Merge tag 'mmc-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/crash_dump.h>
24 #include <linux/sort.h>
25 #include <linux/stop_machine.h>
26 #include <linux/types.h>
27 #include <linux/mm.h>
28 #include <asm/cpu.h>
29 #include <asm/cpufeature.h>
30 #include <asm/cpu_ops.h>
31 #include <asm/fpsimd.h>
32 #include <asm/mmu_context.h>
33 #include <asm/processor.h>
34 #include <asm/sysreg.h>
35 #include <asm/traps.h>
36 #include <asm/virt.h>
37
38 unsigned long elf_hwcap __read_mostly;
39 EXPORT_SYMBOL_GPL(elf_hwcap);
40
41 #ifdef CONFIG_COMPAT
42 #define COMPAT_ELF_HWCAP_DEFAULT        \
43                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
44                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
45                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
46                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
47                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
48                                  COMPAT_HWCAP_LPAE)
49 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
50 unsigned int compat_elf_hwcap2 __read_mostly;
51 #endif
52
53 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
54 EXPORT_SYMBOL(cpu_hwcaps);
55 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
56
57 /*
58  * Flag to indicate if we have computed the system wide
59  * capabilities based on the boot time active CPUs. This
60  * will be used to determine if a new booting CPU should
61  * go through the verification process to make sure that it
62  * supports the system capabilities, without using a hotplug
63  * notifier.
64  */
65 static bool sys_caps_initialised;
66
67 static inline void set_sys_caps_initialised(void)
68 {
69         sys_caps_initialised = true;
70 }
71
72 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
73 {
74         /* file-wide pr_fmt adds "CPU features: " prefix */
75         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
76         return 0;
77 }
78
79 static struct notifier_block cpu_hwcaps_notifier = {
80         .notifier_call = dump_cpu_hwcaps
81 };
82
83 static int __init register_cpu_hwcaps_dumper(void)
84 {
85         atomic_notifier_chain_register(&panic_notifier_list,
86                                        &cpu_hwcaps_notifier);
87         return 0;
88 }
89 __initcall(register_cpu_hwcaps_dumper);
90
91 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
92 EXPORT_SYMBOL(cpu_hwcap_keys);
93
94 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
95         {                                               \
96                 .sign = SIGNED,                         \
97                 .visible = VISIBLE,                     \
98                 .strict = STRICT,                       \
99                 .type = TYPE,                           \
100                 .shift = SHIFT,                         \
101                 .width = WIDTH,                         \
102                 .safe_val = SAFE_VAL,                   \
103         }
104
105 /* Define a feature with unsigned values */
106 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
107         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
108
109 /* Define a feature with a signed value */
110 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
111         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
112
113 #define ARM64_FTR_END                                   \
114         {                                               \
115                 .width = 0,                             \
116         }
117
118 /* meta feature for alternatives */
119 static bool __maybe_unused
120 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
121
122 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
123
124 /*
125  * NOTE: Any changes to the visibility of features should be kept in
126  * sync with the documentation of the CPU feature register ABI.
127  */
128 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
129         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
130         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
131         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
134         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
135         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
136         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
137         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
138         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
139         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
140         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
141         ARM64_FTR_END,
142 };
143
144 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
145         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
146         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
147                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
148         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
149                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
150         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
151         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
152         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
153         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
154                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
155         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
156                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
157         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
158         ARM64_FTR_END,
159 };
160
161 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
162         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
163         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
164         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
165         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
166                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
167         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
168         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
169         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
170         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
171         /* Linux doesn't care about the EL3 */
172         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
173         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
174         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
175         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
176         ARM64_FTR_END,
177 };
178
179 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
180         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
181         ARM64_FTR_END,
182 };
183
184 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
185         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
186         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
187         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
188         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
189         /* Linux shouldn't care about secure memory */
190         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
193         /*
194          * Differing PARange is fine as long as all peripherals and memory are mapped
195          * within the minimum PARange of all CPUs
196          */
197         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
198         ARM64_FTR_END,
199 };
200
201 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
202         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
203         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
204         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
205         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
206         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
207         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
208         ARM64_FTR_END,
209 };
210
211 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
212         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
214         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
215         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
216         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
217         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
219         ARM64_FTR_END,
220 };
221
222 static const struct arm64_ftr_bits ftr_ctr[] = {
223         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
224         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
225         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
226         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
227         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
228         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
229         /*
230          * Linux can handle differing I-cache policies. Userspace JITs will
231          * make use of *minLine.
232          * If we have differing I-cache policies, report it as the weakest - VIPT.
233          */
234         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
235         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
236         ARM64_FTR_END,
237 };
238
239 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
240         .name           = "SYS_CTR_EL0",
241         .ftr_bits       = ftr_ctr
242 };
243
244 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
245         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),   /* InnerShr */
246         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),       /* FCSE */
247         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
248         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),       /* TCM */
249         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),       /* ShareLvl */
250         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),    /* OuterShr */
251         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* PMSA */
252         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),        /* VMSA */
253         ARM64_FTR_END,
254 };
255
256 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
257         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
258         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
259         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
260         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
262         /*
263          * We can instantiate multiple PMU instances with different levels
264          * of support.
