md/raid1: fix NULL pointer dereference
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT        \
42                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47                                  COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54
55 /*
56  * Flag to indicate if we have computed the system wide
57  * capabilities based on the boot time active CPUs. This
58  * will be used to determine if a new booting CPU should
59  * go through the verification process to make sure that it
60  * supports the system capabilities, without using a hotplug
61  * notifier.
62  */
63 static bool sys_caps_initialised;
64
65 static inline void set_sys_caps_initialised(void)
66 {
67         sys_caps_initialised = true;
68 }
69
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72         /* file-wide pr_fmt adds "CPU features: " prefix */
73         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74         return 0;
75 }
76
77 static struct notifier_block cpu_hwcaps_notifier = {
78         .notifier_call = dump_cpu_hwcaps
79 };
80
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83         atomic_notifier_chain_register(&panic_notifier_list,
84                                        &cpu_hwcaps_notifier);
85         return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93         {                                               \
94                 .sign = SIGNED,                         \
95                 .visible = VISIBLE,                     \
96                 .strict = STRICT,                       \
97                 .type = TYPE,                           \
98                 .shift = SHIFT,                         \
99                 .width = WIDTH,                         \
100                 .safe_val = SAFE_VAL,                   \
101         }
102
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110
111 #define ARM64_FTR_END                                   \
112         {                                               \
113                 .width = 0,                             \
114         }
115
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119
120
121 /*
122  * NOTE: Any changes to the visibility of features should be kept in
123  * sync with the documentation of the CPU feature register ABI.
124  */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
129         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
130         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
131         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
134         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
135         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
136         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
137         ARM64_FTR_END,
138 };
139
140 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
141         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
142         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
143         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
144         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
145         ARM64_FTR_END,
146 };
147
148 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
149         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
150         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
151         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
152                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
153         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
154         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
155         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
156         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
157         /* Linux doesn't care about the EL3 */
158         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
159         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
160         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
161         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
162         ARM64_FTR_END,
163 };
164
165 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
166         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
167         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
168         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
169         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
170         /* Linux shouldn't care about secure memory */
171         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
172         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
173         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
174         /*
175          * Differing PARange is fine as long as all peripherals and memory are mapped
176          * within the minimum PARange of all CPUs
177          */
178         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
179         ARM64_FTR_END,
180 };
181
182 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
183         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
184         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
185         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
189         ARM64_FTR_END,
190 };
191
192 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
193         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
198         ARM64_FTR_END,
199 };
200
201 static const struct arm64_ftr_bits ftr_ctr[] = {
202         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),   /* RAO */
203         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),     /* CWG */
204         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),      /* ERG */
205         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),      /* DminLine */
206         /*
207          * Linux can handle differing I-cache policies. Userspace JITs will
208          * make use of *minLine.
209          * If we have differing I-cache policies, report it as the weakest - VIPT.
210          */
211         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
212         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* IminLine */
213         ARM64_FTR_END,
214 };
215
216 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
217         .name           = "SYS_CTR_EL0",
218         .ftr_bits       = ftr_ctr
219 };
220
221 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
222         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),   /* InnerShr */
223         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),       /* FCSE */
224         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
225         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),       /* TCM */
226         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),       /* ShareLvl */
227         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),    /* OuterShr */
228         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* PMSA */
229         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),        /* VMSA */
230         ARM64_FTR_END,
231 };
232
233 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
234         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
235         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
236         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
237         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
239         /*
240          * We can instantiate multiple PMU instances with different levels
241          * of support.
