
229
230         kvm_toggle_cache(vcpu, was_enabled);
231         return true;
232 }
233
234 /*
235  * Trap handler for the GICv3 SGI generation system register.
236  * Forward the request to the VGIC emulation.
237  * The cp15_64 code makes sure this automatically works
238  * for both AArch64 and AArch32 accesses.
239  */
240 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
241                            struct sys_reg_params *p,
242                            const struct sys_reg_desc *r)
243 {
244         bool g1;
245
246         if (!p->is_write)
247                 return read_from_write_only(vcpu, p, r);
248
249         /*
250          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
251          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
252          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
253          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
254          * group.
255          */
256         if (p->is_aarch32) {
257                 switch (p->Op1) {
258                 default:                /* Keep GCC quiet */
259                 case 0:                 /* ICC_SGI1R */
260                         g1 = true;
261                         break;
262                 case 1:                 /* ICC_ASGI1R */
263                 case 2:                 /* ICC_SGI0R */
264                         g1 = false;
265                         break;
266                 }
267         } else {
268                 switch (p->Op2) {
269                 default:                /* Keep GCC quiet */
270                 case 5:                 /* ICC_SGI1R_EL1 */
271                         g1 = true;
272                         break;
273                 case 6:                 /* ICC_ASGI1R_EL1 */
274                 case 7:                 /* ICC_SGI0R_EL1 */
275                         g1 = false;
276                         break;
277                 }
278         }
279
280         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
281
282         return true;
283 }
284
285 static bool access_gic_sre(struct kvm_vcpu *vcpu,
286                            struct sys_reg_params *p,
287                            const struct sys_reg_desc *r)
288 {
289         if (p->is_write)
290                 return ignore_write(vcpu, p);
291
292         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
293         return true;
294 }
295
296 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
297                         struct sys_reg_params *p,
298                         const struct sys_reg_desc *r)
299 {
300         if (p->is_write)
301                 return ignore_write(vcpu, p);
302         else
303                 return read_zero(vcpu, p);
304 }
305
306 /*
307  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
308  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
309  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
310  * treat it separately.
311  */
312 static bool trap_loregion(struct kvm_vcpu *vcpu,
313                           struct sys_reg_params *p,
314                           const struct sys_reg_desc *r)
315 {
316         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
317         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
318                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
319
320         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
321                 kvm_inject_undefined(vcpu);
322                 return false;
323         }
324
325         if (p->is_write && sr == SYS_LORID_EL1)
326                 return write_to_read_only(vcpu, p, r);
327
328         return trap_raz_wi(vcpu, p, r);
329 }
330
331 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
332                            struct sys_reg_params *p,
333                            const struct sys_reg_desc *r)
334 {
335         if (p->is_write) {
336                 return ignore_write(vcpu, p);
337         } else {
338                 p->regval = (1 << 3);
339                 return true;
340         }
341 }
342
343 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
344                                    struct sys_reg_params *p,
345                                    const struct sys_reg_desc *r)
346 {
347         if (p->is_write) {
348                 return ignore_write(vcpu, p);
349         } else {
350                 p->regval = read_sysreg(dbgauthstatus_el1);
351                 return true;
352         }
353 }
354
355 /*
356  * We want to avoid world-switching all the DBG registers all the
357  * time:
358  * 
359  * - If we've touched any debug register, it is likely that we're
360  *   going to touch more of them. It then makes sense to disable the
361  *   traps and start doing the save/restore dance
362  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
363  *   then mandatory to save/restore the registers, as the guest
364  *   depends on them.
365  * 
366  * For this, we use a DIRTY bit, indicating the guest has modified the
367  * debug registers, used as follow:
368  *
369  * On guest entry:
370  * - If the dirty bit is set (because we're coming back from trapping),
371  *   disable the traps, save host registers, restore guest registers.
372  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
373  *   set the dirty bit, disable the traps, save host registers,
374  *   restore guest registers.
375  * - Otherwise, enable the traps
376  *
377  * On guest exit:
378  * - If the dirty bit is set, save guest registers, restore host
379  *   registers and clear the dirty bit. This ensure that the host can
380  *   now use the debug registers.
381  */
382 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
383                             struct sys_reg_params *p,
384                             const struct sys_reg_desc *r)
385 {
386         if (p->is_write) {
387                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
388                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
389         } else {
390                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
391         }
392
393         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
394
395         return true;
396 }
397
398 /*
399  * reg_to_dbg/dbg_to_reg
400  *
401  * A 32 bit write to a debug register leave top bits alone
402  * A 32 bit read from a debug register only returns the bottom bits
403  *
404  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
405  * hyp.S code switches between host and guest values in future.
406  */
407 static void reg_to_dbg(struct kvm_vcpu *vcpu,
408                        struct sys_reg_params *p,
409                        u64 *dbg_reg)
410 {
411         u64 val = p->regval;
412
413         if (p->is_32bit) {
414                 val &= 0xffffffffUL;
415                 val |= ((*dbg_reg >> 32) << 32);
416         }
417
418         *dbg_reg = val;
419         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
420 }
421
422 static void dbg_to_reg(struct kvm_vcpu *vcpu,
423                        struct sys_reg_params *p,
424                        u64 *dbg_reg)
425 {
426         p->regval = *dbg_reg;
427         if (p->is_32bit)
428                 p->regval &= 0xffffffffUL;
429 }
430
431 static bool trap_bvr(struct kvm_vcpu *vcpu,
432                      struct sys_reg_params *p,
433                      const struct sys_reg_desc *rd)
434 {
435         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
436
437         if (p->is_write)
438                 reg_to_dbg(vcpu, p, dbg_reg);
439         else
440                 dbg_to_reg(vcpu, p, dbg_reg);
441
442         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
443
444         return true;
445 }
446
447 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
448                 const struct kvm_one_reg *reg, void __user *uaddr)
449 {
450         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
451
452         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
453                 return -EFAULT;
454         return 0;
455 }
456
457 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
458         const struct kvm_one_reg *reg, void __user *uaddr)
459 {
460         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
461
462         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
463                 return -EFAULT;
464         return 0;
465 }
466
467 static void reset_bvr(struct kvm_vcpu *vcpu,
468                       const struct sys_reg_desc *rd)
469 {
470         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
471 }
472
473 static bool trap_bcr(struct kvm_vcpu *vcpu,
474                      struct sys_reg_params *p,
475                      const struct sys_reg_desc *rd)
476 {
477         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
478
479         if (p->is_write)
480                 reg_to_dbg(vcpu, p, dbg_reg);
481         else
482                 dbg_to_reg(vcpu, p, dbg_reg);
483
484         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
485
486         return true;
487 }
488
489 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490                 const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
493
494         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
495                 return -EFAULT;
496
497         return 0;
498 }
499
500 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501         const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
504
505         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
506                 return -EFAULT;
507         return 0;
508 }
509
510 static void reset_bcr(struct kvm_vcpu *vcpu,
511                       const struct sys_reg_desc *rd)
512 {
513         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
514 }
515
516 static bool trap_wvr(struct kvm_vcpu *vcpu,
517                      struct sys_reg_params *p,
518                      const struct sys_reg_desc *rd)
519 {
520         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
521
522         if (p->is_write)
523                 reg_to_dbg(vcpu, p, dbg_reg);
524         else
525                 dbg_to_reg(vcpu, p, dbg_reg);
526
527         trace_trap_reg(__func__, rd->reg, p->is_write,
528                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
529
530         return true;
531 }
532
533 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
534                 const struct kvm_one_reg *reg, void __user *uaddr)
535 {
536         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
537
538         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
539                 return -EFAULT;
540         return 0;
541 }
542
543 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
544         const struct kvm_one_reg *reg, void __user *uaddr)
545 {
546         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
547
548         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
549                 return -EFAULT;
550         return 0;
551 }
552
553 static void reset_wvr(struct kvm_vcpu *vcpu,
554                       const struct sys_reg_desc *rd)
555 {
556         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
557 }
558
559 static bool trap_wcr(struct kvm_vcpu *vcpu,
560                      struct sys_reg_params *p,
561                      const struct sys_reg_desc *rd)
562 {
563         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
564
565         if (p->is_write)
566                 reg_to_dbg(vcpu, p, dbg_reg);
567         else
568                 dbg_to_reg(vcpu, p, dbg_reg);
569
570         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
571
572         return true;
573 }
574
575 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576                 const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
579
580         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
581                 return -EFAULT;
582         return 0;
583 }
584
585 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
586         const struct kvm_one_reg *reg, void __user *uaddr)
587 {
588         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
589
590         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
591                 return -EFAULT;
592         return 0;
593 }
594
595 static void reset_wcr(struct kvm_vcpu *vcpu,
596                       const struct sys_reg_desc *rd)
597 {
598         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
599 }
600
601 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
602 {
603         u64 amair = read_sysreg(amair_el1);
604         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
605 }
606
607 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
608 {
609         u64 mpidr;
610
611         /*
612          * Map the vcpu_id into the first three affinity level fields of
613          * the MPIDR. We limit the number of VCPUs in level 0 due to a
614          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
615          * of the GICv3 to be able to address each CPU directly when
616          * sending IPIs.
