Merge tag 'for-linus-2019-08-17' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  */
7
8 #define pr_fmt(fmt) "CPU features: " fmt
9
10 #include <linux/bsearch.h>
11 #include <linux/cpumask.h>
12 #include <linux/crash_dump.h>
13 #include <linux/sort.h>
14 #include <linux/stop_machine.h>
15 #include <linux/types.h>
16 #include <linux/mm.h>
17 #include <linux/cpu.h>
18 #include <asm/cpu.h>
19 #include <asm/cpufeature.h>
20 #include <asm/cpu_ops.h>
21 #include <asm/fpsimd.h>
22 #include <asm/mmu_context.h>
23 #include <asm/processor.h>
24 #include <asm/sysreg.h>
25 #include <asm/traps.h>
26 #include <asm/virt.h>
27
28 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
29 static unsigned long elf_hwcap __read_mostly;
30
31 #ifdef CONFIG_COMPAT
32 #define COMPAT_ELF_HWCAP_DEFAULT        \
33                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
34                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
35                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
36                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
37                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
38                                  COMPAT_HWCAP_LPAE)
39 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
40 unsigned int compat_elf_hwcap2 __read_mostly;
41 #endif
42
43 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
44 EXPORT_SYMBOL(cpu_hwcaps);
45 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
46
47 /* Need also bit for ARM64_CB_PATCH */
48 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
49
50 /*
51  * Flag to indicate if we have computed the system wide
52  * capabilities based on the boot time active CPUs. This
53  * will be used to determine if a new booting CPU should
54  * go through the verification process to make sure that it
55  * supports the system capabilities, without using a hotplug
56  * notifier.
57  */
58 static bool sys_caps_initialised;
59
60 static inline void set_sys_caps_initialised(void)
61 {
62         sys_caps_initialised = true;
63 }
64
65 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
66 {
67         /* file-wide pr_fmt adds "CPU features: " prefix */
68         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
69         return 0;
70 }
71
72 static struct notifier_block cpu_hwcaps_notifier = {
73         .notifier_call = dump_cpu_hwcaps
74 };
75
76 static int __init register_cpu_hwcaps_dumper(void)
77 {
78         atomic_notifier_chain_register(&panic_notifier_list,
79                                        &cpu_hwcaps_notifier);
80         return 0;
81 }
82 __initcall(register_cpu_hwcaps_dumper);
83
84 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
85 EXPORT_SYMBOL(cpu_hwcap_keys);
86
87 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
88         {                                               \
89                 .sign = SIGNED,                         \
90                 .visible = VISIBLE,                     \
91                 .strict = STRICT,                       \
92                 .type = TYPE,                           \
93                 .shift = SHIFT,                         \
94                 .width = WIDTH,                         \
95                 .safe_val = SAFE_VAL,                   \
96         }
97
98 /* Define a feature with unsigned values */
99 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
100         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
101
102 /* Define a feature with a signed value */
103 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
104         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
105
106 #define ARM64_FTR_END                                   \
107         {                                               \
108                 .width = 0,                             \
109         }
110
111 /* meta feature for alternatives */
112 static bool __maybe_unused
113 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
114
115 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
116
117 /*
118  * NOTE: Any changes to the visibility of features should be kept in
119  * sync with the documentation of the CPU feature register ABI.
120  */
121 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
122         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
123         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
124         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
125         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
129         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
130         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
131         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
134         ARM64_FTR_END,
135 };
136
137 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
138         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
139         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
140                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
141         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
142                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
143         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
144         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
145         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
146         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
147                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
148         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
149                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
150         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
151         ARM64_FTR_END,
152 };
153
154 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
155         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
156         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
157         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
158         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
159                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
160         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
161         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
162         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
163         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
164         /* Linux doesn't care about the EL3 */
165         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
166         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
167         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
168         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
169         ARM64_FTR_END,
170 };
171
172 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
173         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
174         ARM64_FTR_END,
175 };
176
177 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
178         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
179         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
180         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
181         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
182         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
183         ARM64_FTR_END,
184 };
185
186 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
187         /*
188          * We already refuse to boot CPUs that don't support our configured
189          * page size, so we can only detect mismatches for a page size other
190          * than the one we're currently using. Unfortunately, SoCs like this
191          * exist in the wild so, even though we don't like it, we'll have to go
192          * along with it and treat them as non-strict.
193          */
194         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
195         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
196         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
197
198         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
199         /* Linux shouldn't care about secure memory */
200         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
201         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
202         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
203         /*
204          * Differing PARange is fine as long as all peripherals and memory are mapped
205          * within the minimum PARange of all CPUs
206          */
207         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
208         ARM64_FTR_END,
209 };
210
211 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
212         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
214         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
215         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
216         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
217         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
218         ARM64_FTR_END,
219 };
220
221 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
222         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
223         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
224         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
225         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
226         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
227         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
228         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
229         ARM64_FTR_END,
230 };
231
232 static const struct arm64_ftr_bits ftr_ctr[] = {
233         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
234         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
235         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
236         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
237         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
238         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
239         /*
240          * Linux can handle differing I-cache policies. Userspace JITs will
241          * make use of *minLine.
242          * If we have differing I-cache policies, report it as the weakest - VIPT.
243          */
244         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
245         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
246         ARM64_FTR_END,
247 };
248
249 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
250         .name           = "SYS_CTR_EL0",
251         .ftr_bits       = ftr_ctr
252 };
253
254 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
255         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),   /* InnerShr */
256         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),       /* FCSE */
257         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
258         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),       /* TCM */
259         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),       /* ShareLvl */
260         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),    /* OuterShr */
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* PMSA */
262         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),        /* VMSA */
263         ARM64_FTR_END,
264 };
265
266 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
267         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
268         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
269         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
270         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
271         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
272         /*
273          * We can instantiate multiple PMU instances with different levels
274          * of support.