242          */
243         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
244         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
245         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
246         ARM64_FTR_END,
247 };
248
249 static const struct arm64_ftr_bits ftr_mvfr2[] = {
250         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* FPMisc */
251         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* SIMDMisc */
252         ARM64_FTR_END,
253 };
254
255 static const struct arm64_ftr_bits ftr_dczid[] = {
256         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
257         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
258         ARM64_FTR_END,
259 };
260
261
262 static const struct arm64_ftr_bits ftr_id_isar5[] = {
263         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
264         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
265         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
266         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
267         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
268         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
269         ARM64_FTR_END,
270 };
271
272 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
273         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* ac2 */
274         ARM64_FTR_END,
275 };
276
277 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
278         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),               /* State3 */
279         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),                /* State2 */
280         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* State1 */
281         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* State0 */
282         ARM64_FTR_END,
283 };
284
285 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
286         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
287         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
288         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
289         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
290         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
291         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
292         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
293         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
294         ARM64_FTR_END,
295 };
296
297 static const struct arm64_ftr_bits ftr_zcr[] = {
298         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
299                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
300         ARM64_FTR_END,
301 };
302
303 /*
304  * Common ftr bits for a 32bit register with all hidden, strict
305  * attributes, with 4bit feature fields and a default safe value of
306  * 0. Covers the following 32bit registers:
307  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
308  */
309 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
310         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
311         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
312         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
313         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
314         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
315         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
316         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
317         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
318         ARM64_FTR_END,
319 };
320
321 /* Table for a single 32bit feature value */
322 static const struct arm64_ftr_bits ftr_single32[] = {
323         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
324         ARM64_FTR_END,
325 };
326
327 static const struct arm64_ftr_bits ftr_raz[] = {
328         ARM64_FTR_END,
329 };
330
331 #define ARM64_FTR_REG(id, table) {              \
332         .sys_id = id,                           \
333         .reg =  &(struct arm64_ftr_reg){        \
334                 .name = #id,                    \
335                 .ftr_bits = &((table)[0]),      \
336         }}
337
338 static const struct __ftr_reg_entry {
339         u32                     sys_id;
340         struct arm64_ftr_reg    *reg;
341 } arm64_ftr_regs[] = {
342
343         /* Op1 = 0, CRn = 0, CRm = 1 */
344         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
345         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
346         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
347         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
348         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
349         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
350         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
351
352         /* Op1 = 0, CRn = 0, CRm = 2 */
353         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
354         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
355         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
356         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
357         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
358         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
359         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
360
361         /* Op1 = 0, CRn = 0, CRm = 3 */
362         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
363         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
364         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
365
366         /* Op1 = 0, CRn = 0, CRm = 4 */
367         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
368         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
369         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
370
371         /* Op1 = 0, CRn = 0, CRm = 5 */
372         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
373         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
374
375         /* Op1 = 0, CRn = 0, CRm = 6 */
376         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
377         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
378
379         /* Op1 = 0, CRn = 0, CRm = 7 */
380         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
381         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
382         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
383
384         /* Op1 = 0, CRn = 1, CRm = 2 */
385         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
386
387         /* Op1 = 3, CRn = 0, CRm = 0 */
388         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
389         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
390
391         /* Op1 = 3, CRn = 14, CRm = 0 */
392         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
393 };
394
395 static int search_cmp_ftr_reg(const void *id, const void *regp)
396 {
397         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
398 }
399
400 /*
401  * get_arm64_ftr_reg - Lookup a feature register entry using its
402  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
403  * ascending order of sys_id , we use binary search to find a matching
404  * entry.
405  *
406  * returns - Upon success,  matching ftr_reg entry for id.
407  *         - NULL on failure. It is upto the caller to decide
408  *           the impact of a failure.
409  */
410 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
411 {
412         const struct __ftr_reg_entry *ret;
413
414         ret = bsearch((const void *)(unsigned long)sys_id,
415                         arm64_ftr_regs,
416                         ARRAY_SIZE(arm64_ftr_regs),
417                         sizeof(arm64_ftr_regs[0]),
418                         search_cmp_ftr_reg);
419         if (ret)
420                 return ret->reg;
421         return NULL;
422 }
423
424 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
425                                s64 ftr_val)
426 {
427         u64 mask = arm64_ftr_mask(ftrp);
428
429         reg &= ~mask;
430         reg |= (ftr_val << ftrp->shift) & mask;
431         return reg;
432 }
433
434 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
435                                 s64 cur)
436 {
437         s64 ret = 0;
438
439         switch (ftrp->type) {
440         case FTR_EXACT:
441                 ret = ftrp->safe_val;
442                 break;
443         case FTR_LOWER_SAFE:
444                 ret = new < cur ? new : cur;
445                 break;
446         case FTR_HIGHER_SAFE:
447                 ret = new > cur ? new : cur;
448                 break;
449         default:
450                 BUG();
451         }
452
453         return ret;
454 }
455
456 static void __init sort_ftr_regs(void)
457 {
458         int i;
459
460         /* Check that the array is sorted so that we can do the binary search */
461         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
462                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
463 }
464
465 /*
466  * Initialise the CPU feature register from Boot CPU values.
467  * Also initiliases the strict_mask for the register.
468  * Any bits that are not covered by an arm64_ftr_bits entry are considered
469  * RES0 for the system-wide value, and must strictly match.
