Merge tag 'sound-5.0-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/crash_dump.h>
24 #include <linux/sort.h>
25 #include <linux/stop_machine.h>
26 #include <linux/types.h>
27 #include <linux/mm.h>
28 #include <asm/cpu.h>
29 #include <asm/cpufeature.h>
30 #include <asm/cpu_ops.h>
31 #include <asm/fpsimd.h>
32 #include <asm/mmu_context.h>
33 #include <asm/processor.h>
34 #include <asm/sysreg.h>
35 #include <asm/traps.h>
36 #include <asm/virt.h>
37
38 unsigned long elf_hwcap __read_mostly;
39 EXPORT_SYMBOL_GPL(elf_hwcap);
40
41 #ifdef CONFIG_COMPAT
42 #define COMPAT_ELF_HWCAP_DEFAULT        \
43                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
44                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
45                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
46                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
47                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
48                                  COMPAT_HWCAP_LPAE)
49 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
50 unsigned int compat_elf_hwcap2 __read_mostly;
51 #endif
52
53 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
54 EXPORT_SYMBOL(cpu_hwcaps);
55 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
56
57 /*
58  * Flag to indicate if we have computed the system wide
59  * capabilities based on the boot time active CPUs. This
60  * will be used to determine if a new booting CPU should
61  * go through the verification process to make sure that it
62  * supports the system capabilities, without using a hotplug
63  * notifier.
64  */
65 static bool sys_caps_initialised;
66
67 static inline void set_sys_caps_initialised(void)
68 {
69         sys_caps_initialised = true;
70 }
71
72 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
73 {
74         /* file-wide pr_fmt adds "CPU features: " prefix */
75         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
76         return 0;
77 }
78
79 static struct notifier_block cpu_hwcaps_notifier = {
80         .notifier_call = dump_cpu_hwcaps
81 };
82
83 static int __init register_cpu_hwcaps_dumper(void)
84 {
85         atomic_notifier_chain_register(&panic_notifier_list,
86                                        &cpu_hwcaps_notifier);
87         return 0;
88 }
89 __initcall(register_cpu_hwcaps_dumper);
90
91 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
92 EXPORT_SYMBOL(cpu_hwcap_keys);
93
94 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
95         {                                               \
96                 .sign = SIGNED,                         \
97                 .visible = VISIBLE,                     \
98                 .strict = STRICT,                       \
99                 .type = TYPE,                           \
100                 .shift = SHIFT,                         \
101                 .width = WIDTH,                         \
102                 .safe_val = SAFE_VAL,                   \
103         }
104
105 /* Define a feature with unsigned values */
106 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
107         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
108
109 /* Define a feature with a signed value */
110 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
111         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
112
113 #define ARM64_FTR_END                                   \
114         {                                               \
115                 .width = 0,                             \
116         }
117
118 /* meta feature for alternatives */
119 static bool __maybe_unused
120 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
121
122 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
123
124 /*
125  * NOTE: Any changes to the visibility of features should be kept in
126  * sync with the documentation of the CPU feature register ABI.
127  */
128 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
129         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
130         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
131         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
134         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
135         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
136         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
137         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
138         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
139         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
140         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
141         ARM64_FTR_END,
142 };
143
144 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
145         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
146         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
147                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
148         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
149                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
150         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
151         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
152         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
153         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
154                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
155         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
156                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
157         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
158         ARM64_FTR_END,
159 };
160
161 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
162         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
163         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
164         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
165         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
166                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
167         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
168         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
169         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
170         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
171         /* Linux doesn't care about the EL3 */
172         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
173         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
174         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
175         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
176         ARM64_FTR_END,
177 };
178
179 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
180         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
181         ARM64_FTR_END,
182 };
183
184 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
185         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
186         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
187         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
188         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
189         /* Linux shouldn't care about secure memory */
190         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
193         /*
194          * Differing PARange is fine as long as all peripherals and memory are mapped
195          * within the minimum PARange of all CPUs
196          */
197         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
198         ARM64_FTR_END,
199 };
200
201 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
202         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
203         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
204         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
205         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
206         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
207         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
208         ARM64_FTR_END,
209 };
210
211 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
212         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
214         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
215         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
216         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
217         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
219         ARM64_FTR_END,
220 };
221
222 static const struct arm64_ftr_bits ftr_ctr[] = {
223         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
224         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
225         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
226         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
227         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
228         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
229         /*
230          * Linux can handle differing I-cache policies. Userspace JITs will
231          * make use of *minLine.
232          * If we have differing I-cache policies, report it as the weakest - VIPT.
233          */
234         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
235         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
236         ARM64_FTR_END,
237 };
238
239 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
240         .name           = "SYS_CTR_EL0",
241         .ftr_bits       = ftr_ctr
242 };
243
244 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
245         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),   /* InnerShr */
246         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),       /* FCSE */
247         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
248         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),       /* TCM */
249         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),       /* ShareLvl */
250         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),    /* OuterShr */
251         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* PMSA */
252         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),        /* VMSA */
253         ARM64_FTR_END,
254 };
255
256 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
257         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
258         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
259         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
260         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
262         /*
263          * We can instantiate multiple PMU instances with different levels
264          * of support.
