Merge tag 'hsi-for-4.17' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT        \
42                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47                                  COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54
55 /*
56  * Flag to indicate if we have computed the system wide
57  * capabilities based on the boot time active CPUs. This
58  * will be used to determine if a new booting CPU should
59  * go through the verification process to make sure that it
60  * supports the system capabilities, without using a hotplug
61  * notifier.
62  */
63 static bool sys_caps_initialised;
64
65 static inline void set_sys_caps_initialised(void)
66 {
67         sys_caps_initialised = true;
68 }
69
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72         /* file-wide pr_fmt adds "CPU features: " prefix */
73         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74         return 0;
75 }
76
77 static struct notifier_block cpu_hwcaps_notifier = {
78         .notifier_call = dump_cpu_hwcaps
79 };
80
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83         atomic_notifier_chain_register(&panic_notifier_list,
84                                        &cpu_hwcaps_notifier);
85         return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93         {                                               \
94                 .sign = SIGNED,                         \
95                 .visible = VISIBLE,                     \
96                 .strict = STRICT,                       \
97                 .type = TYPE,                           \
98                 .shift = SHIFT,                         \
99                 .width = WIDTH,                         \
100                 .safe_val = SAFE_VAL,                   \
101         }
102
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110
111 #define ARM64_FTR_END                                   \
112         {                                               \
113                 .width = 0,                             \
114         }
115
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119
120
121 /*
122  * NOTE: Any changes to the visibility of features should be kept in
123  * sync with the documentation of the CPU feature register ABI.
124  */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
129         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
130         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
131         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
134         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
135         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
136         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
137         ARM64_FTR_END,
138 };
139
140 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
141         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
142         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
143         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
144         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
145         ARM64_FTR_END,
146 };
147
148 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
149         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
150         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
151         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
152                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
153         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
154         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
155         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
156         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
157         /* Linux doesn't care about the EL3 */
158         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
159         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
160         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
161         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
162         ARM64_FTR_END,
163 };
164
165 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
166         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
167         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
168         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
169         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
170         /* Linux shouldn't care about secure memory */
171         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
172         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
173         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
174         /*
175          * Differing PARange is fine as long as all peripherals and memory are mapped
176          * within the minimum PARange of all CPUs
177          */
178         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
179         ARM64_FTR_END,
180 };
181
182 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
183         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
184         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
185         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
189         ARM64_FTR_END,
190 };
191
192 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
193         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
198         ARM64_FTR_END,
199 };
200
201 static const struct arm64_ftr_bits ftr_ctr[] = {
202         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),           /* RES1 */
203         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 29, 1, 1),      /* DIC */
204         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 28, 1, 1),      /* IDC */
205         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),     /* CWG */
206         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 20, 4, 0),     /* ERG */
207         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),      /* DminLine */
208         /*
209          * Linux can handle differing I-cache policies. Userspace JITs will
210          * make use of *minLine.
211          * If we have differing I-cache policies, report it as the weakest - VIPT.
212          */
213         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
214         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* IminLine */
215         ARM64_FTR_END,
216 };
217
218 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
219         .name           = "SYS_CTR_EL0",
220         .ftr_bits       = ftr_ctr
221 };
222
223 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
224         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),   /* InnerShr */
225         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),       /* FCSE */
226         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
227         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),       /* TCM */
228         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),       /* ShareLvl */
229         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),    /* OuterShr */
230         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* PMSA */
231         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),        /* VMSA */
232         ARM64_FTR_END,
233 };
234
235 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
236         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
237         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
239         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
240         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
241         /*
242          * We can instantiate multiple PMU instances with different levels
243          * of support.
