Merge branch 'nvme-4.18' of git://git.infradead.org/nvme into for-linus
[sfrench/cifs-2.6.git] / arch / arm64 / crypto / sha512-armv8.pl
1 #! /usr/bin/env perl
2 # SPDX-License-Identifier: GPL-2.0
3
4 # This code is taken from the OpenSSL project but the author (Andy Polyakov)
5 # has relicensed it under the GPLv2. Therefore this program is free software;
6 # you can redistribute it and/or modify it under the terms of the GNU General
7 # Public License version 2 as published by the Free Software Foundation.
8 #
9 # The original headers, including the original license headers, are
10 # included below for completeness.
11
12 # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
13 #
14 # Licensed under the OpenSSL license (the "License").  You may not use
15 # this file except in compliance with the License.  You can obtain a copy
16 # in the file LICENSE in the source distribution or at
17 # https://www.openssl.org/source/license.html
18
19 # ====================================================================
20 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
21 # project. The module is, however, dual licensed under OpenSSL and
22 # CRYPTOGAMS licenses depending on where you obtain it. For further
23 # details see http://www.openssl.org/~appro/cryptogams/.
24 # ====================================================================
25 #
26 # SHA256/512 for ARMv8.
27 #
28 # Performance in cycles per processed byte and improvement coefficient
29 # over code generated with "default" compiler:
30 #
31 #               SHA256-hw       SHA256(*)       SHA512
32 # Apple A7      1.97            10.5 (+33%)     6.73 (-1%(**))
33 # Cortex-A53    2.38            15.5 (+115%)    10.0 (+150%(***))
34 # Cortex-A57    2.31            11.6 (+86%)     7.51 (+260%(***))
35 # Denver        2.01            10.5 (+26%)     6.70 (+8%)
36 # X-Gene                        20.0 (+100%)    12.8 (+300%(***))
37 # Mongoose      2.36            13.0 (+50%)     8.36 (+33%)
38 #
39 # (*)   Software SHA256 results are of lesser relevance, presented
40 #       mostly for informational purposes.
41 # (**)  The result is a trade-off: it's possible to improve it by
42 #       10% (or by 1 cycle per round), but at the cost of 20% loss
43 #       on Cortex-A53 (or by 4 cycles per round).
44 # (***) Super-impressive coefficients over gcc-generated code are
45 #       indication of some compiler "pathology", most notably code
46 #       generated with -mgeneral-regs-only is significanty faster
47 #       and the gap is only 40-90%.
48 #
49 # October 2016.
50 #
51 # Originally it was reckoned that it makes no sense to implement NEON
52 # version of SHA256 for 64-bit processors. This is because performance
53 # improvement on most wide-spread Cortex-A5x processors was observed
54 # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
55 # observed that 32-bit NEON SHA256 performs significantly better than
56 # 64-bit scalar version on *some* of the more recent processors. As
57 # result 64-bit NEON version of SHA256 was added to provide best
58 # all-round performance. For example it executes ~30% faster on X-Gene
59 # and Mongoose. [For reference, NEON version of SHA512 is bound to
60 # deliver much less improvement, likely *negative* on Cortex-A5x.
61 # Which is why NEON support is limited to SHA256.]