265          */
266         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
267         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
268         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
269         ARM64_FTR_END,
270 };
271
272 static const struct arm64_ftr_bits ftr_mvfr2[] = {
273         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* FPMisc */
274         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* SIMDMisc */
275         ARM64_FTR_END,
276 };
277
278 static const struct arm64_ftr_bits ftr_dczid[] = {
279         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
280         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
281         ARM64_FTR_END,
282 };
283
284
285 static const struct arm64_ftr_bits ftr_id_isar5[] = {
286         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
287         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
288         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
289         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
290         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
291         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
292         ARM64_FTR_END,
293 };
294
295 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
296         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* ac2 */
297         ARM64_FTR_END,
298 };
299
300 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
301         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),               /* State3 */
302         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),                /* State2 */
303         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* State1 */
304         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* State0 */
305         ARM64_FTR_END,
306 };
307
308 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
309         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
310         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
311         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
312         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
313         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
314         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
315         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
316         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
317         ARM64_FTR_END,
318 };
319
320 static const struct arm64_ftr_bits ftr_zcr[] = {
321         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
322                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
323         ARM64_FTR_END,
324 };
325
326 /*
327  * Common ftr bits for a 32bit register with all hidden, strict
328  * attributes, with 4bit feature fields and a default safe value of
329  * 0. Covers the following 32bit registers:
330  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
331  */
332 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
333         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
334         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
335         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
336         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
337         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
338         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
339         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
340         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
341         ARM64_FTR_END,
342 };
343
344 /* Table for a single 32bit feature value */
345 static const struct arm64_ftr_bits ftr_single32[] = {
346         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
347         ARM64_FTR_END,
348 };
349
350 static const struct arm64_ftr_bits ftr_raz[] = {
351         ARM64_FTR_END,
352 };
353
354 #define ARM64_FTR_REG(id, table) {              \
355         .sys_id = id,                           \
356         .reg =  &(struct arm64_ftr_reg){        \
357                 .name = #id,                    \
358                 .ftr_bits = &((table)[0]),      \
359         }}
360
361 static const struct __ftr_reg_entry {
362         u32                     sys_id;
363         struct arm64_ftr_reg    *reg;
364 } arm64_ftr_regs[] = {
365
366         /* Op1 = 0, CRn = 0, CRm = 1 */
367         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
368         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
369         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
370         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
371         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
372         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
373         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
374
375         /* Op1 = 0, CRn = 0, CRm = 2 */
376         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
377         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
378         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
379         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
380         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
381         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
382         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
383
384         /* Op1 = 0, CRn = 0, CRm = 3 */
385         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
386         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
387         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
388
389         /* Op1 = 0, CRn = 0, CRm = 4 */
390         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
391         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
392         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
393
394         /* Op1 = 0, CRn = 0, CRm = 5 */
395         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
396         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
397
398         /* Op1 = 0, CRn = 0, CRm = 6 */
399         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
400         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
401
402         /* Op1 = 0, CRn = 0, CRm = 7 */
403         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
404         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
405         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
406
407         /* Op1 = 0, CRn = 1, CRm = 2 */
408         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
409
410         /* Op1 = 3, CRn = 0, CRm = 0 */
411         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
412         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
413
414         /* Op1 = 3, CRn = 14, CRm = 0 */
415         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
416 };
417
418 static int search_cmp_ftr_reg(const void *id, const void *regp)
419 {
420         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
421 }
422
423 /*
424  * get_arm64_ftr_reg - Lookup a feature register entry using its
425  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
426  * ascending order of sys_id , we use binary search to find a matching
427  * entry.
428  *
429  * returns - Upon success,  matching ftr_reg entry for id.
430  *         - NULL on failure. It is upto the caller to decide
431  *           the impact of a failure.
432  */
433 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
434 {
435         const struct __ftr_reg_entry *ret;
436
437         ret = bsearch((const void *)(unsigned long)sys_id,
438                         arm64_ftr_regs,
439                         ARRAY_SIZE(arm64_ftr_regs),
440                         sizeof(arm64_ftr_regs[0]),
441                         search_cmp_ftr_reg);
442         if (ret)
443                 return ret->reg;
444         return NULL;
445 }
446
447 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
448                                s64 ftr_val)
449 {
450         u64 mask = arm64_ftr_mask(ftrp);
451
452         reg &= ~mask;
453         reg |= (ftr_val << ftrp->shift) & mask;
454         return reg;
455 }
456
457 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
458                                 s64 cur)
459 {
460         s64 ret = 0;
461
462         switch (ftrp->type) {
463         case FTR_EXACT:
464                 ret = ftrp->safe_val;
465                 break;
466         case FTR_LOWER_SAFE:
467                 ret = new < cur ? new : cur;
468                 break;
469         case FTR_HIGHER_SAFE:
470                 ret = new > cur ? new : cur;
471                 break;
472         default:
473                 BUG();
474         }
475
476         return ret;
477 }
478
479 static void __init sort_ftr_regs(void)
480 {
481         int i;
482
483         /* Check that the array is sorted so that we can do the binary search */
484         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
485                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
486 }
487
488 /*
489  * Initialise the CPU feature register from Boot CPU values.
490  * Also initiliases the strict_mask for the register.
491  * Any bits that are not covered by an arm64_ftr_bits entry are considered
492  * RES0 for the system-wide value, and must strictly match.
493  */
494 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
495 {
496         u64 val = 0;
497         u64 strict_mask = ~0x0ULL;
498         u64 user_mask = 0;
499         u64 valid_mask = 0;
500
501         const struct arm64_ftr_bits *ftrp;
502         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
503
504         BUG_ON(!reg);
505
506         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
507                 u64 ftr_mask = arm64_ftr_mask(ftrp);
508                 s64 ftr_new = arm64_ftr_value(ftrp, new);
509
510                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
511
512                 valid_mask |= ftr_mask;
513                 if (!ftrp->strict)
514                         strict_mask &= ~ftr_mask;
515                 if (ftrp->visible)
516                         user_mask |= ftr_mask;
517                 else
518                         reg->user_val = arm64_ftr_set_value(ftrp,
519                                                             reg->user_val,
520                                                             ftrp->safe_val);
521         }
522
523         val &= valid_mask;
524
525         reg->sys_val = val;
526         reg->strict_mask = strict_mask;
527         reg->user_mask = user_mask;
528 }
529
530 extern const struct arm64_cpu_capabilities arm64_errata[];
531 static const struct arm64_cpu_capabilities arm64_features[];
532
533 static void __init
534 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
535 {
536         for (; caps->matches; caps++) {
537                 if (WARN(caps->capability >= ARM64_NCAPS,
538                         "Invalid capability %d\n", caps->capability))
539                         continue;
540                 if (WARN(cpu_hwcaps_ptrs[caps->capability],
541                         "Duplicate entry for capability %d\n",
542                         caps->capability))
543                         continue;
544                 cpu_hwcaps_ptrs[caps->capability] = caps;
545         }
546 }
547
548 static void __init init_cpu_hwcaps_indirect_list(void)
549 {
550         init_cpu_hwcaps_indirect_list_from_array(arm64_features);
551         init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
552 }
553
554 static void __init setup_boot_cpu_capabilities(void);
555
556 void __init init_cpu_features(struct cpuinfo_arm64 *info)
557 {
558         /* Before we start using the tables, make sure it is sorted */
559         sort_ftr_regs();
560
561         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
562         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
563         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
564         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
565         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
566         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
567         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
568         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
569         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
570         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
571         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
572         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
573         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
574
575         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
576                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
577                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
578                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
579                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
580                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
581                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
582                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
583                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
584                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
585                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
586                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
587                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
588                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
589                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
590                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
591                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
592         }
593
594         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
595                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
596                 sve_init_vq_map();
597         }
598
599         /*
600          * Initialize the indirect array of CPU hwcaps capabilities pointers
601          * before we handle the boot CPU below.
602          */
603         init_cpu_hwcaps_indirect_list();
604
605         /*
606          * Detect and enable early CPU capabilities based on the boot CPU,
607          * after we have initialised the CPU feature infrastructure.