275          */
276         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
277         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
278         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
279         ARM64_FTR_END,
280 };
281
282 static const struct arm64_ftr_bits ftr_mvfr2[] = {
283         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* FPMisc */
284         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* SIMDMisc */
285         ARM64_FTR_END,
286 };
287
288 static const struct arm64_ftr_bits ftr_dczid[] = {
289         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
290         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
291         ARM64_FTR_END,
292 };
293
294
295 static const struct arm64_ftr_bits ftr_id_isar5[] = {
296         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
297         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
298         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
299         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
300         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
301         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
302         ARM64_FTR_END,
303 };
304
305 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
306         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* ac2 */
307         ARM64_FTR_END,
308 };
309
310 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
311         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),               /* State3 */
312         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),                /* State2 */
313         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* State1 */
314         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* State0 */
315         ARM64_FTR_END,
316 };
317
318 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
319         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
320         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
321         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
322         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
323         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
324         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
325         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
326         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
327         ARM64_FTR_END,
328 };
329
330 static const struct arm64_ftr_bits ftr_zcr[] = {
331         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
332                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
333         ARM64_FTR_END,
334 };
335
336 /*
337  * Common ftr bits for a 32bit register with all hidden, strict
338  * attributes, with 4bit feature fields and a default safe value of
339  * 0. Covers the following 32bit registers:
340  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
341  */
342 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
343         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
344         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
345         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
346         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
347         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
348         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
349         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
350         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
351         ARM64_FTR_END,
352 };
353
354 /* Table for a single 32bit feature value */
355 static const struct arm64_ftr_bits ftr_single32[] = {
356         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
357         ARM64_FTR_END,
358 };
359
360 static const struct arm64_ftr_bits ftr_raz[] = {
361         ARM64_FTR_END,
362 };
363
364 #define ARM64_FTR_REG(id, table) {              \
365         .sys_id = id,                           \
366         .reg =  &(struct arm64_ftr_reg){        \
367                 .name = #id,                    \
368                 .ftr_bits = &((table)[0]),      \
369         }}
370
371 static const struct __ftr_reg_entry {
372         u32                     sys_id;
373         struct arm64_ftr_reg    *reg;
374 } arm64_ftr_regs[] = {
375
376         /* Op1 = 0, CRn = 0, CRm = 1 */
377         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
378         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
379         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
380         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
381         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
382         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
383         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
384
385         /* Op1 = 0, CRn = 0, CRm = 2 */
386         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
387         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
388         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
389         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
390         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
391         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
392         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
393
394         /* Op1 = 0, CRn = 0, CRm = 3 */
395         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
396         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
397         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
398
399         /* Op1 = 0, CRn = 0, CRm = 4 */
400         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
401         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
402         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
403
404         /* Op1 = 0, CRn = 0, CRm = 5 */
405         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
406         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
407
408         /* Op1 = 0, CRn = 0, CRm = 6 */
409         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
410         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
411
412         /* Op1 = 0, CRn = 0, CRm = 7 */
413         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
414         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
415         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
416
417         /* Op1 = 0, CRn = 1, CRm = 2 */
418         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
419
420         /* Op1 = 3, CRn = 0, CRm = 0 */
421         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
422         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
423
424         /* Op1 = 3, CRn = 14, CRm = 0 */
425         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
426 };
427
428 static int search_cmp_ftr_reg(const void *id, const void *regp)
429 {
430         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
431 }
432
433 /*
434  * get_arm64_ftr_reg - Lookup a feature register entry using its
435  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
436  * ascending order of sys_id , we use binary search to find a matching
437  * entry.
438  *
439  * returns - Upon success,  matching ftr_reg entry for id.
440  *         - NULL on failure. It is upto the caller to decide
441  *           the impact of a failure.
442  */
443 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
444 {
445         const struct __ftr_reg_entry *ret;
446
447         ret = bsearch((const void *)(unsigned long)sys_id,
448                         arm64_ftr_regs,
449                         ARRAY_SIZE(arm64_ftr_regs),
450                         sizeof(arm64_ftr_regs[0]),
451                         search_cmp_ftr_reg);
452         if (ret)
453                 return ret->reg;
454         return NULL;
455 }
456
457 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
458                                s64 ftr_val)
459 {
460         u64 mask = arm64_ftr_mask(ftrp);
461
462         reg &= ~mask;
463         reg |= (ftr_val << ftrp->shift) & mask;
464         return reg;
465 }
466
467 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
468                                 s64 cur)
469 {
470         s64 ret = 0;
471
472         switch (ftrp->type) {
473         case FTR_EXACT:
474                 ret = ftrp->safe_val;
475                 break;
476         case FTR_LOWER_SAFE:
477                 ret = new < cur ? new : cur;
478                 break;
479         case FTR_HIGHER_OR_ZERO_SAFE:
480                 if (!cur || !new)
481                         break;
482                 /* Fallthrough */
483         case FTR_HIGHER_SAFE:
484                 ret = new > cur ? new : cur;
485                 break;
486         default:
487                 BUG();
488         }
489
490         return ret;
491 }
492
493 static void __init sort_ftr_regs(void)
494 {
495         int i;
496
497         /* Check that the array is sorted so that we can do the binary search */
498         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
499                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
500 }
501
502 /*
503  * Initialise the CPU feature register from Boot CPU values.
504  * Also initiliases the strict_mask for the register.
505  * Any bits that are not covered by an arm64_ftr_bits entry are considered
506  * RES0 for the system-wide value, and must strictly match.
507  */
508 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
509 {
510         u64 val = 0;
511         u64 strict_mask = ~0x0ULL;
512         u64 user_mask = 0;
513         u64 valid_mask = 0;
514
515         const struct arm64_ftr_bits *ftrp;
516         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
517
518         BUG_ON(!reg);
519
520         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
521                 u64 ftr_mask = arm64_ftr_mask(ftrp);
522                 s64 ftr_new = arm64_ftr_value(ftrp, new);
523
524                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
525
526                 valid_mask |= ftr_mask;
527                 if (!ftrp->strict)
528                         strict_mask &= ~ftr_mask;
529                 if (ftrp->visible)
530                         user_mask |= ftr_mask;
531                 else
532                         reg->user_val = arm64_ftr_set_value(ftrp,
533                                                             reg->user_val,
534                                                             ftrp->safe_val);
535         }
536
537         val &= valid_mask;
538
539         reg->sys_val = val;
540         reg->strict_mask = strict_mask;
541         reg->user_mask = user_mask;
542 }
543
544 extern const struct arm64_cpu_capabilities arm64_errata[];
545 static const struct arm64_cpu_capabilities arm64_features[];
546
547 static void __init
548 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
549 {
550         for (; caps->matches; caps++) {
551                 if (WARN(caps->capability >= ARM64_NCAPS,
552                         "Invalid capability %d\n", caps->capability))
553                         continue;
554                 if (WARN(cpu_hwcaps_ptrs[caps->capability],
555                         "Duplicate entry for capability %d\n",
556                         caps->capability))
557                         continue;
558                 cpu_hwcaps_ptrs[caps->capability] = caps;
559         }
560 }
561
562 static void __init init_cpu_hwcaps_indirect_list(void)
563 {
564         init_cpu_hwcaps_indirect_list_from_array(arm64_features);
565         init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
566 }
567
568 static void __init setup_boot_cpu_capabilities(void);
569
570 void __init init_cpu_features(struct cpuinfo_arm64 *info)
571 {
572         /* Before we start using the tables, make sure it is sorted */
573         sort_ftr_regs();
574
575         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
576         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
577         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
578         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
579         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
580         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
581         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
582         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
583         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
584         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
585         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
586         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
587         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
588
589         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
590                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
591                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
592                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
593                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
594                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
595                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
596                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
597                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
598                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
599                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
600                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
601                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
602                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
603                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
604                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
605                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
606         }
607
608         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
609                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
610                 sve_init_vq_map();
611         }
612
613         /*
614          * Initialize the indirect array of CPU hwcaps capabilities pointers
615          * before we handle the boot CPU below.
616          */
617         init_cpu_hwcaps_indirect_list();
618
619         /*
620          * Detect and enable early CPU capabilities based on the boot CPU,
621          * after we have initialised the CPU feature infrastructure.
622          */
623         setup_boot_cpu_capabilities();
624 }
625
626 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
627 {
628         const struct arm64_ftr_bits *ftrp;
629
630         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
631                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
632                 s64 ftr_new = arm64_ftr_value(ftrp, new);
633
634                 if (ftr_cur == ftr_new)
635                         continue;
636                 /* Find a safe value */
637                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
638                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
639         }
640
641 }
642
643 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
644 {
645         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
646
647         BUG_ON(!regp);
648         update_cpu_ftr_reg(regp, val);
649         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
650                 return 0;
651         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
652                         regp->name, boot, cpu, val);
653         return 1;
654 }
655
656 /*
657  * Update system wide CPU feature registers with the values from a
658  * non-boot CPU. Also performs SANITY checks to make sure that there
659  * aren't any insane variations from that of the boot CPU.