265          */
266         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
267         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
268         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
269         ARM64_FTR_END,
270 };
271
272 static const struct arm64_ftr_bits ftr_mvfr2[] = {
273         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* FPMisc */
274         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* SIMDMisc */
275         ARM64_FTR_END,
276 };
277
278 static const struct arm64_ftr_bits ftr_dczid[] = {
279         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
280         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
281         ARM64_FTR_END,
282 };
283
284
285 static const struct arm64_ftr_bits ftr_id_isar5[] = {
286         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
287         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
288         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
289         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
290         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
291         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
292         ARM64_FTR_END,
293 };
294
295 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
296         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* ac2 */
297         ARM64_FTR_END,
298 };
299
300 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
301         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),               /* State3 */
302         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),                /* State2 */
303         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* State1 */
304         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* State0 */
305         ARM64_FTR_END,
306 };
307
308 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
309         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
310         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
311         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
312         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
313         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
314         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
315         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
316         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
317         ARM64_FTR_END,
318 };
319
320 static const struct arm64_ftr_bits ftr_zcr[] = {
321         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
322                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
323         ARM64_FTR_END,
324 };
325
326 /*
327  * Common ftr bits for a 32bit register with all hidden, strict
328  * attributes, with 4bit feature fields and a default safe value of
329  * 0. Covers the following 32bit registers:
330  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
331  */
332 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
333         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
334         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
335         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
336         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
337         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
338         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
339         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
340         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
341         ARM64_FTR_END,
342 };
343
344 /* Table for a single 32bit feature value */
345 static const struct arm64_ftr_bits ftr_single32[] = {
346         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
347         ARM64_FTR_END,
348 };
349
350 static const struct arm64_ftr_bits ftr_raz[] = {
351         ARM64_FTR_END,
352 };
353
354 #define ARM64_FTR_REG(id, table) {              \
355         .sys_id = id,                           \
356         .reg =  &(struct arm64_ftr_reg){        \
357                 .name = #id,                    \
358                 .ftr_bits = &((table)[0]),      \
359         }}
360
361 static const struct __ftr_reg_entry {
362         u32                     sys_id;
363         struct arm64_ftr_reg    *reg;
364 } arm64_ftr_regs[] = {
365
366         /* Op1 = 0, CRn = 0, CRm = 1 */
367         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
368         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
369         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
370         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
371         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
372         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
373         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
374
375         /* Op1 = 0, CRn = 0, CRm = 2 */
376         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
377         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
378         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
379         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
380         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
381         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
382         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
383
384         /* Op1 = 0, CRn = 0, CRm = 3 */
385         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
386         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
387         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
388
389         /* Op1 = 0, CRn = 0, CRm = 4 */
390         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
391         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
392         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
393
394         /* Op1 = 0, CRn = 0, CRm = 5 */
395         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
396         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
397
398         /* Op1 = 0, CRn = 0, CRm = 6 */
399         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
400         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
401
402         /* Op1 = 0, CRn = 0, CRm = 7 */
403         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
404         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
405         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
406
407         /* Op1 = 0, CRn = 1, CRm = 2 */
408         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
409
410         /* Op1 = 3, CRn = 0, CRm = 0 */
411         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
412         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
413
414         /* Op1 = 3, CRn = 14, CRm = 0 */
415         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
416 };
417
418 static int search_cmp_ftr_reg(const void *id, const void *regp)
419 {
420         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
421 }
422
423 /*
424  * get_arm64_ftr_reg - Lookup a feature register entry using its
425  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
426  * ascending order of sys_id , we use binary search to find a matching
427  * entry.
428  *
429  * returns - Upon success,  matching ftr_reg entry for id.
430  *         - NULL on failure. It is upto the caller to decide
431  *           the impact of a failure.
432  */
433 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
434 {
435         const struct __ftr_reg_entry *ret;
436
437         ret = bsearch((const void *)(unsigned long)sys_id,
438                         arm64_ftr_regs,
439                         ARRAY_SIZE(arm64_ftr_regs),
440                         sizeof(arm64_ftr_regs[0]),
441                         search_cmp_ftr_reg);
442         if (ret)
443                 return ret->reg;
444         return NULL;
445 }
446
447 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
448                                s64 ftr_val)
449 {
450         u64 mask = arm64_ftr_mask(ftrp);
451
452         reg &= ~mask;
453         reg |= (ftr_val << ftrp->shift) & mask;
454         return reg;
455 }
456
457 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
458                                 s64 cur)
459 {
460         s64 ret = 0;
461
462         switch (ftrp->type) {
463         case FTR_EXACT:
464                 ret = ftrp->safe_val;
465                 break;
466         case FTR_LOWER_SAFE:
467                 ret = new < cur ? new : cur;
468                 break;
469         case FTR_HIGHER_SAFE:
470                 ret = new > cur ? new : cur;
471                 break;
472         default:
473                 BUG();
474         }
475
476         return ret;
477 }
478
479 static void __init sort_ftr_regs(void)
480 {
481         int i;
482
483         /* Check that the array is sorted so that we can do the binary search */
484         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
485                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
486 }
487
488 /*
489  * Initialise the CPU feature register from Boot CPU values.
490  * Also initiliases the strict_mask for the register.
491  * Any bits that are not covered by an arm64_ftr_bits entry are considered
492  * RES0 for the system-wide value, and must strictly match.
493  */
494 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
495 {
496         u64 val = 0;
497         u64 strict_mask = ~0x0ULL;
498         u64 user_mask = 0;
499         u64 valid_mask = 0;
500
501         const struct arm64_ftr_bits *ftrp;
502         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
503
504         BUG_ON(!reg);
505
506         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
507                 u64 ftr_mask = arm64_ftr_mask(ftrp);
508                 s64 ftr_new = arm64_ftr_value(ftrp, new);
509
510                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
511
512                 valid_mask |= ftr_mask;
513                 if (!ftrp->strict)
514                         strict_mask &= ~ftr_mask;
515                 if (ftrp->visible)
516                         user_mask |= ftr_mask;
517                 else
518                         reg->user_val = arm64_ftr_set_value(ftrp,
519                                                             reg->user_val,
520                                                             ftrp->safe_val);
521         }
522
523         val &= valid_mask;
524
525         reg->sys_val = val;
526         reg->strict_mask = strict_mask;
527         reg->user_mask = user_mask;
528 }
529
530 extern const struct arm64_cpu_capabilities arm64_errata[];
531 static const struct arm64_cpu_capabilities arm64_features[];
532
533 static void __init
534 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
535 {
536         for (; caps->matches; caps++) {
537                 if (WARN(caps->capability >= ARM64_NCAPS,
538                         "Invalid capability %d\n", caps->capability))
539                         continue;
540                 if (WARN(cpu_hwcaps_ptrs[caps->capability],
541                         "Duplicate entry for capability %d\n",
542                         caps->capability))
543                         continue;
544                 cpu_hwcaps_ptrs[caps->capability] = caps;
545         }
546 }
547
548 static void __init init_cpu_hwcaps_indirect_list(void)
549 {
550         init_cpu_hwcaps_indirect_list_from_array(arm64_features);
551         init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
552 }
553
554 static void __init setup_boot_cpu_capabilities(void);
555
556 void __init init_cpu_features(struct cpuinfo_arm64 *info)
557 {
558         /* Before we start using the tables, make sure it is sorted */
559         sort_ftr_regs();
560
561         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
562         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
563         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
564         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
565         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
566         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
567         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
568         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
569         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
570         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
571         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
572         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
573         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
574
575         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
576                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
577                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
578                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
579                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
580                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
581                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
582                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
583                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
584                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
585                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
586                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
587                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
588                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
589                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
590                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
591                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
592         }
593
594         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
595                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
596                 sve_init_vq_map();
597         }
598
599         /*
600          * Initialize the indirect array of CPU hwcaps capabilities pointers
601          * before we handle the boot CPU below.
602          */
603         init_cpu_hwcaps_indirect_list();
604
605         /*
606          * Detect and enable early CPU capabilities based on the boot CPU,
607          * after we have initialised the CPU feature infrastructure.
608          */
609         setup_boot_cpu_capabilities();
610 }
611
612 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
613 {
614         const struct arm64_ftr_bits *ftrp;
615
616         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
617                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
618                 s64 ftr_new = arm64_ftr_value(ftrp, new);
619
620                 if (ftr_cur == ftr_new)
621                         continue;
622                 /* Find a safe value */
623                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
624                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
625         }
626
627 }
628
629 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
630 {
631         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
632
633         BUG_ON(!regp);
634         update_cpu_ftr_reg(regp, val);
635         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
636                 return 0;
637         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
638                         regp->name, boot, cpu, val);
639         return 1;
640 }
641
642 /*
643  * Update system wide CPU feature registers with the values from a
644  * non-boot CPU. Also performs SANITY checks to make sure that there
645  * aren't any insane variations from that of the boot CPU.