608          */
609         setup_boot_cpu_capabilities();
610 }
611
612 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
613 {
614         const struct arm64_ftr_bits *ftrp;
615
616         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
617                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
618                 s64 ftr_new = arm64_ftr_value(ftrp, new);
619
620                 if (ftr_cur == ftr_new)
621                         continue;
622                 /* Find a safe value */
623                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
624                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
625         }
626
627 }
628
629 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
630 {
631         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
632
633         BUG_ON(!regp);
634         update_cpu_ftr_reg(regp, val);
635         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
636                 return 0;
637         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
638                         regp->name, boot, cpu, val);
639         return 1;
640 }
641
642 /*
643  * Update system wide CPU feature registers with the values from a
644  * non-boot CPU. Also performs SANITY checks to make sure that there
645  * aren't any insane variations from that of the boot CPU.
646  */
647 void update_cpu_features(int cpu,
648                          struct cpuinfo_arm64 *info,
649                          struct cpuinfo_arm64 *boot)
650 {
651         int taint = 0;
652
653         /*
654          * The kernel can handle differing I-cache policies, but otherwise
655          * caches should look identical. Userspace JITs will make use of
656          * *minLine.
657          */
658         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
659                                       info->reg_ctr, boot->reg_ctr);
660
661         /*
662          * Userspace may perform DC ZVA instructions. Mismatched block sizes
663          * could result in too much or too little memory being zeroed if a
664          * process is preempted and migrated between CPUs.
665          */
666         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
667                                       info->reg_dczid, boot->reg_dczid);
668
669         /* If different, timekeeping will be broken (especially with KVM) */
670         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
671                                       info->reg_cntfrq, boot->reg_cntfrq);
672
673         /*
674          * The kernel uses self-hosted debug features and expects CPUs to
675          * support identical debug features. We presently need CTX_CMPs, WRPs,
676          * and BRPs to be identical.
677          * ID_AA64DFR1 is currently RES0.
678          */
679         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
680                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
681         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
682                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
683         /*
684          * Even in big.LITTLE, processors should be identical instruction-set
685          * wise.
686          */
687         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
688                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
689         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
690                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
691
692         /*
693          * Differing PARange support is fine as long as all peripherals and
694          * memory are mapped within the minimum PARange of all CPUs.
695          * Linux should not care about secure memory.
696          */
697         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
698                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
699         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
700                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
701         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
702                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
703
704         /*
705          * EL3 is not our concern.
706          */
707         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
708                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
709         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
710                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
711
712         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
713                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
714
715         /*
716          * If we have AArch32, we care about 32-bit features for compat.
717          * If the system doesn't support AArch32, don't update them.
718          */
719         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
720                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
721
722                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
723                                         info->reg_id_dfr0, boot->reg_id_dfr0);
724                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
725                                         info->reg_id_isar0, boot->reg_id_isar0);
726                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
727                                         info->reg_id_isar1, boot->reg_id_isar1);
728                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
729                                         info->reg_id_isar2, boot->reg_id_isar2);
730                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
731                                         info->reg_id_isar3, boot->reg_id_isar3);
732                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
733                                         info->reg_id_isar4, boot->reg_id_isar4);
734                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
735                                         info->reg_id_isar5, boot->reg_id_isar5);
736
737                 /*
738                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
739                  * ACTLR formats could differ across CPUs and therefore would have to
740                  * be trapped for virtualization anyway.
741                  */
742                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
743                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
744                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
745                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
746                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
747                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
748                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
749                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
750                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
751                                         info->reg_id_pfr0, boot->reg_id_pfr0);
752                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
753                                         info->reg_id_pfr1, boot->reg_id_pfr1);
754                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
755                                         info->reg_mvfr0, boot->reg_mvfr0);
756                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
757                                         info->reg_mvfr1, boot->reg_mvfr1);
758                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
759                                         info->reg_mvfr2, boot->reg_mvfr2);
760         }
761
762         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
763                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
764                                         info->reg_zcr, boot->reg_zcr);
765
766                 /* Probe vector lengths, unless we already gave up on SVE */
767                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
768                     !sys_caps_initialised)
769                         sve_update_vq_map();
770         }
771
772         /*
773          * Mismatched CPU features are a recipe for disaster. Don't even
774          * pretend to support them.
775          */
776         if (taint) {
777                 pr_warn_once("Unsupported CPU feature variation detected.\n");
778                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
779         }
780 }
781
782 u64 read_sanitised_ftr_reg(u32 id)
783 {
784         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
785
786         /* We shouldn't get a request for an unsupported register */
787         BUG_ON(!regp);
788         return regp->sys_val;
789 }
790
791 #define read_sysreg_case(r)     \
792         case r:         return read_sysreg_s(r)
793
794 /*
795  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
796  * Read the system register on the current CPU
797  */
798 static u64 __read_sysreg_by_encoding(u32 sys_id)
799 {
800         switch (sys_id) {
801         read_sysreg_case(SYS_ID_PFR0_EL1);
802         read_sysreg_case(SYS_ID_PFR1_EL1);
803         read_sysreg_case(SYS_ID_DFR0_EL1);
804         read_sysreg_case(SYS_ID_MMFR0_EL1);
805         read_sysreg_case(SYS_ID_MMFR1_EL1);
806         read_sysreg_case(SYS_ID_MMFR2_EL1);
807         read_sysreg_case(SYS_ID_MMFR3_EL1);
808         read_sysreg_case(SYS_ID_ISAR0_EL1);
809         read_sysreg_case(SYS_ID_ISAR1_EL1);
810         read_sysreg_case(SYS_ID_ISAR2_EL1);
811         read_sysreg_case(SYS_ID_ISAR3_EL1);
812         read_sysreg_case(SYS_ID_ISAR4_EL1);
813         read_sysreg_case(SYS_ID_ISAR5_EL1);
814         read_sysreg_case(SYS_MVFR0_EL1);
815         read_sysreg_case(SYS_MVFR1_EL1);
816         read_sysreg_case(SYS_MVFR2_EL1);
817
818         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
819         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
820         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
821         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
822         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
823         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
824         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
825         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
826         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
827
828         read_sysreg_case(SYS_CNTFRQ_EL0);
829         read_sysreg_case(SYS_CTR_EL0);
830         read_sysreg_case(SYS_DCZID_EL0);
831
832         default:
833                 BUG();
834                 return 0;
835         }
836 }
837
838 #include <linux/irqchip/arm-gic-v3.h>
839
840 static bool
841 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
842 {
843         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
844
845         return val >= entry->min_field_value;
846 }
847
848 static bool
849 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
850 {
851         u64 val;
852
853         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
854         if (scope == SCOPE_SYSTEM)
855                 val = read_sanitised_ftr_reg(entry->sys_reg);
856         else
857                 val = __read_sysreg_by_encoding(entry->sys_reg);
858
859         return feature_matches(val, entry);
860 }
861
862 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
863 {
864         bool has_sre;
865
866         if (!has_cpuid_feature(entry, scope))
867                 return false;
868
869         has_sre = gic_enable_sre();
870         if (!has_sre)
871                 pr_warn_once("%s present but disabled by higher exception level\n",
872                              entry->desc);
873
874         return has_sre;
875 }
876
877 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
878 {
879         u32 midr = read_cpuid_id();
880
881         /* Cavium ThunderX pass 1.x and 2.x */
882         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
883                 MIDR_CPU_VAR_REV(0, 0),
884                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
885 }
886
887 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
888 {
889         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
890
891         return cpuid_feature_extract_signed_field(pfr0,
892                                         ID_AA64PFR0_FP_SHIFT) < 0;
893 }
894
895 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
896                           int scope)
897 {
898         u64 ctr;
899
900         if (scope == SCOPE_SYSTEM)
901                 ctr = arm64_ftr_reg_ctrel0.sys_val;
902         else
903                 ctr = read_cpuid_effective_cachetype();
904
905         return ctr & BIT(CTR_IDC_SHIFT);
906 }
907
908 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
909 {
910         /*
911          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
912          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
913          * to the CTR_EL0 on this CPU and emulate it with the real/safe
914          * value.
