tracing: Make sure RCU is watching before calling a stack trace
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
34 #include <asm/virt.h>
35
36 unsigned long elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
38
39 #ifdef CONFIG_COMPAT
40 #define COMPAT_ELF_HWCAP_DEFAULT        \
41                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46                                  COMPAT_HWCAP_LPAE)
47 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48 unsigned int compat_elf_hwcap2 __read_mostly;
49 #endif
50
51 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcaps);
53
54 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
55 EXPORT_SYMBOL(cpu_hwcap_keys);
56
57 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
58         {                                               \
59                 .sign = SIGNED,                         \
60                 .visible = VISIBLE,                     \
61                 .strict = STRICT,                       \
62                 .type = TYPE,                           \
63                 .shift = SHIFT,                         \
64                 .width = WIDTH,                         \
65                 .safe_val = SAFE_VAL,                   \
66         }
67
68 /* Define a feature with unsigned values */
69 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
70         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
71
72 /* Define a feature with a signed value */
73 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
74         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
75
76 #define ARM64_FTR_END                                   \
77         {                                               \
78                 .width = 0,                             \
79         }
80
81 /* meta feature for alternatives */
82 static bool __maybe_unused
83 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
84
85
86 /*
87  * NOTE: Any changes to the visibility of features should be kept in
88  * sync with the documentation of the CPU feature register ABI.
89  */
90 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
91         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
92         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
93         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
94         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
95         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
96         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
97         ARM64_FTR_END,
98 };
99
100 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
101         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
102         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
103         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
104         ARM64_FTR_END,
105 };
106
107 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
108         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
109         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
110         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
111         /* Linux doesn't care about the EL3 */
112         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
113         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
114         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
115         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
116         ARM64_FTR_END,
117 };
118
119 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
120         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
121         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
122         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
123         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
124         /* Linux shouldn't care about secure memory */
125         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
128         /*
129          * Differing PARange is fine as long as all peripherals and memory are mapped
130          * within the minimum PARange of all CPUs
131          */
132         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
133         ARM64_FTR_END,
134 };
135
136 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
137         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
138         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
139         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
140         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
141         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
142         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
143         ARM64_FTR_END,
144 };
145
146 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
147         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
148         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
149         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
150         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
151         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
152         ARM64_FTR_END,
153 };
154
155 static const struct arm64_ftr_bits ftr_ctr[] = {
156         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),   /* RAO */
157         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),     /* CWG */
158         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),      /* ERG */
159         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),      /* DminLine */
160         /*
161          * Linux can handle differing I-cache policies. Userspace JITs will
162          * make use of *minLine.
163          * If we have differing I-cache policies, report it as the weakest - VIPT.
164          */
165         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
166         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* IminLine */
167         ARM64_FTR_END,
168 };
169
170 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
171         .name           = "SYS_CTR_EL0",
172         .ftr_bits       = ftr_ctr
173 };
174
175 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
176         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf),        /* InnerShr */
177         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0),    /* FCSE */
178         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
179         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0),    /* TCM */
180         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),    /* ShareLvl */
181         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
182         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),     /* PMSA */
183         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),     /* VMSA */
184         ARM64_FTR_END,
185 };
186
187 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
188         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
189         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
193         /*
194          * We can instantiate multiple PMU instances with different levels
195          * of support.