470  */
471 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
472 {
473         u64 val = 0;
474         u64 strict_mask = ~0x0ULL;
475         u64 user_mask = 0;
476         u64 valid_mask = 0;
477
478         const struct arm64_ftr_bits *ftrp;
479         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
480
481         BUG_ON(!reg);
482
483         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
484                 u64 ftr_mask = arm64_ftr_mask(ftrp);
485                 s64 ftr_new = arm64_ftr_value(ftrp, new);
486
487                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
488
489                 valid_mask |= ftr_mask;
490                 if (!ftrp->strict)
491                         strict_mask &= ~ftr_mask;
492                 if (ftrp->visible)
493                         user_mask |= ftr_mask;
494                 else
495                         reg->user_val = arm64_ftr_set_value(ftrp,
496                                                             reg->user_val,
497                                                             ftrp->safe_val);
498         }
499
500         val &= valid_mask;
501
502         reg->sys_val = val;
503         reg->strict_mask = strict_mask;
504         reg->user_mask = user_mask;
505 }
506
507 void __init init_cpu_features(struct cpuinfo_arm64 *info)
508 {
509         /* Before we start using the tables, make sure it is sorted */
510         sort_ftr_regs();
511
512         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
513         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
514         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
515         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
516         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
517         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
518         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
519         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
520         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
521         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
522         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
523         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
524         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
525
526         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
527                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
528                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
529                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
530                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
531                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
532                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
533                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
534                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
535                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
536                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
537                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
538                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
539                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
540                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
541                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
542                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
543         }
544
545         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
546                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
547                 sve_init_vq_map();
548         }
549 }
550
551 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
552 {
553         const struct arm64_ftr_bits *ftrp;
554
555         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
556                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
557                 s64 ftr_new = arm64_ftr_value(ftrp, new);
558
559                 if (ftr_cur == ftr_new)
560                         continue;
561                 /* Find a safe value */
562                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
563                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
564         }
565
566 }
567
568 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
569 {
570         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
571
572         BUG_ON(!regp);
573         update_cpu_ftr_reg(regp, val);
574         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
575                 return 0;
576         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
577                         regp->name, boot, cpu, val);
578         return 1;
579 }
580
581 /*
582  * Update system wide CPU feature registers with the values from a
583  * non-boot CPU. Also performs SANITY checks to make sure that there
584  * aren't any insane variations from that of the boot CPU.
585  */
586 void update_cpu_features(int cpu,
587                          struct cpuinfo_arm64 *info,
588                          struct cpuinfo_arm64 *boot)
589 {
590         int taint = 0;
591
592         /*
593          * The kernel can handle differing I-cache policies, but otherwise
594          * caches should look identical. Userspace JITs will make use of
595          * *minLine.
596          */
597         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
598                                       info->reg_ctr, boot->reg_ctr);
599
600         /*
601          * Userspace may perform DC ZVA instructions. Mismatched block sizes
602          * could result in too much or too little memory being zeroed if a
603          * process is preempted and migrated between CPUs.
604          */
605         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
606                                       info->reg_dczid, boot->reg_dczid);
607
608         /* If different, timekeeping will be broken (especially with KVM) */
609         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
610                                       info->reg_cntfrq, boot->reg_cntfrq);
611
612         /*
613          * The kernel uses self-hosted debug features and expects CPUs to
614          * support identical debug features. We presently need CTX_CMPs, WRPs,
615          * and BRPs to be identical.
616          * ID_AA64DFR1 is currently RES0.
617          */
618         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
619                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
620         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
621                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
622         /*
623          * Even in big.LITTLE, processors should be identical instruction-set
624          * wise.
625          */
626         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
627                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
628         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
629                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
630
631         /*
632          * Differing PARange support is fine as long as all peripherals and
633          * memory are mapped within the minimum PARange of all CPUs.
634          * Linux should not care about secure memory.
635          */
636         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
637                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
638         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
639                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
640         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
641                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
642
643         /*
644          * EL3 is not our concern.
645          * ID_AA64PFR1 is currently RES0.
646          */
647         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
648                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
649         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
650                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
651
652         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
653                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
654
655         /*
656          * If we have AArch32, we care about 32-bit features for compat.
657          * If the system doesn't support AArch32, don't update them.
658          */
659         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
660                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
661
662                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
663                                         info->reg_id_dfr0, boot->reg_id_dfr0);
664                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
665                                         info->reg_id_isar0, boot->reg_id_isar0);
666                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
667                                         info->reg_id_isar1, boot->reg_id_isar1);
668                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
669                                         info->reg_id_isar2, boot->reg_id_isar2);
670                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
671                                         info->reg_id_isar3, boot->reg_id_isar3);
672                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
673                                         info->reg_id_isar4, boot->reg_id_isar4);
674                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
675                                         info->reg_id_isar5, boot->reg_id_isar5);
676
677                 /*
678                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
679                  * ACTLR formats could differ across CPUs and therefore would have to
680                  * be trapped for virtualization anyway.
681                  */
682                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
683                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
684                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
685                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
686                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
687                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
688                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
689                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
690                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
691                                         info->reg_id_pfr0, boot->reg_id_pfr0);
692                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
693                                         info->reg_id_pfr1, boot->reg_id_pfr1);
694                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
695                                         info->reg_mvfr0, boot->reg_mvfr0);
696                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
697                                         info->reg_mvfr1, boot->reg_mvfr1);
698                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
699                                         info->reg_mvfr2, boot->reg_mvfr2);
700         }
701
702         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
703                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
704                                         info->reg_zcr, boot->reg_zcr);
705
706                 /* Probe vector lengths, unless we already gave up on SVE */
707                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
708                     !sys_caps_initialised)
709                         sve_update_vq_map();
710         }
711
712         /*
713          * Mismatched CPU features are a recipe for disaster. Don't even
714          * pretend to support them.