915          */
916         if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
917                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
918 }
919
920 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
921                           int scope)
922 {
923         u64 ctr;
924
925         if (scope == SCOPE_SYSTEM)
926                 ctr = arm64_ftr_reg_ctrel0.sys_val;
927         else
928                 ctr = read_cpuid_cachetype();
929
930         return ctr & BIT(CTR_DIC_SHIFT);
931 }
932
933 static bool __maybe_unused
934 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
935 {
936         /*
937          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
938          * may share TLB entries with a CPU stuck in the crashed
939          * kernel.
940          */
941          if (is_kdump_kernel())
942                 return false;
943
944         return has_cpuid_feature(entry, scope);
945 }
946
947 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
948 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
949
950 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
951                                 int scope)
952 {
953         /* List of CPUs that are not vulnerable and don't need KPTI */
954         static const struct midr_range kpti_safe_list[] = {
955                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
956                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
957                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
958                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
959                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
960                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
961                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
962                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
963                 { /* sentinel */ }
964         };
965         char const *str = "command line option";
966
967         /*
968          * For reasons that aren't entirely clear, enabling KPTI on Cavium
969          * ThunderX leads to apparent I-cache corruption of kernel text, which
970          * ends as well as you might imagine. Don't even try.
971          */
972         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
973                 str = "ARM64_WORKAROUND_CAVIUM_27456";
974                 __kpti_forced = -1;
975         }
976
977         /* Forced? */
978         if (__kpti_forced) {
979                 pr_info_once("kernel page table isolation forced %s by %s\n",
980                              __kpti_forced > 0 ? "ON" : "OFF", str);
981                 return __kpti_forced > 0;
982         }
983
984         /* Useful for KASLR robustness */
985         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
986                 return true;
987
988         /* Don't force KPTI for CPUs that are not vulnerable */
989         if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
990                 return false;
991
992         /* Defer to CPU feature registers */
993         return !has_cpuid_feature(entry, scope);
994 }
995
996 static void
997 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
998 {
999         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1000         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1001         kpti_remap_fn *remap_fn;
1002
1003         static bool kpti_applied = false;
1004         int cpu = smp_processor_id();
1005
1006         if (kpti_applied)
1007                 return;
1008
1009         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1010
1011         cpu_install_idmap();
1012         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1013         cpu_uninstall_idmap();
1014
1015         if (!cpu)
1016                 kpti_applied = true;
1017
1018         return;
1019 }
1020
1021 static int __init parse_kpti(char *str)
1022 {
1023         bool enabled;
1024         int ret = strtobool(str, &enabled);
1025
1026         if (ret)
1027                 return ret;
1028
1029         __kpti_forced = enabled ? 1 : -1;
1030         return 0;
1031 }
1032 early_param("kpti", parse_kpti);
1033 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1034
1035 #ifdef CONFIG_ARM64_HW_AFDBM
1036 static inline void __cpu_enable_hw_dbm(void)
1037 {
1038         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1039
1040         write_sysreg(tcr, tcr_el1);
1041         isb();
1042 }
1043
1044 static bool cpu_has_broken_dbm(void)
1045 {
1046         /* List of CPUs which have broken DBM support. */
1047         static const struct midr_range cpus[] = {
1048 #ifdef CONFIG_ARM64_ERRATUM_1024718
1049                 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1050 #endif
1051                 {},
1052         };
1053
1054         return is_midr_in_range_list(read_cpuid_id(), cpus);
1055 }
1056
1057 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1058 {
1059         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1060                !cpu_has_broken_dbm();
1061 }
1062
1063 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1064 {
1065         if (cpu_can_use_dbm(cap))
1066                 __cpu_enable_hw_dbm();
1067 }
1068
1069 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1070                        int __unused)
1071 {
1072         static bool detected = false;
1073         /*
1074          * DBM is a non-conflicting feature. i.e, the kernel can safely
1075          * run a mix of CPUs with and without the feature. So, we
1076          * unconditionally enable the capability to allow any late CPU
1077          * to use the feature. We only enable the control bits on the
1078          * CPU, if it actually supports.
1079          *
1080          * We have to make sure we print the "feature" detection only
1081          * when at least one CPU actually uses it. So check if this CPU
1082          * can actually use it and print the message exactly once.
1083          *
1084          * This is safe as all CPUs (including secondary CPUs - due to the
1085          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1086          * goes through the "matches" check exactly once. Also if a CPU
1087          * matches the criteria, it is guaranteed that the CPU will turn
1088          * the DBM on, as the capability is unconditionally enabled.
1089          */
1090         if (!detected && cpu_can_use_dbm(cap)) {
1091                 detected = true;
1092                 pr_info("detected: Hardware dirty bit management\n");
1093         }
1094
1095         return true;
1096 }
1097
1098 #endif
1099
1100 #ifdef CONFIG_ARM64_VHE
1101 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1102 {
1103         return is_kernel_in_hyp_mode();
1104 }
1105
1106 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1107 {
1108         /*
1109          * Copy register values that aren't redirected by hardware.
1110          *
1111          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1112          * this value to tpidr_el2 before we patch the code. Once we've done
1113          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1114          * do anything here.