196          */
197         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
199         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
200         ARM64_FTR_END,
201 };
202
203 static const struct arm64_ftr_bits ftr_mvfr2[] = {
204         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* FPMisc */
205         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),             /* SIMDMisc */
206         ARM64_FTR_END,
207 };
208
209 static const struct arm64_ftr_bits ftr_dczid[] = {
210         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
211         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
212         ARM64_FTR_END,
213 };
214
215
216 static const struct arm64_ftr_bits ftr_id_isar5[] = {
217         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
219         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
220         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
221         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
222         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
223         ARM64_FTR_END,
224 };
225
226 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
227         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* ac2 */
228         ARM64_FTR_END,
229 };
230
231 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
232         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),    /* State3 */
233         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0),             /* State2 */
234         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* State1 */
235         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),             /* State0 */
236         ARM64_FTR_END,
237 };
238
239 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
240         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
241         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
242         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
243         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
244         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
245         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
246         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
247         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
248         ARM64_FTR_END,
249 };
250
251 /*
252  * Common ftr bits for a 32bit register with all hidden, strict
253  * attributes, with 4bit feature fields and a default safe value of
254  * 0. Covers the following 32bit registers:
255  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
256  */
257 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
258         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
259         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
260         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
262         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
263         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
264         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
265         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
266         ARM64_FTR_END,
267 };
268
269 /* Table for a single 32bit feature value */
270 static const struct arm64_ftr_bits ftr_single32[] = {
271         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
272         ARM64_FTR_END,
273 };
274
275 static const struct arm64_ftr_bits ftr_raz[] = {
276         ARM64_FTR_END,
277 };
278
279 #define ARM64_FTR_REG(id, table) {              \
280         .sys_id = id,                           \
281         .reg =  &(struct arm64_ftr_reg){        \
282                 .name = #id,                    \
283                 .ftr_bits = &((table)[0]),      \
284         }}
285
286 static const struct __ftr_reg_entry {
287         u32                     sys_id;
288         struct arm64_ftr_reg    *reg;
289 } arm64_ftr_regs[] = {
290
291         /* Op1 = 0, CRn = 0, CRm = 1 */
292         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
293         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
294         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
295         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
296         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
297         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
298         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
299
300         /* Op1 = 0, CRn = 0, CRm = 2 */
301         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
302         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
303         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
304         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
305         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
306         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
307         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
308
309         /* Op1 = 0, CRn = 0, CRm = 3 */
310         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
311         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
312         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
313
314         /* Op1 = 0, CRn = 0, CRm = 4 */
315         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
316         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
317
318         /* Op1 = 0, CRn = 0, CRm = 5 */
319         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
320         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
321
322         /* Op1 = 0, CRn = 0, CRm = 6 */
323         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
324         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
325
326         /* Op1 = 0, CRn = 0, CRm = 7 */
327         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
328         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
329         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
330
331         /* Op1 = 3, CRn = 0, CRm = 0 */
332         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
333         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
334
335         /* Op1 = 3, CRn = 14, CRm = 0 */
336         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
337 };
338
339 static int search_cmp_ftr_reg(const void *id, const void *regp)
340 {
341         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
342 }
343
344 /*
345  * get_arm64_ftr_reg - Lookup a feature register entry using its
346  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
347  * ascending order of sys_id , we use binary search to find a matching
348  * entry.
349  *
350  * returns - Upon success,  matching ftr_reg entry for id.
351  *         - NULL on failure. It is upto the caller to decide
352  *           the impact of a failure.
353  */
354 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
355 {
356         const struct __ftr_reg_entry *ret;
357
358         ret = bsearch((const void *)(unsigned long)sys_id,
359                         arm64_ftr_regs,
360                         ARRAY_SIZE(arm64_ftr_regs),
361                         sizeof(arm64_ftr_regs[0]),
362                         search_cmp_ftr_reg);
363         if (ret)
364                 return ret->reg;
365         return NULL;
366 }
367
368 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
369                                s64 ftr_val)
370 {
371         u64 mask = arm64_ftr_mask(ftrp);
372
373         reg &= ~mask;
374         reg |= (ftr_val << ftrp->shift) & mask;
375         return reg;
376 }
377
378 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
379                                 s64 cur)
380 {
381         s64 ret = 0;
382
383         switch (ftrp->type) {
384         case FTR_EXACT:
385                 ret = ftrp->safe_val;
386                 break;
387         case FTR_LOWER_SAFE:
388                 ret = new < cur ? new : cur;
389                 break;
390         case FTR_HIGHER_SAFE:
391                 ret = new > cur ? new : cur;
392                 break;
393         default:
394                 BUG();
395         }
396
397         return ret;
398 }
399
400 static void __init sort_ftr_regs(void)
401 {
402         int i;
403
404         /* Check that the array is sorted so that we can do the binary search */
405         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
406                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
407 }
408
409 /*
410  * Initialise the CPU feature register from Boot CPU values.