660  */
661 void update_cpu_features(int cpu,
662                          struct cpuinfo_arm64 *info,
663                          struct cpuinfo_arm64 *boot)
664 {
665         int taint = 0;
666
667         /*
668          * The kernel can handle differing I-cache policies, but otherwise
669          * caches should look identical. Userspace JITs will make use of
670          * *minLine.
671          */
672         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
673                                       info->reg_ctr, boot->reg_ctr);
674
675         /*
676          * Userspace may perform DC ZVA instructions. Mismatched block sizes
677          * could result in too much or too little memory being zeroed if a
678          * process is preempted and migrated between CPUs.
679          */
680         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
681                                       info->reg_dczid, boot->reg_dczid);
682
683         /* If different, timekeeping will be broken (especially with KVM) */
684         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
685                                       info->reg_cntfrq, boot->reg_cntfrq);
686
687         /*
688          * The kernel uses self-hosted debug features and expects CPUs to
689          * support identical debug features. We presently need CTX_CMPs, WRPs,
690          * and BRPs to be identical.
691          * ID_AA64DFR1 is currently RES0.
692          */
693         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
694                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
695         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
696                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
697         /*
698          * Even in big.LITTLE, processors should be identical instruction-set
699          * wise.
700          */
701         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
702                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
703         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
704                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
705
706         /*
707          * Differing PARange support is fine as long as all peripherals and
708          * memory are mapped within the minimum PARange of all CPUs.
709          * Linux should not care about secure memory.
710          */
711         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
712                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
713         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
714                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
715         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
716                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
717
718         /*
719          * EL3 is not our concern.
720          */
721         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
722                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
723         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
724                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
725
726         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
727                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
728
729         /*
730          * If we have AArch32, we care about 32-bit features for compat.
731          * If the system doesn't support AArch32, don't update them.
732          */
733         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
734                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
735
736                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
737                                         info->reg_id_dfr0, boot->reg_id_dfr0);
738                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
739                                         info->reg_id_isar0, boot->reg_id_isar0);
740                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
741                                         info->reg_id_isar1, boot->reg_id_isar1);
742                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
743                                         info->reg_id_isar2, boot->reg_id_isar2);
744                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
745                                         info->reg_id_isar3, boot->reg_id_isar3);
746                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
747                                         info->reg_id_isar4, boot->reg_id_isar4);
748                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
749                                         info->reg_id_isar5, boot->reg_id_isar5);
750
751                 /*
752                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
753                  * ACTLR formats could differ across CPUs and therefore would have to
754                  * be trapped for virtualization anyway.
755                  */
756                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
757                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
758                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
759                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
760                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
761                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
762                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
763                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
764                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
765                                         info->reg_id_pfr0, boot->reg_id_pfr0);
766                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
767                                         info->reg_id_pfr1, boot->reg_id_pfr1);
768                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
769                                         info->reg_mvfr0, boot->reg_mvfr0);
770                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
771                                         info->reg_mvfr1, boot->reg_mvfr1);
772                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
773                                         info->reg_mvfr2, boot->reg_mvfr2);
774         }
775
776         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
777                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
778                                         info->reg_zcr, boot->reg_zcr);
779
780                 /* Probe vector lengths, unless we already gave up on SVE */
781                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
782                     !sys_caps_initialised)
783                         sve_update_vq_map();
784         }
785
786         /*
787          * Mismatched CPU features are a recipe for disaster. Don't even
788          * pretend to support them.
789          */
790         if (taint) {
791                 pr_warn_once("Unsupported CPU feature variation detected.\n");
792                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
793         }
794 }
795
796 u64 read_sanitised_ftr_reg(u32 id)
797 {
798         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
799
800         /* We shouldn't get a request for an unsupported register */
801         BUG_ON(!regp);
802         return regp->sys_val;
803 }
804
805 #define read_sysreg_case(r)     \
806         case r:         return read_sysreg_s(r)
807
808 /*
809  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
810  * Read the system register on the current CPU
811  */
812 static u64 __read_sysreg_by_encoding(u32 sys_id)
813 {
814         switch (sys_id) {
815         read_sysreg_case(SYS_ID_PFR0_EL1);
816         read_sysreg_case(SYS_ID_PFR1_EL1);
817         read_sysreg_case(SYS_ID_DFR0_EL1);
818         read_sysreg_case(SYS_ID_MMFR0_EL1);
819         read_sysreg_case(SYS_ID_MMFR1_EL1);
820         read_sysreg_case(SYS_ID_MMFR2_EL1);
821         read_sysreg_case(SYS_ID_MMFR3_EL1);
822         read_sysreg_case(SYS_ID_ISAR0_EL1);
823         read_sysreg_case(SYS_ID_ISAR1_EL1);
824         read_sysreg_case(SYS_ID_ISAR2_EL1);
825         read_sysreg_case(SYS_ID_ISAR3_EL1);
826         read_sysreg_case(SYS_ID_ISAR4_EL1);
827         read_sysreg_case(SYS_ID_ISAR5_EL1);
828         read_sysreg_case(SYS_MVFR0_EL1);
829         read_sysreg_case(SYS_MVFR1_EL1);
830         read_sysreg_case(SYS_MVFR2_EL1);
831
832         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
833         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
834         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
835         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
836         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
837         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
838         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
839         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
840         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
841         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
842
843         read_sysreg_case(SYS_CNTFRQ_EL0);
844         read_sysreg_case(SYS_CTR_EL0);
845         read_sysreg_case(SYS_DCZID_EL0);
846
847         default:
848                 BUG();
849                 return 0;
850         }
851 }
852
853 #include <linux/irqchip/arm-gic-v3.h>
854
855 static bool
856 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
857 {
858         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
859
860         return val >= entry->min_field_value;
861 }
862
863 static bool
864 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
865 {
866         u64 val;
867
868         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
869         if (scope == SCOPE_SYSTEM)
870                 val = read_sanitised_ftr_reg(entry->sys_reg);
871         else
872                 val = __read_sysreg_by_encoding(entry->sys_reg);
873
874         return feature_matches(val, entry);
875 }
876
877 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
878 {
879         bool has_sre;
880
881         if (!has_cpuid_feature(entry, scope))
882                 return false;
883
884         has_sre = gic_enable_sre();
885         if (!has_sre)
886                 pr_warn_once("%s present but disabled by higher exception level\n",
887                              entry->desc);
888
889         return has_sre;
890 }
891
892 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
893 {
894         u32 midr = read_cpuid_id();
895
896         /* Cavium ThunderX pass 1.x and 2.x */
897         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
898                 MIDR_CPU_VAR_REV(0, 0),
899                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
900 }
901
902 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
903 {
904         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
905
906         return cpuid_feature_extract_signed_field(pfr0,
907                                         ID_AA64PFR0_FP_SHIFT) < 0;
908 }
909
910 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
911                           int scope)
912 {
913         u64 ctr;
914
915         if (scope == SCOPE_SYSTEM)
916                 ctr = arm64_ftr_reg_ctrel0.sys_val;
917         else
918                 ctr = read_cpuid_effective_cachetype();
919
920         return ctr & BIT(CTR_IDC_SHIFT);
921 }
922
923 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
924 {
925         /*
926          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
927          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
928          * to the CTR_EL0 on this CPU and emulate it with the real/safe
929          * value.