646  */
647 void update_cpu_features(int cpu,
648                          struct cpuinfo_arm64 *info,
649                          struct cpuinfo_arm64 *boot)
650 {
651         int taint = 0;
652
653         /*
654          * The kernel can handle differing I-cache policies, but otherwise
655          * caches should look identical. Userspace JITs will make use of
656          * *minLine.
657          */
658         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
659                                       info->reg_ctr, boot->reg_ctr);
660
661         /*
662          * Userspace may perform DC ZVA instructions. Mismatched block sizes
663          * could result in too much or too little memory being zeroed if a
664          * process is preempted and migrated between CPUs.
665          */
666         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
667                                       info->reg_dczid, boot->reg_dczid);
668
669         /* If different, timekeeping will be broken (especially with KVM) */
670         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
671                                       info->reg_cntfrq, boot->reg_cntfrq);
672
673         /*
674          * The kernel uses self-hosted debug features and expects CPUs to
675          * support identical debug features. We presently need CTX_CMPs, WRPs,
676          * and BRPs to be identical.
677          * ID_AA64DFR1 is currently RES0.
678          */
679         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
680                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
681         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
682                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
683         /*
684          * Even in big.LITTLE, processors should be identical instruction-set
685          * wise.
686          */
687         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
688                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
689         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
690                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
691
692         /*
693          * Differing PARange support is fine as long as all peripherals and
694          * memory are mapped within the minimum PARange of all CPUs.
695          * Linux should not care about secure memory.
696          */
697         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
698                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
699         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
700                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
701         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
702                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
703
704         /*
705          * EL3 is not our concern.
706          */
707         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
708                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
709         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
710                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
711
712         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
713                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
714
715         /*
716          * If we have AArch32, we care about 32-bit features for compat.
717          * If the system doesn't support AArch32, don't update them.
718          */
719         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
720                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
721
722                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
723                                         info->reg_id_dfr0, boot->reg_id_dfr0);
724                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
725                                         info->reg_id_isar0, boot->reg_id_isar0);
726                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
727                                         info->reg_id_isar1, boot->reg_id_isar1);
728                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
729                                         info->reg_id_isar2, boot->reg_id_isar2);
730                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
731                                         info->reg_id_isar3, boot->reg_id_isar3);
732                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
733                                         info->reg_id_isar4, boot->reg_id_isar4);
734                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
735                                         info->reg_id_isar5, boot->reg_id_isar5);
736
737                 /*
738                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
739                  * ACTLR formats could differ across CPUs and therefore would have to
740                  * be trapped for virtualization anyway.
741                  */
742                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
743                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
744                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
745                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
746                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
747                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
748                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
749                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
750                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
751                                         info->reg_id_pfr0, boot->reg_id_pfr0);
752                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
753                                         info->reg_id_pfr1, boot->reg_id_pfr1);
754                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
755                                         info->reg_mvfr0, boot->reg_mvfr0);
756                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
757                                         info->reg_mvfr1, boot->reg_mvfr1);
758                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
759                                         info->reg_mvfr2, boot->reg_mvfr2);
760         }
761
762         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
763                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
764                                         info->reg_zcr, boot->reg_zcr);
765
766                 /* Probe vector lengths, unless we already gave up on SVE */
767                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
768                     !sys_caps_initialised)
769                         sve_update_vq_map();
770         }
771
772         /*
773          * Mismatched CPU features are a recipe for disaster. Don't even
774          * pretend to support them.
775          */
776         if (taint) {
777                 pr_warn_once("Unsupported CPU feature variation detected.\n");
778                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
779         }
780 }
781
782 u64 read_sanitised_ftr_reg(u32 id)
783 {
784         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
785
786         /* We shouldn't get a request for an unsupported register */
787         BUG_ON(!regp);
788         return regp->sys_val;
789 }
790
791 #define read_sysreg_case(r)     \
792         case r:         return read_sysreg_s(r)
793
794 /*
795  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
796  * Read the system register on the current CPU
797  */
798 static u64 __read_sysreg_by_encoding(u32 sys_id)
799 {
800         switch (sys_id) {
801         read_sysreg_case(SYS_ID_PFR0_EL1);
802         read_sysreg_case(SYS_ID_PFR1_EL1);
803         read_sysreg_case(SYS_ID_DFR0_EL1);
804         read_sysreg_case(SYS_ID_MMFR0_EL1);
805         read_sysreg_case(SYS_ID_MMFR1_EL1);
806         read_sysreg_case(SYS_ID_MMFR2_EL1);
807         read_sysreg_case(SYS_ID_MMFR3_EL1);
808         read_sysreg_case(SYS_ID_ISAR0_EL1);
809         read_sysreg_case(SYS_ID_ISAR1_EL1);
810         read_sysreg_case(SYS_ID_ISAR2_EL1);
811         read_sysreg_case(SYS_ID_ISAR3_EL1);
812         read_sysreg_case(SYS_ID_ISAR4_EL1);
813         read_sysreg_case(SYS_ID_ISAR5_EL1);
814         read_sysreg_case(SYS_MVFR0_EL1);
815         read_sysreg_case(SYS_MVFR1_EL1);
816         read_sysreg_case(SYS_MVFR2_EL1);
817
818         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
819         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
820         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
821         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
822         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
823         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
824         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
825         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
826         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
827
828         read_sysreg_case(SYS_CNTFRQ_EL0);
829         read_sysreg_case(SYS_CTR_EL0);
830         read_sysreg_case(SYS_DCZID_EL0);
831
832         default:
833                 BUG();
834                 return 0;
835         }
836 }
837
838 #include <linux/irqchip/arm-gic-v3.h>
839
840 static bool
841 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
842 {
843         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
844
845         return val >= entry->min_field_value;
846 }
847
848 static bool
849 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
850 {
851         u64 val;
852
853         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
854         if (scope == SCOPE_SYSTEM)
855                 val = read_sanitised_ftr_reg(entry->sys_reg);
856         else
857                 val = __read_sysreg_by_encoding(entry->sys_reg);
858
859         return feature_matches(val, entry);
860 }
861
862 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
863 {
864         bool has_sre;
865
866         if (!has_cpuid_feature(entry, scope))
867                 return false;
868
869         has_sre = gic_enable_sre();
870         if (!has_sre)
871                 pr_warn_once("%s present but disabled by higher exception level\n",
872                              entry->desc);
873
874         return has_sre;
875 }
876
877 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
878 {
879         u32 midr = read_cpuid_id();
880
881         /* Cavium ThunderX pass 1.x and 2.x */
882         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
883                 MIDR_CPU_VAR_REV(0, 0),
884                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
885 }
886
887 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
888 {
889         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
890
891         return cpuid_feature_extract_signed_field(pfr0,
892                                         ID_AA64PFR0_FP_SHIFT) < 0;
893 }
894
895 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
896                           int scope)
897 {
898         u64 ctr;
899
900         if (scope == SCOPE_SYSTEM)
901                 ctr = arm64_ftr_reg_ctrel0.sys_val;
902         else
903                 ctr = read_cpuid_effective_cachetype();
904
905         return ctr & BIT(CTR_IDC_SHIFT);
906 }
907
908 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
909 {
910         /*
911          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
912          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
913          * to the CTR_EL0 on this CPU and emulate it with the real/safe
914          * value.
