Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[sfrench/cifs-2.6.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2  * Copyright (C) 2015 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22
23 #include <kvm/arm_psci.h>
24
25 #include <asm/cpufeature.h>
26 #include <asm/kvm_asm.h>
27 #include <asm/kvm_emulate.h>
28 #include <asm/kvm_host.h>
29 #include <asm/kvm_hyp.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/fpsimd.h>
32 #include <asm/debug-monitors.h>
33 #include <asm/processor.h>
34 #include <asm/thread_info.h>
35
36 /* Check whether the FP regs were dirtied while in the host-side run loop: */
37 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
38 {
39         if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
40                 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
41                                       KVM_ARM64_FP_HOST);
42
43         return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
44 }
45
46 /* Save the 32-bit only FPSIMD system register state */
47 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
48 {
49         if (!vcpu_el1_is_32bit(vcpu))
50                 return;
51
52         vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
53 }
54
55 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
56 {
57         /*
58          * We are about to set CPTR_EL2.TFP to trap all floating point
59          * register accesses to EL2, however, the ARM ARM clearly states that
60          * traps are only taken to EL2 if the operation would not otherwise
61          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
62          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
63          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
64          * it will cause an exception.
65          */
66         if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
67                 write_sysreg(1 << 30, fpexc32_el2);
68                 isb();
69         }
70 }
71
72 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
73 {
74         /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
75         write_sysreg(1 << 15, hstr_el2);
76
77         /*
78          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
79          * PMSELR_EL0 to make sure it never contains the cycle
80          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
81          * EL1 instead of being trapped to EL2.
82          */
83         write_sysreg(0, pmselr_el0);
84         write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
85         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
86 }
87
88 static void __hyp_text __deactivate_traps_common(void)
89 {
90         write_sysreg(0, hstr_el2);
91         write_sysreg(0, pmuserenr_el0);
92 }
93
94 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
95 {
96         u64 val;
97
98         val = read_sysreg(cpacr_el1);
99         val |= CPACR_EL1_TTA;
100         val &= ~CPACR_EL1_ZEN;
101         if (!update_fp_enabled(vcpu))
102                 val &= ~CPACR_EL1_FPEN;
103
104         write_sysreg(val, cpacr_el1);
105
106         write_sysreg(kvm_get_hyp_vector(), vbar_el1);
107 }
108
109 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
110 {
111         u64 val;
112
113         __activate_traps_common(vcpu);
114
115         val = CPTR_EL2_DEFAULT;
116         val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
117         if (!update_fp_enabled(vcpu))
118                 val |= CPTR_EL2_TFP;
119
120         write_sysreg(val, cptr_el2);
121 }
122
123 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
124 {
125         u64 hcr = vcpu->arch.hcr_el2;
126
127         write_sysreg(hcr, hcr_el2);
128
129         if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
130                 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
131
132         __activate_traps_fpsimd32(vcpu);
133         if (has_vhe())
134                 activate_traps_vhe(vcpu);
135         else
136                 __activate_traps_nvhe(vcpu);
137 }
138
139 static void deactivate_traps_vhe(void)
140 {
141         extern char vectors[];  /* kernel exception vectors */
142         write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
143         write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
144         write_sysreg(vectors, vbar_el1);
145 }
146
147 static void __hyp_text __deactivate_traps_nvhe(void)
148 {
149         u64 mdcr_el2 = read_sysreg(mdcr_el2);
150
151         __deactivate_traps_common();
152
153         mdcr_el2 &= MDCR_EL2_HPMN_MASK;
154         mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
155
156         write_sysreg(mdcr_el2, mdcr_el2);
157         write_sysreg(HCR_RW, hcr_el2);
158         write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
159 }
160
161 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
162 {
163         /*
164          * If we pended a virtual abort, preserve it until it gets
165          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
166          * the crucial bit is "On taking a vSError interrupt,
167          * HCR_EL2.VSE is cleared to 0."