930          */
931         if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
932                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
933 }
934
935 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
936                           int scope)
937 {
938         u64 ctr;
939
940         if (scope == SCOPE_SYSTEM)
941                 ctr = arm64_ftr_reg_ctrel0.sys_val;
942         else
943                 ctr = read_cpuid_cachetype();
944
945         return ctr & BIT(CTR_DIC_SHIFT);
946 }
947
948 static bool __maybe_unused
949 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
950 {
951         /*
952          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
953          * may share TLB entries with a CPU stuck in the crashed
954          * kernel.
955          */
956          if (is_kdump_kernel())
957                 return false;
958
959         return has_cpuid_feature(entry, scope);
960 }
961
962 static bool __meltdown_safe = true;
963 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
964
965 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
966                                 int scope)
967 {
968         /* List of CPUs that are not vulnerable and don't need KPTI */
969         static const struct midr_range kpti_safe_list[] = {
970                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
971                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
972                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
973                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
974                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
975                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
976                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
977                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
978                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
979                 { /* sentinel */ }
980         };
981         char const *str = "kpti command line option";
982         bool meltdown_safe;
983
984         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
985
986         /* Defer to CPU feature registers */
987         if (has_cpuid_feature(entry, scope))
988                 meltdown_safe = true;
989
990         if (!meltdown_safe)
991                 __meltdown_safe = false;
992
993         /*
994          * For reasons that aren't entirely clear, enabling KPTI on Cavium
995          * ThunderX leads to apparent I-cache corruption of kernel text, which
996          * ends as well as you might imagine. Don't even try.
997          */
998         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
999                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1000                 __kpti_forced = -1;
1001         }
1002
1003         /* Useful for KASLR robustness */
1004         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) {
1005                 if (!__kpti_forced) {
1006                         str = "KASLR";
1007                         __kpti_forced = 1;
1008                 }
1009         }
1010
1011         if (cpu_mitigations_off() && !__kpti_forced) {
1012                 str = "mitigations=off";
1013                 __kpti_forced = -1;
1014         }
1015
1016         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1017                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1018                 return false;
1019         }
1020
1021         /* Forced? */
1022         if (__kpti_forced) {
1023                 pr_info_once("kernel page table isolation forced %s by %s\n",
1024                              __kpti_forced > 0 ? "ON" : "OFF", str);
1025                 return __kpti_forced > 0;
1026         }
1027
1028         return !meltdown_safe;
1029 }
1030
1031 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1032 static void
1033 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1034 {
1035         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1036         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1037         kpti_remap_fn *remap_fn;
1038
1039         static bool kpti_applied = false;
1040         int cpu = smp_processor_id();
1041
1042         /*
1043          * We don't need to rewrite the page-tables if either we've done
1044          * it already or we have KASLR enabled and therefore have not
1045          * created any global mappings at all.
1046          */
1047         if (kpti_applied || kaslr_offset() > 0)
1048                 return;
1049
1050         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1051
1052         cpu_install_idmap();
1053         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1054         cpu_uninstall_idmap();
1055
1056         if (!cpu)
1057                 kpti_applied = true;
1058
1059         return;
1060 }
1061 #else
1062 static void
1063 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1064 {
1065 }
1066 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1067
1068 static int __init parse_kpti(char *str)
1069 {
1070         bool enabled;
1071         int ret = strtobool(str, &enabled);
1072
1073         if (ret)
1074                 return ret;
1075
1076         __kpti_forced = enabled ? 1 : -1;
1077         return 0;
1078 }
1079 early_param("kpti", parse_kpti);
1080
1081 #ifdef CONFIG_ARM64_HW_AFDBM
1082 static inline void __cpu_enable_hw_dbm(void)
1083 {
1084         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1085
1086         write_sysreg(tcr, tcr_el1);
1087         isb();
1088 }
1089
1090 static bool cpu_has_broken_dbm(void)
1091 {
1092         /* List of CPUs which have broken DBM support. */
1093         static const struct midr_range cpus[] = {
1094 #ifdef CONFIG_ARM64_ERRATUM_1024718
1095                 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1096 #endif
1097                 {},
1098         };
1099
1100         return is_midr_in_range_list(read_cpuid_id(), cpus);
1101 }
1102
1103 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1104 {
1105         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1106                !cpu_has_broken_dbm();
1107 }
1108
1109 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1110 {
1111         if (cpu_can_use_dbm(cap))
1112                 __cpu_enable_hw_dbm();
1113 }
1114
1115 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1116                        int __unused)
1117 {
1118         static bool detected = false;
1119         /*
1120          * DBM is a non-conflicting feature. i.e, the kernel can safely
1121          * run a mix of CPUs with and without the feature. So, we
1122          * unconditionally enable the capability to allow any late CPU
1123          * to use the feature. We only enable the control bits on the
1124          * CPU, if it actually supports.
1125          *
1126          * We have to make sure we print the "feature" detection only
1127          * when at least one CPU actually uses it. So check if this CPU
1128          * can actually use it and print the message exactly once.
1129          *
1130          * This is safe as all CPUs (including secondary CPUs - due to the
1131          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1132          * goes through the "matches" check exactly once. Also if a CPU
1133          * matches the criteria, it is guaranteed that the CPU will turn
1134          * the DBM on, as the capability is unconditionally enabled.
1135          */
1136         if (!detected && cpu_can_use_dbm(cap)) {
1137                 detected = true;
1138                 pr_info("detected: Hardware dirty bit management\n");
1139         }
1140
1141         return true;
1142 }
1143
1144 #endif
1145
1146 #ifdef CONFIG_ARM64_VHE
1147 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1148 {
1149         return is_kernel_in_hyp_mode();
1150 }
1151
1152 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1153 {
1154         /*
1155          * Copy register values that aren't redirected by hardware.
1156          *
1157          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1158          * this value to tpidr_el2 before we patch the code. Once we've done
1159          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1160          * do anything here.
1161          */
1162         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1163                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1164 }
1165 #endif
1166
1167 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1168 {
1169         u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1170
1171         /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1172         WARN_ON(val & (7 << 27 | 7 << 21));
1173 }
1174
1175 #ifdef CONFIG_ARM64_SSBD
1176 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1177 {
1178         if (user_mode(regs))
1179                 return 1;
1180
1181         if (instr & BIT(PSTATE_Imm_shift))
1182                 regs->pstate |= PSR_SSBS_BIT;
1183         else
1184                 regs->pstate &= ~PSR_SSBS_BIT;
1185
1186         arm64_skip_faulting_instruction(regs, 4);
1187         return 0;
1188 }
1189
1190 static struct undef_hook ssbs_emulation_hook = {
1191         .instr_mask     = ~(1U << PSTATE_Imm_shift),
1192         .instr_val      = 0xd500401f | PSTATE_SSBS,
1193         .fn             = ssbs_emulation_handler,
1194 };
1195
1196 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1197 {
1198         static bool undef_hook_registered = false;
1199         static DEFINE_RAW_SPINLOCK(hook_lock);
1200
1201         raw_spin_lock(&hook_lock);
1202         if (!undef_hook_registered) {
1203                 register_undef_hook(&ssbs_emulation_hook);
1204                 undef_hook_registered = true;
1205         }
1206         raw_spin_unlock(&hook_lock);
1207
1208         if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1209                 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1210                 arm64_set_ssbd_mitigation(false);
1211         } else {
1212                 arm64_set_ssbd_mitigation(true);
1213         }
1214 }
1215 #endif /* CONFIG_ARM64_SSBD */
1216
1217 #ifdef CONFIG_ARM64_PAN
1218 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1219 {
1220         /*
1221          * We modify PSTATE. This won't work from irq context as the PSTATE
1222          * is discarded once we return from the exception.