715          */
716         if (taint) {
717                 pr_warn_once("Unsupported CPU feature variation detected.\n");
718                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
719         }
720 }
721
722 u64 read_sanitised_ftr_reg(u32 id)
723 {
724         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
725
726         /* We shouldn't get a request for an unsupported register */
727         BUG_ON(!regp);
728         return regp->sys_val;
729 }
730
731 #define read_sysreg_case(r)     \
732         case r:         return read_sysreg_s(r)
733
734 /*
735  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
736  * Read the system register on the current CPU
737  */
738 static u64 __read_sysreg_by_encoding(u32 sys_id)
739 {
740         switch (sys_id) {
741         read_sysreg_case(SYS_ID_PFR0_EL1);
742         read_sysreg_case(SYS_ID_PFR1_EL1);
743         read_sysreg_case(SYS_ID_DFR0_EL1);
744         read_sysreg_case(SYS_ID_MMFR0_EL1);
745         read_sysreg_case(SYS_ID_MMFR1_EL1);
746         read_sysreg_case(SYS_ID_MMFR2_EL1);
747         read_sysreg_case(SYS_ID_MMFR3_EL1);
748         read_sysreg_case(SYS_ID_ISAR0_EL1);
749         read_sysreg_case(SYS_ID_ISAR1_EL1);
750         read_sysreg_case(SYS_ID_ISAR2_EL1);
751         read_sysreg_case(SYS_ID_ISAR3_EL1);
752         read_sysreg_case(SYS_ID_ISAR4_EL1);
753         read_sysreg_case(SYS_ID_ISAR5_EL1);
754         read_sysreg_case(SYS_MVFR0_EL1);
755         read_sysreg_case(SYS_MVFR1_EL1);
756         read_sysreg_case(SYS_MVFR2_EL1);
757
758         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
759         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
760         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
761         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
762         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
763         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
764         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
765         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
766         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
767
768         read_sysreg_case(SYS_CNTFRQ_EL0);
769         read_sysreg_case(SYS_CTR_EL0);
770         read_sysreg_case(SYS_DCZID_EL0);
771
772         default:
773                 BUG();
774                 return 0;
775         }
776 }
777
778 #include <linux/irqchip/arm-gic-v3.h>
779
780 static bool
781 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
782 {
783         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
784
785         return val >= entry->min_field_value;
786 }
787
788 static bool
789 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
790 {
791         u64 val;
792
793         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
794         if (scope == SCOPE_SYSTEM)
795                 val = read_sanitised_ftr_reg(entry->sys_reg);
796         else
797                 val = __read_sysreg_by_encoding(entry->sys_reg);
798
799         return feature_matches(val, entry);
800 }
801
802 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
803 {
804         bool has_sre;
805
806         if (!has_cpuid_feature(entry, scope))
807                 return false;
808
809         has_sre = gic_enable_sre();
810         if (!has_sre)
811                 pr_warn_once("%s present but disabled by higher exception level\n",
812                              entry->desc);
813
814         return has_sre;
815 }
816
817 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
818 {
819         u32 midr = read_cpuid_id();
820
821         /* Cavium ThunderX pass 1.x and 2.x */
822         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
823                 MIDR_CPU_VAR_REV(0, 0),
824                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
825 }
826
827 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
828 {
829         return is_kernel_in_hyp_mode();
830 }
831
832 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
833                            int __unused)
834 {
835         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
836
837         /*
838          * Activate the lower HYP offset only if:
839          * - the idmap doesn't clash with it,
840          * - the kernel is not running at EL2.
841          */
842         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
843 }
844
845 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
846 {
847         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
848
849         return cpuid_feature_extract_signed_field(pfr0,
850                                         ID_AA64PFR0_FP_SHIFT) < 0;
851 }
852
853 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
854 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
855
856 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
857                                 int __unused)
858 {
859         char const *str = "command line option";
860         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
861
862         /*
863          * For reasons that aren't entirely clear, enabling KPTI on Cavium
864          * ThunderX leads to apparent I-cache corruption of kernel text, which
865          * ends as well as you might imagine. Don't even try.