244          */
245         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
246         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
247         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
248         ARM64_FTR_END,
249 };
250
251 static const struct arm64_ftr_bits ftr_mvfr2[] = {
252         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* FPMisc */
253         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* SIMDMisc */
254         ARM64_FTR_END,
255 };
256
257 static const struct arm64_ftr_bits ftr_dczid[] = {
258         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
259         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
260         ARM64_FTR_END,
261 };
262
263
264 static const struct arm64_ftr_bits ftr_id_isar5[] = {
265         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
266         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
267         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
268         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
269         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
270         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
271         ARM64_FTR_END,
272 };
273
274 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
275         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* ac2 */
276         ARM64_FTR_END,
277 };
278
279 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
280         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),               /* State3 */
281         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),                /* State2 */
282         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* State1 */
283         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* State0 */
284         ARM64_FTR_END,
285 };
286
287 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
288         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
289         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
290         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
291         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
292         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
293         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
294         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
295         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
296         ARM64_FTR_END,
297 };
298
299 static const struct arm64_ftr_bits ftr_zcr[] = {
300         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
301                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
302         ARM64_FTR_END,
303 };
304
305 /*
306  * Common ftr bits for a 32bit register with all hidden, strict
307  * attributes, with 4bit feature fields and a default safe value of
308  * 0. Covers the following 32bit registers:
309  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
310  */
311 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
312         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
313         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
314         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
315         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
316         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
317         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
318         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
319         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
320         ARM64_FTR_END,
321 };
322
323 /* Table for a single 32bit feature value */
324 static const struct arm64_ftr_bits ftr_single32[] = {
325         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
326         ARM64_FTR_END,
327 };
328
329 static const struct arm64_ftr_bits ftr_raz[] = {
330         ARM64_FTR_END,
331 };
332
333 #define ARM64_FTR_REG(id, table) {              \
334         .sys_id = id,                           \
335         .reg =  &(struct arm64_ftr_reg){        \
336                 .name = #id,                    \
337                 .ftr_bits = &((table)[0]),      \
338         }}
339
340 static const struct __ftr_reg_entry {
341         u32                     sys_id;
342         struct arm64_ftr_reg    *reg;
343 } arm64_ftr_regs[] = {
344
345         /* Op1 = 0, CRn = 0, CRm = 1 */
346         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
347         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
348         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
349         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
350         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
351         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
352         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
353
354         /* Op1 = 0, CRn = 0, CRm = 2 */
355         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
356         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
357         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
358         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
359         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
360         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
361         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
362
363         /* Op1 = 0, CRn = 0, CRm = 3 */
364         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
365         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
366         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
367
368         /* Op1 = 0, CRn = 0, CRm = 4 */
369         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
370         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
371         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
372
373         /* Op1 = 0, CRn = 0, CRm = 5 */
374         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
375         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
376
377         /* Op1 = 0, CRn = 0, CRm = 6 */
378         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
379         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
380
381         /* Op1 = 0, CRn = 0, CRm = 7 */
382         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
383         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
384         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
385
386         /* Op1 = 0, CRn = 1, CRm = 2 */
387         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
388
389         /* Op1 = 3, CRn = 0, CRm = 0 */
390         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
391         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
392
393         /* Op1 = 3, CRn = 14, CRm = 0 */
394         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
395 };
396
397 static int search_cmp_ftr_reg(const void *id, const void *regp)
398 {
399         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
400 }
401
402 /*
403  * get_arm64_ftr_reg - Lookup a feature register entry using its
404  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
405  * ascending order of sys_id , we use binary search to find a matching
406  * entry.
407  *
408  * returns - Upon success,  matching ftr_reg entry for id.
409  *         - NULL on failure. It is upto the caller to decide
410  *           the impact of a failure.
411  */
412 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
413 {
414         const struct __ftr_reg_entry *ret;
415
416         ret = bsearch((const void *)(unsigned long)sys_id,
417                         arm64_ftr_regs,
418                         ARRAY_SIZE(arm64_ftr_regs),
419                         sizeof(arm64_ftr_regs[0]),
420                         search_cmp_ftr_reg);
421         if (ret)
422                 return ret->reg;
423         return NULL;
424 }
425
426 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
427                                s64 ftr_val)
428 {
429         u64 mask = arm64_ftr_mask(ftrp);
430
431         reg &= ~mask;
432         reg |= (ftr_val << ftrp->shift) & mask;
433         return reg;
434 }
435
436 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
437                                 s64 cur)
438 {
439         s64 ret = 0;
440
441         switch (ftrp->type) {
442         case FTR_EXACT:
443                 ret = ftrp->safe_val;
444                 break;
445         case FTR_LOWER_SAFE:
446                 ret = new < cur ? new : cur;
447                 break;
448         case FTR_HIGHER_SAFE:
449                 ret = new > cur ? new : cur;
450                 break;
451         default:
452                 BUG();
453         }
454
455         return ret;
456 }
457
458 static void __init sort_ftr_regs(void)
459 {
460         int i;
461
462         /* Check that the array is sorted so that we can do the binary search */
463         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
464                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
465 }
466
467 /*
468  * Initialise the CPU feature register from Boot CPU values.
469  * Also initiliases the strict_mask for the register.
470  * Any bits that are not covered by an arm64_ftr_bits entry are considered
471  * RES0 for the system-wide value, and must strictly match.