617          */
618         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
619         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
620         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
621         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
622 }
623
624 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
625 {
626         u64 pmcr, val;
627
628         pmcr = read_sysreg(pmcr_el0);
629         /*
630          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
631          * except PMCR.E resetting to zero.
632          */
633         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
634                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
635         __vcpu_sys_reg(vcpu, r->reg) = val;
636 }
637
638 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
639 {
640         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
641         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
642
643         if (!enabled)
644                 kvm_inject_undefined(vcpu);
645
646         return !enabled;
647 }
648
649 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
650 {
651         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
652 }
653
654 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
655 {
656         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
657 }
658
659 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
660 {
661         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
662 }
663
664 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
665 {
666         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
667 }
668
669 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
670                         const struct sys_reg_desc *r)
671 {
672         u64 val;
673
674         if (!kvm_arm_pmu_v3_ready(vcpu))
675                 return trap_raz_wi(vcpu, p, r);
676
677         if (pmu_access_el0_disabled(vcpu))
678                 return false;
679
680         if (p->is_write) {
681                 /* Only update writeable bits of PMCR */
682                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
683                 val &= ~ARMV8_PMU_PMCR_MASK;
684                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
685                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
686                 kvm_pmu_handle_pmcr(vcpu, val);
687                 kvm_vcpu_pmu_restore_guest(vcpu);
688         } else {
689                 /* PMCR.P & PMCR.C are RAZ */
690                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
691                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
692                 p->regval = val;
693         }
694
695         return true;
696 }
697
698 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
699                           const struct sys_reg_desc *r)
700 {
701         if (!kvm_arm_pmu_v3_ready(vcpu))
702                 return trap_raz_wi(vcpu, p, r);
703
704         if (pmu_access_event_counter_el0_disabled(vcpu))
705                 return false;
706
707         if (p->is_write)
708                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
709         else
710                 /* return PMSELR.SEL field */
711                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
712                             & ARMV8_PMU_COUNTER_MASK;
713
714         return true;
715 }
716
717 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
718                           const struct sys_reg_desc *r)
719 {
720         u64 pmceid;
721
722         if (!kvm_arm_pmu_v3_ready(vcpu))
723                 return trap_raz_wi(vcpu, p, r);
724
725         BUG_ON(p->is_write);
726
727         if (pmu_access_el0_disabled(vcpu))
728                 return false;
729
730         if (!(p->Op2 & 1))
731                 pmceid = read_sysreg(pmceid0_el0);
732         else
733                 pmceid = read_sysreg(pmceid1_el0);
734
735         p->regval = pmceid;
736
737         return true;
738 }
739
740 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
741 {
742         u64 pmcr, val;
743
744         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
745         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
746         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
747                 kvm_inject_undefined(vcpu);
748                 return false;
749         }
750
751         return true;
752 }
753
754 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
755                               struct sys_reg_params *p,
756                               const struct sys_reg_desc *r)
757 {
758         u64 idx;
759
760         if (!kvm_arm_pmu_v3_ready(vcpu))
761                 return trap_raz_wi(vcpu, p, r);
762
763         if (r->CRn == 9 && r->CRm == 13) {
764                 if (r->Op2 == 2) {
765                         /* PMXEVCNTR_EL0 */
766                         if (pmu_access_event_counter_el0_disabled(vcpu))
767                                 return false;
768
769                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
770                               & ARMV8_PMU_COUNTER_MASK;
771                 } else if (r->Op2 == 0) {
772                         /* PMCCNTR_EL0 */
773                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
774                                 return false;
775
776                         idx = ARMV8_PMU_CYCLE_IDX;
777                 } else {
778                         return false;
779                 }
780         } else if (r->CRn == 0 && r->CRm == 9) {
781                 /* PMCCNTR */
782                 if (pmu_access_event_counter_el0_disabled(vcpu))
783                         return false;
784
785                 idx = ARMV8_PMU_CYCLE_IDX;
786         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
787                 /* PMEVCNTRn_EL0 */
788                 if (pmu_access_event_counter_el0_disabled(vcpu))
789                         return false;
790
791                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
792         } else {
793                 return false;
794         }
795
796         if (!pmu_counter_idx_valid(vcpu, idx))
797                 return false;
798
799         if (p->is_write) {
800                 if (pmu_access_el0_disabled(vcpu))
801                         return false;
802
803                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
804         } else {
805                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
806         }
807
808         return true;
809 }
810
811 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
812                                const struct sys_reg_desc *r)
813 {
814         u64 idx, reg;
815
816         if (!kvm_arm_pmu_v3_ready(vcpu))
817                 return trap_raz_wi(vcpu, p, r);
818
819         if (pmu_access_el0_disabled(vcpu))
820                 return false;
821
822         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
823                 /* PMXEVTYPER_EL0 */
824                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
825                 reg = PMEVTYPER0_EL0 + idx;
826         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
827                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
828                 if (idx == ARMV8_PMU_CYCLE_IDX)
829                         reg = PMCCFILTR_EL0;
830                 else
831                         /* PMEVTYPERn_EL0 */
832                         reg = PMEVTYPER0_EL0 + idx;
833         } else {
834                 BUG();
835         }
836
837         if (!pmu_counter_idx_valid(vcpu, idx))
838                 return false;
839
840         if (p->is_write) {
841                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
842                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
843                 kvm_vcpu_pmu_restore_guest(vcpu);
844         } else {
845                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
846         }
847
848         return true;
849 }
850
851 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
852                            const struct sys_reg_desc *r)
853 {
854         u64 val, mask;
855
856         if (!kvm_arm_pmu_v3_ready(vcpu))
857                 return trap_raz_wi(vcpu, p, r);
858
859         if (pmu_access_el0_disabled(vcpu))
860                 return false;
861
862         mask = kvm_pmu_valid_counter_mask(vcpu);
863         if (p->is_write) {
864                 val = p->regval & mask;
865                 if (r->Op2 & 0x1) {
866                         /* accessing PMCNTENSET_EL0 */
867                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
868                         kvm_pmu_enable_counter_mask(vcpu, val);
869                         kvm_vcpu_pmu_restore_guest(vcpu);
870                 } else {
871                         /* accessing PMCNTENCLR_EL0 */
872                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
873                         kvm_pmu_disable_counter_mask(vcpu, val);
874                 }
875         } else {
876                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
877         }
878
879         return true;
880 }
881
882 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
883                            const struct sys_reg_desc *r)
884 {
885         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
886
887         if (!kvm_arm_pmu_v3_ready(vcpu))
888                 return trap_raz_wi(vcpu, p, r);
889
890         if (!vcpu_mode_priv(vcpu)) {
891                 kvm_inject_undefined(vcpu);
892                 return false;
893         }
894
895         if (p->is_write) {
896                 u64 val = p->regval & mask;
897
898                 if (r->Op2 & 0x1)
899                         /* accessing PMINTENSET_EL1 */
900                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
901                 else
902                         /* accessing PMINTENCLR_EL1 */
903                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
904         } else {
905                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
906         }
907
908         return true;
909 }
910
911 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
912                          const struct sys_reg_desc *r)
913 {
914         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
915
916         if (!kvm_arm_pmu_v3_ready(vcpu))
917                 return trap_raz_wi(vcpu, p, r);
918
919         if (pmu_access_el0_disabled(vcpu))
920                 return false;
921
922         if (p->is_write) {
923                 if (r->CRm & 0x2)
924                         /* accessing PMOVSSET_EL0 */
925                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
926                 else
927                         /* accessing PMOVSCLR_EL0 */
928                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
929         } else {
930                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
931         }
932
933         return true;
934 }
935
936 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
937                            const struct sys_reg_desc *r)
938 {
939         u64 mask;
940
941         if (!kvm_arm_pmu_v3_ready(vcpu))
942                 return trap_raz_wi(vcpu, p, r);
943
944         if (!p->is_write)
945                 return read_from_write_only(vcpu, p, r);
946
947         if (pmu_write_swinc_el0_disabled(vcpu))
948                 return false;
949
950         mask = kvm_pmu_valid_counter_mask(vcpu);
951         kvm_pmu_software_increment(vcpu, p->regval & mask);
952         return true;
953 }
954
955 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
956                              const struct sys_reg_desc *r)
957 {
958         if (!kvm_arm_pmu_v3_ready(vcpu))
959                 return trap_raz_wi(vcpu, p, r);
960
961         if (p->is_write) {
962                 if (!vcpu_mode_priv(vcpu)) {
963                         kvm_inject_undefined(vcpu);
964                         return false;
965                 }
966
967                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
968                                p->regval & ARMV8_PMU_USERENR_MASK;
969         } else {
970                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
971                             & ARMV8_PMU_USERENR_MASK;
972         }
973
974         return true;
975 }
976
977 #define reg_to_encoding(x)                                              \
978         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
979                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
980
981 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
982 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
983         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
984           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
985         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
986           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
987         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
988           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
989         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
990           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
991
992 /* Macro to expand the PMEVCNTRn_EL0 register */
993 #define PMU_PMEVCNTR_EL0(n)                                             \
994         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
995           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
996
997 /* Macro to expand the PMEVTYPERn_EL0 register */
998 #define PMU_PMEVTYPER_EL0(n)                                            \
999         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1000           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1001
1002 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1003                          struct sys_reg_params *p,
1004                          const struct sys_reg_desc *rd)
1005 {
1006         kvm_arm_vcpu_ptrauth_trap(vcpu);
1007
1008         /*
1009          * Return false for both cases as we never skip the trapped
1010          * instruction:
1011          *
1012          * - Either we re-execute the same key register access instruction
1013          *   after enabling ptrauth.