866          */
867         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
868                 str = "ARM64_WORKAROUND_CAVIUM_27456";
869                 __kpti_forced = -1;
870         }
871
872         /* Forced? */
873         if (__kpti_forced) {
874                 pr_info_once("kernel page table isolation forced %s by %s\n",
875                              __kpti_forced > 0 ? "ON" : "OFF", str);
876                 return __kpti_forced > 0;
877         }
878
879         /* Useful for KASLR robustness */
880         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
881                 return true;
882
883         /* Don't force KPTI for CPUs that are not vulnerable */
884         switch (read_cpuid_id() & MIDR_CPU_MODEL_MASK) {
885         case MIDR_CAVIUM_THUNDERX2:
886         case MIDR_BRCM_VULCAN:
887                 return false;
888         }
889
890         /* Defer to CPU feature registers */
891         return !cpuid_feature_extract_unsigned_field(pfr0,
892                                                      ID_AA64PFR0_CSV3_SHIFT);
893 }
894
895 static int kpti_install_ng_mappings(void *__unused)
896 {
897         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
898         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
899         kpti_remap_fn *remap_fn;
900
901         static bool kpti_applied = false;
902         int cpu = smp_processor_id();
903
904         if (kpti_applied)
905                 return 0;
906
907         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
908
909         cpu_install_idmap();
910         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
911         cpu_uninstall_idmap();
912
913         if (!cpu)
914                 kpti_applied = true;
915
916         return 0;
917 }
918
919 static int __init parse_kpti(char *str)
920 {
921         bool enabled;
922         int ret = strtobool(str, &enabled);
923
924         if (ret)
925                 return ret;
926
927         __kpti_forced = enabled ? 1 : -1;
928         return 0;
929 }
930 __setup("kpti=", parse_kpti);
931 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
932
933 static int cpu_copy_el2regs(void *__unused)
934 {
935         /*
936          * Copy register values that aren't redirected by hardware.
937          *
938          * Before code patching, we only set tpidr_el1, all CPUs need to copy
939          * this value to tpidr_el2 before we patch the code. Once we've done
940          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
941          * do anything here.
942          */
943         if (!alternatives_applied)
944                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
945
946         return 0;
947 }
948
949 static const struct arm64_cpu_capabilities arm64_features[] = {
950         {
951                 .desc = "GIC system register CPU interface",
952                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
953                 .def_scope = SCOPE_SYSTEM,
954                 .matches = has_useable_gicv3_cpuif,
955                 .sys_reg = SYS_ID_AA64PFR0_EL1,
956                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
957                 .sign = FTR_UNSIGNED,
958                 .min_field_value = 1,
959         },
960 #ifdef CONFIG_ARM64_PAN
961         {
962                 .desc = "Privileged Access Never",
963                 .capability = ARM64_HAS_PAN,
964                 .def_scope = SCOPE_SYSTEM,
965                 .matches = has_cpuid_feature,
966                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
967                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
968                 .sign = FTR_UNSIGNED,
969                 .min_field_value = 1,
970                 .enable = cpu_enable_pan,
971         },
972 #endif /* CONFIG_ARM64_PAN */
973 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
974         {
975                 .desc = "LSE atomic instructions",
976                 .capability = ARM64_HAS_LSE_ATOMICS,
977                 .def_scope = SCOPE_SYSTEM,
978                 .matches = has_cpuid_feature,
979                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
980                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
981                 .sign = FTR_UNSIGNED,
982                 .min_field_value = 2,
983         },
984 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
985         {
986                 .desc = "Software prefetching using PRFM",
987                 .capability = ARM64_HAS_NO_HW_PREFETCH,
988                 .def_scope = SCOPE_SYSTEM,
989                 .matches = has_no_hw_prefetch,
990         },
991 #ifdef CONFIG_ARM64_UAO
992         {
993                 .desc = "User Access Override",
994                 .capability = ARM64_HAS_UAO,
995                 .def_scope = SCOPE_SYSTEM,
996                 .matches = has_cpuid_feature,
997                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
998                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
999                 .min_field_value = 1,
1000                 /*
1001                  * We rely on stop_machine() calling uao_thread_switch() to set
1002                  * UAO immediately after patching.