411  * Also initiliases the strict_mask for the register.
412  * Any bits that are not covered by an arm64_ftr_bits entry are considered
413  * RES0 for the system-wide value, and must strictly match.
414  */
415 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
416 {
417         u64 val = 0;
418         u64 strict_mask = ~0x0ULL;
419         u64 user_mask = 0;
420         u64 valid_mask = 0;
421
422         const struct arm64_ftr_bits *ftrp;
423         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
424
425         BUG_ON(!reg);
426
427         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
428                 u64 ftr_mask = arm64_ftr_mask(ftrp);
429                 s64 ftr_new = arm64_ftr_value(ftrp, new);
430
431                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
432
433                 valid_mask |= ftr_mask;
434                 if (!ftrp->strict)
435                         strict_mask &= ~ftr_mask;
436                 if (ftrp->visible)
437                         user_mask |= ftr_mask;
438                 else
439                         reg->user_val = arm64_ftr_set_value(ftrp,
440                                                             reg->user_val,
441                                                             ftrp->safe_val);
442         }
443
444         val &= valid_mask;
445
446         reg->sys_val = val;
447         reg->strict_mask = strict_mask;
448         reg->user_mask = user_mask;
449 }
450
451 void __init init_cpu_features(struct cpuinfo_arm64 *info)
452 {
453         /* Before we start using the tables, make sure it is sorted */
454         sort_ftr_regs();
455
456         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
457         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
458         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
459         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
460         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
461         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
462         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
463         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
464         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
465         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
466         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
467         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
468
469         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
470                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
471                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
472                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
473                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
474                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
475                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
476                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
477                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
478                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
479                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
480                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
481                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
482                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
483                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
484                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
485                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
486         }
487
488 }
489
490 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
491 {
492         const struct arm64_ftr_bits *ftrp;
493
494         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
495                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
496                 s64 ftr_new = arm64_ftr_value(ftrp, new);
497
498                 if (ftr_cur == ftr_new)
499                         continue;
500                 /* Find a safe value */
501                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
502                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
503         }
504
505 }
506
507 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
508 {
509         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
510
511         BUG_ON(!regp);
512         update_cpu_ftr_reg(regp, val);
513         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
514                 return 0;
515         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
516                         regp->name, boot, cpu, val);
517         return 1;
518 }
519
520 /*
521  * Update system wide CPU feature registers with the values from a
522  * non-boot CPU. Also performs SANITY checks to make sure that there
523  * aren't any insane variations from that of the boot CPU.
524  */
525 void update_cpu_features(int cpu,
526                          struct cpuinfo_arm64 *info,
527                          struct cpuinfo_arm64 *boot)
528 {
529         int taint = 0;
530
531         /*
532          * The kernel can handle differing I-cache policies, but otherwise
533          * caches should look identical. Userspace JITs will make use of
534          * *minLine.
535          */
536         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
537                                       info->reg_ctr, boot->reg_ctr);
538
539         /*
540          * Userspace may perform DC ZVA instructions. Mismatched block sizes
541          * could result in too much or too little memory being zeroed if a
542          * process is preempted and migrated between CPUs.
543          */
544         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
545                                       info->reg_dczid, boot->reg_dczid);
546
547         /* If different, timekeeping will be broken (especially with KVM) */
548         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
549                                       info->reg_cntfrq, boot->reg_cntfrq);
550
551         /*
552          * The kernel uses self-hosted debug features and expects CPUs to
553          * support identical debug features. We presently need CTX_CMPs, WRPs,
554          * and BRPs to be identical.
555          * ID_AA64DFR1 is currently RES0.
556          */
557         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
558                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
559         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
560                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
561         /*
562          * Even in big.LITTLE, processors should be identical instruction-set
563          * wise.
564          */
565         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
566                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
567         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
568                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
569
570         /*
571          * Differing PARange support is fine as long as all peripherals and
572          * memory are mapped within the minimum PARange of all CPUs.