1223          */
1224         WARN_ON_ONCE(in_interrupt());
1225
1226         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1227         asm(SET_PSTATE_PAN(1));
1228 }
1229 #endif /* CONFIG_ARM64_PAN */
1230
1231 #ifdef CONFIG_ARM64_RAS_EXTN
1232 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1233 {
1234         /* Firmware may have left a deferred SError in this register. */
1235         write_sysreg_s(0, SYS_DISR_EL1);
1236 }
1237 #endif /* CONFIG_ARM64_RAS_EXTN */
1238
1239 #ifdef CONFIG_ARM64_PTR_AUTH
1240 static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap)
1241 {
1242         sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB |
1243                                        SCTLR_ELx_ENDA | SCTLR_ELx_ENDB);
1244 }
1245 #endif /* CONFIG_ARM64_PTR_AUTH */
1246
1247 #ifdef CONFIG_ARM64_PSEUDO_NMI
1248 static bool enable_pseudo_nmi;
1249
1250 static int __init early_enable_pseudo_nmi(char *p)
1251 {
1252         return strtobool(p, &enable_pseudo_nmi);
1253 }
1254 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1255
1256 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1257                                    int scope)
1258 {
1259         return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1260 }
1261 #endif
1262
1263 static const struct arm64_cpu_capabilities arm64_features[] = {
1264         {
1265                 .desc = "GIC system register CPU interface",
1266                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1267                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1268                 .matches = has_useable_gicv3_cpuif,
1269                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1270                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1271                 .sign = FTR_UNSIGNED,
1272                 .min_field_value = 1,
1273         },
1274 #ifdef CONFIG_ARM64_PAN
1275         {
1276                 .desc = "Privileged Access Never",
1277                 .capability = ARM64_HAS_PAN,
1278                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1279                 .matches = has_cpuid_feature,
1280                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1281                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1282                 .sign = FTR_UNSIGNED,
1283                 .min_field_value = 1,
1284                 .cpu_enable = cpu_enable_pan,
1285         },
1286 #endif /* CONFIG_ARM64_PAN */
1287 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1288         {
1289                 .desc = "LSE atomic instructions",
1290                 .capability = ARM64_HAS_LSE_ATOMICS,
1291                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1292                 .matches = has_cpuid_feature,
1293                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1294                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1295                 .sign = FTR_UNSIGNED,
1296                 .min_field_value = 2,
1297         },
1298 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1299         {
1300                 .desc = "Software prefetching using PRFM",
1301                 .capability = ARM64_HAS_NO_HW_PREFETCH,
1302                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1303                 .matches = has_no_hw_prefetch,
1304         },
1305 #ifdef CONFIG_ARM64_UAO
1306         {
1307                 .desc = "User Access Override",
1308                 .capability = ARM64_HAS_UAO,
1309                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1310                 .matches = has_cpuid_feature,
1311                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1312                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1313                 .min_field_value = 1,
1314                 /*
1315                  * We rely on stop_machine() calling uao_thread_switch() to set
1316                  * UAO immediately after patching.
1317                  */
1318         },
1319 #endif /* CONFIG_ARM64_UAO */
1320 #ifdef CONFIG_ARM64_PAN
1321         {
1322                 .capability = ARM64_ALT_PAN_NOT_UAO,
1323                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1324                 .matches = cpufeature_pan_not_uao,
1325         },
1326 #endif /* CONFIG_ARM64_PAN */
1327 #ifdef CONFIG_ARM64_VHE
1328         {
1329                 .desc = "Virtualization Host Extensions",
1330                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1331                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1332                 .matches = runs_at_el2,
1333                 .cpu_enable = cpu_copy_el2regs,
1334         },
1335 #endif  /* CONFIG_ARM64_VHE */
1336         {
1337                 .desc = "32-bit EL0 Support",
1338                 .capability = ARM64_HAS_32BIT_EL0,
1339                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1340                 .matches = has_cpuid_feature,
1341                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1342                 .sign = FTR_UNSIGNED,
1343                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1344                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1345         },
1346         {
1347                 .desc = "Kernel page table isolation (KPTI)",
1348                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1349                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1350                 /*
1351                  * The ID feature fields below are used to indicate that
1352                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1353                  * more details.
1354                  */
1355                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1356                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1357                 .min_field_value = 1,
1358                 .matches = unmap_kernel_at_el0,
1359                 .cpu_enable = kpti_install_ng_mappings,
1360         },
1361         {
1362                 /* FP/SIMD is not implemented */
1363                 .capability = ARM64_HAS_NO_FPSIMD,
1364                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1365                 .min_field_value = 0,
1366                 .matches = has_no_fpsimd,
1367         },
1368 #ifdef CONFIG_ARM64_PMEM
1369         {
1370                 .desc = "Data cache clean to Point of Persistence",
1371                 .capability = ARM64_HAS_DCPOP,
1372                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1373                 .matches = has_cpuid_feature,
1374                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1375                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1376                 .min_field_value = 1,
1377         },
1378         {
1379                 .desc = "Data cache clean to Point of Deep Persistence",
1380                 .capability = ARM64_HAS_DCPODP,
1381                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1382                 .matches = has_cpuid_feature,
1383                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1384                 .sign = FTR_UNSIGNED,
1385                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1386                 .min_field_value = 2,
1387         },
1388 #endif
1389 #ifdef CONFIG_ARM64_SVE
1390         {
1391                 .desc = "Scalable Vector Extension",
1392                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1393                 .capability = ARM64_SVE,
1394                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1395                 .sign = FTR_UNSIGNED,
1396                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1397                 .min_field_value = ID_AA64PFR0_SVE,
1398                 .matches = has_cpuid_feature,
1399                 .cpu_enable = sve_kernel_enable,
1400         },
1401 #endif /* CONFIG_ARM64_SVE */
1402 #ifdef CONFIG_ARM64_RAS_EXTN
1403         {
1404                 .desc = "RAS Extension Support",
1405                 .capability = ARM64_HAS_RAS_EXTN,
1406                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1407                 .matches = has_cpuid_feature,
1408                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1409                 .sign = FTR_UNSIGNED,
1410                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1411                 .min_field_value = ID_AA64PFR0_RAS_V1,
1412                 .cpu_enable = cpu_clear_disr,
1413         },
1414 #endif /* CONFIG_ARM64_RAS_EXTN */
1415         {
1416                 .desc = "Data cache clean to the PoU not required for I/D coherence",
1417                 .capability = ARM64_HAS_CACHE_IDC,
1418                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1419                 .matches = has_cache_idc,
1420                 .cpu_enable = cpu_emulate_effective_ctr,
1421         },
1422         {
1423                 .desc = "Instruction cache invalidation not required for I/D coherence",
1424                 .capability = ARM64_HAS_CACHE_DIC,
1425                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1426                 .matches = has_cache_dic,
1427         },
1428         {
1429                 .desc = "Stage-2 Force Write-Back",
1430                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1431                 .capability = ARM64_HAS_STAGE2_FWB,
1432                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1433                 .sign = FTR_UNSIGNED,
1434                 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1435                 .min_field_value = 1,
1436                 .matches = has_cpuid_feature,
1437                 .cpu_enable = cpu_has_fwb,
1438         },
1439 #ifdef CONFIG_ARM64_HW_AFDBM
1440         {
1441                 /*
1442                  * Since we turn this on always, we don't want the user to
1443                  * think that the feature is available when it may not be.