62
63 $output=pop;
64 $flavour=pop;
65
66 if ($flavour && $flavour ne "void") {
67     $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
68     ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
69     ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
70     die "can't locate arm-xlate.pl";
71
72     open OUT,"| \"$^X\" $xlate $flavour $output";
73     *STDOUT=*OUT;
74 } else {
75     open STDOUT,">$output";
76 }
77
78 if ($output =~ /512/) {
79         $BITS=512;
80         $SZ=8;
81         @Sigma0=(28,34,39);
82         @Sigma1=(14,18,41);
83         @sigma0=(1,  8, 7);
84         @sigma1=(19,61, 6);
85         $rounds=80;
86         $reg_t="x";
87 } else {
88         $BITS=256;
89         $SZ=4;
90         @Sigma0=( 2,13,22);
91         @Sigma1=( 6,11,25);
92         @sigma0=( 7,18, 3);
93         @sigma1=(17,19,10);
94         $rounds=64;
95         $reg_t="w";
96 }
97
98 $func="sha${BITS}_block_data_order";
99
100 ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
101
102 @X=map("$reg_t$_",(3..15,0..2));
103 @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
104 ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
105
106 sub BODY_00_xx {
107 my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
108 my $j=($i+1)&15;
109 my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
110    $T0=@X[$i+3] if ($i<11);
111
112 $code.=<<___    if ($i<16);
113 #ifndef __AARCH64EB__
114         rev     @X[$i],@X[$i]                   // $i
115 #endif
116 ___
117 $code.=<<___    if ($i<13 && ($i&1));
118         ldp     @X[$i+1],@X[$i+2],[$inp],#2*$SZ
119 ___
120 $code.=<<___    if ($i==13);
121         ldp     @X[14],@X[15],[$inp]
122 ___
123 $code.=<<___    if ($i>=14);
124         ldr     @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
125 ___
126 $code.=<<___    if ($i>0 && $i<16);
127         add     $a,$a,$t1                       // h+=Sigma0(a)
128 ___
129 $code.=<<___    if ($i>=11);
130         str     @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
131 ___
132 # While ARMv8 specifies merged rotate-n-logical operation such as
133 # 'eor x,y,z,ror#n', it was found to negatively affect performance
134 # on Apple A7. The reason seems to be that it requires even 'y' to
135 # be available earlier. This means that such merged instruction is
136 # not necessarily best choice on critical path... On the other hand
137 # Cortex-A5x handles merged instructions much better than disjoint
138 # rotate and logical... See (**) footnote above.
139 $code.=<<___    if ($i<15);
140         ror     $t0,$e,#$Sigma1[0]
141         add     $h,$h,$t2                       // h+=K[i]
142         eor     $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
143         and     $t1,$f,$e
144         bic     $t2,$g,$e
145         add     $h,$h,@X[$i&15]                 // h+=X[i]
146         orr     $t1,$t1,$t2                     // Ch(e,f,g)
147         eor     $t2,$a,$b                       // a^b, b^c in next round
148         eor     $t0,$t0,$T0,ror#$Sigma1[1]      // Sigma1(e)
149         ror     $T0,$a,#$Sigma0[0]
150         add     $h,$h,$t1                       // h+=Ch(e,f,g)
151         eor     $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
152         add     $h,$h,$t0                       // h+=Sigma1(e)
153         and     $t3,$t3,$t2                     // (b^c)&=(a^b)
154         add     $d,$d,$h                        // d+=h
155         eor     $t3,$t3,$b                      // Maj(a,b,c)
156         eor     $t1,$T0,$t1,ror#$Sigma0[1]      // Sigma0(a)
157         add     $h,$h,$t3                       // h+=Maj(a,b,c)
158         ldr     $t3,[$Ktbl],#$SZ                // *K++, $t2 in next round
159         //add   $h,$h,$t1                       // h+=Sigma0(a)
160 ___
161 $code.=<<___    if ($i>=15);
162         ror     $t0,$e,#$Sigma1[0]
163         add     $h,$h,$t2                       // h+=K[i]
164         ror     $T1,@X[($j+1)&15],#$sigma0[0]
165         and     $t1,$f,$e
166         ror     $T2,@X[($j+14)&15],#$sigma1[0]
167         bic     $t2,$g,$e
168         ror     $T0,$a,#$Sigma0[0]
169         add     $h,$h,@X[$i&15]                 // h+=X[i]
170         eor     $t0,$t0,$e,ror#$Sigma1[1]