1014          * - Or an UNDEF is injected as ptrauth is not supported/enabled.
1015          */
1016         return false;
1017 }
1018
1019 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1020                         const struct sys_reg_desc *rd)
1021 {
1022         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1023 }
1024
1025 #define __PTRAUTH_KEY(k)                                                \
1026         { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,           \
1027         .visibility = ptrauth_visibility}
1028
1029 #define PTRAUTH_KEY(k)                                                  \
1030         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1031         __PTRAUTH_KEY(k ## KEYHI_EL1)
1032
1033 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1034                               struct sys_reg_params *p,
1035                               const struct sys_reg_desc *r)
1036 {
1037         enum kvm_arch_timers tmr;
1038         enum kvm_arch_timer_regs treg;
1039         u64 reg = reg_to_encoding(r);
1040
1041         switch (reg) {
1042         case SYS_CNTP_TVAL_EL0:
1043         case SYS_AARCH32_CNTP_TVAL:
1044                 tmr = TIMER_PTIMER;
1045                 treg = TIMER_REG_TVAL;
1046                 break;
1047         case SYS_CNTP_CTL_EL0:
1048         case SYS_AARCH32_CNTP_CTL:
1049                 tmr = TIMER_PTIMER;
1050                 treg = TIMER_REG_CTL;
1051                 break;
1052         case SYS_CNTP_CVAL_EL0:
1053         case SYS_AARCH32_CNTP_CVAL:
1054                 tmr = TIMER_PTIMER;
1055                 treg = TIMER_REG_CVAL;
1056                 break;
1057         default:
1058                 BUG();
1059         }
1060
1061         if (p->is_write)
1062                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1063         else
1064                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1065
1066         return true;
1067 }
1068
1069 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1070 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1071                 struct sys_reg_desc const *r, bool raz)
1072 {
1073         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1074                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1075         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1076
1077         if (id == SYS_ID_AA64PFR0_EL1 && !vcpu_has_sve(vcpu)) {
1078                 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1079         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1080                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1081                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1082                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1083                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1084         }
1085
1086         return val;
1087 }
1088
1089 /* cpufeature ID register access trap handlers */
1090
1091 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1092                             struct sys_reg_params *p,
1093                             const struct sys_reg_desc *r,
1094                             bool raz)
1095 {
1096         if (p->is_write)
1097                 return write_to_read_only(vcpu, p, r);
1098
1099         p->regval = read_id_reg(vcpu, r, raz);
1100         return true;
1101 }
1102
1103 static bool access_id_reg(struct kvm_vcpu *vcpu,
1104                           struct sys_reg_params *p,
1105                           const struct sys_reg_desc *r)
1106 {
1107         return __access_id_reg(vcpu, p, r, false);
1108 }
1109
1110 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1111                               struct sys_reg_params *p,
1112                               const struct sys_reg_desc *r)
1113 {
1114         return __access_id_reg(vcpu, p, r, true);
1115 }
1116
1117 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1118 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1119 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1120
1121 /* Visibility overrides for SVE-specific control registers */
1122 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1123                                    const struct sys_reg_desc *rd)
1124 {
1125         if (vcpu_has_sve(vcpu))
1126                 return 0;
1127
1128         return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1129 }
1130
1131 /* Visibility overrides for SVE-specific ID registers */
1132 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1133                                       const struct sys_reg_desc *rd)
1134 {
1135         if (vcpu_has_sve(vcpu))
1136                 return 0;
1137
1138         return REG_HIDDEN_USER;
1139 }
1140
1141 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1142 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1143 {
1144         if (!vcpu_has_sve(vcpu))
1145                 return 0;
1146
1147         return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1148 }
1149
1150 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1151                                    struct sys_reg_params *p,
1152                                    const struct sys_reg_desc *rd)
1153 {
1154         if (p->is_write)
1155                 return write_to_read_only(vcpu, p, rd);
1156
1157         p->regval = guest_id_aa64zfr0_el1(vcpu);
1158         return true;
1159 }
1160
1161 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1162                 const struct sys_reg_desc *rd,
1163                 const struct kvm_one_reg *reg, void __user *uaddr)
1164 {
1165         u64 val;
1166
1167         if (WARN_ON(!vcpu_has_sve(vcpu)))
1168                 return -ENOENT;
1169
1170         val = guest_id_aa64zfr0_el1(vcpu);
1171         return reg_to_user(uaddr, &val, reg->id);
1172 }
1173
1174 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1175                 const struct sys_reg_desc *rd,
1176                 const struct kvm_one_reg *reg, void __user *uaddr)
1177 {
1178         const u64 id = sys_reg_to_index(rd);
1179         int err;
1180         u64 val;
1181
1182         if (WARN_ON(!vcpu_has_sve(vcpu)))
1183                 return -ENOENT;
1184
1185         err = reg_from_user(&val, uaddr, id);
1186         if (err)
1187                 return err;
1188
1189         /* This is what we mean by invariant: you can't change it. */
1190         if (val != guest_id_aa64zfr0_el1(vcpu))
1191                 return -EINVAL;
1192
1193         return 0;
1194 }
1195
1196 /*
1197  * cpufeature ID register user accessors
1198  *
1199  * For now, these registers are immutable for userspace, so no values
1200  * are stored, and for set_id_reg() we don't allow the effective value
1201  * to be changed.
1202  */
1203 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1204                         const struct sys_reg_desc *rd, void __user *uaddr,
1205                         bool raz)
1206 {
1207         const u64 id = sys_reg_to_index(rd);
1208         const u64 val = read_id_reg(vcpu, rd, raz);
1209
1210         return reg_to_user(uaddr, &val, id);
1211 }
1212
1213 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1214                         const struct sys_reg_desc *rd, void __user *uaddr,
1215                         bool raz)
1216 {
1217         const u64 id = sys_reg_to_index(rd);
1218         int err;
1219         u64 val;
1220
1221         err = reg_from_user(&val, uaddr, id);
1222         if (err)
1223                 return err;
1224
1225         /* This is what we mean by invariant: you can't change it. */
1226         if (val != read_id_reg(vcpu, rd, raz))
1227                 return -EINVAL;
1228
1229         return 0;
1230 }
1231
1232 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1233                       const struct kvm_one_reg *reg, void __user *uaddr)
1234 {
1235         return __get_id_reg(vcpu, rd, uaddr, false);
1236 }
1237
1238 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1239                       const struct kvm_one_reg *reg, void __user *uaddr)
1240 {
1241         return __set_id_reg(vcpu, rd, uaddr, false);
1242 }
1243
1244 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1245                           const struct kvm_one_reg *reg, void __user *uaddr)
1246 {
1247         return __get_id_reg(vcpu, rd, uaddr, true);
1248 }
1249
1250 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1251                           const struct kvm_one_reg *reg, void __user *uaddr)
1252 {
1253         return __set_id_reg(vcpu, rd, uaddr, true);
1254 }
1255
1256 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1257                        const struct sys_reg_desc *r)
1258 {
1259         if (p->is_write)
1260                 return write_to_read_only(vcpu, p, r);
1261
1262         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1263         return true;
1264 }
1265
1266 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1267                          const struct sys_reg_desc *r)
1268 {
1269         if (p->is_write)
1270                 return write_to_read_only(vcpu, p, r);
1271
1272         p->regval = read_sysreg(clidr_el1);
1273         return true;
1274 }
1275
1276 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1277                           const struct sys_reg_desc *r)
1278 {
1279         if (p->is_write)
1280                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
1281         else
1282                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
1283         return true;
1284 }
1285
1286 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1287                           const struct sys_reg_desc *r)
1288 {
1289         u32 csselr;
1290
1291         if (p->is_write)
1292                 return write_to_read_only(vcpu, p, r);
1293
1294         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1295         p->regval = get_ccsidr(csselr);
1296
1297         /*
1298          * Guests should not be doing cache operations by set/way at all, and
1299          * for this reason, we trap them and attempt to infer the intent, so
1300          * that we can flush the entire guest's address space at the appropriate
1301          * time.