1003                  */
1004         },
1005 #endif /* CONFIG_ARM64_UAO */
1006 #ifdef CONFIG_ARM64_PAN
1007         {
1008                 .capability = ARM64_ALT_PAN_NOT_UAO,
1009                 .def_scope = SCOPE_SYSTEM,
1010                 .matches = cpufeature_pan_not_uao,
1011         },
1012 #endif /* CONFIG_ARM64_PAN */
1013         {
1014                 .desc = "Virtualization Host Extensions",
1015                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1016                 .def_scope = SCOPE_SYSTEM,
1017                 .matches = runs_at_el2,
1018                 .enable = cpu_copy_el2regs,
1019         },
1020         {
1021                 .desc = "32-bit EL0 Support",
1022                 .capability = ARM64_HAS_32BIT_EL0,
1023                 .def_scope = SCOPE_SYSTEM,
1024                 .matches = has_cpuid_feature,
1025                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1026                 .sign = FTR_UNSIGNED,
1027                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1028                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1029         },
1030         {
1031                 .desc = "Reduced HYP mapping offset",
1032                 .capability = ARM64_HYP_OFFSET_LOW,
1033                 .def_scope = SCOPE_SYSTEM,
1034                 .matches = hyp_offset_low,
1035         },
1036 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1037         {
1038                 .desc = "Kernel page table isolation (KPTI)",
1039                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1040                 .def_scope = SCOPE_SYSTEM,
1041                 .matches = unmap_kernel_at_el0,
1042                 .enable = kpti_install_ng_mappings,
1043         },
1044 #endif
1045         {
1046                 /* FP/SIMD is not implemented */
1047                 .capability = ARM64_HAS_NO_FPSIMD,
1048                 .def_scope = SCOPE_SYSTEM,
1049                 .min_field_value = 0,
1050                 .matches = has_no_fpsimd,
1051         },
1052 #ifdef CONFIG_ARM64_PMEM
1053         {
1054                 .desc = "Data cache clean to Point of Persistence",
1055                 .capability = ARM64_HAS_DCPOP,
1056                 .def_scope = SCOPE_SYSTEM,
1057                 .matches = has_cpuid_feature,
1058                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1059                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1060                 .min_field_value = 1,
1061         },
1062 #endif
1063 #ifdef CONFIG_ARM64_SVE
1064         {
1065                 .desc = "Scalable Vector Extension",
1066                 .capability = ARM64_SVE,
1067                 .def_scope = SCOPE_SYSTEM,
1068                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1069                 .sign = FTR_UNSIGNED,
1070                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1071                 .min_field_value = ID_AA64PFR0_SVE,
1072                 .matches = has_cpuid_feature,
1073                 .enable = sve_kernel_enable,
1074         },
1075 #endif /* CONFIG_ARM64_SVE */
1076 #ifdef CONFIG_ARM64_RAS_EXTN
1077         {
1078                 .desc = "RAS Extension Support",
1079                 .capability = ARM64_HAS_RAS_EXTN,
1080                 .def_scope = SCOPE_SYSTEM,
1081                 .matches = has_cpuid_feature,
1082                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1083                 .sign = FTR_UNSIGNED,
1084                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1085                 .min_field_value = ID_AA64PFR0_RAS_V1,
1086                 .enable = cpu_clear_disr,
1087         },
1088 #endif /* CONFIG_ARM64_RAS_EXTN */
1089         {},
1090 };
1091
1092 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
1093         {                                                       \
1094                 .desc = #cap,                                   \
1095                 .def_scope = SCOPE_SYSTEM,                      \
1096                 .matches = has_cpuid_feature,                   \
1097                 .sys_reg = reg,                                 \
1098                 .field_pos = field,                             \
1099                 .sign = s,                                      \
1100                 .min_field_value = min_value,                   \
1101                 .hwcap_type = type,                             \
1102                 .hwcap = cap,                                   \
1103         }
1104
1105 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1106         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1107         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1108         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1109         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1110         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1111         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1112         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1113         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1114         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1115         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1116         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1117         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1118         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1119         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1120         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1121         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1122         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1123         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1124         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1125         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1126         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1127 #ifdef CONFIG_ARM64_SVE
1128         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1129 #endif
1130         {},
1131 };
1132
1133 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1134 #ifdef CONFIG_COMPAT
1135         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1136         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1137         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1138         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1139         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1140 #endif
1141         {},
1142 };
1143
1144 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1145 {
1146         switch (cap->hwcap_type) {
1147         case CAP_HWCAP:
1148                 elf_hwcap |= cap->hwcap;
1149                 break;
1150 #ifdef CONFIG_COMPAT
1151         case CAP_COMPAT_HWCAP:
1152                 compat_elf_hwcap |= (u32)cap->hwcap;
1153                 break;
1154         case CAP_COMPAT_HWCAP2:
1155                 compat_elf_hwcap2 |= (u32)cap->hwcap;
1156                 break;
1157 #endif
1158         default:
1159                 WARN_ON(1);
1160                 break;
1161         }
1162 }
1163
1164 /* Check if we have a particular HWCAP enabled */
1165 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1166 {
1167         bool rc;
1168
1169         switch (cap->hwcap_type) {
1170         case CAP_HWCAP:
1171                 rc = (elf_hwcap & cap->hwcap) != 0;
1172                 break;
1173 #ifdef CONFIG_COMPAT
1174         case CAP_COMPAT_HWCAP:
1175                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1176                 break;
1177         case CAP_COMPAT_HWCAP2:
1178                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1179                 break;
1180 #endif
1181         default:
1182                 WARN_ON(1);
1183                 rc = false;
1184         }
1185
1186         return rc;
1187 }
1188
1189 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1190 {
1191         /* We support emulation of accesses to CPU ID feature registers */
1192         elf_hwcap |= HWCAP_CPUID;
1193         for (; hwcaps->matches; hwcaps++)
1194                 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1195                         cap_set_elf_hwcap(hwcaps);
1196 }
1197
1198 /*
1199  * Check if the current CPU has a given feature capability.
1200  * Should be called from non-preemptible context.