171         eor     $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
172         orr     $t1,$t1,$t2                     // Ch(e,f,g)
173         eor     $t2,$a,$b                       // a^b, b^c in next round
174         eor     $t0,$t0,$e,ror#$Sigma1[2]       // Sigma1(e)
175         eor     $T0,$T0,$a,ror#$Sigma0[1]
176         add     $h,$h,$t1                       // h+=Ch(e,f,g)
177         and     $t3,$t3,$t2                     // (b^c)&=(a^b)
178         eor     $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
179         eor     $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]    // sigma0(X[i+1])
180         add     $h,$h,$t0                       // h+=Sigma1(e)
181         eor     $t3,$t3,$b                      // Maj(a,b,c)
182         eor     $t1,$T0,$a,ror#$Sigma0[2]       // Sigma0(a)
183         eor     $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]   // sigma1(X[i+14])
184         add     @X[$j],@X[$j],@X[($j+9)&15]
185         add     $d,$d,$h                        // d+=h
186         add     $h,$h,$t3                       // h+=Maj(a,b,c)
187         ldr     $t3,[$Ktbl],#$SZ                // *K++, $t2 in next round
188         add     @X[$j],@X[$j],$T1
189         add     $h,$h,$t1                       // h+=Sigma0(a)
190         add     @X[$j],@X[$j],$T2
191 ___
192         ($t2,$t3)=($t3,$t2);
193 }
194
195 $code.=<<___;
196 #ifndef __KERNEL__
197 # include "arm_arch.h"
198 #endif
199
200 .text
201
202 .extern OPENSSL_armcap_P
203 .globl  $func
204 .type   $func,%function
205 .align  6
206 $func:
207 ___
208 $code.=<<___    if ($SZ==4);
209 #ifndef __KERNEL__
210 # ifdef __ILP32__
211         ldrsw   x16,.LOPENSSL_armcap_P
212 # else
213         ldr     x16,.LOPENSSL_armcap_P
214 # endif
215         adr     x17,.LOPENSSL_armcap_P
216         add     x16,x16,x17
217         ldr     w16,[x16]
218         tst     w16,#ARMV8_SHA256
219         b.ne    .Lv8_entry
220         tst     w16,#ARMV7_NEON
221         b.ne    .Lneon_entry
222 #endif
223 ___
224 $code.=<<___;
225         stp     x29,x30,[sp,#-128]!
226         add     x29,sp,#0
227
228         stp     x19,x20,[sp,#16]
229         stp     x21,x22,[sp,#32]
230         stp     x23,x24,[sp,#48]
231         stp     x25,x26,[sp,#64]
232         stp     x27,x28,[sp,#80]
233         sub     sp,sp,#4*$SZ
234
235         ldp     $A,$B,[$ctx]                            // load context
236         ldp     $C,$D,[$ctx,#2*$SZ]
237         ldp     $E,$F,[$ctx,#4*$SZ]
238         add     $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
239         ldp     $G,$H,[$ctx,#6*$SZ]
240         adr     $Ktbl,.LK$BITS
241         stp     $ctx,$num,[x29,#96]
242
243 .Loop:
244         ldp     @X[0],@X[1],[$inp],#2*$SZ
245         ldr     $t2,[$Ktbl],#$SZ                        // *K++
246         eor     $t3,$B,$C                               // magic seed
247         str     $inp,[x29,#112]
248 ___
249 for ($i=0;$i<16;$i++)   { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
250 $code.=".Loop_16_xx:\n";
251 for (;$i<32;$i++)       { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
252 $code.=<<___;
253         cbnz    $t2,.Loop_16_xx
254
255         ldp     $ctx,$num,[x29,#96]
256         ldr     $inp,[x29,#112]
257         sub     $Ktbl,$Ktbl,#`$SZ*($rounds+1)`          // rewind
258
259         ldp     @X[0],@X[1],[$ctx]
260         ldp     @X[2],@X[3],[$ctx,#2*$SZ]
261         add     $inp,$inp,#14*$SZ                       // advance input pointer
262         ldp     @X[4],@X[5],[$ctx,#4*$SZ]
263         add     $A,$A,@X[0]
264         ldp     @X[6],@X[7],[$ctx,#6*$SZ]
265         add     $B,$B,@X[1]
266         add     $C,$C,@X[2]
267         add     $D,$D,@X[3]
268         stp     $A,$B,[$ctx]
269         add     $E,$E,@X[4]
270         add     $F,$F,@X[5]
271         stp     $C,$D,[$ctx,#2*$SZ]
272         add     $G,$G,@X[6]
273         add     $H,$H,@X[7]
274         cmp     $inp,$num
275         stp     $E,$F,[$ctx,#4*$SZ]
276         stp     $G,$H,[$ctx,#6*$SZ]
277         b.ne    .Loop
278
279         ldp     x19,x20,[x29,#16]
280         add     sp,sp,#4*$SZ
281         ldp     x21,x22,[x29,#32]
282         ldp     x23,x24,[x29,#48]