472  */
473 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
474 {
475         u64 val = 0;
476         u64 strict_mask = ~0x0ULL;
477         u64 user_mask = 0;
478         u64 valid_mask = 0;
479
480         const struct arm64_ftr_bits *ftrp;
481         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
482
483         BUG_ON(!reg);
484
485         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
486                 u64 ftr_mask = arm64_ftr_mask(ftrp);
487                 s64 ftr_new = arm64_ftr_value(ftrp, new);
488
489                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
490
491                 valid_mask |= ftr_mask;
492                 if (!ftrp->strict)
493                         strict_mask &= ~ftr_mask;
494                 if (ftrp->visible)
495                         user_mask |= ftr_mask;
496                 else
497                         reg->user_val = arm64_ftr_set_value(ftrp,
498                                                             reg->user_val,
499                                                             ftrp->safe_val);
500         }
501
502         val &= valid_mask;
503
504         reg->sys_val = val;
505         reg->strict_mask = strict_mask;
506         reg->user_mask = user_mask;
507 }
508
509 void __init init_cpu_features(struct cpuinfo_arm64 *info)
510 {
511         /* Before we start using the tables, make sure it is sorted */
512         sort_ftr_regs();
513
514         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
515         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
516         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
517         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
518         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
519         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
520         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
521         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
522         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
523         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
524         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
525         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
526         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
527
528         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
529                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
530                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
531                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
532                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
533                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
534                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
535                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
536                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
537                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
538                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
539                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
540                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
541                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
542                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
543                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
544                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
545         }
546
547         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
548                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
549                 sve_init_vq_map();
550         }
551 }
552
553 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
554 {
555         const struct arm64_ftr_bits *ftrp;
556
557         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
558                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
559                 s64 ftr_new = arm64_ftr_value(ftrp, new);
560
561                 if (ftr_cur == ftr_new)
562                         continue;
563                 /* Find a safe value */
564                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
565                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
566         }
567
568 }
569
570 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
571 {
572         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
573
574         BUG_ON(!regp);
575         update_cpu_ftr_reg(regp, val);
576         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
577                 return 0;
578         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
579                         regp->name, boot, cpu, val);
580         return 1;
581 }
582
583 /*
584  * Update system wide CPU feature registers with the values from a
585  * non-boot CPU. Also performs SANITY checks to make sure that there
586  * aren't any insane variations from that of the boot CPU.
587  */
588 void update_cpu_features(int cpu,
589                          struct cpuinfo_arm64 *info,
590                          struct cpuinfo_arm64 *boot)
591 {
592         int taint = 0;
593
594         /*
595          * The kernel can handle differing I-cache policies, but otherwise
596          * caches should look identical. Userspace JITs will make use of
597          * *minLine.
598          */
599         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
600                                       info->reg_ctr, boot->reg_ctr);
601
602         /*
603          * Userspace may perform DC ZVA instructions. Mismatched block sizes
604          * could result in too much or too little memory being zeroed if a
605          * process is preempted and migrated between CPUs.
606          */
607         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
608                                       info->reg_dczid, boot->reg_dczid);
609
610         /* If different, timekeeping will be broken (especially with KVM) */
611         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
612                                       info->reg_cntfrq, boot->reg_cntfrq);
613
614         /*
615          * The kernel uses self-hosted debug features and expects CPUs to
616          * support identical debug features. We presently need CTX_CMPs, WRPs,
617          * and BRPs to be identical.
618          * ID_AA64DFR1 is currently RES0.
619          */
620         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
621                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
622         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
623                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
624         /*
625          * Even in big.LITTLE, processors should be identical instruction-set
626          * wise.
627          */
628         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
629                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
630         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
631                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
632
633         /*
634          * Differing PARange support is fine as long as all peripherals and
635          * memory are mapped within the minimum PARange of all CPUs.
636          * Linux should not care about secure memory.
637          */
638         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
639                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
640         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
641                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
642         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
643                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
644
645         /*
646          * EL3 is not our concern.
647          * ID_AA64PFR1 is currently RES0.
648          */
649         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
650                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
651         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
652                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
653
654         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
655                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
656
657         /*
658          * If we have AArch32, we care about 32-bit features for compat.
659          * If the system doesn't support AArch32, don't update them.
660          */
661         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
662                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
663
664                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
665                                         info->reg_id_dfr0, boot->reg_id_dfr0);
666                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
667                                         info->reg_id_isar0, boot->reg_id_isar0);
668                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
669                                         info->reg_id_isar1, boot->reg_id_isar1);
670                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
671                                         info->reg_id_isar2, boot->reg_id_isar2);
672                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
673                                         info->reg_id_isar3, boot->reg_id_isar3);
674                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
675                                         info->reg_id_isar4, boot->reg_id_isar4);
676                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
677                                         info->reg_id_isar5, boot->reg_id_isar5);
678
679                 /*
680                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
681                  * ACTLR formats could differ across CPUs and therefore would have to
682                  * be trapped for virtualization anyway.
683                  */
684                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
685                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
686                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
687                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
688                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
689                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
690                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
691                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
692                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
693                                         info->reg_id_pfr0, boot->reg_id_pfr0);
694                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
695                                         info->reg_id_pfr1, boot->reg_id_pfr1);
696                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
697                                         info->reg_mvfr0, boot->reg_mvfr0);
698                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
699                                         info->reg_mvfr1, boot->reg_mvfr1);
700                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
701                                         info->reg_mvfr2, boot->reg_mvfr2);
702         }
703
704         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
705                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
706                                         info->reg_zcr, boot->reg_zcr);
707
708                 /* Probe vector lengths, unless we already gave up on SVE */
709                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
710                     !sys_caps_initialised)
711                         sve_update_vq_map();
712         }
713
714         /*
715          * Mismatched CPU features are a recipe for disaster. Don't even
716          * pretend to support them.