915          */
916         if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
917                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
918 }
919
920 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
921                           int scope)
922 {
923         u64 ctr;
924
925         if (scope == SCOPE_SYSTEM)
926                 ctr = arm64_ftr_reg_ctrel0.sys_val;
927         else
928                 ctr = read_cpuid_cachetype();
929
930         return ctr & BIT(CTR_DIC_SHIFT);
931 }
932
933 static bool __maybe_unused
934 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
935 {
936         /*
937          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
938          * may share TLB entries with a CPU stuck in the crashed
939          * kernel.
940          */
941          if (is_kdump_kernel())
942                 return false;
943
944         return has_cpuid_feature(entry, scope);
945 }
946
947 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
948 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
949
950 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
951                                 int scope)
952 {
953         /* List of CPUs that are not vulnerable and don't need KPTI */
954         static const struct midr_range kpti_safe_list[] = {
955                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
956                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
957                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
958                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
959                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
960                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
961                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
962                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
963                 { /* sentinel */ }
964         };
965         char const *str = "command line option";
966
967         /*
968          * For reasons that aren't entirely clear, enabling KPTI on Cavium
969          * ThunderX leads to apparent I-cache corruption of kernel text, which
970          * ends as well as you might imagine. Don't even try.
971          */
972         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
973                 str = "ARM64_WORKAROUND_CAVIUM_27456";
974                 __kpti_forced = -1;
975         }
976
977         /* Forced? */
978         if (__kpti_forced) {
979                 pr_info_once("kernel page table isolation forced %s by %s\n",
980                              __kpti_forced > 0 ? "ON" : "OFF", str);
981                 return __kpti_forced > 0;
982         }
983
984         /* Useful for KASLR robustness */
985         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
986                 return kaslr_offset() > 0;
987
988         /* Don't force KPTI for CPUs that are not vulnerable */
989         if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
990                 return false;
991
992         /* Defer to CPU feature registers */
993         return !has_cpuid_feature(entry, scope);
994 }
995
996 static void
997 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
998 {
999         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1000         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1001         kpti_remap_fn *remap_fn;
1002
1003         static bool kpti_applied = false;
1004         int cpu = smp_processor_id();
1005
1006         /*
1007          * We don't need to rewrite the page-tables if either we've done
1008          * it already or we have KASLR enabled and therefore have not
1009          * created any global mappings at all.
1010          */
1011         if (kpti_applied || kaslr_offset() > 0)
1012                 return;
1013
1014         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1015
1016         cpu_install_idmap();
1017         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1018         cpu_uninstall_idmap();
1019
1020         if (!cpu)
1021                 kpti_applied = true;
1022
1023         return;
1024 }
1025
1026 static int __init parse_kpti(char *str)
1027 {
1028         bool enabled;
1029         int ret = strtobool(str, &enabled);
1030
1031         if (ret)
1032                 return ret;
1033
1034         __kpti_forced = enabled ? 1 : -1;
1035         return 0;
1036 }
1037 early_param("kpti", parse_kpti);
1038 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1039
1040 #ifdef CONFIG_ARM64_HW_AFDBM
1041 static inline void __cpu_enable_hw_dbm(void)
1042 {
1043         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1044
1045         write_sysreg(tcr, tcr_el1);
1046         isb();
1047 }
1048
1049 static bool cpu_has_broken_dbm(void)
1050 {
1051         /* List of CPUs which have broken DBM support. */
1052         static const struct midr_range cpus[] = {
1053 #ifdef CONFIG_ARM64_ERRATUM_1024718
1054                 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1055 #endif
1056                 {},
1057         };
1058
1059         return is_midr_in_range_list(read_cpuid_id(), cpus);
1060 }
1061
1062 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1063 {
1064         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1065                !cpu_has_broken_dbm();
1066 }
1067
1068 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1069 {
1070         if (cpu_can_use_dbm(cap))
1071                 __cpu_enable_hw_dbm();
1072 }
1073
1074 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1075                        int __unused)
1076 {
1077         static bool detected = false;
1078         /*
1079          * DBM is a non-conflicting feature. i.e, the kernel can safely
1080          * run a mix of CPUs with and without the feature. So, we
1081          * unconditionally enable the capability to allow any late CPU
1082          * to use the feature. We only enable the control bits on the
1083          * CPU, if it actually supports.
1084          *
1085          * We have to make sure we print the "feature" detection only
1086          * when at least one CPU actually uses it. So check if this CPU
1087          * can actually use it and print the message exactly once.
1088          *
1089          * This is safe as all CPUs (including secondary CPUs - due to the
1090          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1091          * goes through the "matches" check exactly once. Also if a CPU
1092          * matches the criteria, it is guaranteed that the CPU will turn
1093          * the DBM on, as the capability is unconditionally enabled.
1094          */
1095         if (!detected && cpu_can_use_dbm(cap)) {
1096                 detected = true;
1097                 pr_info("detected: Hardware dirty bit management\n");
1098         }
1099
1100         return true;
1101 }
1102
1103 #endif
1104
1105 #ifdef CONFIG_ARM64_VHE
1106 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1107 {
1108         return is_kernel_in_hyp_mode();
1109 }
1110
1111 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1112 {
1113         /*
1114          * Copy register values that aren't redirected by hardware.
1115          *
1116          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1117          * this value to tpidr_el2 before we patch the code. Once we've done
1118          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1119          * do anything here.