283         ldp     x25,x26,[x29,#64]
284         ldp     x27,x28,[x29,#80]
285         ldp     x29,x30,[sp],#128
286         ret
287 .size   $func,.-$func
288
289 .align  6
290 .type   .LK$BITS,%object
291 .LK$BITS:
292 ___
293 $code.=<<___ if ($SZ==8);
294         .quad   0x428a2f98d728ae22,0x7137449123ef65cd
295         .quad   0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
296         .quad   0x3956c25bf348b538,0x59f111f1b605d019
297         .quad   0x923f82a4af194f9b,0xab1c5ed5da6d8118
298         .quad   0xd807aa98a3030242,0x12835b0145706fbe
299         .quad   0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
300         .quad   0x72be5d74f27b896f,0x80deb1fe3b1696b1
301         .quad   0x9bdc06a725c71235,0xc19bf174cf692694
302         .quad   0xe49b69c19ef14ad2,0xefbe4786384f25e3
303         .quad   0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
304         .quad   0x2de92c6f592b0275,0x4a7484aa6ea6e483
305         .quad   0x5cb0a9dcbd41fbd4,0x76f988da831153b5
306         .quad   0x983e5152ee66dfab,0xa831c66d2db43210
307         .quad   0xb00327c898fb213f,0xbf597fc7beef0ee4
308         .quad   0xc6e00bf33da88fc2,0xd5a79147930aa725
309         .quad   0x06ca6351e003826f,0x142929670a0e6e70
310         .quad   0x27b70a8546d22ffc,0x2e1b21385c26c926
311         .quad   0x4d2c6dfc5ac42aed,0x53380d139d95b3df
312         .quad   0x650a73548baf63de,0x766a0abb3c77b2a8
313         .quad   0x81c2c92e47edaee6,0x92722c851482353b
314         .quad   0xa2bfe8a14cf10364,0xa81a664bbc423001
315         .quad   0xc24b8b70d0f89791,0xc76c51a30654be30
316         .quad   0xd192e819d6ef5218,0xd69906245565a910
317         .quad   0xf40e35855771202a,0x106aa07032bbd1b8
318         .quad   0x19a4c116b8d2d0c8,0x1e376c085141ab53
319         .quad   0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
320         .quad   0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
321         .quad   0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
322         .quad   0x748f82ee5defb2fc,0x78a5636f43172f60
323         .quad   0x84c87814a1f0ab72,0x8cc702081a6439ec
324         .quad   0x90befffa23631e28,0xa4506cebde82bde9
325         .quad   0xbef9a3f7b2c67915,0xc67178f2e372532b
326         .quad   0xca273eceea26619c,0xd186b8c721c0c207
327         .quad   0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
328         .quad   0x06f067aa72176fba,0x0a637dc5a2c898a6
329         .quad   0x113f9804bef90dae,0x1b710b35131c471b
330         .quad   0x28db77f523047d84,0x32caab7b40c72493
331         .quad   0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
332         .quad   0x4cc5d4becb3e42b6,0x597f299cfc657e2a
333         .quad   0x5fcb6fab3ad6faec,0x6c44198c4a475817
334         .quad   0       // terminator
335 ___
336 $code.=<<___ if ($SZ==4);
337         .long   0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
338         .long   0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
339         .long   0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
340         .long   0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
341         .long   0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
342         .long   0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
343         .long   0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
344         .long   0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
345         .long   0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
346         .long   0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
347         .long   0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
348         .long   0xd192e819,0xd6990624,0xf40e3585,0x106aa070
349         .long   0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
350         .long   0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
351         .long   0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
352         .long   0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
353         .long   0       //terminator
354 ___
355 $code.=<<___;
356 .size   .LK$BITS,.-.LK$BITS
357 #ifndef __KERNEL__
358 .align  3
359 .LOPENSSL_armcap_P:
360 # ifdef __ILP32__
361         .long   OPENSSL_armcap_P-.