1444                  * So hide the description.
1445                  *
1446                  * .desc = "Hardware pagetable Dirty Bit Management",
1447                  *
1448                  */
1449                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1450                 .capability = ARM64_HW_DBM,
1451                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1452                 .sign = FTR_UNSIGNED,
1453                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1454                 .min_field_value = 2,
1455                 .matches = has_hw_dbm,
1456                 .cpu_enable = cpu_enable_hw_dbm,
1457         },
1458 #endif
1459         {
1460                 .desc = "CRC32 instructions",
1461                 .capability = ARM64_HAS_CRC32,
1462                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1463                 .matches = has_cpuid_feature,
1464                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1465                 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1466                 .min_field_value = 1,
1467         },
1468 #ifdef CONFIG_ARM64_SSBD
1469         {
1470                 .desc = "Speculative Store Bypassing Safe (SSBS)",
1471                 .capability = ARM64_SSBS,
1472                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1473                 .matches = has_cpuid_feature,
1474                 .sys_reg = SYS_ID_AA64PFR1_EL1,
1475                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1476                 .sign = FTR_UNSIGNED,
1477                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1478                 .cpu_enable = cpu_enable_ssbs,
1479         },
1480 #endif
1481 #ifdef CONFIG_ARM64_CNP
1482         {
1483                 .desc = "Common not Private translations",
1484                 .capability = ARM64_HAS_CNP,
1485                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1486                 .matches = has_useable_cnp,
1487                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1488                 .sign = FTR_UNSIGNED,
1489                 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
1490                 .min_field_value = 1,
1491                 .cpu_enable = cpu_enable_cnp,
1492         },
1493 #endif
1494         {
1495                 .desc = "Speculation barrier (SB)",
1496                 .capability = ARM64_HAS_SB,
1497                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1498                 .matches = has_cpuid_feature,
1499                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1500                 .field_pos = ID_AA64ISAR1_SB_SHIFT,
1501                 .sign = FTR_UNSIGNED,
1502                 .min_field_value = 1,
1503         },
1504 #ifdef CONFIG_ARM64_PTR_AUTH
1505         {
1506                 .desc = "Address authentication (architected algorithm)",
1507                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1508                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1509                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1510                 .sign = FTR_UNSIGNED,
1511                 .field_pos = ID_AA64ISAR1_APA_SHIFT,
1512                 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1513                 .matches = has_cpuid_feature,
1514                 .cpu_enable = cpu_enable_address_auth,
1515         },
1516         {
1517                 .desc = "Address authentication (IMP DEF algorithm)",
1518                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1519                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1520                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1521                 .sign = FTR_UNSIGNED,
1522                 .field_pos = ID_AA64ISAR1_API_SHIFT,
1523                 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1524                 .matches = has_cpuid_feature,
1525                 .cpu_enable = cpu_enable_address_auth,
1526         },
1527         {
1528                 .desc = "Generic authentication (architected algorithm)",
1529                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1530                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1531                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1532                 .sign = FTR_UNSIGNED,
1533                 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
1534                 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1535                 .matches = has_cpuid_feature,
1536         },
1537         {
1538                 .desc = "Generic authentication (IMP DEF algorithm)",
1539                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1540                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1541                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1542                 .sign = FTR_UNSIGNED,
1543                 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
1544                 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1545                 .matches = has_cpuid_feature,
1546         },
1547 #endif /* CONFIG_ARM64_PTR_AUTH */
1548 #ifdef CONFIG_ARM64_PSEUDO_NMI
1549         {
1550                 /*
1551                  * Depends on having GICv3
1552                  */
1553                 .desc = "IRQ priority masking",
1554                 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
1555                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1556                 .matches = can_use_gic_priorities,
1557                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1558                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1559                 .sign = FTR_UNSIGNED,
1560                 .min_field_value = 1,
1561         },
1562 #endif
1563         {},
1564 };
1565
1566 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
1567                 .matches = has_cpuid_feature,                                   \
1568                 .sys_reg = reg,                                                 \
1569                 .field_pos = field,                                             \
1570                 .sign = s,                                                      \
1571                 .min_field_value = min_value,
1572
1573 #define __HWCAP_CAP(name, cap_type, cap)                                        \
1574                 .desc = name,                                                   \
1575                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
1576                 .hwcap_type = cap_type,                                         \
1577                 .hwcap = cap,                                                   \
1578
1579 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
1580         {                                                                       \
1581                 __HWCAP_CAP(#cap, cap_type, cap)                                \
1582                 HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
1583         }
1584
1585 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
1586         {                                                                       \
1587                 __HWCAP_CAP(#cap, cap_type, cap)                                \
1588                 .matches = cpucap_multi_entry_cap_matches,                      \
1589                 .match_list = list,                                             \
1590         }
1591
1592 #ifdef CONFIG_ARM64_PTR_AUTH
1593 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
1594         {
1595                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
1596                                   FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
1597         },
1598         {
1599                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
1600                                   FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
1601         },
1602         {},
1603 };
1604
1605 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
1606         {
1607                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
1608                                   FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
1609         },
1610         {
1611                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
1612                                   FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
1613         },
1614         {},
1615 };
1616 #endif
1617
1618 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1619         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
1620         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
1621         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
1622         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
1623         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
1624         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
1625         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
1626         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
1627         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
1628         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
1629         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
1630         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
1631         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
1632         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
1633         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
1634         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
1635         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
1636         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
1637         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
1638         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
1639         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
1640         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
1641         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
1642         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
1643         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
1644         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
1645         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
1646         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
1647         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
1648 #ifdef CONFIG_ARM64_SVE
1649         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
1650         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
1651         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
1652         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
1653         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
1654         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
1655         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
1656 #endif
1657         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
1658 #ifdef CONFIG_ARM64_PTR_AUTH
1659         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
1660         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
1661 #endif
1662         {},
1663 };
1664
1665 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1666 #ifdef CONFIG_COMPAT
1667         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1668         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1669         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1670         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1671         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1672 #endif
1673         {},
1674 };
1675
1676 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1677 {
1678         switch (cap->hwcap_type) {
1679         case CAP_HWCAP:
1680                 cpu_set_feature(cap->hwcap);
1681                 break;
1682 #ifdef CONFIG_COMPAT
1683         case CAP_COMPAT_HWCAP:
1684                 compat_elf_hwcap |= (u32)cap->hwcap;
1685                 break;
1686         case CAP_COMPAT_HWCAP2:
1687                 compat_elf_hwcap2 |= (u32)cap->hwcap;
1688                 break;
1689 #endif
1690         default:
1691                 WARN_ON(1);
1692                 break;
1693         }
1694 }
1695
1696 /* Check if we have a particular HWCAP enabled */
1697 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1698 {
1699         bool rc;
1700
1701         switch (cap->hwcap_type) {
1702         case CAP_HWCAP:
1703                 rc = cpu_have_feature(cap->hwcap);
1704                 break;
1705 #ifdef CONFIG_COMPAT
1706         case CAP_COMPAT_HWCAP:
1707                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1708                 break;
1709         case CAP_COMPAT_HWCAP2:
1710                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1711                 break;
1712 #endif
1713         default:
1714                 WARN_ON(1);
1715                 rc = false;
1716         }
1717
1718         return rc;
1719 }
1720
1721 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1722 {
1723         /* We support emulation of accesses to CPU ID feature registers */
1724         cpu_set_named_feature(CPUID);
1725         for (; hwcaps->matches; hwcaps++)
1726                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1727                         cap_set_elf_hwcap(hwcaps);
1728 }
1729
1730 static void update_cpu_capabilities(u16 scope_mask)
1731 {
1732         int i;
1733         const struct arm64_cpu_capabilities *caps;
1734
1735         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1736         for (i = 0; i < ARM64_NCAPS; i++) {
1737                 caps = cpu_hwcaps_ptrs[i];
1738                 if (!caps || !(caps->type & scope_mask) ||
1739                     cpus_have_cap(caps->capability) ||
1740                     !caps->matches(caps, cpucap_default_scope(caps)))
1741                         continue;
1742
1743                 if (caps->desc)
1744                         pr_info("detected: %s\n", caps->desc);
1745                 cpus_set_cap(caps->capability);
1746
1747                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
1748                         set_bit(caps->capability, boot_capabilities);
1749         }
1750 }
1751
1752 /*
1753  * Enable all the available capabilities on this CPU. The capabilities
1754  * with BOOT_CPU scope are handled separately and hence skipped here.