1120          */
1121         if (!alternatives_applied)
1122                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1123 }
1124 #endif
1125
1126 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1127 {
1128         u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1129
1130         /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1131         WARN_ON(val & (7 << 27 | 7 << 21));
1132 }
1133
1134 #ifdef CONFIG_ARM64_SSBD
1135 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1136 {
1137         if (user_mode(regs))
1138                 return 1;
1139
1140         if (instr & BIT(PSTATE_Imm_shift))
1141                 regs->pstate |= PSR_SSBS_BIT;
1142         else
1143                 regs->pstate &= ~PSR_SSBS_BIT;
1144
1145         arm64_skip_faulting_instruction(regs, 4);
1146         return 0;
1147 }
1148
1149 static struct undef_hook ssbs_emulation_hook = {
1150         .instr_mask     = ~(1U << PSTATE_Imm_shift),
1151         .instr_val      = 0xd500401f | PSTATE_SSBS,
1152         .fn             = ssbs_emulation_handler,
1153 };
1154
1155 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1156 {
1157         static bool undef_hook_registered = false;
1158         static DEFINE_SPINLOCK(hook_lock);
1159
1160         spin_lock(&hook_lock);
1161         if (!undef_hook_registered) {
1162                 register_undef_hook(&ssbs_emulation_hook);
1163                 undef_hook_registered = true;
1164         }
1165         spin_unlock(&hook_lock);
1166
1167         if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1168                 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1169                 arm64_set_ssbd_mitigation(false);
1170         } else {
1171                 arm64_set_ssbd_mitigation(true);
1172         }
1173 }
1174 #endif /* CONFIG_ARM64_SSBD */
1175
1176 #ifdef CONFIG_ARM64_PAN
1177 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1178 {
1179         /*
1180          * We modify PSTATE. This won't work from irq context as the PSTATE
1181          * is discarded once we return from the exception.
1182          */
1183         WARN_ON_ONCE(in_interrupt());
1184
1185         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1186         asm(SET_PSTATE_PAN(1));
1187 }
1188 #endif /* CONFIG_ARM64_PAN */
1189
1190 #ifdef CONFIG_ARM64_RAS_EXTN
1191 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1192 {
1193         /* Firmware may have left a deferred SError in this register. */
1194         write_sysreg_s(0, SYS_DISR_EL1);
1195 }
1196 #endif /* CONFIG_ARM64_RAS_EXTN */
1197
1198 #ifdef CONFIG_ARM64_PTR_AUTH
1199 static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap)
1200 {
1201         sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB |
1202                                        SCTLR_ELx_ENDA | SCTLR_ELx_ENDB);
1203 }
1204 #endif /* CONFIG_ARM64_PTR_AUTH */
1205
1206 static const struct arm64_cpu_capabilities arm64_features[] = {
1207         {
1208                 .desc = "GIC system register CPU interface",
1209                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1210                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1211                 .matches = has_useable_gicv3_cpuif,
1212                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1213                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1214                 .sign = FTR_UNSIGNED,
1215                 .min_field_value = 1,
1216         },
1217 #ifdef CONFIG_ARM64_PAN
1218         {
1219                 .desc = "Privileged Access Never",
1220                 .capability = ARM64_HAS_PAN,
1221                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1222                 .matches = has_cpuid_feature,
1223                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1224                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1225                 .sign = FTR_UNSIGNED,
1226                 .min_field_value = 1,
1227                 .cpu_enable = cpu_enable_pan,
1228         },
1229 #endif /* CONFIG_ARM64_PAN */
1230 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1231         {
1232                 .desc = "LSE atomic instructions",
1233                 .capability = ARM64_HAS_LSE_ATOMICS,
1234                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1235                 .matches = has_cpuid_feature,
1236                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1237                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1238                 .sign = FTR_UNSIGNED,
1239                 .min_field_value = 2,
1240         },
1241 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1242         {
1243                 .desc = "Software prefetching using PRFM",
1244                 .capability = ARM64_HAS_NO_HW_PREFETCH,
1245                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1246                 .matches = has_no_hw_prefetch,
1247         },
1248 #ifdef CONFIG_ARM64_UAO
1249         {
1250                 .desc = "User Access Override",
1251                 .capability = ARM64_HAS_UAO,
1252                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1253                 .matches = has_cpuid_feature,
1254                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1255                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1256                 .min_field_value = 1,
1257                 /*
1258                  * We rely on stop_machine() calling uao_thread_switch() to set
1259                  * UAO immediately after patching.
1260                  */
1261         },
1262 #endif /* CONFIG_ARM64_UAO */
1263 #ifdef CONFIG_ARM64_PAN
1264         {
1265                 .capability = ARM64_ALT_PAN_NOT_UAO,
1266                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1267                 .matches = cpufeature_pan_not_uao,
1268         },
1269 #endif /* CONFIG_ARM64_PAN */
1270 #ifdef CONFIG_ARM64_VHE
1271         {
1272                 .desc = "Virtualization Host Extensions",
1273                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1274                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1275                 .matches = runs_at_el2,
1276                 .cpu_enable = cpu_copy_el2regs,
1277         },
1278 #endif  /* CONFIG_ARM64_VHE */
1279         {
1280                 .desc = "32-bit EL0 Support",
1281                 .capability = ARM64_HAS_32BIT_EL0,
1282                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1283                 .matches = has_cpuid_feature,
1284                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1285                 .sign = FTR_UNSIGNED,
1286                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1287                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1288         },
1289 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1290         {
1291                 .desc = "Kernel page table isolation (KPTI)",
1292                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1293                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1294                 /*
1295                  * The ID feature fields below are used to indicate that
1296                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1297                  * more details.
1298                  */
1299                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1300                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1301                 .min_field_value = 1,
1302                 .matches = unmap_kernel_at_el0,
1303                 .cpu_enable = kpti_install_ng_mappings,
1304         },
1305 #endif
1306         {
1307                 /* FP/SIMD is not implemented */
1308                 .capability = ARM64_HAS_NO_FPSIMD,
1309                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1310                 .min_field_value = 0,
1311                 .matches = has_no_fpsimd,
1312         },
1313 #ifdef CONFIG_ARM64_PMEM
1314         {
1315                 .desc = "Data cache clean to Point of Persistence",
1316                 .capability = ARM64_HAS_DCPOP,
1317                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1318                 .matches = has_cpuid_feature,
1319                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1320                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1321                 .min_field_value = 1,
1322         },
1323 #endif
1324 #ifdef CONFIG_ARM64_SVE
1325         {
1326                 .desc = "Scalable Vector Extension",
1327                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1328                 .capability = ARM64_SVE,
1329                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1330                 .sign = FTR_UNSIGNED,
1331                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1332                 .min_field_value = ID_AA64PFR0_SVE,
1333                 .matches = has_cpuid_feature,
1334                 .cpu_enable = sve_kernel_enable,
1335         },
1336 #endif /* CONFIG_ARM64_SVE */
1337 #ifdef CONFIG_ARM64_RAS_EXTN
1338         {
1339                 .desc = "RAS Extension Support",
1340                 .capability = ARM64_HAS_RAS_EXTN,
1341                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1342                 .matches = has_cpuid_feature,
1343                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1344                 .sign = FTR_UNSIGNED,
1345                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1346                 .min_field_value = ID_AA64PFR0_RAS_V1,
1347                 .cpu_enable = cpu_clear_disr,
1348         },
1349 #endif /* CONFIG_ARM64_RAS_EXTN */
1350         {
1351                 .desc = "Data cache clean to the PoU not required for I/D coherence",
1352                 .capability = ARM64_HAS_CACHE_IDC,
1353                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1354                 .matches = has_cache_idc,
1355                 .cpu_enable = cpu_emulate_effective_ctr,
1356         },
1357         {
1358                 .desc = "Instruction cache invalidation not required for I/D coherence",
1359                 .capability = ARM64_HAS_CACHE_DIC,
1360                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1361                 .matches = has_cache_dic,
1362         },
1363         {
1364                 .desc = "Stage-2 Force Write-Back",
1365                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1366                 .capability = ARM64_HAS_STAGE2_FWB,
1367                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1368                 .sign = FTR_UNSIGNED,
1369                 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1370                 .min_field_value = 1,
1371                 .matches = has_cpuid_feature,
1372                 .cpu_enable = cpu_has_fwb,
1373         },
1374 #ifdef CONFIG_ARM64_HW_AFDBM
1375         {
1376                 /*
1377                  * Since we turn this on always, we don't want the user to
1378                  * think that the feature is available when it may not be.