1115          */
1116         if (!alternatives_applied)
1117                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1118 }
1119 #endif
1120
1121 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1122 {
1123         u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1124
1125         /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1126         WARN_ON(val & (7 << 27 | 7 << 21));
1127 }
1128
1129 #ifdef CONFIG_ARM64_SSBD
1130 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1131 {
1132         if (user_mode(regs))
1133                 return 1;
1134
1135         if (instr & BIT(PSTATE_Imm_shift))
1136                 regs->pstate |= PSR_SSBS_BIT;
1137         else
1138                 regs->pstate &= ~PSR_SSBS_BIT;
1139
1140         arm64_skip_faulting_instruction(regs, 4);
1141         return 0;
1142 }
1143
1144 static struct undef_hook ssbs_emulation_hook = {
1145         .instr_mask     = ~(1U << PSTATE_Imm_shift),
1146         .instr_val      = 0xd500401f | PSTATE_SSBS,
1147         .fn             = ssbs_emulation_handler,
1148 };
1149
1150 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1151 {
1152         static bool undef_hook_registered = false;
1153         static DEFINE_SPINLOCK(hook_lock);
1154
1155         spin_lock(&hook_lock);
1156         if (!undef_hook_registered) {
1157                 register_undef_hook(&ssbs_emulation_hook);
1158                 undef_hook_registered = true;
1159         }
1160         spin_unlock(&hook_lock);
1161
1162         if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1163                 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1164                 arm64_set_ssbd_mitigation(false);
1165         } else {
1166                 arm64_set_ssbd_mitigation(true);
1167         }
1168 }
1169 #endif /* CONFIG_ARM64_SSBD */
1170
1171 #ifdef CONFIG_ARM64_PAN
1172 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1173 {
1174         /*
1175          * We modify PSTATE. This won't work from irq context as the PSTATE
1176          * is discarded once we return from the exception.
1177          */
1178         WARN_ON_ONCE(in_interrupt());
1179
1180         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1181         asm(SET_PSTATE_PAN(1));
1182 }
1183 #endif /* CONFIG_ARM64_PAN */
1184
1185 #ifdef CONFIG_ARM64_RAS_EXTN
1186 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1187 {
1188         /* Firmware may have left a deferred SError in this register. */
1189         write_sysreg_s(0, SYS_DISR_EL1);
1190 }
1191 #endif /* CONFIG_ARM64_RAS_EXTN */
1192
1193 #ifdef CONFIG_ARM64_PTR_AUTH
1194 static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap)
1195 {
1196         sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB |
1197                                        SCTLR_ELx_ENDA | SCTLR_ELx_ENDB);
1198 }
1199 #endif /* CONFIG_ARM64_PTR_AUTH */
1200
1201 static const struct arm64_cpu_capabilities arm64_features[] = {
1202         {
1203                 .desc = "GIC system register CPU interface",
1204                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1205                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1206                 .matches = has_useable_gicv3_cpuif,
1207                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1208                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1209                 .sign = FTR_UNSIGNED,
1210                 .min_field_value = 1,
1211         },
1212 #ifdef CONFIG_ARM64_PAN
1213         {
1214                 .desc = "Privileged Access Never",
1215                 .capability = ARM64_HAS_PAN,
1216                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1217                 .matches = has_cpuid_feature,
1218                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1219                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1220                 .sign = FTR_UNSIGNED,
1221                 .min_field_value = 1,
1222                 .cpu_enable = cpu_enable_pan,
1223         },
1224 #endif /* CONFIG_ARM64_PAN */
1225 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1226         {
1227                 .desc = "LSE atomic instructions",
1228                 .capability = ARM64_HAS_LSE_ATOMICS,
1229                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1230                 .matches = has_cpuid_feature,
1231                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1232                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1233                 .sign = FTR_UNSIGNED,
1234                 .min_field_value = 2,
1235         },
1236 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1237         {
1238                 .desc = "Software prefetching using PRFM",
1239                 .capability = ARM64_HAS_NO_HW_PREFETCH,
1240                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1241                 .matches = has_no_hw_prefetch,
1242         },
1243 #ifdef CONFIG_ARM64_UAO
1244         {
1245                 .desc = "User Access Override",
1246                 .capability = ARM64_HAS_UAO,
1247                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1248                 .matches = has_cpuid_feature,
1249                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1250                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1251                 .min_field_value = 1,
1252                 /*
1253                  * We rely on stop_machine() calling uao_thread_switch() to set
1254                  * UAO immediately after patching.
1255                  */
1256         },
1257 #endif /* CONFIG_ARM64_UAO */
1258 #ifdef CONFIG_ARM64_PAN
1259         {
1260                 .capability = ARM64_ALT_PAN_NOT_UAO,
1261                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1262                 .matches = cpufeature_pan_not_uao,
1263         },
1264 #endif /* CONFIG_ARM64_PAN */
1265 #ifdef CONFIG_ARM64_VHE
1266         {
1267                 .desc = "Virtualization Host Extensions",
1268                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1269                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1270                 .matches = runs_at_el2,
1271                 .cpu_enable = cpu_copy_el2regs,
1272         },
1273 #endif  /* CONFIG_ARM64_VHE */
1274         {
1275                 .desc = "32-bit EL0 Support",
1276                 .capability = ARM64_HAS_32BIT_EL0,
1277                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1278                 .matches = has_cpuid_feature,
1279                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1280                 .sign = FTR_UNSIGNED,
1281                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1282                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1283         },
1284 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1285         {
1286                 .desc = "Kernel page table isolation (KPTI)",
1287                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1288                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1289                 /*
1290                  * The ID feature fields below are used to indicate that
1291                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1292                  * more details.
1293                  */
1294                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1295                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1296                 .min_field_value = 1,
1297                 .matches = unmap_kernel_at_el0,
1298                 .cpu_enable = kpti_install_ng_mappings,
1299         },
1300 #endif
1301         {
1302                 /* FP/SIMD is not implemented */
1303                 .capability = ARM64_HAS_NO_FPSIMD,
1304                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1305                 .min_field_value = 0,
1306                 .matches = has_no_fpsimd,
1307         },
1308 #ifdef CONFIG_ARM64_PMEM
1309         {
1310                 .desc = "Data cache clean to Point of Persistence",
1311                 .capability = ARM64_HAS_DCPOP,
1312                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1313                 .matches = has_cpuid_feature,
1314                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1315                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1316                 .min_field_value = 1,
1317         },
1318 #endif
1319 #ifdef CONFIG_ARM64_SVE
1320         {
1321                 .desc = "Scalable Vector Extension",
1322                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1323                 .capability = ARM64_SVE,
1324                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1325                 .sign = FTR_UNSIGNED,
1326                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1327                 .min_field_value = ID_AA64PFR0_SVE,
1328                 .matches = has_cpuid_feature,
1329                 .cpu_enable = sve_kernel_enable,
1330         },
1331 #endif /* CONFIG_ARM64_SVE */
1332 #ifdef CONFIG_ARM64_RAS_EXTN
1333         {
1334                 .desc = "RAS Extension Support",
1335                 .capability = ARM64_HAS_RAS_EXTN,
1336                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1337                 .matches = has_cpuid_feature,
1338                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1339                 .sign = FTR_UNSIGNED,
1340                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1341                 .min_field_value = ID_AA64PFR0_RAS_V1,
1342                 .cpu_enable = cpu_clear_disr,
1343         },
1344 #endif /* CONFIG_ARM64_RAS_EXTN */
1345         {
1346                 .desc = "Data cache clean to the PoU not required for I/D coherence",
1347                 .capability = ARM64_HAS_CACHE_IDC,
1348                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1349                 .matches = has_cache_idc,
1350                 .cpu_enable = cpu_emulate_effective_ctr,
1351         },
1352         {
1353                 .desc = "Instruction cache invalidation not required for I/D coherence",
1354                 .capability = ARM64_HAS_CACHE_DIC,
1355                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1356                 .matches = has_cache_dic,
1357         },
1358         {
1359                 .desc = "Stage-2 Force Write-Back",
1360                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1361                 .capability = ARM64_HAS_STAGE2_FWB,
1362                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1363                 .sign = FTR_UNSIGNED,
1364                 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1365                 .min_field_value = 1,
1366                 .matches = has_cpuid_feature,
1367                 .cpu_enable = cpu_has_fwb,
1368         },
1369 #ifdef CONFIG_ARM64_HW_AFDBM
1370         {
1371                 /*
1372                  * Since we turn this on always, we don't want the user to
1373                  * think that the feature is available when it may not be.
