Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[sfrench/cifs-2.6.git] / arch / arm64 / include / asm / cacheflush.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Based on arch/arm/include/asm/cacheflush.h
4  *
5  * Copyright (C) 1999-2002 Russell King.
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 #ifndef __ASM_CACHEFLUSH_H
9 #define __ASM_CACHEFLUSH_H
10
11 #include <linux/kgdb.h>
12 #include <linux/mm.h>
13
14 /*
15  * This flag is used to indicate that the page pointed to by a pte is clean
16  * and does not require cleaning before returning it to the user.
17  */
18 #define PG_dcache_clean PG_arch_1
19
20 /*
21  *      MM Cache Management
22  *      ===================
23  *
24  *      The arch/arm64/mm/cache.S implements these methods.
25  *
26  *      Start addresses are inclusive and end addresses are exclusive; start
27  *      addresses should be rounded down, end addresses up.
28  *
29  *      See Documentation/core-api/cachetlb.rst for more information. Please note that
30  *      the implementation assumes non-aliasing VIPT D-cache and (aliasing)
31  *      VIPT I-cache.
32  *
33  *      flush_cache_mm(mm)
34  *
35  *              Clean and invalidate all user space cache entries
36  *              before a change of page tables.
37  *
38  *      flush_icache_range(start, end)
39  *
40  *              Ensure coherency between the I-cache and the D-cache in the
41  *              region described by start, end.
42  *              - start  - virtual start address
43  *              - end    - virtual end address
44  *
45  *      invalidate_icache_range(start, end)
46  *
47  *              Invalidate the I-cache in the region described by start, end.
48  *              - start  - virtual start address
49  *              - end    - virtual end address
50  *
51  *      __flush_cache_user_range(start, end)
52  *
53  *              Ensure coherency between the I-cache and the D-cache in the
54  *              region described by start, end.
55  *              - start  - virtual start address
56  *              - end    - virtual end address
57  *
58  *      __flush_dcache_area(kaddr, size)
59  *
60  *              Ensure that the data held in page is written back.
61  *              - kaddr  - page address
62  *              - size   - region size
63  */
64 extern void __flush_icache_range(unsigned long start, unsigned long end);
65 extern int  invalidate_icache_range(unsigned long start, unsigned long end);
66 extern void __flush_dcache_area(void *addr, size_t len);
67 extern void __inval_dcache_area(void *addr, size_t len);
68 extern void __clean_dcache_area_poc(void *addr, size_t len);
69 extern void __clean_dcache_area_pop(void *addr, size_t len);
70 extern void __clean_dcache_area_pou(void *addr, size_t len);
71 extern long __flush_cache_user_range(unsigned long start, unsigned long end);
72 extern void sync_icache_aliases(void *kaddr, unsigned long len);
73
74 static inline void flush_icache_range(unsigned long start, unsigned long end)
75 {
76         __flush_icache_range(start, end);
77
78         /*
79          * IPI all online CPUs so that they undergo a context synchronization
80          * event and are forced to refetch the new instructions.
81          */
82 #ifdef CONFIG_KGDB
83         /*
84          * KGDB performs cache maintenance with interrupts disabled, so we
85          * will deadlock trying to IPI the secondary CPUs. In theory, we can
86          * set CACHE_FLUSH_IS_SAFE to 0 to avoid this known issue, but that
87          * just means that KGDB will elide the maintenance altogether! As it
88          * turns out, KGDB uses IPIs to round-up the secondary CPUs during
89          * the patching operation, so we don't need extra IPIs here anyway.
90          * In which case, add a KGDB-specific bodge and return early.
91          */
92         if (kgdb_connected && irqs_disabled())
93                 return;
94 #endif
95         kick_all_cpus_sync();
96 }
97
98 static inline void flush_cache_mm(struct mm_struct *mm)
99 {
100 }
101
102 static inline void flush_cache_page(struct vm_area_struct *vma,
103                                     unsigned long user_addr, unsigned long pfn)
104 {
105 }
106
107 static inline void flush_cache_range(struct vm_area_struct *vma,
108                                      unsigned long start, unsigned long end)
109 {
110 }
111
112 /*
113  * Cache maintenance functions used by the DMA API. No to be used directly.
114  */
115 extern void __dma_map_area(const void *, size_t, int);
116 extern void __dma_unmap_area(const void *, size_t, int);
117 extern void __dma_flush_area(const void *, size_t);
118
119 /*
120  * Copy user data from/to a page which is mapped into a different
121  * processes address space.  Really, we want to allow our "user
122  * space" model to handle this.
123  */
124 extern void copy_to_user_page(struct vm_area_struct *, struct page *,
125         unsigned long, void *, const void *, unsigned long);
126 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
127         do {                                                    \
128                 memcpy(dst, src, len);                          \
129         } while (0)
130
131 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
132
133 /*
134  * flush_dcache_page is used when the kernel has written to the page
135  * cache page at virtual address page->virtual.
136  *
137  * If this page isn't mapped (ie, page_mapping == NULL), or it might
138  * have userspace mappings, then we _must_ always clean + invalidate
139  * the dcache entries associated with the kernel mapping.
140  *
141  * Otherwise we can defer the operation, and clean the cache when we are
142  * about to change to user space.  This is the same method as used on SPARC64.
143  * See update_mmu_cache for the user space part.
144  */
145 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
146 extern void flush_dcache_page(struct page *);
147
148 static inline void __flush_icache_all(void)
149 {
150         if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
151                 return;
152
153         asm("ic ialluis");
154         dsb(ish);
155 }
156
157 #define flush_dcache_mmap_lock(mapping)         do { } while (0)
158 #define flush_dcache_mmap_unlock(mapping)       do { } while (0)
159
160 /*
161  * We don't appear to need to do anything here.  In fact, if we did, we'd
162  * duplicate cache flushing elsewhere performed by flush_dcache_page().
163  */
164 #define flush_icache_page(vma,page)     do { } while (0)
165
166 /*
167  * Not required on AArch64 (PIPT or VIPT non-aliasing D-cache).
168  */
169 static inline void flush_cache_vmap(unsigned long start, unsigned long end)
170 {
171 }
172
173 static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
174 {
175 }
176
177 int set_memory_valid(unsigned long addr, int numpages, int enable);
178
179 int set_direct_map_invalid_noflush(struct page *page);
180 int set_direct_map_default_noflush(struct page *page);
181
182 #endif