1201  */
1202 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1203                                unsigned int cap)
1204 {
1205         const struct arm64_cpu_capabilities *caps;
1206
1207         if (WARN_ON(preemptible()))
1208                 return false;
1209
1210         for (caps = cap_array; caps->matches; caps++)
1211                 if (caps->capability == cap &&
1212                     caps->matches(caps, SCOPE_LOCAL_CPU))
1213                         return true;
1214         return false;
1215 }
1216
1217 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1218                             const char *info)
1219 {
1220         for (; caps->matches; caps++) {
1221                 if (!caps->matches(caps, caps->def_scope))
1222                         continue;
1223
1224                 if (!cpus_have_cap(caps->capability) && caps->desc)
1225                         pr_info("%s %s\n", info, caps->desc);
1226                 cpus_set_cap(caps->capability);
1227         }
1228 }
1229
1230 /*
1231  * Run through the enabled capabilities and enable() it on all active
1232  * CPUs
1233  */
1234 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1235 {
1236         for (; caps->matches; caps++) {
1237                 unsigned int num = caps->capability;
1238
1239                 if (!cpus_have_cap(num))
1240                         continue;
1241
1242                 /* Ensure cpus_have_const_cap(num) works */
1243                 static_branch_enable(&cpu_hwcap_keys[num]);
1244
1245                 if (caps->enable) {
1246                         /*
1247                          * Use stop_machine() as it schedules the work allowing
1248                          * us to modify PSTATE, instead of on_each_cpu() which
1249                          * uses an IPI, giving us a PSTATE that disappears when
1250                          * we return.
1251                          */
1252                         stop_machine(caps->enable, (void *)caps, cpu_online_mask);
1253                 }
1254         }
1255 }
1256
1257 /*
1258  * Check for CPU features that are used in early boot
1259  * based on the Boot CPU value.
1260  */
1261 static void check_early_cpu_features(void)
1262 {
1263         verify_cpu_run_el();
1264         verify_cpu_asid_bits();
1265 }
1266
1267 static void
1268 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1269 {
1270
1271         for (; caps->matches; caps++)
1272                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1273                         pr_crit("CPU%d: missing HWCAP: %s\n",
1274                                         smp_processor_id(), caps->desc);
1275                         cpu_die_early();
1276                 }
1277 }
1278
1279 static void
1280 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps_list)
1281 {
1282         const struct arm64_cpu_capabilities *caps = caps_list;
1283         for (; caps->matches; caps++) {
1284                 if (!cpus_have_cap(caps->capability))
1285                         continue;
1286                 /*
1287                  * If the new CPU misses an advertised feature, we cannot proceed
1288                  * further, park the cpu.
1289                  */
1290                 if (!__this_cpu_has_cap(caps_list, caps->capability)) {
1291                         pr_crit("CPU%d: missing feature: %s\n",
1292                                         smp_processor_id(), caps->desc);
1293                         cpu_die_early();
1294                 }
1295                 if (caps->enable)
1296                         caps->enable((void *)caps);
1297         }
1298 }
1299
1300 static void verify_sve_features(void)
1301 {
1302         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1303         u64 zcr = read_zcr_features();
1304
1305         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1306         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1307
1308         if (len < safe_len || sve_verify_vq_map()) {
1309                 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1310                         smp_processor_id());
1311                 cpu_die_early();
1312         }
1313
1314         /* Add checks on other ZCR bits here if necessary */
1315 }
1316
1317 /*
1318  * Run through the enabled system capabilities and enable() it on this CPU.
1319  * The capabilities were decided based on the available CPUs at the boot time.
1320  * Any new CPU should match the system wide status of the capability. If the
1321  * new CPU doesn't have a capability which the system now has enabled, we
1322  * cannot do anything to fix it up and could cause unexpected failures. So
1323  * we park the CPU.
1324  */
1325 static void verify_local_cpu_capabilities(void)
1326 {
1327         verify_local_cpu_errata_workarounds();
1328         verify_local_cpu_features(arm64_features);
1329         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1330
1331         if (system_supports_32bit_el0())
1332                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1333
1334         if (system_supports_sve())
1335                 verify_sve_features();
1336
1337         if (system_uses_ttbr0_pan())
1338                 pr_info("Emulating Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1339 }
1340
1341 void check_local_cpu_capabilities(void)
1342 {
1343         /*
1344          * All secondary CPUs should conform to the early CPU features
1345          * in use by the kernel based on boot CPU.
1346          */
1347         check_early_cpu_features();
1348
1349         /*
1350          * If we haven't finalised the system capabilities, this CPU gets
1351          * a chance to update the errata work arounds.
1352          * Otherwise, this CPU should verify that it has all the system
1353          * advertised capabilities.