1302          * To prevent this trapping from causing performance problems, let's
1303          * expose the geometry of all data and unified caches (which are
1304          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1305          * [If guests should attempt to infer aliasing properties from the
1306          * geometry (which is not permitted by the architecture), they would
1307          * only do so for virtually indexed caches.]
1308          */
1309         if (!(csselr & 1)) // data or unified cache
1310                 p->regval &= ~GENMASK(27, 3);
1311         return true;
1312 }
1313
1314 /* sys_reg_desc initialiser for known cpufeature ID registers */
1315 #define ID_SANITISED(name) {                    \
1316         SYS_DESC(SYS_##name),                   \
1317         .access = access_id_reg,                \
1318         .get_user = get_id_reg,                 \
1319         .set_user = set_id_reg,                 \
1320 }
1321
1322 /*
1323  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1324  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1325  * (1 <= crm < 8, 0 <= Op2 < 8).
1326  */
1327 #define ID_UNALLOCATED(crm, op2) {                      \
1328         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1329         .access = access_raz_id_reg,                    \
1330         .get_user = get_raz_id_reg,                     \
1331         .set_user = set_raz_id_reg,                     \
1332 }
1333
1334 /*
1335  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1336  * For now, these are exposed just like unallocated ID regs: they appear
1337  * RAZ for the guest.
1338  */
1339 #define ID_HIDDEN(name) {                       \
1340         SYS_DESC(SYS_##name),                   \
1341         .access = access_raz_id_reg,            \
1342         .get_user = get_raz_id_reg,             \
1343         .set_user = set_raz_id_reg,             \
1344 }
1345
1346 /*
1347  * Architected system registers.
1348  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1349  *
1350  * Debug handling: We do trap most, if not all debug related system
1351  * registers. The implementation is good enough to ensure that a guest
1352  * can use these with minimal performance degradation. The drawback is
1353  * that we don't implement any of the external debug, none of the
1354  * OSlock protocol. This should be revisited if we ever encounter a
1355  * more demanding guest...
1356  */
1357 static const struct sys_reg_desc sys_reg_descs[] = {
1358         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1359         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1360         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1361
1362         DBG_BCR_BVR_WCR_WVR_EL1(0),
1363         DBG_BCR_BVR_WCR_WVR_EL1(1),
1364         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1365         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1366         DBG_BCR_BVR_WCR_WVR_EL1(2),
1367         DBG_BCR_BVR_WCR_WVR_EL1(3),
1368         DBG_BCR_BVR_WCR_WVR_EL1(4),
1369         DBG_BCR_BVR_WCR_WVR_EL1(5),
1370         DBG_BCR_BVR_WCR_WVR_EL1(6),
1371         DBG_BCR_BVR_WCR_WVR_EL1(7),
1372         DBG_BCR_BVR_WCR_WVR_EL1(8),
1373         DBG_BCR_BVR_WCR_WVR_EL1(9),
1374         DBG_BCR_BVR_WCR_WVR_EL1(10),
1375         DBG_BCR_BVR_WCR_WVR_EL1(11),
1376         DBG_BCR_BVR_WCR_WVR_EL1(12),
1377         DBG_BCR_BVR_WCR_WVR_EL1(13),
1378         DBG_BCR_BVR_WCR_WVR_EL1(14),
1379         DBG_BCR_BVR_WCR_WVR_EL1(15),
1380
1381         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1382         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1383         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1384         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1385         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1386         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1387         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1388         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1389
1390         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1391         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1392         // DBGDTR[TR]X_EL0 share the same encoding
1393         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1394
1395         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1396
1397         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1398
1399         /*
1400          * ID regs: all ID_SANITISED() entries here must have corresponding
1401          * entries in arm64_ftr_regs[].
1402          */
1403
1404         /* AArch64 mappings of the AArch32 ID registers */
1405         /* CRm=1 */
1406         ID_SANITISED(ID_PFR0_EL1),
1407         ID_SANITISED(ID_PFR1_EL1),
1408         ID_SANITISED(ID_DFR0_EL1),
1409         ID_HIDDEN(ID_AFR0_EL1),
1410         ID_SANITISED(ID_MMFR0_EL1),
1411         ID_SANITISED(ID_MMFR1_EL1),
1412         ID_SANITISED(ID_MMFR2_EL1),
1413         ID_SANITISED(ID_MMFR3_EL1),
1414
1415         /* CRm=2 */
1416         ID_SANITISED(ID_ISAR0_EL1),
1417         ID_SANITISED(ID_ISAR1_EL1),
1418         ID_SANITISED(ID_ISAR2_EL1),
1419         ID_SANITISED(ID_ISAR3_EL1),
1420         ID_SANITISED(ID_ISAR4_EL1),
1421         ID_SANITISED(ID_ISAR5_EL1),
1422         ID_SANITISED(ID_MMFR4_EL1),
1423         ID_UNALLOCATED(2,7),
1424
1425         /* CRm=3 */
1426         ID_SANITISED(MVFR0_EL1),
1427         ID_SANITISED(MVFR1_EL1),
1428         ID_SANITISED(MVFR2_EL1),
1429         ID_UNALLOCATED(3,3),
1430         ID_UNALLOCATED(3,4),
1431         ID_UNALLOCATED(3,5),
1432         ID_UNALLOCATED(3,6),
1433         ID_UNALLOCATED(3,7),
1434
1435         /* AArch64 ID registers */
1436         /* CRm=4 */
1437         ID_SANITISED(ID_AA64PFR0_EL1),
1438         ID_SANITISED(ID_AA64PFR1_EL1),
1439         ID_UNALLOCATED(4,2),
1440         ID_UNALLOCATED(4,3),
1441         { SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1442         ID_UNALLOCATED(4,5),
1443         ID_UNALLOCATED(4,6),
1444         ID_UNALLOCATED(4,7),
1445
1446         /* CRm=5 */
1447         ID_SANITISED(ID_AA64DFR0_EL1),
1448         ID_SANITISED(ID_AA64DFR1_EL1),
1449         ID_UNALLOCATED(5,2),
1450         ID_UNALLOCATED(5,3),
1451         ID_HIDDEN(ID_AA64AFR0_EL1),
1452         ID_HIDDEN(ID_AA64AFR1_EL1),
1453         ID_UNALLOCATED(5,6),
1454         ID_UNALLOCATED(5,7),
1455
1456         /* CRm=6 */
1457         ID_SANITISED(ID_AA64ISAR0_EL1),
1458         ID_SANITISED(ID_AA64ISAR1_EL1),
1459         ID_UNALLOCATED(6,2),
1460         ID_UNALLOCATED(6,3),
1461         ID_UNALLOCATED(6,4),
1462         ID_UNALLOCATED(6,5),
1463         ID_UNALLOCATED(6,6),
1464         ID_UNALLOCATED(6,7),
1465
1466         /* CRm=7 */
1467         ID_SANITISED(ID_AA64MMFR0_EL1),
1468         ID_SANITISED(ID_AA64MMFR1_EL1),
1469         ID_SANITISED(ID_AA64MMFR2_EL1),
1470         ID_UNALLOCATED(7,3),
1471         ID_UNALLOCATED(7,4),
1472         ID_UNALLOCATED(7,5),
1473         ID_UNALLOCATED(7,6),
1474         ID_UNALLOCATED(7,7),
1475
1476         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1477         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1478         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1479         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1480         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1481         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1482
1483         PTRAUTH_KEY(APIA),
1484         PTRAUTH_KEY(APIB),
1485         PTRAUTH_KEY(APDA),
1486         PTRAUTH_KEY(APDB),
1487         PTRAUTH_KEY(APGA),
1488
1489         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1490         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1491         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1492
1493         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1494         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1495         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1496         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1497         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1498         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1499         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1500         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1501
1502         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1503         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1504
1505         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1506         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1507
1508         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1509         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1510
1511         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1512         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1513         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1514         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1515         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1516
1517         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1518         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1519
1520         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1521         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1522         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1523         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1524         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1525         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1526         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1527         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1528         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1529         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1530         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1531         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1532
1533         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1534         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1535
1536         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1537
1538         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1539         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1540         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1541         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1542
1543         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1544         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1545         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1546         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1547         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1548         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1549         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1550         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1551         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1552         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1553         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1554         /*
1555          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1556          * in 32bit mode. Here we choose to reset it as zero for consistency.