717          */
718         if (taint) {
719                 pr_warn_once("Unsupported CPU feature variation detected.\n");
720                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
721         }
722 }
723
724 u64 read_sanitised_ftr_reg(u32 id)
725 {
726         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
727
728         /* We shouldn't get a request for an unsupported register */
729         BUG_ON(!regp);
730         return regp->sys_val;
731 }
732
733 #define read_sysreg_case(r)     \
734         case r:         return read_sysreg_s(r)
735
736 /*
737  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
738  * Read the system register on the current CPU
739  */
740 static u64 __read_sysreg_by_encoding(u32 sys_id)
741 {
742         switch (sys_id) {
743         read_sysreg_case(SYS_ID_PFR0_EL1);
744         read_sysreg_case(SYS_ID_PFR1_EL1);
745         read_sysreg_case(SYS_ID_DFR0_EL1);
746         read_sysreg_case(SYS_ID_MMFR0_EL1);
747         read_sysreg_case(SYS_ID_MMFR1_EL1);
748         read_sysreg_case(SYS_ID_MMFR2_EL1);
749         read_sysreg_case(SYS_ID_MMFR3_EL1);
750         read_sysreg_case(SYS_ID_ISAR0_EL1);
751         read_sysreg_case(SYS_ID_ISAR1_EL1);
752         read_sysreg_case(SYS_ID_ISAR2_EL1);
753         read_sysreg_case(SYS_ID_ISAR3_EL1);
754         read_sysreg_case(SYS_ID_ISAR4_EL1);
755         read_sysreg_case(SYS_ID_ISAR5_EL1);
756         read_sysreg_case(SYS_MVFR0_EL1);
757         read_sysreg_case(SYS_MVFR1_EL1);
758         read_sysreg_case(SYS_MVFR2_EL1);
759
760         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
761         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
762         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
763         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
764         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
765         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
766         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
767         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
768         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
769
770         read_sysreg_case(SYS_CNTFRQ_EL0);
771         read_sysreg_case(SYS_CTR_EL0);
772         read_sysreg_case(SYS_DCZID_EL0);
773
774         default:
775                 BUG();
776                 return 0;
777         }
778 }
779
780 #include <linux/irqchip/arm-gic-v3.h>
781
782 static bool
783 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
784 {
785         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
786
787         return val >= entry->min_field_value;
788 }
789
790 static bool
791 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
792 {
793         u64 val;
794
795         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
796         if (scope == SCOPE_SYSTEM)
797                 val = read_sanitised_ftr_reg(entry->sys_reg);
798         else
799                 val = __read_sysreg_by_encoding(entry->sys_reg);
800
801         return feature_matches(val, entry);
802 }
803
804 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
805 {
806         bool has_sre;
807
808         if (!has_cpuid_feature(entry, scope))
809                 return false;
810
811         has_sre = gic_enable_sre();
812         if (!has_sre)
813                 pr_warn_once("%s present but disabled by higher exception level\n",
814                              entry->desc);
815
816         return has_sre;
817 }
818
819 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
820 {
821         u32 midr = read_cpuid_id();
822
823         /* Cavium ThunderX pass 1.x and 2.x */
824         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
825                 MIDR_CPU_VAR_REV(0, 0),
826                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
827 }
828
829 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
830 {
831         return is_kernel_in_hyp_mode();
832 }
833
834 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
835                            int __unused)
836 {
837         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
838
839         /*
840          * Activate the lower HYP offset only if:
841          * - the idmap doesn't clash with it,
842          * - the kernel is not running at EL2.
843          */
844         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
845 }
846
847 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
848 {
849         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
850
851         return cpuid_feature_extract_signed_field(pfr0,
852                                         ID_AA64PFR0_FP_SHIFT) < 0;
853 }
854
855 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
856 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
857
858 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
859                                 int __unused)
860 {
861         char const *str = "command line option";
862         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
863
864         /*
865          * For reasons that aren't entirely clear, enabling KPTI on Cavium
866          * ThunderX leads to apparent I-cache corruption of kernel text, which
867          * ends as well as you might imagine. Don't even try.