573          * Linux should not care about secure memory.
574          */
575         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
576                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
577         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
578                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
579         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
580                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
581
582         /*
583          * EL3 is not our concern.
584          * ID_AA64PFR1 is currently RES0.
585          */
586         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
587                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
588         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
589                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
590
591         /*
592          * If we have AArch32, we care about 32-bit features for compat.
593          * If the system doesn't support AArch32, don't update them.
594          */
595         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
596                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
597
598                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
599                                         info->reg_id_dfr0, boot->reg_id_dfr0);
600                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
601                                         info->reg_id_isar0, boot->reg_id_isar0);
602                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
603                                         info->reg_id_isar1, boot->reg_id_isar1);
604                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
605                                         info->reg_id_isar2, boot->reg_id_isar2);
606                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
607                                         info->reg_id_isar3, boot->reg_id_isar3);
608                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
609                                         info->reg_id_isar4, boot->reg_id_isar4);
610                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
611                                         info->reg_id_isar5, boot->reg_id_isar5);
612
613                 /*
614                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
615                  * ACTLR formats could differ across CPUs and therefore would have to
616                  * be trapped for virtualization anyway.
617                  */
618                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
619                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
620                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
621                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
622                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
623                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
624                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
625                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
626                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
627                                         info->reg_id_pfr0, boot->reg_id_pfr0);
628                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
629                                         info->reg_id_pfr1, boot->reg_id_pfr1);
630                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
631                                         info->reg_mvfr0, boot->reg_mvfr0);
632                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
633                                         info->reg_mvfr1, boot->reg_mvfr1);
634                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
635                                         info->reg_mvfr2, boot->reg_mvfr2);
636         }
637
638         /*
639          * Mismatched CPU features are a recipe for disaster. Don't even
640          * pretend to support them.
641          */
642         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
643                         "Unsupported CPU feature variation.\n");
644 }
645
646 u64 read_sanitised_ftr_reg(u32 id)
647 {
648         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
649
650         /* We shouldn't get a request for an unsupported register */
651         BUG_ON(!regp);
652         return regp->sys_val;
653 }
654
655 #define read_sysreg_case(r)     \
656         case r:         return read_sysreg_s(r)
657
658 /*
659  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
660  * Read the system register on the current CPU
661  */
662 static u64 __read_sysreg_by_encoding(u32 sys_id)
663 {
664         switch (sys_id) {
665         read_sysreg_case(SYS_ID_PFR0_EL1);
666         read_sysreg_case(SYS_ID_PFR1_EL1);
667         read_sysreg_case(SYS_ID_DFR0_EL1);
668         read_sysreg_case(SYS_ID_MMFR0_EL1);
669         read_sysreg_case(SYS_ID_MMFR1_EL1);
670         read_sysreg_case(SYS_ID_MMFR2_EL1);
671         read_sysreg_case(SYS_ID_MMFR3_EL1);
672         read_sysreg_case(SYS_ID_ISAR0_EL1);
673         read_sysreg_case(SYS_ID_ISAR1_EL1);
674         read_sysreg_case(SYS_ID_ISAR2_EL1);
675         read_sysreg_case(SYS_ID_ISAR3_EL1);
676         read_sysreg_case(SYS_ID_ISAR4_EL1);
677         read_sysreg_case(SYS_ID_ISAR5_EL1);
678         read_sysreg_case(SYS_MVFR0_EL1);
679         read_sysreg_case(SYS_MVFR1_EL1);
680         read_sysreg_case(SYS_MVFR2_EL1);
681
682         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