1374                  * So hide the description.
1375                  *
1376                  * .desc = "Hardware pagetable Dirty Bit Management",
1377                  *
1378                  */
1379                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1380                 .capability = ARM64_HW_DBM,
1381                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1382                 .sign = FTR_UNSIGNED,
1383                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1384                 .min_field_value = 2,
1385                 .matches = has_hw_dbm,
1386                 .cpu_enable = cpu_enable_hw_dbm,
1387         },
1388 #endif
1389         {
1390                 .desc = "CRC32 instructions",
1391                 .capability = ARM64_HAS_CRC32,
1392                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1393                 .matches = has_cpuid_feature,
1394                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1395                 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1396                 .min_field_value = 1,
1397         },
1398 #ifdef CONFIG_ARM64_SSBD
1399         {
1400                 .desc = "Speculative Store Bypassing Safe (SSBS)",
1401                 .capability = ARM64_SSBS,
1402                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1403                 .matches = has_cpuid_feature,
1404                 .sys_reg = SYS_ID_AA64PFR1_EL1,
1405                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1406                 .sign = FTR_UNSIGNED,
1407                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1408                 .cpu_enable = cpu_enable_ssbs,
1409         },
1410 #endif
1411 #ifdef CONFIG_ARM64_CNP
1412         {
1413                 .desc = "Common not Private translations",
1414                 .capability = ARM64_HAS_CNP,
1415                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1416                 .matches = has_useable_cnp,
1417                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1418                 .sign = FTR_UNSIGNED,
1419                 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
1420                 .min_field_value = 1,
1421                 .cpu_enable = cpu_enable_cnp,
1422         },
1423 #endif
1424         {
1425                 .desc = "Speculation barrier (SB)",
1426                 .capability = ARM64_HAS_SB,
1427                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1428                 .matches = has_cpuid_feature,
1429                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1430                 .field_pos = ID_AA64ISAR1_SB_SHIFT,
1431                 .sign = FTR_UNSIGNED,
1432                 .min_field_value = 1,
1433         },
1434 #ifdef CONFIG_ARM64_PTR_AUTH
1435         {
1436                 .desc = "Address authentication (architected algorithm)",
1437                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1438                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1439                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1440                 .sign = FTR_UNSIGNED,
1441                 .field_pos = ID_AA64ISAR1_APA_SHIFT,
1442                 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1443                 .matches = has_cpuid_feature,
1444                 .cpu_enable = cpu_enable_address_auth,
1445         },
1446         {
1447                 .desc = "Address authentication (IMP DEF algorithm)",
1448                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1449                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1450                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1451                 .sign = FTR_UNSIGNED,
1452                 .field_pos = ID_AA64ISAR1_API_SHIFT,
1453                 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1454                 .matches = has_cpuid_feature,
1455                 .cpu_enable = cpu_enable_address_auth,
1456         },
1457         {
1458                 .desc = "Generic authentication (architected algorithm)",
1459                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1460                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1461                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1462                 .sign = FTR_UNSIGNED,
1463                 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
1464                 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1465                 .matches = has_cpuid_feature,
1466         },
1467         {
1468                 .desc = "Generic authentication (IMP DEF algorithm)",
1469                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1470                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1471                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1472                 .sign = FTR_UNSIGNED,
1473                 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
1474                 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1475                 .matches = has_cpuid_feature,
1476         },
1477 #endif /* CONFIG_ARM64_PTR_AUTH */
1478         {},
1479 };
1480
1481 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
1482                 .matches = has_cpuid_feature,                                   \
1483                 .sys_reg = reg,                                                 \
1484                 .field_pos = field,                                             \
1485                 .sign = s,                                                      \
1486                 .min_field_value = min_value,
1487
1488 #define __HWCAP_CAP(name, cap_type, cap)                                        \
1489                 .desc = name,                                                   \
1490                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
1491                 .hwcap_type = cap_type,                                         \
1492                 .hwcap = cap,                                                   \
1493
1494 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
1495         {                                                                       \
1496                 __HWCAP_CAP(#cap, cap_type, cap)                                \
1497                 HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
1498         }
1499
1500 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
1501         {                                                                       \
1502                 __HWCAP_CAP(#cap, cap_type, cap)                                \
1503                 .matches = cpucap_multi_entry_cap_matches,                      \
1504                 .match_list = list,                                             \
1505         }
1506
1507 #ifdef CONFIG_ARM64_PTR_AUTH
1508 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
1509         {
1510                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
1511                                   FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
1512         },
1513         {
1514                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
1515                                   FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
1516         },
1517         {},
1518 };
1519
1520 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
1521         {
1522                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
1523                                   FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
1524         },
1525         {
1526                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
1527                                   FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
1528         },
1529         {},
1530 };
1531 #endif
1532
1533 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1534         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1535         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1536         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1537         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1538         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1539         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1540         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1541         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1542         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1543         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1544         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1545         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1546         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1547         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1548         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1549         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1550         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1551         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1552         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1553         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1554         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1555         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1556         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1557         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
1558         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SB),
1559         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1560 #ifdef CONFIG_ARM64_SVE
1561         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1562 #endif
1563         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, HWCAP_SSBS),
1564 #ifdef CONFIG_ARM64_PTR_AUTH
1565         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, HWCAP_PACA),