868          */
869         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
870                 str = "ARM64_WORKAROUND_CAVIUM_27456";
871                 __kpti_forced = -1;
872         }
873
874         /* Forced? */
875         if (__kpti_forced) {
876                 pr_info_once("kernel page table isolation forced %s by %s\n",
877                              __kpti_forced > 0 ? "ON" : "OFF", str);
878                 return __kpti_forced > 0;
879         }
880
881         /* Useful for KASLR robustness */
882         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
883                 return true;
884
885         /* Don't force KPTI for CPUs that are not vulnerable */
886         switch (read_cpuid_id() & MIDR_CPU_MODEL_MASK) {
887         case MIDR_CAVIUM_THUNDERX2:
888         case MIDR_BRCM_VULCAN:
889                 return false;
890         }
891
892         /* Defer to CPU feature registers */
893         return !cpuid_feature_extract_unsigned_field(pfr0,
894                                                      ID_AA64PFR0_CSV3_SHIFT);
895 }
896
897 static int kpti_install_ng_mappings(void *__unused)
898 {
899         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
900         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
901         kpti_remap_fn *remap_fn;
902
903         static bool kpti_applied = false;
904         int cpu = smp_processor_id();
905
906         if (kpti_applied)
907                 return 0;
908
909         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
910
911         cpu_install_idmap();
912         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
913         cpu_uninstall_idmap();
914
915         if (!cpu)
916                 kpti_applied = true;
917
918         return 0;
919 }
920
921 static int __init parse_kpti(char *str)
922 {
923         bool enabled;
924         int ret = strtobool(str, &enabled);
925
926         if (ret)
927                 return ret;
928
929         __kpti_forced = enabled ? 1 : -1;
930         return 0;
931 }
932 __setup("kpti=", parse_kpti);
933 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
934
935 static int cpu_copy_el2regs(void *__unused)
936 {
937         /*
938          * Copy register values that aren't redirected by hardware.
939          *
940          * Before code patching, we only set tpidr_el1, all CPUs need to copy
941          * this value to tpidr_el2 before we patch the code. Once we've done
942          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
943          * do anything here.
944          */
945         if (!alternatives_applied)
946                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
947
948         return 0;
949 }
950
951 static const struct arm64_cpu_capabilities arm64_features[] = {
952         {
953                 .desc = "GIC system register CPU interface",
954                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
955                 .def_scope = SCOPE_SYSTEM,
956                 .matches = has_useable_gicv3_cpuif,
957                 .sys_reg = SYS_ID_AA64PFR0_EL1,
958                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
959                 .sign = FTR_UNSIGNED,
960                 .min_field_value = 1,
961         },
962 #ifdef CONFIG_ARM64_PAN
963         {
964                 .desc = "Privileged Access Never",
965                 .capability = ARM64_HAS_PAN,
966                 .def_scope = SCOPE_SYSTEM,
967                 .matches = has_cpuid_feature,
968                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
969                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
970                 .sign = FTR_UNSIGNED,
971                 .min_field_value = 1,
972                 .enable = cpu_enable_pan,
973         },
974 #endif /* CONFIG_ARM64_PAN */
975 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
976         {
977                 .desc = "LSE atomic instructions",
978                 .capability = ARM64_HAS_LSE_ATOMICS,
979                 .def_scope = SCOPE_SYSTEM,
980                 .matches = has_cpuid_feature,
981                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
982                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
983                 .sign = FTR_UNSIGNED,
984                 .min_field_value = 2,
985         },
986 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
987         {
988                 .desc = "Software prefetching using PRFM",
989                 .capability = ARM64_HAS_NO_HW_PREFETCH,
990                 .def_scope = SCOPE_SYSTEM,
991                 .matches = has_no_hw_prefetch,
992         },
993 #ifdef CONFIG_ARM64_UAO
994         {
995                 .desc = "User Access Override",
996                 .capability = ARM64_HAS_UAO,
997                 .def_scope = SCOPE_SYSTEM,
998                 .matches = has_cpuid_feature,
999                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1000                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1001                 .min_field_value = 1,
1002                 /*
1003                  * We rely on stop_machine() calling uao_thread_switch() to set
1004                  * UAO immediately after patching.