1379                  * So hide the description.
1380                  *
1381                  * .desc = "Hardware pagetable Dirty Bit Management",
1382                  *
1383                  */
1384                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1385                 .capability = ARM64_HW_DBM,
1386                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1387                 .sign = FTR_UNSIGNED,
1388                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1389                 .min_field_value = 2,
1390                 .matches = has_hw_dbm,
1391                 .cpu_enable = cpu_enable_hw_dbm,
1392         },
1393 #endif
1394         {
1395                 .desc = "CRC32 instructions",
1396                 .capability = ARM64_HAS_CRC32,
1397                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1398                 .matches = has_cpuid_feature,
1399                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1400                 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1401                 .min_field_value = 1,
1402         },
1403 #ifdef CONFIG_ARM64_SSBD
1404         {
1405                 .desc = "Speculative Store Bypassing Safe (SSBS)",
1406                 .capability = ARM64_SSBS,
1407                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1408                 .matches = has_cpuid_feature,
1409                 .sys_reg = SYS_ID_AA64PFR1_EL1,
1410                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1411                 .sign = FTR_UNSIGNED,
1412                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1413                 .cpu_enable = cpu_enable_ssbs,
1414         },
1415 #endif
1416 #ifdef CONFIG_ARM64_CNP
1417         {
1418                 .desc = "Common not Private translations",
1419                 .capability = ARM64_HAS_CNP,
1420                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1421                 .matches = has_useable_cnp,
1422                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1423                 .sign = FTR_UNSIGNED,
1424                 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
1425                 .min_field_value = 1,
1426                 .cpu_enable = cpu_enable_cnp,
1427         },
1428 #endif
1429         {
1430                 .desc = "Speculation barrier (SB)",
1431                 .capability = ARM64_HAS_SB,
1432                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1433                 .matches = has_cpuid_feature,
1434                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1435                 .field_pos = ID_AA64ISAR1_SB_SHIFT,
1436                 .sign = FTR_UNSIGNED,
1437                 .min_field_value = 1,
1438         },
1439 #ifdef CONFIG_ARM64_PTR_AUTH
1440         {
1441                 .desc = "Address authentication (architected algorithm)",
1442                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1443                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1444                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1445                 .sign = FTR_UNSIGNED,
1446                 .field_pos = ID_AA64ISAR1_APA_SHIFT,
1447                 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1448                 .matches = has_cpuid_feature,
1449                 .cpu_enable = cpu_enable_address_auth,
1450         },
1451         {
1452                 .desc = "Address authentication (IMP DEF algorithm)",
1453                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1454                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1455                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1456                 .sign = FTR_UNSIGNED,
1457                 .field_pos = ID_AA64ISAR1_API_SHIFT,
1458                 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1459                 .matches = has_cpuid_feature,
1460                 .cpu_enable = cpu_enable_address_auth,
1461         },
1462         {
1463                 .desc = "Generic authentication (architected algorithm)",
1464                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1465                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1466                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1467                 .sign = FTR_UNSIGNED,
1468                 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
1469                 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1470                 .matches = has_cpuid_feature,
1471         },
1472         {
1473                 .desc = "Generic authentication (IMP DEF algorithm)",
1474                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1475                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1476                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1477                 .sign = FTR_UNSIGNED,
1478                 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
1479                 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1480                 .matches = has_cpuid_feature,
1481         },
1482 #endif /* CONFIG_ARM64_PTR_AUTH */
1483         {},
1484 };
1485
1486 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
1487                 .matches = has_cpuid_feature,                                   \
1488                 .sys_reg = reg,                                                 \
1489                 .field_pos = field,                                             \
1490                 .sign = s,                                                      \
1491                 .min_field_value = min_value,
1492
1493 #define __HWCAP_CAP(name, cap_type, cap)                                        \
1494                 .desc = name,                                                   \
1495                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
1496                 .hwcap_type = cap_type,                                         \
1497                 .hwcap = cap,                                                   \
1498
1499 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
1500         {                                                                       \
1501                 __HWCAP_CAP(#cap, cap_type, cap)                                \
1502                 HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
1503         }
1504
1505 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
1506         {                                                                       \
1507                 __HWCAP_CAP(#cap, cap_type, cap)                                \
1508                 .matches = cpucap_multi_entry_cap_matches,                      \
1509                 .match_list = list,                                             \
1510         }
1511
1512 #ifdef CONFIG_ARM64_PTR_AUTH
1513 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
1514         {
1515                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
1516                                   FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
1517         },
1518         {
1519                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
1520                                   FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
1521         },
1522         {},
1523 };
1524
1525 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
1526         {
1527                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
1528                                   FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
1529         },
1530         {
1531                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
1532                                   FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
1533         },
1534         {},
1535 };
1536 #endif
1537
1538 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1539         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1540         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1541         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1542         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1543         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1544         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1545         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1546         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1547         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1548         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1549         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1550         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1551         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1552         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1553         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1554         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1555         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1556         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1557         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1558         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1559         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1560         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1561         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1562         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
1563         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SB),
1564         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1565 #ifdef CONFIG_ARM64_SVE
1566         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1567 #endif
1568         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, HWCAP_SSBS),
1569 #ifdef CONFIG_ARM64_PTR_AUTH
1570         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, HWCAP_PACA),