1566         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, HWCAP_PACG),
1567 #endif
1568         {},
1569 };
1570
1571 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1572 #ifdef CONFIG_COMPAT
1573         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1574         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1575         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1576         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1577         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1578 #endif
1579         {},
1580 };
1581
1582 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1583 {
1584         switch (cap->hwcap_type) {
1585         case CAP_HWCAP:
1586                 elf_hwcap |= cap->hwcap;
1587                 break;
1588 #ifdef CONFIG_COMPAT
1589         case CAP_COMPAT_HWCAP:
1590                 compat_elf_hwcap |= (u32)cap->hwcap;
1591                 break;
1592         case CAP_COMPAT_HWCAP2:
1593                 compat_elf_hwcap2 |= (u32)cap->hwcap;
1594                 break;
1595 #endif
1596         default:
1597                 WARN_ON(1);
1598                 break;
1599         }
1600 }
1601
1602 /* Check if we have a particular HWCAP enabled */
1603 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1604 {
1605         bool rc;
1606
1607         switch (cap->hwcap_type) {
1608         case CAP_HWCAP:
1609                 rc = (elf_hwcap & cap->hwcap) != 0;
1610                 break;
1611 #ifdef CONFIG_COMPAT
1612         case CAP_COMPAT_HWCAP:
1613                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1614                 break;
1615         case CAP_COMPAT_HWCAP2:
1616                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1617                 break;
1618 #endif
1619         default:
1620                 WARN_ON(1);
1621                 rc = false;
1622         }
1623
1624         return rc;
1625 }
1626
1627 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1628 {
1629         /* We support emulation of accesses to CPU ID feature registers */
1630         elf_hwcap |= HWCAP_CPUID;
1631         for (; hwcaps->matches; hwcaps++)
1632                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1633                         cap_set_elf_hwcap(hwcaps);
1634 }
1635
1636 static void update_cpu_capabilities(u16 scope_mask)
1637 {
1638         int i;
1639         const struct arm64_cpu_capabilities *caps;
1640
1641         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1642         for (i = 0; i < ARM64_NCAPS; i++) {
1643                 caps = cpu_hwcaps_ptrs[i];
1644                 if (!caps || !(caps->type & scope_mask) ||
1645                     cpus_have_cap(caps->capability) ||
1646                     !caps->matches(caps, cpucap_default_scope(caps)))
1647                         continue;
1648
1649                 if (caps->desc)
1650                         pr_info("detected: %s\n", caps->desc);
1651                 cpus_set_cap(caps->capability);
1652         }
1653 }
1654
1655 /*
1656  * Enable all the available capabilities on this CPU. The capabilities
1657  * with BOOT_CPU scope are handled separately and hence skipped here.
1658  */
1659 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1660 {
1661         int i;
1662         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
1663
1664         for_each_available_cap(i) {
1665                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1666
1667                 if (WARN_ON(!cap))
1668                         continue;
1669
1670                 if (!(cap->type & non_boot_scope))
1671                         continue;
1672
1673                 if (cap->cpu_enable)
1674                         cap->cpu_enable(cap);
1675         }
1676         return 0;
1677 }
1678
1679 /*
1680  * Run through the enabled capabilities and enable() it on all active
1681  * CPUs
1682  */
1683 static void __init enable_cpu_capabilities(u16 scope_mask)
1684 {
1685         int i;
1686         const struct arm64_cpu_capabilities *caps;
1687         bool boot_scope;
1688
1689         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1690         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
1691
1692         for (i = 0; i < ARM64_NCAPS; i++) {
1693                 unsigned int num;
1694
1695                 caps = cpu_hwcaps_ptrs[i];
1696                 if (!caps || !(caps->type & scope_mask))
1697                         continue;
1698                 num = caps->capability;
1699                 if (!cpus_have_cap(num))
1700                         continue;
1701
1702                 /* Ensure cpus_have_const_cap(num) works */
1703                 static_branch_enable(&cpu_hwcap_keys[num]);
1704
1705                 if (boot_scope && caps->cpu_enable)
1706                         /*
1707                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
1708                          * before any secondary CPU boots. Thus, each secondary
1709                          * will enable the capability as appropriate via
1710                          * check_local_cpu_capabilities(). The only exception is
1711                          * the boot CPU, for which the capability must be
1712                          * enabled here. This approach avoids costly
1713                          * stop_machine() calls for this case.
1714                          */
1715                         caps->cpu_enable(caps);
1716         }
1717
1718         /*
1719          * For all non-boot scope capabilities, use stop_machine()
1720          * as it schedules the work allowing us to modify PSTATE,
1721          * instead of on_each_cpu() which uses an IPI, giving us a
1722          * PSTATE that disappears when we return.
1723          */
1724         if (!boot_scope)
1725                 stop_machine(cpu_enable_non_boot_scope_capabilities,
1726                              NULL, cpu_online_mask);
1727 }
1728
1729 /*
1730  * Run through the list of capabilities to check for conflicts.
1731  * If the system has already detected a capability, take necessary
1732  * action on this CPU.
1733  *
1734  * Returns "false" on conflicts.
1735  */
1736 static bool verify_local_cpu_caps(u16 scope_mask)
1737 {
1738         int i;
1739         bool cpu_has_cap, system_has_cap;
1740         const struct arm64_cpu_capabilities *caps;
1741
1742         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1743
1744         for (i = 0; i < ARM64_NCAPS; i++) {
1745                 caps = cpu_hwcaps_ptrs[i];
1746                 if (!caps || !(caps->type & scope_mask))
1747                         continue;
1748
1749                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1750                 system_has_cap = cpus_have_cap(caps->capability);
1751
1752                 if (system_has_cap) {
1753                         /*
1754                          * Check if the new CPU misses an advertised feature,
1755                          * which is not safe to miss.
1756                          */
1757                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1758                                 break;
1759                         /*
1760                          * We have to issue cpu_enable() irrespective of
1761                          * whether the CPU has it or not, as it is enabeld
1762                          * system wide. It is upto the call back to take
1763                          * appropriate action on this CPU.
1764                          */
1765                         if (caps->cpu_enable)
1766                                 caps->cpu_enable(caps);
1767                 } else {
1768                         /*
1769                          * Check if the CPU has this capability if it isn't
1770                          * safe to have when the system doesn't.
1771                          */
1772                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1773                                 break;
1774                 }
1775         }
1776
1777         if (i < ARM64_NCAPS) {
1778                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1779                         smp_processor_id(), caps->capability,
1780                         caps->desc, system_has_cap, cpu_has_cap);
1781                 return false;
1782         }
1783
1784         return true;
1785 }
1786
1787 /*
1788  * Check for CPU features that are used in early boot
1789  * based on the Boot CPU value.
1790  */
1791 static void check_early_cpu_features(void)
1792 {
1793         verify_cpu_asid_bits();
1794         /*
1795          * Early features are used by the kernel already. If there
1796          * is a conflict, we cannot proceed further.
1797          */
1798         if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1799                 cpu_panic_kernel();
1800 }
1801
1802 static void
1803 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1804 {
1805
1806         for (; caps->matches; caps++)
1807                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1808                         pr_crit("CPU%d: missing HWCAP: %s\n",
1809                                         smp_processor_id(), caps->desc);
1810                         cpu_die_early();
1811                 }
1812 }
1813
1814 static void verify_sve_features(void)
1815 {
1816         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1817         u64 zcr = read_zcr_features();
1818
1819         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1820         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1821
1822         if (len < safe_len || sve_verify_vq_map()) {
1823                 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1824                         smp_processor_id());
1825                 cpu_die_early();
1826         }
1827
1828         /* Add checks on other ZCR bits here if necessary */
1829 }
1830
1831
1832 /*
1833  * Run through the enabled system capabilities and enable() it on this CPU.