1005                  */
1006         },
1007 #endif /* CONFIG_ARM64_UAO */
1008 #ifdef CONFIG_ARM64_PAN
1009         {
1010                 .capability = ARM64_ALT_PAN_NOT_UAO,
1011                 .def_scope = SCOPE_SYSTEM,
1012                 .matches = cpufeature_pan_not_uao,
1013         },
1014 #endif /* CONFIG_ARM64_PAN */
1015         {
1016                 .desc = "Virtualization Host Extensions",
1017                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1018                 .def_scope = SCOPE_SYSTEM,
1019                 .matches = runs_at_el2,
1020                 .enable = cpu_copy_el2regs,
1021         },
1022         {
1023                 .desc = "32-bit EL0 Support",
1024                 .capability = ARM64_HAS_32BIT_EL0,
1025                 .def_scope = SCOPE_SYSTEM,
1026                 .matches = has_cpuid_feature,
1027                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1028                 .sign = FTR_UNSIGNED,
1029                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1030                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1031         },
1032         {
1033                 .desc = "Reduced HYP mapping offset",
1034                 .capability = ARM64_HYP_OFFSET_LOW,
1035                 .def_scope = SCOPE_SYSTEM,
1036                 .matches = hyp_offset_low,
1037         },
1038 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1039         {
1040                 .desc = "Kernel page table isolation (KPTI)",
1041                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1042                 .def_scope = SCOPE_SYSTEM,
1043                 .matches = unmap_kernel_at_el0,
1044                 .enable = kpti_install_ng_mappings,
1045         },
1046 #endif
1047         {
1048                 /* FP/SIMD is not implemented */
1049                 .capability = ARM64_HAS_NO_FPSIMD,
1050                 .def_scope = SCOPE_SYSTEM,
1051                 .min_field_value = 0,
1052                 .matches = has_no_fpsimd,
1053         },
1054 #ifdef CONFIG_ARM64_PMEM
1055         {
1056                 .desc = "Data cache clean to Point of Persistence",
1057                 .capability = ARM64_HAS_DCPOP,
1058                 .def_scope = SCOPE_SYSTEM,
1059                 .matches = has_cpuid_feature,
1060                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1061                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1062                 .min_field_value = 1,
1063         },
1064 #endif
1065 #ifdef CONFIG_ARM64_SVE
1066         {
1067                 .desc = "Scalable Vector Extension",
1068                 .capability = ARM64_SVE,
1069                 .def_scope = SCOPE_SYSTEM,
1070                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1071                 .sign = FTR_UNSIGNED,
1072                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1073                 .min_field_value = ID_AA64PFR0_SVE,
1074                 .matches = has_cpuid_feature,
1075                 .enable = sve_kernel_enable,
1076         },
1077 #endif /* CONFIG_ARM64_SVE */
1078 #ifdef CONFIG_ARM64_RAS_EXTN
1079         {
1080                 .desc = "RAS Extension Support",
1081                 .capability = ARM64_HAS_RAS_EXTN,
1082                 .def_scope = SCOPE_SYSTEM,
1083                 .matches = has_cpuid_feature,
1084                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1085                 .sign = FTR_UNSIGNED,
1086                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1087                 .min_field_value = ID_AA64PFR0_RAS_V1,
1088                 .enable = cpu_clear_disr,
1089         },
1090 #endif /* CONFIG_ARM64_RAS_EXTN */
1091         {},
1092 };
1093
1094 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
1095         {                                                       \
1096                 .desc = #cap,                                   \
1097                 .def_scope = SCOPE_SYSTEM,                      \
1098                 .matches = has_cpuid_feature,                   \
1099                 .sys_reg = reg,                                 \
1100                 .field_pos = field,                             \
1101                 .sign = s,                                      \
1102                 .min_field_value = min_value,                   \
1103                 .hwcap_type = type,                             \
1104                 .hwcap = cap,                                   \
1105         }
1106
1107 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1108         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1109         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1110         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1111         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1112         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1113         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1114         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1115         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1116         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1117         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1118         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1119         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1120         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1121         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1122         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1123         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1124         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1125         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1126         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1127         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1128         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1129 #ifdef CONFIG_ARM64_SVE
1130         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1131 #endif
1132         {},
1133 };
1134
1135 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1136 #ifdef CONFIG_COMPAT
1137         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1138         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1139         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1140         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1141         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1142 #endif
1143         {},
1144 };
1145
1146 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1147 {
1148         switch (cap->hwcap_type) {
1149         case CAP_HWCAP:
1150                 elf_hwcap |= cap->hwcap;
1151                 break;
1152 #ifdef CONFIG_COMPAT
1153         case CAP_COMPAT_HWCAP:
1154                 compat_elf_hwcap |= (u32)cap->hwcap;
1155                 break;
1156         case CAP_COMPAT_HWCAP2:
1157                 compat_elf_hwcap2 |= (u32)cap->hwcap;
1158                 break;
1159 #endif
1160         default:
1161                 WARN_ON(1);
1162                 break;
1163         }
1164 }
1165
1166 /* Check if we have a particular HWCAP enabled */
1167 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1168 {
1169         bool rc;
1170
1171         switch (cap->hwcap_type) {
1172         case CAP_HWCAP:
1173                 rc = (elf_hwcap & cap->hwcap) != 0;
1174                 break;
1175 #ifdef CONFIG_COMPAT
1176         case CAP_COMPAT_HWCAP:
1177                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1178                 break;
1179         case CAP_COMPAT_HWCAP2:
1180                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1181                 break;
1182 #endif
1183         default:
1184                 WARN_ON(1);
1185                 rc = false;
1186         }
1187
1188         return rc;
1189 }
1190
1191 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1192 {
1193         /* We support emulation of accesses to CPU ID feature registers */
1194         elf_hwcap |= HWCAP_CPUID;
1195         for (; hwcaps->matches; hwcaps++)
1196                 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1197                         cap_set_elf_hwcap(hwcaps);
1198 }
1199
1200 /*
1201  * Check if the current CPU has a given feature capability.
1202  * Should be called from non-preemptible context.
