Merge tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / topology.c
1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/node.h>
22 #include <linux/nodemask.h>
23 #include <linux/of.h>
24 #include <linux/sched.h>
25 #include <linux/sched/topology.h>
26 #include <linux/slab.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29
30 #include <asm/cpu.h>
31 #include <asm/cputype.h>
32 #include <asm/topology.h>
33
34 static int __init get_cpu_for_node(struct device_node *node)
35 {
36         struct device_node *cpu_node;
37         int cpu;
38
39         cpu_node = of_parse_phandle(node, "cpu", 0);
40         if (!cpu_node)
41                 return -1;
42
43         cpu = of_cpu_node_to_id(cpu_node);
44         if (cpu >= 0)
45                 topology_parse_cpu_capacity(cpu_node, cpu);
46         else
47                 pr_crit("Unable to find CPU node for %pOF\n", cpu_node);
48
49         of_node_put(cpu_node);
50         return cpu;
51 }
52
53 static int __init parse_core(struct device_node *core, int package_id,
54                              int core_id)
55 {
56         char name[10];
57         bool leaf = true;
58         int i = 0;
59         int cpu;
60         struct device_node *t;
61
62         do {
63                 snprintf(name, sizeof(name), "thread%d", i);
64                 t = of_get_child_by_name(core, name);
65                 if (t) {
66                         leaf = false;
67                         cpu = get_cpu_for_node(t);
68                         if (cpu >= 0) {
69                                 cpu_topology[cpu].package_id = package_id;
70                                 cpu_topology[cpu].core_id = core_id;
71                                 cpu_topology[cpu].thread_id = i;
72                         } else {
73                                 pr_err("%pOF: Can't get CPU for thread\n",
74                                        t);
75                                 of_node_put(t);
76                                 return -EINVAL;
77                         }
78                         of_node_put(t);
79                 }
80                 i++;
81         } while (t);
82
83         cpu = get_cpu_for_node(core);
84         if (cpu >= 0) {
85                 if (!leaf) {
86                         pr_err("%pOF: Core has both threads and CPU\n",
87                                core);
88                         return -EINVAL;
89                 }
90
91                 cpu_topology[cpu].package_id = package_id;
92                 cpu_topology[cpu].core_id = core_id;
93         } else if (leaf) {
94                 pr_err("%pOF: Can't get CPU for leaf core\n", core);
95                 return -EINVAL;
96         }
97
98         return 0;
99 }
100
101 static int __init parse_cluster(struct device_node *cluster, int depth)
102 {
103         char name[10];
104         bool leaf = true;
105         bool has_cores = false;
106         struct device_node *c;
107         static int package_id __initdata;
108         int core_id = 0;
109         int i, ret;
110
111         /*
112          * First check for child clusters; we currently ignore any
113          * information about the nesting of clusters and present the
114          * scheduler with a flat list of them.
115          */
116         i = 0;
117         do {
118                 snprintf(name, sizeof(name), "cluster%d", i);
119                 c = of_get_child_by_name(cluster, name);
120                 if (c) {
121                         leaf = false;
122                         ret = parse_cluster(c, depth + 1);
123                         of_node_put(c);
124                         if (ret != 0)
125                                 return ret;
126                 }
127                 i++;
128         } while (c);
129
130         /* Now check for cores */
131         i = 0;
132         do {
133                 snprintf(name, sizeof(name), "core%d", i);
134                 c = of_get_child_by_name(cluster, name);
135                 if (c) {
136                         has_cores = true;
137
138                         if (depth == 0) {
139                                 pr_err("%pOF: cpu-map children should be clusters\n",
140                                        c);
141                                 of_node_put(c);
142                                 return -EINVAL;
143                         }
144
145                         if (leaf) {
146                                 ret = parse_core(c, package_id, core_id++);
147                         } else {
148                                 pr_err("%pOF: Non-leaf cluster with core %s\n",
149                                        cluster, name);
150                                 ret = -EINVAL;
151                         }
152
153                         of_node_put(c);
154                         if (ret != 0)
155                                 return ret;
156                 }
157                 i++;
158         } while (c);
159
160         if (leaf && !has_cores)
161                 pr_warn("%pOF: empty cluster\n", cluster);
162
163         if (leaf)
164                 package_id++;
165
166         return 0;
167 }
168
169 static int __init parse_dt_topology(void)
170 {
171         struct device_node *cn, *map;
172         int ret = 0;
173         int cpu;
174
175         cn = of_find_node_by_path("/cpus");
176         if (!cn) {
177                 pr_err("No CPU information found in DT\n");
178                 return 0;
179         }
180
181         /*
182          * When topology is provided cpu-map is essentially a root
183          * cluster with restricted subnodes.
184          */
185         map = of_get_child_by_name(cn, "cpu-map");
186         if (!map)
187                 goto out;
188
189         ret = parse_cluster(map, 0);
190         if (ret != 0)
191                 goto out_map;
192
193         topology_normalize_cpu_scale();
194
195         /*
196          * Check that all cores are in the topology; the SMP code will
197          * only mark cores described in the DT as possible.