1557          */
1558         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1559         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1560
1561         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1562         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1563
1564         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1565         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1566         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1567
1568         /* PMEVCNTRn_EL0 */
1569         PMU_PMEVCNTR_EL0(0),
1570         PMU_PMEVCNTR_EL0(1),
1571         PMU_PMEVCNTR_EL0(2),
1572         PMU_PMEVCNTR_EL0(3),
1573         PMU_PMEVCNTR_EL0(4),
1574         PMU_PMEVCNTR_EL0(5),
1575         PMU_PMEVCNTR_EL0(6),
1576         PMU_PMEVCNTR_EL0(7),
1577         PMU_PMEVCNTR_EL0(8),
1578         PMU_PMEVCNTR_EL0(9),
1579         PMU_PMEVCNTR_EL0(10),
1580         PMU_PMEVCNTR_EL0(11),
1581         PMU_PMEVCNTR_EL0(12),
1582         PMU_PMEVCNTR_EL0(13),
1583         PMU_PMEVCNTR_EL0(14),
1584         PMU_PMEVCNTR_EL0(15),
1585         PMU_PMEVCNTR_EL0(16),
1586         PMU_PMEVCNTR_EL0(17),
1587         PMU_PMEVCNTR_EL0(18),
1588         PMU_PMEVCNTR_EL0(19),
1589         PMU_PMEVCNTR_EL0(20),
1590         PMU_PMEVCNTR_EL0(21),
1591         PMU_PMEVCNTR_EL0(22),
1592         PMU_PMEVCNTR_EL0(23),
1593         PMU_PMEVCNTR_EL0(24),
1594         PMU_PMEVCNTR_EL0(25),
1595         PMU_PMEVCNTR_EL0(26),
1596         PMU_PMEVCNTR_EL0(27),
1597         PMU_PMEVCNTR_EL0(28),
1598         PMU_PMEVCNTR_EL0(29),
1599         PMU_PMEVCNTR_EL0(30),
1600         /* PMEVTYPERn_EL0 */
1601         PMU_PMEVTYPER_EL0(0),
1602         PMU_PMEVTYPER_EL0(1),
1603         PMU_PMEVTYPER_EL0(2),
1604         PMU_PMEVTYPER_EL0(3),
1605         PMU_PMEVTYPER_EL0(4),
1606         PMU_PMEVTYPER_EL0(5),
1607         PMU_PMEVTYPER_EL0(6),
1608         PMU_PMEVTYPER_EL0(7),
1609         PMU_PMEVTYPER_EL0(8),
1610         PMU_PMEVTYPER_EL0(9),
1611         PMU_PMEVTYPER_EL0(10),
1612         PMU_PMEVTYPER_EL0(11),
1613         PMU_PMEVTYPER_EL0(12),
1614         PMU_PMEVTYPER_EL0(13),
1615         PMU_PMEVTYPER_EL0(14),
1616         PMU_PMEVTYPER_EL0(15),
1617         PMU_PMEVTYPER_EL0(16),
1618         PMU_PMEVTYPER_EL0(17),
1619         PMU_PMEVTYPER_EL0(18),
1620         PMU_PMEVTYPER_EL0(19),
1621         PMU_PMEVTYPER_EL0(20),
1622         PMU_PMEVTYPER_EL0(21),
1623         PMU_PMEVTYPER_EL0(22),
1624         PMU_PMEVTYPER_EL0(23),
1625         PMU_PMEVTYPER_EL0(24),
1626         PMU_PMEVTYPER_EL0(25),
1627         PMU_PMEVTYPER_EL0(26),
1628         PMU_PMEVTYPER_EL0(27),
1629         PMU_PMEVTYPER_EL0(28),
1630         PMU_PMEVTYPER_EL0(29),
1631         PMU_PMEVTYPER_EL0(30),
1632         /*
1633          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1634          * in 32bit mode. Here we choose to reset it as zero for consistency.
1635          */
1636         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1637
1638         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1639         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1640         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1641 };
1642
1643 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1644                         struct sys_reg_params *p,
1645                         const struct sys_reg_desc *r)
1646 {
1647         if (p->is_write) {
1648                 return ignore_write(vcpu, p);
1649         } else {
1650                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1651                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1652                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1653
1654                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1655                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1656                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1657                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1658                 return true;
1659         }
1660 }
1661
1662 static bool trap_debug32(struct kvm_vcpu *vcpu,
1663                          struct sys_reg_params *p,
1664                          const struct sys_reg_desc *r)
1665 {
1666         if (p->is_write) {
1667                 vcpu_cp14(vcpu, r->reg) = p->regval;
1668                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1669         } else {
1670                 p->regval = vcpu_cp14(vcpu, r->reg);
1671         }
1672
1673         return true;
1674 }
1675
1676 /* AArch32 debug register mappings
1677  *
1678  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1679  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1680  *
1681  * All control registers and watchpoint value registers are mapped to
1682  * the lower 32 bits of their AArch64 equivalents. We share the trap
1683  * handlers with the above AArch64 code which checks what mode the
1684  * system is in.
1685  */
1686
1687 static bool trap_xvr(struct kvm_vcpu *vcpu,
1688                      struct sys_reg_params *p,
1689                      const struct sys_reg_desc *rd)
1690 {
1691         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1692
1693         if (p->is_write) {
1694                 u64 val = *dbg_reg;
1695
1696                 val &= 0xffffffffUL;
1697                 val |= p->regval << 32;
1698                 *dbg_reg = val;
1699
1700                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1701         } else {
1702                 p->regval = *dbg_reg >> 32;
1703         }
1704
1705         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1706
1707         return true;
1708 }
1709
1710 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1711         /* DBGBVRn */                                                   \
1712         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1713         /* DBGBCRn */                                                   \
1714         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1715         /* DBGWVRn */                                                   \
1716         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1717         /* DBGWCRn */                                                   \
1718         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1719
1720 #define DBGBXVR(n)                                                      \
1721         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1722
1723 /*
1724  * Trapped cp14 registers. We generally ignore most of the external
1725  * debug, on the principle that they don't really make sense to a
1726  * guest. Revisit this one day, would this principle change.
1727  */
1728 static const struct sys_reg_desc cp14_regs[] = {
1729         /* DBGIDR */
1730         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1731         /* DBGDTRRXext */
1732         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1733
1734         DBG_BCR_BVR_WCR_WVR(0),
1735         /* DBGDSCRint */
1736         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1737         DBG_BCR_BVR_WCR_WVR(1),
1738         /* DBGDCCINT */
1739         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1740         /* DBGDSCRext */
1741         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1742         DBG_BCR_BVR_WCR_WVR(2),
1743         /* DBGDTR[RT]Xint */
1744         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1745         /* DBGDTR[RT]Xext */
1746         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1747         DBG_BCR_BVR_WCR_WVR(3),
1748         DBG_BCR_BVR_WCR_WVR(4),
1749         DBG_BCR_BVR_WCR_WVR(5),
1750         /* DBGWFAR */
1751         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1752         /* DBGOSECCR */
1753         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1754         DBG_BCR_BVR_WCR_WVR(6),
1755         /* DBGVCR */
1756         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1757         DBG_BCR_BVR_WCR_WVR(7),
1758         DBG_BCR_BVR_WCR_WVR(8),
1759         DBG_BCR_BVR_WCR_WVR(9),
1760         DBG_BCR_BVR_WCR_WVR(10),
1761         DBG_BCR_BVR_WCR_WVR(11),
1762         DBG_BCR_BVR_WCR_WVR(12),
1763         DBG_BCR_BVR_WCR_WVR(13),
1764         DBG_BCR_BVR_WCR_WVR(14),
1765         DBG_BCR_BVR_WCR_WVR(15),
1766
1767         /* DBGDRAR (32bit) */
1768         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1769
1770         DBGBXVR(0),
1771         /* DBGOSLAR */
1772         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1773         DBGBXVR(1),
1774         /* DBGOSLSR */
1775         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1776         DBGBXVR(2),
1777         DBGBXVR(3),
1778         /* DBGOSDLR */
1779         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1780         DBGBXVR(4),
1781         /* DBGPRCR */
1782         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1783         DBGBXVR(5),
1784         DBGBXVR(6),
1785         DBGBXVR(7),
1786         DBGBXVR(8),
1787         DBGBXVR(9),
1788         DBGBXVR(10),
1789         DBGBXVR(11),
1790         DBGBXVR(12),
1791         DBGBXVR(13),
1792         DBGBXVR(14),
1793         DBGBXVR(15),
1794
1795         /* DBGDSAR (32bit) */
1796         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1797
1798         /* DBGDEVID2 */
1799         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1800         /* DBGDEVID1 */
1801         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1802         /* DBGDEVID */
1803         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1804         /* DBGCLAIMSET */
1805         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1806         /* DBGCLAIMCLR */
1807         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1808         /* DBGAUTHSTATUS */
1809         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1810 };
1811
1812 /* Trapped cp14 64bit registers */
1813 static const struct sys_reg_desc cp14_64_regs[] = {
1814         /* DBGDRAR (64bit) */
1815         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1816
1817         /* DBGDSAR (64bit) */
1818         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1819 };
1820
1821 /* Macro to expand the PMEVCNTRn register */
1822 #define PMU_PMEVCNTR(n)                                                 \
1823         /* PMEVCNTRn */                                                 \
1824         { Op1(0), CRn(0b1110),                                          \
1825           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1826           access_pmu_evcntr }
1827
1828 /* Macro to expand the PMEVTYPERn register */
1829 #define PMU_PMEVTYPER(n)                                                \
1830         /* PMEVTYPERn */                                                \
1831         { Op1(0), CRn(0b1110),                                          \
1832           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1833           access_pmu_evtyper }
1834
1835 /*
1836  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1837  * depending on the way they are accessed (as a 32bit or a 64bit
1838  * register).