1203  */
1204 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1205                                unsigned int cap)
1206 {
1207         const struct arm64_cpu_capabilities *caps;
1208
1209         if (WARN_ON(preemptible()))
1210                 return false;
1211
1212         for (caps = cap_array; caps->matches; caps++)
1213                 if (caps->capability == cap &&
1214                     caps->matches(caps, SCOPE_LOCAL_CPU))
1215                         return true;
1216         return false;
1217 }
1218
1219 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1220                             const char *info)
1221 {
1222         for (; caps->matches; caps++) {
1223                 if (!caps->matches(caps, caps->def_scope))
1224                         continue;
1225
1226                 if (!cpus_have_cap(caps->capability) && caps->desc)
1227                         pr_info("%s %s\n", info, caps->desc);
1228                 cpus_set_cap(caps->capability);
1229         }
1230 }
1231
1232 /*
1233  * Run through the enabled capabilities and enable() it on all active
1234  * CPUs
1235  */
1236 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1237 {
1238         for (; caps->matches; caps++) {
1239                 unsigned int num = caps->capability;
1240
1241                 if (!cpus_have_cap(num))
1242                         continue;
1243
1244                 /* Ensure cpus_have_const_cap(num) works */
1245                 static_branch_enable(&cpu_hwcap_keys[num]);
1246
1247                 if (caps->enable) {
1248                         /*
1249                          * Use stop_machine() as it schedules the work allowing
1250                          * us to modify PSTATE, instead of on_each_cpu() which
1251                          * uses an IPI, giving us a PSTATE that disappears when
1252                          * we return.
1253                          */
1254                         stop_machine(caps->enable, (void *)caps, cpu_online_mask);
1255                 }
1256         }
1257 }
1258
1259 /*
1260  * Check for CPU features that are used in early boot
1261  * based on the Boot CPU value.
1262  */
1263 static void check_early_cpu_features(void)
1264 {
1265         verify_cpu_run_el();
1266         verify_cpu_asid_bits();
1267 }
1268
1269 static void
1270 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1271 {
1272
1273         for (; caps->matches; caps++)
1274                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1275                         pr_crit("CPU%d: missing HWCAP: %s\n",
1276                                         smp_processor_id(), caps->desc);
1277                         cpu_die_early();
1278                 }
1279 }
1280
1281 static void
1282 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps_list)
1283 {
1284         const struct arm64_cpu_capabilities *caps = caps_list;
1285         for (; caps->matches; caps++) {
1286                 if (!cpus_have_cap(caps->capability))
1287                         continue;
1288                 /*
1289                  * If the new CPU misses an advertised feature, we cannot proceed
1290                  * further, park the cpu.
1291                  */
1292                 if (!__this_cpu_has_cap(caps_list, caps->capability)) {
1293                         pr_crit("CPU%d: missing feature: %s\n",
1294                                         smp_processor_id(), caps->desc);
1295                         cpu_die_early();
1296                 }
1297                 if (caps->enable)
1298                         caps->enable((void *)caps);
1299         }
1300 }
1301
1302 static void verify_sve_features(void)
1303 {
1304         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1305         u64 zcr = read_zcr_features();
1306
1307         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1308         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1309
1310         if (len < safe_len || sve_verify_vq_map()) {
1311                 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1312                         smp_processor_id());
1313                 cpu_die_early();
1314         }
1315
1316         /* Add checks on other ZCR bits here if necessary */
1317 }
1318
1319 /*
1320  * Run through the enabled system capabilities and enable() it on this CPU.
1321  * The capabilities were decided based on the available CPUs at the boot time.
1322  * Any new CPU should match the system wide status of the capability. If the
1323  * new CPU doesn't have a capability which the system now has enabled, we
1324  * cannot do anything to fix it up and could cause unexpected failures. So
1325  * we park the CPU.
1326  */
1327 static void verify_local_cpu_capabilities(void)
1328 {
1329         verify_local_cpu_errata_workarounds();
1330         verify_local_cpu_features(arm64_features);
1331         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1332
1333         if (system_supports_32bit_el0())
1334                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1335
1336         if (system_supports_sve())
1337                 verify_sve_features();
1338
1339         if (system_uses_ttbr0_pan())
1340                 pr_info("Emulating Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1341 }
1342
1343 void check_local_cpu_capabilities(void)
1344 {
1345         /*
1346          * All secondary CPUs should conform to the early CPU features
1347          * in use by the kernel based on boot CPU.
1348          */
1349         check_early_cpu_features();
1350
1351         /*
1352          * If we haven't finalised the system capabilities, this CPU gets
1353          * a chance to update the errata work arounds.
1354          * Otherwise, this CPU should verify that it has all the system
1355          * advertised capabilities.