198          */
199         for_each_possible_cpu(cpu)
200                 if (cpu_topology[cpu].package_id == -1)
201                         ret = -EINVAL;
202
203 out_map:
204         of_node_put(map);
205 out:
206         of_node_put(cn);
207         return ret;
208 }
209
210 /*
211  * cpu topology table
212  */
213 struct cpu_topology cpu_topology[NR_CPUS];
214 EXPORT_SYMBOL_GPL(cpu_topology);
215
216 const struct cpumask *cpu_coregroup_mask(int cpu)
217 {
218         const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
219
220         /* Find the smaller of NUMA, core or LLC siblings */
221         if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
222                 /* not numa in package, lets use the package siblings */
223                 core_mask = &cpu_topology[cpu].core_sibling;
224         }
225         if (cpu_topology[cpu].llc_id != -1) {
226                 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
227                         core_mask = &cpu_topology[cpu].llc_sibling;
228         }
229
230         return core_mask;
231 }
232
233 static void update_siblings_masks(unsigned int cpuid)
234 {
235         struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
236         int cpu;
237
238         /* update core and thread sibling masks */
239         for_each_online_cpu(cpu) {
240                 cpu_topo = &cpu_topology[cpu];
241
242                 if (cpuid_topo->llc_id == cpu_topo->llc_id) {
243                         cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
244                         cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
245                 }
246
247                 if (cpuid_topo->package_id != cpu_topo->package_id)
248                         continue;
249
250                 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
251                 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
252
253                 if (cpuid_topo->core_id != cpu_topo->core_id)
254                         continue;
255
256                 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
257                 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
258         }
259 }
260
261 void store_cpu_topology(unsigned int cpuid)
262 {
263         struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
264         u64 mpidr;
265
266         if (cpuid_topo->package_id != -1)
267                 goto topology_populated;
268
269         mpidr = read_cpuid_mpidr();
270
271         /* Uniprocessor systems can rely on default topology values */
272         if (mpidr & MPIDR_UP_BITMASK)
273                 return;
274
275         /* Create cpu topology mapping based on MPIDR. */
276         if (mpidr & MPIDR_MT_BITMASK) {
277                 /* Multiprocessor system : Multi-threads per core */
278                 cpuid_topo->thread_id  = MPIDR_AFFINITY_LEVEL(mpidr, 0);
279                 cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 1);
280                 cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
281                                          MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
282         } else {
283                 /* Multiprocessor system : Single-thread per core */
284                 cpuid_topo->thread_id  = -1;
285                 cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 0);
286                 cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
287                                          MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
288                                          MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
289         }
290
291         pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
292                  cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
293                  cpuid_topo->thread_id, mpidr);
294
295 topology_populated:
296         update_siblings_masks(cpuid);
297 }
298
299 static void clear_cpu_topology(int cpu)
300 {
301         struct cpu_topology *cpu_topo = &cpu_topology[cpu];
302
303         cpumask_clear(&cpu_topo->llc_sibling);
304         cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
305
306         cpumask_clear(&cpu_topo->core_sibling);
307         cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
308         cpumask_clear(&cpu_topo->thread_sibling);
309         cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
310 }
311
312 static void __init reset_cpu_topology(void)
313 {
314         unsigned int cpu;
315
316         for_each_possible_cpu(cpu) {
317                 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
318
319                 cpu_topo->thread_id = -1;
320                 cpu_topo->core_id = 0;
321                 cpu_topo->package_id = -1;
322                 cpu_topo->llc_id = -1;
323
324                 clear_cpu_topology(cpu);
325         }
326 }
327
328 void remove_cpu_topology(unsigned int cpu)
329 {
330         int sibling;
331
332         for_each_cpu(sibling, topology_core_cpumask(cpu))
333                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
334         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
335                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
336         for_each_cpu(sibling, topology_llc_cpumask(cpu))
337                 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
338
339         clear_cpu_topology(cpu);
340 }
341
342 #ifdef CONFIG_ACPI
343 /*
344  * Propagate the topology information of the processor_topology_node tree to the
345  * cpu_topology array.
346  */
347 static int __init parse_acpi_topology(void)
348 {
349         bool is_threaded;
350         int cpu, topology_id;
351
352         is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
353
354         for_each_possible_cpu(cpu) {
355                 int i, cache_id;
356
357                 topology_id = find_acpi_cpu_topology(cpu, 0);
358                 if (topology_id < 0)
359                         return topology_id;
360
361                 if (is_threaded) {
362                         cpu_topology[cpu].thread_id = topology_id;
363                         topology_id = find_acpi_cpu_topology(cpu, 1);
364                         cpu_topology[cpu].core_id   = topology_id;
365                 } else {
366                         cpu_topology[cpu].thread_id  = -1;
367                         cpu_topology[cpu].core_id    = topology_id;
368                 }
369                 topology_id = find_acpi_cpu_topology_package(cpu);
370                 cpu_topology[cpu].package_id = topology_id;
371
372                 i = acpi_find_last_cache_level(cpu);
373
374                 if (i > 0) {
375                         /*
376                          * this is the only part of cpu_topology that has
377                          * a direct relationship with the cache topology
378                          */
379                         cache_id = find_acpi_cpu_cache_topology(cpu, i);
380                         if (cache_id > 0)
381                                 cpu_topology[cpu].llc_id = cache_id;
382                 }
383         }
384
385         return 0;
386 }
387
388 #else
389 static inline int __init parse_acpi_topology(void)
390 {
391         return -EINVAL;
392 }
393 #endif
394
395 void __init init_cpu_topology(void)
396 {
397         reset_cpu_topology();
398
399         /*
400          * Discard anything that was parsed if we hit an error so we
401          * don't use partial information.
402          */
403         if (!acpi_disabled && parse_acpi_topology())
404                 reset_cpu_topology();
405         else if (of_have_populated_dt() && parse_dt_topology())
406                 reset_cpu_topology();
407 }