168          */
169         if (vcpu->arch.hcr_el2 & HCR_VSE)
170                 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
171
172         if (has_vhe())
173                 deactivate_traps_vhe();
174         else
175                 __deactivate_traps_nvhe();
176 }
177
178 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
179 {
180         __activate_traps_common(vcpu);
181 }
182
183 void deactivate_traps_vhe_put(void)
184 {
185         u64 mdcr_el2 = read_sysreg(mdcr_el2);
186
187         mdcr_el2 &= MDCR_EL2_HPMN_MASK |
188                     MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
189                     MDCR_EL2_TPMS;
190
191         write_sysreg(mdcr_el2, mdcr_el2);
192
193         __deactivate_traps_common();
194 }
195
196 static void __hyp_text __activate_vm(struct kvm *kvm)
197 {
198         write_sysreg(kvm->arch.vttbr, vttbr_el2);
199 }
200
201 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
202 {
203         write_sysreg(0, vttbr_el2);
204 }
205
206 /* Save VGICv3 state on non-VHE systems */
207 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
208 {
209         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
210                 __vgic_v3_save_state(vcpu);
211                 __vgic_v3_deactivate_traps(vcpu);
212         }
213 }
214
215 /* Restore VGICv3 state on non_VEH systems */
216 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
217 {
218         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
219                 __vgic_v3_activate_traps(vcpu);
220                 __vgic_v3_restore_state(vcpu);
221         }
222 }
223
224 static bool __hyp_text __true_value(void)
225 {
226         return true;
227 }
228
229 static bool __hyp_text __false_value(void)
230 {
231         return false;
232 }
233
234 static hyp_alternate_select(__check_arm_834220,
235                             __false_value, __true_value,
236                             ARM64_WORKAROUND_834220);
237
238 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
239 {
240         u64 par, tmp;
241
242         /*
243          * Resolve the IPA the hard way using the guest VA.
244          *
245          * Stage-1 translation already validated the memory access
246          * rights. As such, we can use the EL1 translation regime, and
247          * don't have to distinguish between EL0 and EL1 access.
248          *
249          * We do need to save/restore PAR_EL1 though, as we haven't
250          * saved the guest context yet, and we may return early...
251          */
252         par = read_sysreg(par_el1);
253         asm volatile("at s1e1r, %0" : : "r" (far));
254         isb();
255
256         tmp = read_sysreg(par_el1);
257         write_sysreg(par, par_el1);
258
259         if (unlikely(tmp & 1))
260                 return false; /* Translation failed, back to guest */
261
262         /* Convert PAR to HPFAR format */
263         *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
264         return true;
265 }
266
267 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
268 {
269         u8 ec;
270         u64 esr;
271         u64 hpfar, far;
272
273         esr = vcpu->arch.fault.esr_el2;
274         ec = ESR_ELx_EC(esr);
275
276         if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
277                 return true;
278
279         far = read_sysreg_el2(far);
280
281         /*
282          * The HPFAR can be invalid if the stage 2 fault did not
283          * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
284          * bit is clear) and one of the two following cases are true:
285          *   1. The fault was due to a permission fault
286          *   2. The processor carries errata 834220
287          *
288          * Therefore, for all non S1PTW faults where we either have a
289          * permission fault or the errata workaround is enabled, we
290          * resolve the IPA using the AT instruction.
291          */
292         if (!(esr & ESR_ELx_S1PTW) &&
293             (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
294                 if (!__translate_far_to_hpfar(far, &hpfar))
295                         return false;
296         } else {
297                 hpfar = read_sysreg(hpfar_el2);
298         }
299
300         vcpu->arch.fault.far_el2 = far;
301         vcpu->arch.fault.hpfar_el2 = hpfar;
302         return true;
303 }
304
305 /* Skip an instruction which has been emulated. Returns true if
306  * execution can continue or false if we need to exit hyp mode because
307  * single-step was in effect.
308  */
309 static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
310 {
311         *vcpu_pc(vcpu) = read_sysreg_el2(elr);
312
313         if (vcpu_mode_is_32bit(vcpu)) {
314                 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
315                 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
316                 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
317         } else {
318                 *vcpu_pc(vcpu) += 4;
319         }
320
321         write_sysreg_el2(*vcpu_pc(vcpu), elr);
322
323         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
324                 vcpu->arch.fault.esr_el2 =
325                         (ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
326                 return false;
327         } else {
328                 return true;
329         }
330 }
331
332 static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
333 {
334         struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;
335
336         if (has_vhe())
337                 write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
338                              cpacr_el1);
339         else
340                 write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
341                              cptr_el2);
342
343         isb();
344
345         if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
346                 /*
347                  * In the SVE case, VHE is assumed: it is enforced by
348                  * Kconfig and kvm_arch_init().