1839  */
1840 static const struct sys_reg_desc cp15_regs[] = {
1841         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1842         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1843         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1844         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1845         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1846         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1847         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1848         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1849         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1850         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1851         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1852         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1853
1854         /*
1855          * DC{C,I,CI}SW operations:
1856          */
1857         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1858         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1859         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1860
1861         /* PMU */
1862         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1863         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1864         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1865         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1866         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1867         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1868         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1869         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1870         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1871         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1872         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1873         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1874         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1875         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1876         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1877
1878         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1879         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1880         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1881         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1882
1883         /* ICC_SRE */
1884         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1885
1886         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1887
1888         /* Arch Tmers */
1889         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1890         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1891
1892         /* PMEVCNTRn */
1893         PMU_PMEVCNTR(0),
1894         PMU_PMEVCNTR(1),
1895         PMU_PMEVCNTR(2),
1896         PMU_PMEVCNTR(3),
1897         PMU_PMEVCNTR(4),
1898         PMU_PMEVCNTR(5),
1899         PMU_PMEVCNTR(6),
1900         PMU_PMEVCNTR(7),
1901         PMU_PMEVCNTR(8),
1902         PMU_PMEVCNTR(9),
1903         PMU_PMEVCNTR(10),
1904         PMU_PMEVCNTR(11),
1905         PMU_PMEVCNTR(12),
1906         PMU_PMEVCNTR(13),
1907         PMU_PMEVCNTR(14),
1908         PMU_PMEVCNTR(15),
1909         PMU_PMEVCNTR(16),
1910         PMU_PMEVCNTR(17),
1911         PMU_PMEVCNTR(18),
1912         PMU_PMEVCNTR(19),
1913         PMU_PMEVCNTR(20),
1914         PMU_PMEVCNTR(21),
1915         PMU_PMEVCNTR(22),
1916         PMU_PMEVCNTR(23),
1917         PMU_PMEVCNTR(24),
1918         PMU_PMEVCNTR(25),
1919         PMU_PMEVCNTR(26),
1920         PMU_PMEVCNTR(27),
1921         PMU_PMEVCNTR(28),
1922         PMU_PMEVCNTR(29),
1923         PMU_PMEVCNTR(30),
1924         /* PMEVTYPERn */
1925         PMU_PMEVTYPER(0),
1926         PMU_PMEVTYPER(1),
1927         PMU_PMEVTYPER(2),
1928         PMU_PMEVTYPER(3),
1929         PMU_PMEVTYPER(4),
1930         PMU_PMEVTYPER(5),
1931         PMU_PMEVTYPER(6),
1932         PMU_PMEVTYPER(7),
1933         PMU_PMEVTYPER(8),
1934         PMU_PMEVTYPER(9),
1935         PMU_PMEVTYPER(10),
1936         PMU_PMEVTYPER(11),
1937         PMU_PMEVTYPER(12),
1938         PMU_PMEVTYPER(13),
1939         PMU_PMEVTYPER(14),
1940         PMU_PMEVTYPER(15),
1941         PMU_PMEVTYPER(16),
1942         PMU_PMEVTYPER(17),
1943         PMU_PMEVTYPER(18),
1944         PMU_PMEVTYPER(19),
1945         PMU_PMEVTYPER(20),
1946         PMU_PMEVTYPER(21),
1947         PMU_PMEVTYPER(22),
1948         PMU_PMEVTYPER(23),
1949         PMU_PMEVTYPER(24),
1950         PMU_PMEVTYPER(25),
1951         PMU_PMEVTYPER(26),
1952         PMU_PMEVTYPER(27),
1953         PMU_PMEVTYPER(28),
1954         PMU_PMEVTYPER(29),
1955         PMU_PMEVTYPER(30),
1956         /* PMCCFILTR */
1957         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1958
1959         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1960         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1961         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
1962 };
1963
1964 static const struct sys_reg_desc cp15_64_regs[] = {
1965         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1966         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1967         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1968         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1969         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1970         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1971         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
1972 };
1973
1974 /* Target specific emulation tables */
1975 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1976
1977 void kvm_register_target_sys_reg_table(unsigned int target,
1978                                        struct kvm_sys_reg_target_table *table)
1979 {
1980         target_tables[target] = table;
1981 }
1982
1983 /* Get specific register table for this target. */
1984 static const struct sys_reg_desc *get_target_table(unsigned target,
1985                                                    bool mode_is_64,
1986                                                    size_t *num)
1987 {
1988         struct kvm_sys_reg_target_table *table;
1989
1990         table = target_tables[target];
1991         if (mode_is_64) {
1992                 *num = table->table64.num;
1993                 return table->table64.table;
1994         } else {
1995                 *num = table->table32.num;
1996                 return table->table32.table;
1997         }
1998 }
1999
2000 static int match_sys_reg(const void *key, const void *elt)
2001 {
2002         const unsigned long pval = (unsigned long)key;
2003         const struct sys_reg_desc *r = elt;
2004
2005         return pval - reg_to_encoding(r);
2006 }
2007
2008 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2009                                          const struct sys_reg_desc table[],
2010                                          unsigned int num)
2011 {
2012         unsigned long pval = reg_to_encoding(params);
2013
2014         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2015 }
2016
2017 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
2018 {
2019         kvm_inject_undefined(vcpu);
2020         return 1;
2021 }
2022
2023 static void perform_access(struct kvm_vcpu *vcpu,
2024                            struct sys_reg_params *params,
2025                            const struct sys_reg_desc *r)
2026 {
2027         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2028
2029         /* Check for regs disabled by runtime config */
2030         if (sysreg_hidden_from_guest(vcpu, r)) {
2031                 kvm_inject_undefined(vcpu);
2032                 return;
2033         }
2034
2035         /*
2036          * Not having an accessor means that we have configured a trap
2037          * that we don't know how to handle. This certainly qualifies
2038          * as a gross bug that should be fixed right away.
2039          */
2040         BUG_ON(!r->access);
2041
2042         /* Skip instruction if instructed so */
2043         if (likely(r->access(vcpu, params, r)))
2044                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2045 }
2046
2047 /*
2048  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2049  *                call the corresponding trap handler.
2050  *
2051  * @params: pointer to the descriptor of the access
2052  * @table: array of trap descriptors
2053  * @num: size of the trap descriptor array
2054  *
2055  * Return 0 if the access has been handled, and -1 if not.
2056  */
2057 static int emulate_cp(struct kvm_vcpu *vcpu,
2058                       struct sys_reg_params *params,
2059                       const struct sys_reg_desc *table,
2060                       size_t num)
2061 {
2062         const struct sys_reg_desc *r;
2063
2064         if (!table)
2065                 return -1;      /* Not handled */
2066
2067         r = find_reg(params, table, num);
2068
2069         if (r) {
2070                 perform_access(vcpu, params, r);
2071                 return 0;
2072         }
2073
2074         /* Not handled */
2075         return -1;
2076 }
2077
2078 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2079                                 struct sys_reg_params *params)
2080 {
2081         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
2082         int cp = -1;
2083
2084         switch(hsr_ec) {
2085         case ESR_ELx_EC_CP15_32:
2086         case ESR_ELx_EC_CP15_64:
2087                 cp = 15;
2088                 break;
2089         case ESR_ELx_EC_CP14_MR:
2090         case ESR_ELx_EC_CP14_64:
2091                 cp = 14;
2092                 break;
2093         default:
2094                 WARN_ON(1);
2095         }
2096
2097         kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
2098                 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2099         print_sys_reg_instr(params);
2100         kvm_inject_undefined(vcpu);
2101 }
2102
2103 /**
2104  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2105  * @vcpu: The VCPU pointer
2106  * @run:  The kvm_run struct
2107  */
2108 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2109                             const struct sys_reg_desc *global,
2110                             size_t nr_global,
2111                             const struct sys_reg_desc *target_specific,
2112                             size_t nr_specific)
2113 {
2114         struct sys_reg_params params;
2115         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2116         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2117         int Rt2 = (hsr >> 10) & 0x1f;
2118
2119         params.is_aarch32 = true;
2120         params.is_32bit = false;
2121         params.CRm = (hsr >> 1) & 0xf;
2122         params.is_write = ((hsr & 1) == 0);
2123
2124         params.Op0 = 0;
2125         params.Op1 = (hsr >> 16) & 0xf;
2126         params.Op2 = 0;
2127         params.CRn = 0;
2128
2129         /*
2130          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2131          * backends between AArch32 and AArch64, we get away with it.
2132          */
2133         if (params.is_write) {
2134                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2135                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2136         }
2137
2138         /*
2139          * Try to emulate the coprocessor access using the target
2140          * specific table first, and using the global table afterwards.