683         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
684         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
685         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
686         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
687         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
688         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
689         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
690         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
691
692         read_sysreg_case(SYS_CNTFRQ_EL0);
693         read_sysreg_case(SYS_CTR_EL0);
694         read_sysreg_case(SYS_DCZID_EL0);
695
696         default:
697                 BUG();
698                 return 0;
699         }
700 }
701
702 #include <linux/irqchip/arm-gic-v3.h>
703
704 static bool
705 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
706 {
707         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
708
709         return val >= entry->min_field_value;
710 }
711
712 static bool
713 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
714 {
715         u64 val;
716
717         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
718         if (scope == SCOPE_SYSTEM)
719                 val = read_sanitised_ftr_reg(entry->sys_reg);
720         else
721                 val = __read_sysreg_by_encoding(entry->sys_reg);
722
723         return feature_matches(val, entry);
724 }
725
726 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
727 {
728         bool has_sre;
729
730         if (!has_cpuid_feature(entry, scope))
731                 return false;
732
733         has_sre = gic_enable_sre();
734         if (!has_sre)
735                 pr_warn_once("%s present but disabled by higher exception level\n",
736                              entry->desc);
737
738         return has_sre;
739 }
740
741 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
742 {
743         u32 midr = read_cpuid_id();
744
745         /* Cavium ThunderX pass 1.x and 2.x */
746         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
747                 MIDR_CPU_VAR_REV(0, 0),
748                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
749 }
750
751 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
752 {
753         return is_kernel_in_hyp_mode();
754 }
755
756 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
757                            int __unused)
758 {
759         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
760
761         /*
762          * Activate the lower HYP offset only if:
763          * - the idmap doesn't clash with it,
764          * - the kernel is not running at EL2.
765          */
766         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
767 }
768
769 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
770 {
771         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
772
773         return cpuid_feature_extract_signed_field(pfr0,
774                                         ID_AA64PFR0_FP_SHIFT) < 0;
775 }
776
777 static const struct arm64_cpu_capabilities arm64_features[] = {
778         {
779                 .desc = "GIC system register CPU interface",
780                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
781                 .def_scope = SCOPE_SYSTEM,
782                 .matches = has_useable_gicv3_cpuif,
783                 .sys_reg = SYS_ID_AA64PFR0_EL1,
784                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
785                 .sign = FTR_UNSIGNED,
786                 .min_field_value = 1,
787         },
788 #ifdef CONFIG_ARM64_PAN
789         {
790                 .desc = "Privileged Access Never",
791                 .capability = ARM64_HAS_PAN,
792                 .def_scope = SCOPE_SYSTEM,
793                 .matches = has_cpuid_feature,
794                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
795                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
796                 .sign = FTR_UNSIGNED,
797                 .min_field_value = 1,
798                 .enable = cpu_enable_pan,
799         },
800 #endif /* CONFIG_ARM64_PAN */
801 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
802         {
803                 .desc = "LSE atomic instructions",
804                 .capability = ARM64_HAS_LSE_ATOMICS,
805                 .def_scope = SCOPE_SYSTEM,
806                 .matches = has_cpuid_feature,
807                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
808                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
809                 .sign = FTR_UNSIGNED,
810                 .min_field_value = 2,
811         },
812 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
813         {
814                 .desc = "Software prefetching using PRFM",
815                 .capability = ARM64_HAS_NO_HW_PREFETCH,
816                 .def_scope = SCOPE_SYSTEM,
817                 .matches = has_no_hw_prefetch,
818         },
819 #ifdef CONFIG_ARM64_UAO
820         {
821                 .desc = "User Access Override",
822                 .capability = ARM64_HAS_UAO,
823                 .def_scope = SCOPE_SYSTEM,
824                 .matches = has_cpuid_feature,
825                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
826                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
827                 .min_field_value = 1,
828                 /*
829                  * We rely on stop_machine() calling uao_thread_switch() to set
830                  * UAO immediately after patching.