1356          */
1357         if (!sys_caps_initialised)
1358                 update_cpu_errata_workarounds();
1359         else
1360                 verify_local_cpu_capabilities();
1361 }
1362
1363 static void __init setup_feature_capabilities(void)
1364 {
1365         update_cpu_capabilities(arm64_features, "detected feature:");
1366         enable_cpu_capabilities(arm64_features);
1367 }
1368
1369 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1370 EXPORT_SYMBOL(arm64_const_caps_ready);
1371
1372 static void __init mark_const_caps_ready(void)
1373 {
1374         static_branch_enable(&arm64_const_caps_ready);
1375 }
1376
1377 extern const struct arm64_cpu_capabilities arm64_errata[];
1378
1379 bool this_cpu_has_cap(unsigned int cap)
1380 {
1381         return (__this_cpu_has_cap(arm64_features, cap) ||
1382                 __this_cpu_has_cap(arm64_errata, cap));
1383 }
1384
1385 void __init setup_cpu_features(void)
1386 {
1387         u32 cwg;
1388         int cls;
1389
1390         /* Set the CPU feature capabilies */
1391         setup_feature_capabilities();
1392         enable_errata_workarounds();
1393         mark_const_caps_ready();
1394         setup_elf_hwcaps(arm64_elf_hwcaps);
1395
1396         if (system_supports_32bit_el0())
1397                 setup_elf_hwcaps(compat_elf_hwcaps);
1398
1399         sve_setup();
1400
1401         /* Advertise that we have computed the system capabilities */
1402         set_sys_caps_initialised();
1403
1404         /*
1405          * Check for sane CTR_EL0.CWG value.
1406          */
1407         cwg = cache_type_cwg();
1408         cls = cache_line_size();
1409         if (!cwg)
1410                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1411                         cls);
1412         if (L1_CACHE_BYTES < cls)
1413                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1414                         L1_CACHE_BYTES, cls);
1415 }
1416
1417 static bool __maybe_unused
1418 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1419 {
1420         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1421 }
1422
1423 /*
1424  * We emulate only the following system register space.
1425  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1426  * See Table C5-6 System instruction encodings for System register accesses,
1427  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1428  */
1429 static inline bool __attribute_const__ is_emulated(u32 id)
1430 {
1431         return (sys_reg_Op0(id) == 0x3 &&
1432                 sys_reg_CRn(id) == 0x0 &&
1433                 sys_reg_Op1(id) == 0x0 &&
1434                 (sys_reg_CRm(id) == 0 ||
1435                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1436 }
1437
1438 /*
1439  * With CRm == 0, reg should be one of :
1440  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1441  */
1442 static inline int emulate_id_reg(u32 id, u64 *valp)
1443 {
1444         switch (id) {
1445         case SYS_MIDR_EL1:
1446                 *valp = read_cpuid_id();
1447                 break;
1448         case SYS_MPIDR_EL1:
1449                 *valp = SYS_MPIDR_SAFE_VAL;
1450                 break;
1451         case SYS_REVIDR_EL1:
1452                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1453                 *valp = 0;
1454                 break;
1455         default:
1456                 return -EINVAL;
1457         }
1458
1459         return 0;
1460 }
1461
1462 static int emulate_sys_reg(u32 id, u64 *valp)
1463 {
1464         struct arm64_ftr_reg *regp;
1465
1466         if (!is_emulated(id))
1467                 return -EINVAL;
1468
1469         if (sys_reg_CRm(id) == 0)
1470                 return emulate_id_reg(id, valp);
1471
1472         regp = get_arm64_ftr_reg(id);
1473         if (regp)
1474                 *valp = arm64_ftr_reg_user_value(regp);
1475         else
1476                 /*
1477                  * The untracked registers are either IMPLEMENTATION DEFINED
1478                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
1479                  */
1480                 *valp = 0;
1481         return 0;
1482 }
1483
1484 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1485 {
1486         int rc;
1487         u32 sys_reg, dst;
1488         u64 val;
1489
1490         /*
1491          * sys_reg values are defined as used in mrs/msr instruction.
1492          * shift the imm value to get the encoding.
1493          */
1494         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1495         rc = emulate_sys_reg(sys_reg, &val);
1496         if (!rc) {
1497                 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1498                 pt_regs_write_reg(regs, dst, val);
1499                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1500         }
1501
1502         return rc;
1503 }
1504
1505 static struct undef_hook mrs_hook = {
1506         .instr_mask = 0xfff00000,
1507         .instr_val  = 0xd5300000,
1508         .pstate_mask = COMPAT_PSR_MODE_MASK,
1509         .pstate_val = PSR_MODE_EL0t,
1510         .fn = emulate_mrs,
1511 };
1512
1513 static int __init enable_mrs_emulation(void)
1514 {
1515         register_undef_hook(&mrs_hook);
1516         return 0;
1517 }
1518
1519 core_initcall(enable_mrs_emulation);
1520
1521 int cpu_clear_disr(void *__unused)
1522 {
1523         /* Firmware may have left a deferred SError in this register. */
1524         write_sysreg_s(0, SYS_DISR_EL1);
1525
1526         return 0;
1527 }