349                  */
350                 if (system_supports_sve() &&
351                     (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
352                         struct thread_struct *thread = container_of(
353                                 host_fpsimd,
354                                 struct thread_struct, uw.fpsimd_state);
355
356                         sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
357                 } else {
358                         __fpsimd_save_state(host_fpsimd);
359                 }
360
361                 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
362         }
363
364         __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
365
366         /* Skip restoring fpexc32 for AArch64 guests */
367         if (!(read_sysreg(hcr_el2) & HCR_RW))
368                 write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
369                              fpexc32_el2);
370
371         vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
372
373         return true;
374 }
375
376 /*
377  * Return true when we were able to fixup the guest exit and should return to
378  * the guest, false when we should restore the host state and return to the
379  * main run loop.
380  */
381 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
382 {
383         if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
384                 vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
385
386         /*
387          * We're using the raw exception code in order to only process
388          * the trap if no SError is pending. We will come back to the
389          * same PC once the SError has been injected, and replay the
390          * trapping instruction.
391          */
392         if (*exit_code != ARM_EXCEPTION_TRAP)
393                 goto exit;
394
395         /*
396          * We trap the first access to the FP/SIMD to save the host context
397          * and restore the guest context lazily.
398          * If FP/SIMD is not implemented, handle the trap and inject an
399          * undefined instruction exception to the guest.
400          */
401         if (system_supports_fpsimd() &&
402             kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
403                 return __hyp_switch_fpsimd(vcpu);
404
405         if (!__populate_fault_info(vcpu))
406                 return true;
407
408         if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
409                 bool valid;
410
411                 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
412                         kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
413                         kvm_vcpu_dabt_isvalid(vcpu) &&
414                         !kvm_vcpu_dabt_isextabt(vcpu) &&
415                         !kvm_vcpu_dabt_iss1tw(vcpu);
416
417                 if (valid) {
418                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
419
420                         if (ret ==  1 && __skip_instr(vcpu))
421                                 return true;
422
423                         if (ret == -1) {
424                                 /* Promote an illegal access to an
425                                  * SError. If we would be returning
426                                  * due to single-step clear the SS
427                                  * bit so handle_exit knows what to
428                                  * do after dealing with the error.
429                                  */
430                                 if (!__skip_instr(vcpu))
431                                         *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
432                                 *exit_code = ARM_EXCEPTION_EL1_SERROR;
433                         }
434
435                         goto exit;
436                 }
437         }
438
439         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
440             (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
441              kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
442                 int ret = __vgic_v3_perform_cpuif_access(vcpu);
443
444                 if (ret == 1 && __skip_instr(vcpu))
445                         return true;
446         }
447
448 exit:
449         /* Return to the host kernel and handle the exit */
450         return false;
451 }
452
453 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
454 {
455         if (!cpus_have_const_cap(ARM64_SSBD))
456                 return false;
457
458         return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
459 }
460
461 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
462 {
463 #ifdef CONFIG_ARM64_SSBD
464         /*
465          * The host runs with the workaround always present. If the
466          * guest wants it disabled, so be it...
467          */
468         if (__needs_ssbd_off(vcpu) &&
469             __hyp_this_cpu_read(arm64_ssbd_callback_required))
470                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
471 #endif
472 }
473
474 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
475 {
476 #ifdef CONFIG_ARM64_SSBD
477         /*
478          * If the guest has disabled the workaround, bring it back on.