1571         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, HWCAP_PACG),
1572 #endif
1573         {},
1574 };
1575
1576 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1577 #ifdef CONFIG_COMPAT
1578         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1579         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1580         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1581         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1582         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1583 #endif
1584         {},
1585 };
1586
1587 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1588 {
1589         switch (cap->hwcap_type) {
1590         case CAP_HWCAP:
1591                 elf_hwcap |= cap->hwcap;
1592                 break;
1593 #ifdef CONFIG_COMPAT
1594         case CAP_COMPAT_HWCAP:
1595                 compat_elf_hwcap |= (u32)cap->hwcap;
1596                 break;
1597         case CAP_COMPAT_HWCAP2:
1598                 compat_elf_hwcap2 |= (u32)cap->hwcap;
1599                 break;
1600 #endif
1601         default:
1602                 WARN_ON(1);
1603                 break;
1604         }
1605 }
1606
1607 /* Check if we have a particular HWCAP enabled */
1608 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1609 {
1610         bool rc;
1611
1612         switch (cap->hwcap_type) {
1613         case CAP_HWCAP:
1614                 rc = (elf_hwcap & cap->hwcap) != 0;
1615                 break;
1616 #ifdef CONFIG_COMPAT
1617         case CAP_COMPAT_HWCAP:
1618                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1619                 break;
1620         case CAP_COMPAT_HWCAP2:
1621                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1622                 break;
1623 #endif
1624         default:
1625                 WARN_ON(1);
1626                 rc = false;
1627         }
1628
1629         return rc;
1630 }
1631
1632 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1633 {
1634         /* We support emulation of accesses to CPU ID feature registers */
1635         elf_hwcap |= HWCAP_CPUID;
1636         for (; hwcaps->matches; hwcaps++)
1637                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1638                         cap_set_elf_hwcap(hwcaps);
1639 }
1640
1641 static void update_cpu_capabilities(u16 scope_mask)
1642 {
1643         int i;
1644         const struct arm64_cpu_capabilities *caps;
1645
1646         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1647         for (i = 0; i < ARM64_NCAPS; i++) {
1648                 caps = cpu_hwcaps_ptrs[i];
1649                 if (!caps || !(caps->type & scope_mask) ||
1650                     cpus_have_cap(caps->capability) ||
1651                     !caps->matches(caps, cpucap_default_scope(caps)))
1652                         continue;
1653
1654                 if (caps->desc)
1655                         pr_info("detected: %s\n", caps->desc);
1656                 cpus_set_cap(caps->capability);
1657         }
1658 }
1659
1660 /*
1661  * Enable all the available capabilities on this CPU. The capabilities
1662  * with BOOT_CPU scope are handled separately and hence skipped here.
1663  */
1664 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1665 {
1666         int i;
1667         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
1668
1669         for_each_available_cap(i) {
1670                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1671
1672                 if (WARN_ON(!cap))
1673                         continue;
1674
1675                 if (!(cap->type & non_boot_scope))
1676                         continue;
1677
1678                 if (cap->cpu_enable)
1679                         cap->cpu_enable(cap);
1680         }
1681         return 0;
1682 }
1683
1684 /*
1685  * Run through the enabled capabilities and enable() it on all active
1686  * CPUs
1687  */
1688 static void __init enable_cpu_capabilities(u16 scope_mask)
1689 {
1690         int i;
1691         const struct arm64_cpu_capabilities *caps;
1692         bool boot_scope;
1693
1694         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1695         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
1696
1697         for (i = 0; i < ARM64_NCAPS; i++) {
1698                 unsigned int num;
1699
1700                 caps = cpu_hwcaps_ptrs[i];
1701                 if (!caps || !(caps->type & scope_mask))
1702                         continue;
1703                 num = caps->capability;
1704                 if (!cpus_have_cap(num))
1705                         continue;
1706
1707                 /* Ensure cpus_have_const_cap(num) works */
1708                 static_branch_enable(&cpu_hwcap_keys[num]);
1709
1710                 if (boot_scope && caps->cpu_enable)
1711                         /*
1712                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
1713                          * before any secondary CPU boots. Thus, each secondary
1714                          * will enable the capability as appropriate via
1715                          * check_local_cpu_capabilities(). The only exception is
1716                          * the boot CPU, for which the capability must be
1717                          * enabled here. This approach avoids costly
1718                          * stop_machine() calls for this case.
1719                          */
1720                         caps->cpu_enable(caps);
1721         }
1722
1723         /*
1724          * For all non-boot scope capabilities, use stop_machine()
1725          * as it schedules the work allowing us to modify PSTATE,
1726          * instead of on_each_cpu() which uses an IPI, giving us a
1727          * PSTATE that disappears when we return.
1728          */
1729         if (!boot_scope)
1730                 stop_machine(cpu_enable_non_boot_scope_capabilities,
1731                              NULL, cpu_online_mask);
1732 }
1733
1734 /*
1735  * Run through the list of capabilities to check for conflicts.
1736  * If the system has already detected a capability, take necessary
1737  * action on this CPU.
1738  *
1739  * Returns "false" on conflicts.
1740  */
1741 static bool verify_local_cpu_caps(u16 scope_mask)
1742 {
1743         int i;
1744         bool cpu_has_cap, system_has_cap;
1745         const struct arm64_cpu_capabilities *caps;
1746
1747         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1748
1749         for (i = 0; i < ARM64_NCAPS; i++) {
1750                 caps = cpu_hwcaps_ptrs[i];
1751                 if (!caps || !(caps->type & scope_mask))
1752                         continue;
1753
1754                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1755                 system_has_cap = cpus_have_cap(caps->capability);
1756
1757                 if (system_has_cap) {
1758                         /*
1759                          * Check if the new CPU misses an advertised feature,
1760                          * which is not safe to miss.
1761                          */
1762                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1763                                 break;
1764                         /*
1765                          * We have to issue cpu_enable() irrespective of
1766                          * whether the CPU has it or not, as it is enabeld
1767                          * system wide. It is upto the call back to take
1768                          * appropriate action on this CPU.
1769                          */
1770                         if (caps->cpu_enable)
1771                                 caps->cpu_enable(caps);
1772                 } else {
1773                         /*
1774                          * Check if the CPU has this capability if it isn't
1775                          * safe to have when the system doesn't.
1776                          */
1777                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1778                                 break;
1779                 }
1780         }
1781
1782         if (i < ARM64_NCAPS) {
1783                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1784                         smp_processor_id(), caps->capability,
1785                         caps->desc, system_has_cap, cpu_has_cap);
1786                 return false;
1787         }
1788
1789         return true;
1790 }
1791
1792 /*
1793  * Check for CPU features that are used in early boot
1794  * based on the Boot CPU value.
1795  */
1796 static void check_early_cpu_features(void)
1797 {
1798         verify_cpu_asid_bits();
1799         /*
1800          * Early features are used by the kernel already. If there
1801          * is a conflict, we cannot proceed further.
1802          */
1803         if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1804                 cpu_panic_kernel();
1805 }
1806
1807 static void
1808 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1809 {
1810
1811         for (; caps->matches; caps++)
1812                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1813                         pr_crit("CPU%d: missing HWCAP: %s\n",
1814                                         smp_processor_id(), caps->desc);
1815                         cpu_die_early();
1816                 }
1817 }
1818
1819 static void verify_sve_features(void)
1820 {
1821         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1822         u64 zcr = read_zcr_features();
1823
1824         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1825         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1826
1827         if (len < safe_len || sve_verify_vq_map()) {
1828                 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1829                         smp_processor_id());
1830                 cpu_die_early();
1831         }
1832
1833         /* Add checks on other ZCR bits here if necessary */
1834 }
1835
1836
1837 /*
1838  * Run through the enabled system capabilities and enable() it on this CPU.