1755  */
1756 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1757 {
1758         int i;
1759         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
1760
1761         for_each_available_cap(i) {
1762                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1763
1764                 if (WARN_ON(!cap))
1765                         continue;
1766
1767                 if (!(cap->type & non_boot_scope))
1768                         continue;
1769
1770                 if (cap->cpu_enable)
1771                         cap->cpu_enable(cap);
1772         }
1773         return 0;
1774 }
1775
1776 /*
1777  * Run through the enabled capabilities and enable() it on all active
1778  * CPUs
1779  */
1780 static void __init enable_cpu_capabilities(u16 scope_mask)
1781 {
1782         int i;
1783         const struct arm64_cpu_capabilities *caps;
1784         bool boot_scope;
1785
1786         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1787         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
1788
1789         for (i = 0; i < ARM64_NCAPS; i++) {
1790                 unsigned int num;
1791
1792                 caps = cpu_hwcaps_ptrs[i];
1793                 if (!caps || !(caps->type & scope_mask))
1794                         continue;
1795                 num = caps->capability;
1796                 if (!cpus_have_cap(num))
1797                         continue;
1798
1799                 /* Ensure cpus_have_const_cap(num) works */
1800                 static_branch_enable(&cpu_hwcap_keys[num]);
1801
1802                 if (boot_scope && caps->cpu_enable)
1803                         /*
1804                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
1805                          * before any secondary CPU boots. Thus, each secondary
1806                          * will enable the capability as appropriate via
1807                          * check_local_cpu_capabilities(). The only exception is
1808                          * the boot CPU, for which the capability must be
1809                          * enabled here. This approach avoids costly
1810                          * stop_machine() calls for this case.
1811                          */
1812                         caps->cpu_enable(caps);
1813         }
1814
1815         /*
1816          * For all non-boot scope capabilities, use stop_machine()
1817          * as it schedules the work allowing us to modify PSTATE,
1818          * instead of on_each_cpu() which uses an IPI, giving us a
1819          * PSTATE that disappears when we return.
1820          */
1821         if (!boot_scope)
1822                 stop_machine(cpu_enable_non_boot_scope_capabilities,
1823                              NULL, cpu_online_mask);
1824 }
1825
1826 /*
1827  * Run through the list of capabilities to check for conflicts.
1828  * If the system has already detected a capability, take necessary
1829  * action on this CPU.
1830  *
1831  * Returns "false" on conflicts.
1832  */
1833 static bool verify_local_cpu_caps(u16 scope_mask)
1834 {
1835         int i;
1836         bool cpu_has_cap, system_has_cap;
1837         const struct arm64_cpu_capabilities *caps;
1838
1839         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1840
1841         for (i = 0; i < ARM64_NCAPS; i++) {
1842                 caps = cpu_hwcaps_ptrs[i];
1843                 if (!caps || !(caps->type & scope_mask))
1844                         continue;
1845
1846                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1847                 system_has_cap = cpus_have_cap(caps->capability);
1848
1849                 if (system_has_cap) {
1850                         /*
1851                          * Check if the new CPU misses an advertised feature,
1852                          * which is not safe to miss.
1853                          */
1854                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1855                                 break;
1856                         /*
1857                          * We have to issue cpu_enable() irrespective of
1858                          * whether the CPU has it or not, as it is enabeld
1859                          * system wide. It is upto the call back to take
1860                          * appropriate action on this CPU.
1861                          */
1862                         if (caps->cpu_enable)
1863                                 caps->cpu_enable(caps);
1864                 } else {
1865                         /*
1866                          * Check if the CPU has this capability if it isn't
1867                          * safe to have when the system doesn't.
1868                          */
1869                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1870                                 break;
1871                 }
1872         }
1873
1874         if (i < ARM64_NCAPS) {
1875                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1876                         smp_processor_id(), caps->capability,
1877                         caps->desc, system_has_cap, cpu_has_cap);
1878                 return false;
1879         }
1880
1881         return true;
1882 }
1883
1884 /*
1885  * Check for CPU features that are used in early boot
1886  * based on the Boot CPU value.
1887  */
1888 static void check_early_cpu_features(void)
1889 {
1890         verify_cpu_asid_bits();
1891         /*
1892          * Early features are used by the kernel already. If there
1893          * is a conflict, we cannot proceed further.
1894          */
1895         if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1896                 cpu_panic_kernel();
1897 }
1898
1899 static void
1900 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1901 {
1902
1903         for (; caps->matches; caps++)
1904                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1905                         pr_crit("CPU%d: missing HWCAP: %s\n",
1906                                         smp_processor_id(), caps->desc);
1907                         cpu_die_early();
1908                 }
1909 }
1910
1911 static void verify_sve_features(void)
1912 {
1913         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1914         u64 zcr = read_zcr_features();
1915
1916         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1917         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1918
1919         if (len < safe_len || sve_verify_vq_map()) {
1920                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
1921                         smp_processor_id());
1922                 cpu_die_early();
1923         }
1924
1925         /* Add checks on other ZCR bits here if necessary */
1926 }
1927
1928
1929 /*
1930  * Run through the enabled system capabilities and enable() it on this CPU.
1931  * The capabilities were decided based on the available CPUs at the boot time.
1932  * Any new CPU should match the system wide status of the capability. If the
1933  * new CPU doesn't have a capability which the system now has enabled, we
1934  * cannot do anything to fix it up and could cause unexpected failures. So
1935  * we park the CPU.
1936  */
1937 static void verify_local_cpu_capabilities(void)
1938 {
1939         /*
1940          * The capabilities with SCOPE_BOOT_CPU are checked from
1941          * check_early_cpu_features(), as they need to be verified
1942          * on all secondary CPUs.