2141          * If either of the tables contains a handler, handle the
2142          * potential register operation in the case of a read and return
2143          * with success.
2144          */
2145         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2146             !emulate_cp(vcpu, &params, global, nr_global)) {
2147                 /* Split up the value between registers for the read side */
2148                 if (!params.is_write) {
2149                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2150                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2151                 }
2152
2153                 return 1;
2154         }
2155
2156         unhandled_cp_access(vcpu, &params);
2157         return 1;
2158 }
2159
2160 /**
2161  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2162  * @vcpu: The VCPU pointer
2163  * @run:  The kvm_run struct
2164  */
2165 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2166                             const struct sys_reg_desc *global,
2167                             size_t nr_global,
2168                             const struct sys_reg_desc *target_specific,
2169                             size_t nr_specific)
2170 {
2171         struct sys_reg_params params;
2172         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2173         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2174
2175         params.is_aarch32 = true;
2176         params.is_32bit = true;
2177         params.CRm = (hsr >> 1) & 0xf;
2178         params.regval = vcpu_get_reg(vcpu, Rt);
2179         params.is_write = ((hsr & 1) == 0);
2180         params.CRn = (hsr >> 10) & 0xf;
2181         params.Op0 = 0;
2182         params.Op1 = (hsr >> 14) & 0x7;
2183         params.Op2 = (hsr >> 17) & 0x7;
2184
2185         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2186             !emulate_cp(vcpu, &params, global, nr_global)) {
2187                 if (!params.is_write)
2188                         vcpu_set_reg(vcpu, Rt, params.regval);
2189                 return 1;
2190         }
2191
2192         unhandled_cp_access(vcpu, &params);
2193         return 1;
2194 }
2195
2196 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2197 {
2198         const struct sys_reg_desc *target_specific;
2199         size_t num;
2200
2201         target_specific = get_target_table(vcpu->arch.target, false, &num);
2202         return kvm_handle_cp_64(vcpu,
2203                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2204                                 target_specific, num);
2205 }
2206
2207 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2208 {
2209         const struct sys_reg_desc *target_specific;
2210         size_t num;
2211
2212         target_specific = get_target_table(vcpu->arch.target, false, &num);
2213         return kvm_handle_cp_32(vcpu,
2214                                 cp15_regs, ARRAY_SIZE(cp15_regs),
2215                                 target_specific, num);
2216 }
2217
2218 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2219 {
2220         return kvm_handle_cp_64(vcpu,
2221                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2222                                 NULL, 0);
2223 }
2224
2225 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2226 {
2227         return kvm_handle_cp_32(vcpu,
2228                                 cp14_regs, ARRAY_SIZE(cp14_regs),
2229                                 NULL, 0);
2230 }
2231
2232 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2233                            struct sys_reg_params *params)
2234 {
2235         size_t num;
2236         const struct sys_reg_desc *table, *r;
2237
2238         table = get_target_table(vcpu->arch.target, true, &num);
2239
2240         /* Search target-specific then generic table. */
2241         r = find_reg(params, table, num);
2242         if (!r)
2243                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2244
2245         if (likely(r)) {
2246                 perform_access(vcpu, params, r);
2247         } else {
2248                 kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
2249                         *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2250                 print_sys_reg_instr(params);
2251                 kvm_inject_undefined(vcpu);
2252         }
2253         return 1;
2254 }
2255
2256 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2257                                 const struct sys_reg_desc *table, size_t num,
2258                                 unsigned long *bmap)
2259 {
2260         unsigned long i;
2261
2262         for (i = 0; i < num; i++)
2263                 if (table[i].reset) {
2264                         int reg = table[i].reg;
2265
2266                         table[i].reset(vcpu, &table[i]);
2267                         if (reg > 0 && reg < NR_SYS_REGS)
2268                                 set_bit(reg, bmap);
2269                 }
2270 }
2271
2272 /**
2273  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2274  * @vcpu: The VCPU pointer
2275  * @run:  The kvm_run struct
2276  */
2277 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2278 {
2279         struct sys_reg_params params;
2280         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2281         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2282         int ret;
2283
2284         trace_kvm_handle_sys_reg(esr);
2285
2286         params.is_aarch32 = false;
2287         params.is_32bit = false;
2288         params.Op0 = (esr >> 20) & 3;
2289         params.Op1 = (esr >> 14) & 0x7;
2290         params.CRn = (esr >> 10) & 0xf;
2291         params.CRm = (esr >> 1) & 0xf;
2292         params.Op2 = (esr >> 17) & 0x7;
2293         params.regval = vcpu_get_reg(vcpu, Rt);
2294         params.is_write = !(esr & 1);
2295
2296         ret = emulate_sys_reg(vcpu, &params);
2297
2298         if (!params.is_write)
2299                 vcpu_set_reg(vcpu, Rt, params.regval);
2300         return ret;
2301 }
2302
2303 /******************************************************************************
2304  * Userspace API
2305  *****************************************************************************/
2306
2307 static bool index_to_params(u64 id, struct sys_reg_params *params)
2308 {
2309         switch (id & KVM_REG_SIZE_MASK) {
2310         case KVM_REG_SIZE_U64:
2311                 /* Any unused index bits means it's not valid. */
2312                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2313                               | KVM_REG_ARM_COPROC_MASK
2314                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2315                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2316                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2317                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2318                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2319                         return false;
2320                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2321                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2322                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2323                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2324                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2325                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2326                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2327                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2328                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2329                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2330                 return true;
2331         default:
2332                 return false;
2333         }
2334 }
2335
2336 const struct sys_reg_desc *find_reg_by_id(u64 id,
2337                                           struct sys_reg_params *params,
2338                                           const struct sys_reg_desc table[],
2339                                           unsigned int num)
2340 {
2341         if (!index_to_params(id, params))
2342                 return NULL;
2343
2344         return find_reg(params, table, num);
2345 }
2346
2347 /* Decode an index value, and find the sys_reg_desc entry. */
2348 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2349                                                     u64 id)
2350 {
2351         size_t num;
2352         const struct sys_reg_desc *table, *r;
2353         struct sys_reg_params params;
2354
2355         /* We only do sys_reg for now. */
2356         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2357                 return NULL;
2358
2359         table = get_target_table(vcpu->arch.target, true, &num);
2360         r = find_reg_by_id(id, &params, table, num);
2361         if (!r)
2362                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2363
2364         /* Not saved in the sys_reg array and not otherwise accessible? */
2365         if (r && !(r->reg || r->get_user))
2366                 r = NULL;
2367
2368         return r;
2369 }
2370
2371 /*
2372  * These are the invariant sys_reg registers: we let the guest see the
2373  * host versions of these, so they're part of the guest state.
2374  *
2375  * A future CPU may provide a mechanism to present different values to
2376  * the guest, or a future kvm may trap them.