1354          */
1355         if (!sys_caps_initialised)
1356                 update_cpu_errata_workarounds();
1357         else
1358                 verify_local_cpu_capabilities();
1359 }
1360
1361 static void __init setup_feature_capabilities(void)
1362 {
1363         update_cpu_capabilities(arm64_features, "detected feature:");
1364         enable_cpu_capabilities(arm64_features);
1365 }
1366
1367 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1368 EXPORT_SYMBOL(arm64_const_caps_ready);
1369
1370 static void __init mark_const_caps_ready(void)
1371 {
1372         static_branch_enable(&arm64_const_caps_ready);
1373 }
1374
1375 extern const struct arm64_cpu_capabilities arm64_errata[];
1376
1377 bool this_cpu_has_cap(unsigned int cap)
1378 {
1379         return (__this_cpu_has_cap(arm64_features, cap) ||
1380                 __this_cpu_has_cap(arm64_errata, cap));
1381 }
1382
1383 void __init setup_cpu_features(void)
1384 {
1385         u32 cwg;
1386         int cls;
1387
1388         /* Set the CPU feature capabilies */
1389         setup_feature_capabilities();
1390         enable_errata_workarounds();
1391         mark_const_caps_ready();
1392         setup_elf_hwcaps(arm64_elf_hwcaps);
1393
1394         if (system_supports_32bit_el0())
1395                 setup_elf_hwcaps(compat_elf_hwcaps);
1396
1397         sve_setup();
1398
1399         /* Advertise that we have computed the system capabilities */
1400         set_sys_caps_initialised();
1401
1402         /*
1403          * Check for sane CTR_EL0.CWG value.
1404          */
1405         cwg = cache_type_cwg();
1406         cls = cache_line_size();
1407         if (!cwg)
1408                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1409                         cls);
1410         if (L1_CACHE_BYTES < cls)
1411                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1412                         L1_CACHE_BYTES, cls);
1413 }
1414
1415 static bool __maybe_unused
1416 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1417 {
1418         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1419 }
1420
1421 /*
1422  * We emulate only the following system register space.
1423  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1424  * See Table C5-6 System instruction encodings for System register accesses,
1425  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1426  */
1427 static inline bool __attribute_const__ is_emulated(u32 id)
1428 {
1429         return (sys_reg_Op0(id) == 0x3 &&
1430                 sys_reg_CRn(id) == 0x0 &&
1431                 sys_reg_Op1(id) == 0x0 &&
1432                 (sys_reg_CRm(id) == 0 ||
1433                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1434 }
1435
1436 /*
1437  * With CRm == 0, reg should be one of :
1438  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1439  */
1440 static inline int emulate_id_reg(u32 id, u64 *valp)
1441 {
1442         switch (id) {
1443         case SYS_MIDR_EL1:
1444                 *valp = read_cpuid_id();
1445                 break;
1446         case SYS_MPIDR_EL1:
1447                 *valp = SYS_MPIDR_SAFE_VAL;
1448                 break;
1449         case SYS_REVIDR_EL1:
1450                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1451                 *valp = 0;
1452                 break;
1453         default:
1454                 return -EINVAL;
1455         }
1456
1457         return 0;
1458 }
1459
1460 static int emulate_sys_reg(u32 id, u64 *valp)
1461 {
1462         struct arm64_ftr_reg *regp;
1463
1464         if (!is_emulated(id))
1465                 return -EINVAL;
1466
1467         if (sys_reg_CRm(id) == 0)
1468                 return emulate_id_reg(id, valp);
1469
1470         regp = get_arm64_ftr_reg(id);
1471         if (regp)
1472                 *valp = arm64_ftr_reg_user_value(regp);
1473         else
1474                 /*
1475                  * The untracked registers are either IMPLEMENTATION DEFINED
1476                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
1477                  */
1478                 *valp = 0;
1479         return 0;
1480 }
1481
1482 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1483 {
1484         int rc;
1485         u32 sys_reg, dst;
1486         u64 val;
1487
1488         /*
1489          * sys_reg values are defined as used in mrs/msr instruction.
1490          * shift the imm value to get the encoding.
1491          */
1492         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1493         rc = emulate_sys_reg(sys_reg, &val);
1494         if (!rc) {
1495                 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1496                 pt_regs_write_reg(regs, dst, val);
1497                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1498         }
1499
1500         return rc;
1501 }
1502
1503 static struct undef_hook mrs_hook = {
1504         .instr_mask = 0xfff00000,
1505         .instr_val  = 0xd5300000,
1506         .pstate_mask = COMPAT_PSR_MODE_MASK,
1507         .pstate_val = PSR_MODE_EL0t,
1508         .fn = emulate_mrs,
1509 };
1510
1511 static int __init enable_mrs_emulation(void)
1512 {
1513         register_undef_hook(&mrs_hook);
1514         return 0;
1515 }
1516
1517 core_initcall(enable_mrs_emulation);
1518
1519 int cpu_clear_disr(void *__unused)
1520 {
1521         /* Firmware may have left a deferred SError in this register. */
1522         write_sysreg_s(0, SYS_DISR_EL1);
1523
1524         return 0;
1525 }