479          */
480         if (__needs_ssbd_off(vcpu) &&
481             __hyp_this_cpu_read(arm64_ssbd_callback_required))
482                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
483 #endif
484 }
485
486 /* Switch to the guest for VHE systems running in EL2 */
487 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
488 {
489         struct kvm_cpu_context *host_ctxt;
490         struct kvm_cpu_context *guest_ctxt;
491         u64 exit_code;
492
493         host_ctxt = vcpu->arch.host_cpu_context;
494         host_ctxt->__hyp_running_vcpu = vcpu;
495         guest_ctxt = &vcpu->arch.ctxt;
496
497         sysreg_save_host_state_vhe(host_ctxt);
498
499         __activate_traps(vcpu);
500         __activate_vm(vcpu->kvm);
501
502         sysreg_restore_guest_state_vhe(guest_ctxt);
503         __debug_switch_to_guest(vcpu);
504
505         __set_guest_arch_workaround_state(vcpu);
506
507         do {
508                 /* Jump in the fire! */
509                 exit_code = __guest_enter(vcpu, host_ctxt);
510
511                 /* And we're baaack! */
512         } while (fixup_guest_exit(vcpu, &exit_code));
513
514         __set_host_arch_workaround_state(vcpu);
515
516         sysreg_save_guest_state_vhe(guest_ctxt);
517
518         __deactivate_traps(vcpu);
519
520         sysreg_restore_host_state_vhe(host_ctxt);
521
522         if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
523                 __fpsimd_save_fpexc32(vcpu);
524
525         __debug_switch_to_host(vcpu);
526
527         return exit_code;
528 }
529
530 /* Switch to the guest for legacy non-VHE systems */
531 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
532 {
533         struct kvm_cpu_context *host_ctxt;
534         struct kvm_cpu_context *guest_ctxt;
535         u64 exit_code;
536
537         vcpu = kern_hyp_va(vcpu);
538
539         host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
540         host_ctxt->__hyp_running_vcpu = vcpu;
541         guest_ctxt = &vcpu->arch.ctxt;
542
543         __sysreg_save_state_nvhe(host_ctxt);
544
545         __activate_traps(vcpu);
546         __activate_vm(kern_hyp_va(vcpu->kvm));
547
548         __hyp_vgic_restore_state(vcpu);
549         __timer_enable_traps(vcpu);
550
551         /*
552          * We must restore the 32-bit state before the sysregs, thanks
553          * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
554          */
555         __sysreg32_restore_state(vcpu);
556         __sysreg_restore_state_nvhe(guest_ctxt);
557         __debug_switch_to_guest(vcpu);
558
559         __set_guest_arch_workaround_state(vcpu);
560
561         do {
562                 /* Jump in the fire! */
563                 exit_code = __guest_enter(vcpu, host_ctxt);
564
565                 /* And we're baaack! */
566         } while (fixup_guest_exit(vcpu, &exit_code));
567
568         __set_host_arch_workaround_state(vcpu);
569
570         __sysreg_save_state_nvhe(guest_ctxt);
571         __sysreg32_save_state(vcpu);
572         __timer_disable_traps(vcpu);
573         __hyp_vgic_save_state(vcpu);
574
575         __deactivate_traps(vcpu);
576         __deactivate_vm(vcpu);
577
578         __sysreg_restore_state_nvhe(host_ctxt);
579
580         if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
581                 __fpsimd_save_fpexc32(vcpu);
582
583         /*
584          * This must come after restoring the host sysregs, since a non-VHE
585          * system may enable SPE here and make use of the TTBRs.
586          */
587         __debug_switch_to_host(vcpu);
588
589         return exit_code;
590 }
591
592 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
593
594 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
595                                              struct kvm_cpu_context *__host_ctxt)
596 {
597         struct kvm_vcpu *vcpu;
598         unsigned long str_va;
599
600         vcpu = __host_ctxt->__hyp_running_vcpu;
601
602         if (read_sysreg(vttbr_el2)) {
603                 __timer_disable_traps(vcpu);
604                 __deactivate_traps(vcpu);
605                 __deactivate_vm(vcpu);
606                 __sysreg_restore_state_nvhe(__host_ctxt);
607         }
608
609         /*
610          * Force the panic string to be loaded from the literal pool,
611          * making sure it is a kernel address and not a PC-relative
612          * reference.
613          */
614         asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
615
616         __hyp_do_panic(str_va,
617                        spsr,  elr,
618                        read_sysreg(esr_el2),   read_sysreg_el2(far),
619                        read_sysreg(hpfar_el2), par, vcpu);
620 }
621
622 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
623                                  struct kvm_cpu_context *host_ctxt)
624 {
625         struct kvm_vcpu *vcpu;
626         vcpu = host_ctxt->__hyp_running_vcpu;
627
628         __deactivate_traps(vcpu);
629         sysreg_restore_host_state_vhe(host_ctxt);
630
631         panic(__hyp_panic_string,
632               spsr,  elr,
633               read_sysreg_el2(esr),   read_sysreg_el2(far),
634               read_sysreg(hpfar_el2), par, vcpu);
635 }
636
637 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
638 {
639         u64 spsr = read_sysreg_el2(spsr);
640         u64 elr = read_sysreg_el2(elr);
641         u64 par = read_sysreg(par_el1);
642
643         if (!has_vhe())
644                 __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
645         else
646                 __hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
647
648         unreachable();
649 }