831                  */
832         },
833 #endif /* CONFIG_ARM64_UAO */
834 #ifdef CONFIG_ARM64_PAN
835         {
836                 .capability = ARM64_ALT_PAN_NOT_UAO,
837                 .def_scope = SCOPE_SYSTEM,
838                 .matches = cpufeature_pan_not_uao,
839         },
840 #endif /* CONFIG_ARM64_PAN */
841         {
842                 .desc = "Virtualization Host Extensions",
843                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
844                 .def_scope = SCOPE_SYSTEM,
845                 .matches = runs_at_el2,
846         },
847         {
848                 .desc = "32-bit EL0 Support",
849                 .capability = ARM64_HAS_32BIT_EL0,
850                 .def_scope = SCOPE_SYSTEM,
851                 .matches = has_cpuid_feature,
852                 .sys_reg = SYS_ID_AA64PFR0_EL1,
853                 .sign = FTR_UNSIGNED,
854                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
855                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
856         },
857         {
858                 .desc = "Reduced HYP mapping offset",
859                 .capability = ARM64_HYP_OFFSET_LOW,
860                 .def_scope = SCOPE_SYSTEM,
861                 .matches = hyp_offset_low,
862         },
863         {
864                 /* FP/SIMD is not implemented */
865                 .capability = ARM64_HAS_NO_FPSIMD,
866                 .def_scope = SCOPE_SYSTEM,
867                 .min_field_value = 0,
868                 .matches = has_no_fpsimd,
869         },
870         {},
871 };
872
873 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
874         {                                                       \
875                 .desc = #cap,                                   \
876                 .def_scope = SCOPE_SYSTEM,                      \
877                 .matches = has_cpuid_feature,                   \
878                 .sys_reg = reg,                                 \
879                 .field_pos = field,                             \
880                 .sign = s,                                      \
881                 .min_field_value = min_value,                   \
882                 .hwcap_type = type,                             \
883                 .hwcap = cap,                                   \
884         }
885
886 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
887         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
888         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
889         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
890         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
891         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
892         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
893         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
894         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
895         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
896         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
897         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
898         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
899         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
900         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
901         {},
902 };
903
904 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
905 #ifdef CONFIG_COMPAT
906         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
907         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
908         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
909         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
910         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
911 #endif
912         {},
913 };
914
915 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
916 {
917         switch (cap->hwcap_type) {
918         case CAP_HWCAP:
919                 elf_hwcap |= cap->hwcap;
920                 break;
921 #ifdef CONFIG_COMPAT
922         case CAP_COMPAT_HWCAP:
923                 compat_elf_hwcap |= (u32)cap->hwcap;
924                 break;
925         case CAP_COMPAT_HWCAP2:
926                 compat_elf_hwcap2 |= (u32)cap->hwcap;
927                 break;
928 #endif
929         default:
930                 WARN_ON(1);
931                 break;
932         }
933 }
934
935 /* Check if we have a particular HWCAP enabled */
936 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
937 {
938         bool rc;
939
940         switch (cap->hwcap_type) {
941         case CAP_HWCAP:
942                 rc = (elf_hwcap & cap->hwcap) != 0;
943                 break;
944 #ifdef CONFIG_COMPAT
945         case CAP_COMPAT_HWCAP:
946                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
947                 break;
948         case CAP_COMPAT_HWCAP2:
949                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
950                 break;
951 #endif
952         default:
953                 WARN_ON(1);
954                 rc = false;
955         }
956
957         return rc;
958 }
959
960 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
961 {
962         /* We support emulation of accesses to CPU ID feature registers */
963         elf_hwcap |= HWCAP_CPUID;
964         for (; hwcaps->matches; hwcaps++)
965                 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
966                         cap_set_elf_hwcap(hwcaps);
967 }
968
969 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
970                             const char *info)
971 {
972         for (; caps->matches; caps++) {
973                 if (!caps->matches(caps, caps->def_scope))
974                         continue;
975
976                 if (!cpus_have_cap(caps->capability) && caps->desc)
977                         pr_info("%s %s\n", info, caps->desc);
978                 cpus_set_cap(caps->capability);
979         }
980 }
981
982 /*
983  * Run through the enabled capabilities and enable() it on all active
984  * CPUs
985  */
986 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
987 {
988         for (; caps->matches; caps++)
989                 if (caps->enable && cpus_have_cap(caps->capability))
990                         /*
991                          * Use stop_machine() as it schedules the work allowing
992                          * us to modify PSTATE, instead of on_each_cpu() which
993                          * uses an IPI, giving us a PSTATE that disappears when
994                          * we return.