1834  * The capabilities were decided based on the available CPUs at the boot time.
1835  * Any new CPU should match the system wide status of the capability. If the
1836  * new CPU doesn't have a capability which the system now has enabled, we
1837  * cannot do anything to fix it up and could cause unexpected failures. So
1838  * we park the CPU.
1839  */
1840 static void verify_local_cpu_capabilities(void)
1841 {
1842         /*
1843          * The capabilities with SCOPE_BOOT_CPU are checked from
1844          * check_early_cpu_features(), as they need to be verified
1845          * on all secondary CPUs.
1846          */
1847         if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1848                 cpu_die_early();
1849
1850         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1851
1852         if (system_supports_32bit_el0())
1853                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1854
1855         if (system_supports_sve())
1856                 verify_sve_features();
1857 }
1858
1859 void check_local_cpu_capabilities(void)
1860 {
1861         /*
1862          * All secondary CPUs should conform to the early CPU features
1863          * in use by the kernel based on boot CPU.
1864          */
1865         check_early_cpu_features();
1866
1867         /*
1868          * If we haven't finalised the system capabilities, this CPU gets
1869          * a chance to update the errata work arounds and local features.
1870          * Otherwise, this CPU should verify that it has all the system
1871          * advertised capabilities.
1872          */
1873         if (!sys_caps_initialised)
1874                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
1875         else
1876                 verify_local_cpu_capabilities();
1877 }
1878
1879 static void __init setup_boot_cpu_capabilities(void)
1880 {
1881         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1882         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1883         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1884         enable_cpu_capabilities(SCOPE_BOOT_CPU);
1885 }
1886
1887 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1888 EXPORT_SYMBOL(arm64_const_caps_ready);
1889
1890 static void __init mark_const_caps_ready(void)
1891 {
1892         static_branch_enable(&arm64_const_caps_ready);
1893 }
1894
1895 bool this_cpu_has_cap(unsigned int n)
1896 {
1897         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
1898                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
1899
1900                 if (cap)
1901                         return cap->matches(cap, SCOPE_LOCAL_CPU);
1902         }
1903
1904         return false;
1905 }
1906
1907 static void __init setup_system_capabilities(void)
1908 {
1909         /*
1910          * We have finalised the system-wide safe feature
1911          * registers, finalise the capabilities that depend
1912          * on it. Also enable all the available capabilities,
1913          * that are not enabled already.
1914          */
1915         update_cpu_capabilities(SCOPE_SYSTEM);
1916         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1917 }
1918
1919 void __init setup_cpu_features(void)
1920 {
1921         u32 cwg;
1922
1923         setup_system_capabilities();
1924         mark_const_caps_ready();
1925         setup_elf_hwcaps(arm64_elf_hwcaps);
1926
1927         if (system_supports_32bit_el0())
1928                 setup_elf_hwcaps(compat_elf_hwcaps);
1929
1930         if (system_uses_ttbr0_pan())
1931                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1932
1933         sve_setup();
1934         minsigstksz_setup();
1935
1936         /* Advertise that we have computed the system capabilities */
1937         set_sys_caps_initialised();
1938
1939         /*
1940          * Check for sane CTR_EL0.CWG value.
1941          */
1942         cwg = cache_type_cwg();
1943         if (!cwg)
1944                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
1945                         ARCH_DMA_MINALIGN);
1946 }
1947
1948 static bool __maybe_unused
1949 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1950 {
1951         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1952 }
1953
1954 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
1955 {
1956         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
1957 }
1958
1959 /*
1960  * We emulate only the following system register space.
1961  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1962  * See Table C5-6 System instruction encodings for System register accesses,
1963  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1964  */
1965 static inline bool __attribute_const__ is_emulated(u32 id)
1966 {
1967         return (sys_reg_Op0(id) == 0x3 &&
1968                 sys_reg_CRn(id) == 0x0 &&
1969                 sys_reg_Op1(id) == 0x0 &&
1970                 (sys_reg_CRm(id) == 0 ||
1971                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1972 }
1973
1974 /*
1975  * With CRm == 0, reg should be one of :
1976  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1977  */
1978 static inline int emulate_id_reg(u32 id, u64 *valp)
1979 {
1980         switch (id) {
1981         case SYS_MIDR_EL1:
1982                 *valp = read_cpuid_id();
1983                 break;
1984         case SYS_MPIDR_EL1:
1985                 *valp = SYS_MPIDR_SAFE_VAL;
1986                 break;
1987         case SYS_REVIDR_EL1:
1988                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1989                 *valp = 0;
1990                 break;
1991         default:
1992                 return -EINVAL;
1993         }
1994
1995         return 0;
1996 }
1997
1998 static int emulate_sys_reg(u32 id, u64 *valp)
1999 {
2000         struct arm64_ftr_reg *regp;
2001
2002         if (!is_emulated(id))
2003                 return -EINVAL;
2004
2005         if (sys_reg_CRm(id) == 0)
2006                 return emulate_id_reg(id, valp);
2007
2008         regp = get_arm64_ftr_reg(id);
2009         if (regp)
2010                 *valp = arm64_ftr_reg_user_value(regp);
2011         else
2012                 /*
2013                  * The untracked registers are either IMPLEMENTATION DEFINED
2014                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
2015                  */
2016                 *valp = 0;
2017         return 0;
2018 }
2019
2020 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2021 {
2022         int rc;
2023         u64 val;
2024
2025         rc = emulate_sys_reg(sys_reg, &val);
2026         if (!rc) {
2027                 pt_regs_write_reg(regs, rt, val);
2028                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2029         }
2030         return rc;
2031 }
2032
2033 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2034 {
2035         u32 sys_reg, rt;
2036
2037         /*
2038          * sys_reg values are defined as used in mrs/msr instruction.
2039          * shift the imm value to get the encoding.
2040          */
2041         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2042         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2043         return do_emulate_mrs(regs, sys_reg, rt);
2044 }
2045
2046 static struct undef_hook mrs_hook = {
2047         .instr_mask = 0xfff00000,
2048         .instr_val  = 0xd5300000,
2049         .pstate_mask = PSR_AA32_MODE_MASK,
2050         .pstate_val = PSR_MODE_EL0t,
2051         .fn = emulate_mrs,
2052 };
2053
2054 static int __init enable_mrs_emulation(void)
2055 {
2056         register_undef_hook(&mrs_hook);
2057         return 0;
2058 }
2059
2060 core_initcall(enable_mrs_emulation);