2377  */
2378
2379 #define FUNCTION_INVARIANT(reg)                                         \
2380         static void get_##reg(struct kvm_vcpu *v,                       \
2381                               const struct sys_reg_desc *r)             \
2382         {                                                               \
2383                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2384         }
2385
2386 FUNCTION_INVARIANT(midr_el1)
2387 FUNCTION_INVARIANT(revidr_el1)
2388 FUNCTION_INVARIANT(clidr_el1)
2389 FUNCTION_INVARIANT(aidr_el1)
2390
2391 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2392 {
2393         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2394 }
2395
2396 /* ->val is filled in by kvm_sys_reg_table_init() */
2397 static struct sys_reg_desc invariant_sys_regs[] = {
2398         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2399         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2400         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2401         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2402         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2403 };
2404
2405 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2406 {
2407         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2408                 return -EFAULT;
2409         return 0;
2410 }
2411
2412 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2413 {
2414         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2415                 return -EFAULT;
2416         return 0;
2417 }
2418
2419 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2420 {
2421         struct sys_reg_params params;
2422         const struct sys_reg_desc *r;
2423
2424         r = find_reg_by_id(id, &params, invariant_sys_regs,
2425                            ARRAY_SIZE(invariant_sys_regs));
2426         if (!r)
2427                 return -ENOENT;
2428
2429         return reg_to_user(uaddr, &r->val, id);
2430 }
2431
2432 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2433 {
2434         struct sys_reg_params params;
2435         const struct sys_reg_desc *r;
2436         int err;
2437         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2438
2439         r = find_reg_by_id(id, &params, invariant_sys_regs,
2440                            ARRAY_SIZE(invariant_sys_regs));
2441         if (!r)
2442                 return -ENOENT;
2443
2444         err = reg_from_user(&val, uaddr, id);
2445         if (err)
2446                 return err;
2447
2448         /* This is what we mean by invariant: you can't change it. */
2449         if (r->val != val)
2450                 return -EINVAL;
2451
2452         return 0;
2453 }
2454
2455 static bool is_valid_cache(u32 val)
2456 {
2457         u32 level, ctype;
2458
2459         if (val >= CSSELR_MAX)
2460                 return false;
2461
2462         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2463         level = (val >> 1);
2464         ctype = (cache_levels >> (level * 3)) & 7;
2465
2466         switch (ctype) {
2467         case 0: /* No cache */
2468                 return false;
2469         case 1: /* Instruction cache only */
2470                 return (val & 1);
2471         case 2: /* Data cache only */
2472         case 4: /* Unified cache */
2473                 return !(val & 1);
2474         case 3: /* Separate instruction and data caches */
2475                 return true;
2476         default: /* Reserved: we can't know instruction or data. */
2477                 return false;
2478         }
2479 }
2480
2481 static int demux_c15_get(u64 id, void __user *uaddr)
2482 {
2483         u32 val;
2484         u32 __user *uval = uaddr;
2485
2486         /* Fail if we have unknown bits set. */
2487         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2488                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2489                 return -ENOENT;
2490
2491         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2492         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2493                 if (KVM_REG_SIZE(id) != 4)
2494                         return -ENOENT;
2495                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2496                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2497                 if (!is_valid_cache(val))
2498                         return -ENOENT;
2499
2500                 return put_user(get_ccsidr(val), uval);
2501         default:
2502                 return -ENOENT;
2503         }
2504 }
2505
2506 static int demux_c15_set(u64 id, void __user *uaddr)
2507 {
2508         u32 val, newval;
2509         u32 __user *uval = uaddr;
2510
2511         /* Fail if we have unknown bits set. */
2512         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2513                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2514                 return -ENOENT;
2515
2516         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2517         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2518                 if (KVM_REG_SIZE(id) != 4)
2519                         return -ENOENT;
2520                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2521                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2522                 if (!is_valid_cache(val))
2523                         return -ENOENT;
2524
2525                 if (get_user(newval, uval))
2526                         return -EFAULT;
2527
2528                 /* This is also invariant: you can't change it. */
2529                 if (newval != get_ccsidr(val))
2530                         return -EINVAL;
2531                 return 0;
2532         default:
2533                 return -ENOENT;
2534         }
2535 }
2536
2537 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2538 {
2539         const struct sys_reg_desc *r;
2540         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2541
2542         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2543                 return demux_c15_get(reg->id, uaddr);
2544
2545         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2546                 return -ENOENT;
2547
2548         r = index_to_sys_reg_desc(vcpu, reg->id);
2549         if (!r)
2550                 return get_invariant_sys_reg(reg->id, uaddr);
2551
2552         /* Check for regs disabled by runtime config */
2553         if (sysreg_hidden_from_user(vcpu, r))
2554                 return -ENOENT;
2555
2556         if (r->get_user)
2557                 return (r->get_user)(vcpu, r, reg, uaddr);
2558
2559         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2560 }
2561
2562 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2563 {
2564         const struct sys_reg_desc *r;
2565         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2566
2567         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2568                 return demux_c15_set(reg->id, uaddr);
2569
2570         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2571                 return -ENOENT;
2572
2573         r = index_to_sys_reg_desc(vcpu, reg->id);
2574         if (!r)
2575                 return set_invariant_sys_reg(reg->id, uaddr);
2576
2577         /* Check for regs disabled by runtime config */
2578         if (sysreg_hidden_from_user(vcpu, r))
2579                 return -ENOENT;
2580
2581         if (r->set_user)
2582                 return (r->set_user)(vcpu, r, reg, uaddr);
2583
2584         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2585 }
2586
2587 static unsigned int num_demux_regs(void)
2588 {
2589         unsigned int i, count = 0;
2590
2591         for (i = 0; i < CSSELR_MAX; i++)
2592                 if (is_valid_cache(i))
2593                         count++;
2594
2595         return count;
2596 }
2597
2598 static int write_demux_regids(u64 __user *uindices)
2599 {
2600         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2601         unsigned int i;
2602
2603         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2604         for (i = 0; i < CSSELR_MAX; i++) {
2605                 if (!is_valid_cache(i))
2606                         continue;
2607                 if (put_user(val | i, uindices))
2608                         return -EFAULT;
2609                 uindices++;
2610         }
2611         return 0;
2612 }
2613
2614 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2615 {
2616         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2617                 KVM_REG_ARM64_SYSREG |
2618                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2619                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2620                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2621                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2622                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2623 }
2624
2625 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2626 {
2627         if (!*uind)
2628                 return true;
2629
2630         if (put_user(sys_reg_to_index(reg), *uind))
2631                 return false;
2632
2633         (*uind)++;
2634         return true;
2635 }
2636
2637 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2638                             const struct sys_reg_desc *rd,
2639                             u64 __user **uind,
2640                             unsigned int *total)
2641 {
2642         /*
2643          * Ignore registers we trap but don't save,
2644          * and for which no custom user accessor is provided.
2645          */
2646         if (!(rd->reg || rd->get_user))
2647                 return 0;
2648
2649         if (sysreg_hidden_from_user(vcpu, rd))
2650                 return 0;
2651
2652         if (!copy_reg_to_user(rd, uind))
2653                 return -EFAULT;
2654
2655         (*total)++;
2656         return 0;
2657 }
2658
2659 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2660 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2661 {
2662         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2663         unsigned int total = 0;
2664         size_t num;
2665         int err;
2666
2667         /* We check for duplicates here, to allow arch-specific overrides. */
2668         i1 = get_target_table(vcpu->arch.target, true, &num);
2669         end1 = i1 + num;
2670         i2 = sys_reg_descs;
2671         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2672
2673         BUG_ON(i1 == end1 || i2 == end2);
2674
2675         /* Walk carefully, as both tables may refer to the same register. */
2676         while (i1 || i2) {
2677                 int cmp = cmp_sys_reg(i1, i2);
2678                 /* target-specific overrides generic entry. */
2679                 if (cmp <= 0)
2680                         err = walk_one_sys_reg(vcpu, i1, &uind, &total);
2681                 else
2682                         err = walk_one_sys_reg(vcpu, i2, &uind, &total);
2683
2684                 if (err)
2685                         return err;
2686
2687                 if (cmp <= 0 && ++i1 == end1)
2688                         i1 = NULL;
2689                 if (cmp >= 0 && ++i2 == end2)
2690                         i2 = NULL;
2691         }
2692         return total;
2693 }
2694
2695 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2696 {
2697         return ARRAY_SIZE(invariant_sys_regs)
2698                 + num_demux_regs()
2699                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2700 }
2701
2702 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2703 {
2704         unsigned int i;
2705         int err;
2706
2707         /* Then give them all the invariant registers' indices. */
2708         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2709                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2710                         return -EFAULT;
2711                 uindices++;
2712         }
2713
2714         err = walk_sys_regs(vcpu, uindices);
2715         if (err < 0)
2716                 return err;
2717         uindices += err;
2718
2719         return write_demux_regids(uindices);
2720 }
2721
2722 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2723 {
2724         unsigned int i;
2725
2726         for (i = 1; i < n; i++) {
2727                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2728                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2729                         return 1;
2730                 }
2731         }
2732
2733         return 0;
2734 }
2735
2736 void kvm_sys_reg_table_init(void)
2737 {
2738         unsigned int i;
2739         struct sys_reg_desc clidr;
2740
2741         /* Make sure tables are unique and in order. */
2742         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2743         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2744         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2745         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2746         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2747         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2748
2749         /* We abuse the reset function to overwrite the table itself. */
2750         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2751                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2752
2753         /*
2754          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2755          *
2756          *   If software reads the Cache Type fields from Ctype1
2757          *   upwards, once it has seen a value of 0b000, no caches
2758          *   exist at further-out levels of the hierarchy. So, for
2759          *   example, if Ctype3 is the first Cache Type field with a
2760          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2761          *   ignored.
2762          */
2763         get_clidr_el1(NULL, &clidr); /* Ugly... */
2764         cache_levels = clidr.val;
2765         for (i = 0; i < 7; i++)
2766                 if (((cache_levels >> (i*3)) & 7) == 0)
2767                         break;
2768         /* Clear all higher bits. */
2769         cache_levels &= (1 << (i*3))-1;
2770 }
2771
2772 /**
2773  * kvm_reset_sys_regs - sets system registers to reset value
2774  * @vcpu: The VCPU pointer
2775  *
2776  * This function finds the right table above and sets the registers on the
2777  * virtual CPU struct to their architecturally defined reset values.
2778  */
2779 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2780 {
2781         size_t num;
2782         const struct sys_reg_desc *table;
2783         DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
2784
2785         /* Generic chip reset first (so target could override). */
2786         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
2787
2788         table = get_target_table(vcpu->arch.target, true, &num);
2789         reset_sys_reg_descs(vcpu, table, num, bmap);
2790
2791         for (num = 1; num < NR_SYS_REGS; num++) {
2792                 if (WARN(!test_bit(num, bmap),
2793                          "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2794                         break;
2795         }
2796 }