995                          */
996                         stop_machine(caps->enable, NULL, cpu_online_mask);
997 }
998
999 /*
1000  * Flag to indicate if we have computed the system wide
1001  * capabilities based on the boot time active CPUs. This
1002  * will be used to determine if a new booting CPU should
1003  * go through the verification process to make sure that it
1004  * supports the system capabilities, without using a hotplug
1005  * notifier.
1006  */
1007 static bool sys_caps_initialised;
1008
1009 static inline void set_sys_caps_initialised(void)
1010 {
1011         sys_caps_initialised = true;
1012 }
1013
1014 /*
1015  * Check for CPU features that are used in early boot
1016  * based on the Boot CPU value.
1017  */
1018 static void check_early_cpu_features(void)
1019 {
1020         verify_cpu_run_el();
1021         verify_cpu_asid_bits();
1022 }
1023
1024 static void
1025 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1026 {
1027
1028         for (; caps->matches; caps++)
1029                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1030                         pr_crit("CPU%d: missing HWCAP: %s\n",
1031                                         smp_processor_id(), caps->desc);
1032                         cpu_die_early();
1033                 }
1034 }
1035
1036 static void
1037 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1038 {
1039         for (; caps->matches; caps++) {
1040                 if (!cpus_have_cap(caps->capability))
1041                         continue;
1042                 /*
1043                  * If the new CPU misses an advertised feature, we cannot proceed
1044                  * further, park the cpu.
1045                  */
1046                 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1047                         pr_crit("CPU%d: missing feature: %s\n",
1048                                         smp_processor_id(), caps->desc);
1049                         cpu_die_early();
1050                 }
1051                 if (caps->enable)
1052                         caps->enable(NULL);
1053         }
1054 }
1055
1056 /*
1057  * Run through the enabled system capabilities and enable() it on this CPU.
1058  * The capabilities were decided based on the available CPUs at the boot time.
1059  * Any new CPU should match the system wide status of the capability. If the
1060  * new CPU doesn't have a capability which the system now has enabled, we
1061  * cannot do anything to fix it up and could cause unexpected failures. So
1062  * we park the CPU.
1063  */
1064 static void verify_local_cpu_capabilities(void)
1065 {
1066         verify_local_cpu_errata_workarounds();
1067         verify_local_cpu_features(arm64_features);
1068         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1069         if (system_supports_32bit_el0())
1070                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1071 }
1072
1073 void check_local_cpu_capabilities(void)
1074 {
1075         /*
1076          * All secondary CPUs should conform to the early CPU features
1077          * in use by the kernel based on boot CPU.
1078          */
1079         check_early_cpu_features();
1080
1081         /*
1082          * If we haven't finalised the system capabilities, this CPU gets
1083          * a chance to update the errata work arounds.
1084          * Otherwise, this CPU should verify that it has all the system
1085          * advertised capabilities.
1086          */
1087         if (!sys_caps_initialised)
1088                 update_cpu_errata_workarounds();
1089         else
1090                 verify_local_cpu_capabilities();
1091 }
1092
1093 static void __init setup_feature_capabilities(void)
1094 {
1095         update_cpu_capabilities(arm64_features, "detected feature:");
1096         enable_cpu_capabilities(arm64_features);
1097 }
1098
1099 /*
1100  * Check if the current CPU has a given feature capability.
1101  * Should be called from non-preemptible context.