1839  * The capabilities were decided based on the available CPUs at the boot time.
1840  * Any new CPU should match the system wide status of the capability. If the
1841  * new CPU doesn't have a capability which the system now has enabled, we
1842  * cannot do anything to fix it up and could cause unexpected failures. So
1843  * we park the CPU.
1844  */
1845 static void verify_local_cpu_capabilities(void)
1846 {
1847         /*
1848          * The capabilities with SCOPE_BOOT_CPU are checked from
1849          * check_early_cpu_features(), as they need to be verified
1850          * on all secondary CPUs.
1851          */
1852         if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1853                 cpu_die_early();
1854
1855         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1856
1857         if (system_supports_32bit_el0())
1858                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1859
1860         if (system_supports_sve())
1861                 verify_sve_features();
1862 }
1863
1864 void check_local_cpu_capabilities(void)
1865 {
1866         /*
1867          * All secondary CPUs should conform to the early CPU features
1868          * in use by the kernel based on boot CPU.
1869          */
1870         check_early_cpu_features();
1871
1872         /*
1873          * If we haven't finalised the system capabilities, this CPU gets
1874          * a chance to update the errata work arounds and local features.
1875          * Otherwise, this CPU should verify that it has all the system
1876          * advertised capabilities.
1877          */
1878         if (!sys_caps_initialised)
1879                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
1880         else
1881                 verify_local_cpu_capabilities();
1882 }
1883
1884 static void __init setup_boot_cpu_capabilities(void)
1885 {
1886         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1887         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1888         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1889         enable_cpu_capabilities(SCOPE_BOOT_CPU);
1890 }
1891
1892 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1893 EXPORT_SYMBOL(arm64_const_caps_ready);
1894
1895 static void __init mark_const_caps_ready(void)
1896 {
1897         static_branch_enable(&arm64_const_caps_ready);
1898 }
1899
1900 bool this_cpu_has_cap(unsigned int n)
1901 {
1902         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
1903                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
1904
1905                 if (cap)
1906                         return cap->matches(cap, SCOPE_LOCAL_CPU);
1907         }
1908
1909         return false;
1910 }
1911
1912 static void __init setup_system_capabilities(void)
1913 {
1914         /*
1915          * We have finalised the system-wide safe feature
1916          * registers, finalise the capabilities that depend
1917          * on it. Also enable all the available capabilities,
1918          * that are not enabled already.
1919          */
1920         update_cpu_capabilities(SCOPE_SYSTEM);
1921         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1922 }
1923
1924 void __init setup_cpu_features(void)
1925 {
1926         u32 cwg;
1927
1928         setup_system_capabilities();
1929         mark_const_caps_ready();
1930         setup_elf_hwcaps(arm64_elf_hwcaps);
1931
1932         if (system_supports_32bit_el0())
1933                 setup_elf_hwcaps(compat_elf_hwcaps);
1934
1935         if (system_uses_ttbr0_pan())
1936                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1937
1938         sve_setup();
1939         minsigstksz_setup();
1940
1941         /* Advertise that we have computed the system capabilities */
1942         set_sys_caps_initialised();
1943
1944         /*
1945          * Check for sane CTR_EL0.CWG value.
1946          */
1947         cwg = cache_type_cwg();
1948         if (!cwg)
1949                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
1950                         ARCH_DMA_MINALIGN);
1951 }
1952
1953 static bool __maybe_unused
1954 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1955 {
1956         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1957 }
1958
1959 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
1960 {
1961         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
1962 }
1963
1964 /*
1965  * We emulate only the following system register space.
1966  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1967  * See Table C5-6 System instruction encodings for System register accesses,
1968  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1969  */
1970 static inline bool __attribute_const__ is_emulated(u32 id)
1971 {
1972         return (sys_reg_Op0(id) == 0x3 &&
1973                 sys_reg_CRn(id) == 0x0 &&
1974                 sys_reg_Op1(id) == 0x0 &&
1975                 (sys_reg_CRm(id) == 0 ||
1976                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1977 }
1978
1979 /*
1980  * With CRm == 0, reg should be one of :
1981  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1982  */
1983 static inline int emulate_id_reg(u32 id, u64 *valp)
1984 {
1985         switch (id) {
1986         case SYS_MIDR_EL1:
1987                 *valp = read_cpuid_id();
1988                 break;
1989         case SYS_MPIDR_EL1:
1990                 *valp = SYS_MPIDR_SAFE_VAL;
1991                 break;
1992         case SYS_REVIDR_EL1:
1993                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1994                 *valp = 0;
1995                 break;
1996         default:
1997                 return -EINVAL;
1998         }
1999
2000         return 0;
2001 }
2002
2003 static int emulate_sys_reg(u32 id, u64 *valp)
2004 {
2005         struct arm64_ftr_reg *regp;
2006
2007         if (!is_emulated(id))
2008                 return -EINVAL;
2009
2010         if (sys_reg_CRm(id) == 0)
2011                 return emulate_id_reg(id, valp);
2012
2013         regp = get_arm64_ftr_reg(id);
2014         if (regp)
2015                 *valp = arm64_ftr_reg_user_value(regp);
2016         else
2017                 /*
2018                  * The untracked registers are either IMPLEMENTATION DEFINED
2019                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
2020                  */
2021                 *valp = 0;
2022         return 0;
2023 }
2024
2025 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2026 {
2027         int rc;
2028         u64 val;
2029
2030         rc = emulate_sys_reg(sys_reg, &val);
2031         if (!rc) {
2032                 pt_regs_write_reg(regs, rt, val);
2033                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2034         }
2035         return rc;
2036 }
2037
2038 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2039 {
2040         u32 sys_reg, rt;
2041
2042         /*
2043          * sys_reg values are defined as used in mrs/msr instruction.
2044          * shift the imm value to get the encoding.
2045          */
2046         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2047         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2048         return do_emulate_mrs(regs, sys_reg, rt);
2049 }
2050
2051 static struct undef_hook mrs_hook = {
2052         .instr_mask = 0xfff00000,
2053         .instr_val  = 0xd5300000,
2054         .pstate_mask = PSR_AA32_MODE_MASK,
2055         .pstate_val = PSR_MODE_EL0t,
2056         .fn = emulate_mrs,
2057 };
2058
2059 static int __init enable_mrs_emulation(void)
2060 {
2061         register_undef_hook(&mrs_hook);
2062         return 0;
2063 }
2064
2065 core_initcall(enable_mrs_emulation);