1943          */
1944         if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1945                 cpu_die_early();
1946
1947         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1948
1949         if (system_supports_32bit_el0())
1950                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1951
1952         if (system_supports_sve())
1953                 verify_sve_features();
1954 }
1955
1956 void check_local_cpu_capabilities(void)
1957 {
1958         /*
1959          * All secondary CPUs should conform to the early CPU features
1960          * in use by the kernel based on boot CPU.
1961          */
1962         check_early_cpu_features();
1963
1964         /*
1965          * If we haven't finalised the system capabilities, this CPU gets
1966          * a chance to update the errata work arounds and local features.
1967          * Otherwise, this CPU should verify that it has all the system
1968          * advertised capabilities.
1969          */
1970         if (!sys_caps_initialised)
1971                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
1972         else
1973                 verify_local_cpu_capabilities();
1974 }
1975
1976 static void __init setup_boot_cpu_capabilities(void)
1977 {
1978         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1979         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1980         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1981         enable_cpu_capabilities(SCOPE_BOOT_CPU);
1982 }
1983
1984 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1985 EXPORT_SYMBOL(arm64_const_caps_ready);
1986
1987 static void __init mark_const_caps_ready(void)
1988 {
1989         static_branch_enable(&arm64_const_caps_ready);
1990 }
1991
1992 bool this_cpu_has_cap(unsigned int n)
1993 {
1994         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
1995                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
1996
1997                 if (cap)
1998                         return cap->matches(cap, SCOPE_LOCAL_CPU);
1999         }
2000
2001         return false;
2002 }
2003
2004 void cpu_set_feature(unsigned int num)
2005 {
2006         WARN_ON(num >= MAX_CPU_FEATURES);
2007         elf_hwcap |= BIT(num);
2008 }
2009 EXPORT_SYMBOL_GPL(cpu_set_feature);
2010
2011 bool cpu_have_feature(unsigned int num)
2012 {
2013         WARN_ON(num >= MAX_CPU_FEATURES);
2014         return elf_hwcap & BIT(num);
2015 }
2016 EXPORT_SYMBOL_GPL(cpu_have_feature);
2017
2018 unsigned long cpu_get_elf_hwcap(void)
2019 {
2020         /*
2021          * We currently only populate the first 32 bits of AT_HWCAP. Please
2022          * note that for userspace compatibility we guarantee that bits 62
2023          * and 63 will always be returned as 0.
2024          */
2025         return lower_32_bits(elf_hwcap);
2026 }
2027
2028 unsigned long cpu_get_elf_hwcap2(void)
2029 {
2030         return upper_32_bits(elf_hwcap);
2031 }
2032
2033 static void __init setup_system_capabilities(void)
2034 {
2035         /*
2036          * We have finalised the system-wide safe feature
2037          * registers, finalise the capabilities that depend
2038          * on it. Also enable all the available capabilities,
2039          * that are not enabled already.
2040          */
2041         update_cpu_capabilities(SCOPE_SYSTEM);
2042         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2043 }
2044
2045 void __init setup_cpu_features(void)
2046 {
2047         u32 cwg;
2048
2049         setup_system_capabilities();
2050         mark_const_caps_ready();
2051         setup_elf_hwcaps(arm64_elf_hwcaps);
2052
2053         if (system_supports_32bit_el0())
2054                 setup_elf_hwcaps(compat_elf_hwcaps);
2055
2056         if (system_uses_ttbr0_pan())
2057                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2058
2059         sve_setup();
2060         minsigstksz_setup();
2061
2062         /* Advertise that we have computed the system capabilities */
2063         set_sys_caps_initialised();
2064
2065         /*
2066          * Check for sane CTR_EL0.CWG value.
2067          */
2068         cwg = cache_type_cwg();
2069         if (!cwg)
2070                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2071                         ARCH_DMA_MINALIGN);
2072 }
2073
2074 static bool __maybe_unused
2075 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2076 {
2077         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
2078 }
2079
2080 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2081 {
2082         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2083 }
2084
2085 /*
2086  * We emulate only the following system register space.
2087  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2088  * See Table C5-6 System instruction encodings for System register accesses,
2089  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2090  */
2091 static inline bool __attribute_const__ is_emulated(u32 id)
2092 {
2093         return (sys_reg_Op0(id) == 0x3 &&
2094                 sys_reg_CRn(id) == 0x0 &&
2095                 sys_reg_Op1(id) == 0x0 &&
2096                 (sys_reg_CRm(id) == 0 ||
2097                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2098 }
2099
2100 /*
2101  * With CRm == 0, reg should be one of :
2102  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2103  */
2104 static inline int emulate_id_reg(u32 id, u64 *valp)
2105 {
2106         switch (id) {
2107         case SYS_MIDR_EL1:
2108                 *valp = read_cpuid_id();
2109                 break;
2110         case SYS_MPIDR_EL1:
2111                 *valp = SYS_MPIDR_SAFE_VAL;
2112                 break;
2113         case SYS_REVIDR_EL1:
2114                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2115                 *valp = 0;
2116                 break;
2117         default:
2118                 return -EINVAL;
2119         }
2120
2121         return 0;
2122 }
2123
2124 static int emulate_sys_reg(u32 id, u64 *valp)
2125 {
2126         struct arm64_ftr_reg *regp;
2127
2128         if (!is_emulated(id))
2129                 return -EINVAL;
2130
2131         if (sys_reg_CRm(id) == 0)
2132                 return emulate_id_reg(id, valp);
2133
2134         regp = get_arm64_ftr_reg(id);
2135         if (regp)
2136                 *valp = arm64_ftr_reg_user_value(regp);
2137         else
2138                 /*
2139                  * The untracked registers are either IMPLEMENTATION DEFINED
2140                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
2141                  */
2142                 *valp = 0;
2143         return 0;
2144 }
2145
2146 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2147 {
2148         int rc;
2149         u64 val;
2150
2151         rc = emulate_sys_reg(sys_reg, &val);
2152         if (!rc) {
2153                 pt_regs_write_reg(regs, rt, val);
2154                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2155         }
2156         return rc;
2157 }
2158
2159 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2160 {
2161         u32 sys_reg, rt;
2162
2163         /*
2164          * sys_reg values are defined as used in mrs/msr instruction.
2165          * shift the imm value to get the encoding.
2166          */
2167         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2168         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2169         return do_emulate_mrs(regs, sys_reg, rt);
2170 }
2171
2172 static struct undef_hook mrs_hook = {
2173         .instr_mask = 0xfff00000,
2174         .instr_val  = 0xd5300000,
2175         .pstate_mask = PSR_AA32_MODE_MASK,
2176         .pstate_val = PSR_MODE_EL0t,
2177         .fn = emulate_mrs,
2178 };
2179
2180 static int __init enable_mrs_emulation(void)
2181 {
2182         register_undef_hook(&mrs_hook);
2183         return 0;
2184 }
2185
2186 core_initcall(enable_mrs_emulation);
2187
2188 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2189                           char *buf)
2190 {
2191         if (__meltdown_safe)
2192                 return sprintf(buf, "Not affected\n");
2193
2194         if (arm64_kernel_unmapped_at_el0())
2195                 return sprintf(buf, "Mitigation: PTI\n");
2196
2197         return sprintf(buf, "Vulnerable\n");
2198 }