1102  */
1103 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1104                                unsigned int cap)
1105 {
1106         const struct arm64_cpu_capabilities *caps;
1107
1108         if (WARN_ON(preemptible()))
1109                 return false;
1110
1111         for (caps = cap_array; caps->desc; caps++)
1112                 if (caps->capability == cap && caps->matches)
1113                         return caps->matches(caps, SCOPE_LOCAL_CPU);
1114
1115         return false;
1116 }
1117
1118 extern const struct arm64_cpu_capabilities arm64_errata[];
1119
1120 bool this_cpu_has_cap(unsigned int cap)
1121 {
1122         return (__this_cpu_has_cap(arm64_features, cap) ||
1123                 __this_cpu_has_cap(arm64_errata, cap));
1124 }
1125
1126 void __init setup_cpu_features(void)
1127 {
1128         u32 cwg;
1129         int cls;
1130
1131         /* Set the CPU feature capabilies */
1132         setup_feature_capabilities();
1133         enable_errata_workarounds();
1134         setup_elf_hwcaps(arm64_elf_hwcaps);
1135
1136         if (system_supports_32bit_el0())
1137                 setup_elf_hwcaps(compat_elf_hwcaps);
1138
1139         /* Advertise that we have computed the system capabilities */
1140         set_sys_caps_initialised();
1141
1142         /*
1143          * Check for sane CTR_EL0.CWG value.
1144          */
1145         cwg = cache_type_cwg();
1146         cls = cache_line_size();
1147         if (!cwg)
1148                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1149                         cls);
1150         if (L1_CACHE_BYTES < cls)
1151                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1152                         L1_CACHE_BYTES, cls);
1153 }
1154
1155 static bool __maybe_unused
1156 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1157 {
1158         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1159 }
1160
1161 /*
1162  * We emulate only the following system register space.
1163  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1164  * See Table C5-6 System instruction encodings for System register accesses,
1165  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1166  */
1167 static inline bool __attribute_const__ is_emulated(u32 id)
1168 {
1169         return (sys_reg_Op0(id) == 0x3 &&
1170                 sys_reg_CRn(id) == 0x0 &&
1171                 sys_reg_Op1(id) == 0x0 &&
1172                 (sys_reg_CRm(id) == 0 ||
1173                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1174 }
1175
1176 /*
1177  * With CRm == 0, reg should be one of :
1178  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1179  */
1180 static inline int emulate_id_reg(u32 id, u64 *valp)
1181 {
1182         switch (id) {
1183         case SYS_MIDR_EL1:
1184                 *valp = read_cpuid_id();
1185                 break;
1186         case SYS_MPIDR_EL1:
1187                 *valp = SYS_MPIDR_SAFE_VAL;
1188                 break;
1189         case SYS_REVIDR_EL1:
1190                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1191                 *valp = 0;
1192                 break;
1193         default:
1194                 return -EINVAL;
1195         }
1196
1197         return 0;
1198 }
1199
1200 static int emulate_sys_reg(u32 id, u64 *valp)
1201 {
1202         struct arm64_ftr_reg *regp;
1203
1204         if (!is_emulated(id))
1205                 return -EINVAL;
1206
1207         if (sys_reg_CRm(id) == 0)
1208                 return emulate_id_reg(id, valp);
1209
1210         regp = get_arm64_ftr_reg(id);
1211         if (regp)
1212                 *valp = arm64_ftr_reg_user_value(regp);
1213         else
1214                 /*
1215                  * The untracked registers are either IMPLEMENTATION DEFINED
1216                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
1217                  */
1218                 *valp = 0;
1219         return 0;
1220 }
1221
1222 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1223 {
1224         int rc;
1225         u32 sys_reg, dst;
1226         u64 val;
1227
1228         /*
1229          * sys_reg values are defined as used in mrs/msr instruction.
1230          * shift the imm value to get the encoding.
1231          */
1232         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1233         rc = emulate_sys_reg(sys_reg, &val);
1234         if (!rc) {
1235                 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1236                 pt_regs_write_reg(regs, dst, val);
1237                 regs->pc += 4;
1238         }
1239
1240         return rc;
1241 }
1242
1243 static struct undef_hook mrs_hook = {
1244         .instr_mask = 0xfff00000,
1245         .instr_val  = 0xd5300000,
1246         .pstate_mask = COMPAT_PSR_MODE_MASK,
1247         .pstate_val = PSR_MODE_EL0t,
1248         .fn = emulate_mrs,
1249 };
1250
1251 static int __init enable_mrs_emulation(void)
1252 {
1253         register_undef_hook(&mrs_hook);
1254         return 0;
1255 }
1256
1257 late_initcall(enable_mrs_emulation);