362 # else
363         .quad   OPENSSL_armcap_P-.
364 # endif
365 #endif
366 .asciz  "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
367 .align  2
368 ___
369
370 if ($SZ==4) {
371 my $Ktbl="x3";
372
373 my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
374 my @MSG=map("v$_.16b",(4..7));
375 my ($W0,$W1)=("v16.4s","v17.4s");
376 my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
377
378 $code.=<<___;
379 #ifndef __KERNEL__
380 .type   sha256_block_armv8,%function
381 .align  6
382 sha256_block_armv8:
383 .Lv8_entry:
384         stp             x29,x30,[sp,#-16]!
385         add             x29,sp,#0
386
387         ld1.32          {$ABCD,$EFGH},[$ctx]
388         adr             $Ktbl,.LK256
389
390 .Loop_hw:
391         ld1             {@MSG[0]-@MSG[3]},[$inp],#64
392         sub             $num,$num,#1
393         ld1.32          {$W0},[$Ktbl],#16
394         rev32           @MSG[0],@MSG[0]
395         rev32           @MSG[1],@MSG[1]
396         rev32           @MSG[2],@MSG[2]
397         rev32           @MSG[3],@MSG[3]
398         orr             $ABCD_SAVE,$ABCD,$ABCD          // offload
399         orr             $EFGH_SAVE,$EFGH,$EFGH
400 ___
401 for($i=0;$i<12;$i++) {
402 $code.=<<___;
403         ld1.32          {$W1},[$Ktbl],#16
404         add.i32         $W0,$W0,@MSG[0]
405         sha256su0       @MSG[0],@MSG[1]
406         orr             $abcd,$ABCD,$ABCD
407         sha256h         $ABCD,$EFGH,$W0
408         sha256h2        $EFGH,$abcd,$W0
409         sha256su1       @MSG[0],@MSG[2],@MSG[3]
410 ___
411         ($W0,$W1)=($W1,$W0);    push(@MSG,shift(@MSG));
412 }
413 $code.=<<___;
414         ld1.32          {$W1},[$Ktbl],#16
415         add.i32         $W0,$W0,@MSG[0]
416         orr             $abcd,$ABCD,$ABCD
417         sha256h         $ABCD,$EFGH,$W0
418         sha256h2        $EFGH,$abcd,$W0
419
420         ld1.32          {$W0},[$Ktbl],#16
421         add.i32         $W1,$W1,@MSG[1]
422         orr             $abcd,$ABCD,$ABCD
423         sha256h         $ABCD,$EFGH,$W1
424         sha256h2        $EFGH,$abcd,$W1
425
426         ld1.32          {$W1},[$Ktbl]
427         add.i32         $W0,$W0,@MSG[2]
428         sub             $Ktbl,$Ktbl,#$rounds*$SZ-16     // rewind
429         orr             $abcd,$ABCD,$ABCD
430         sha256h         $ABCD,$EFGH,$W0
431         sha256h2        $EFGH,$abcd,$W0
432
433         add.i32         $W1,$W1,@MSG[3]
434         orr             $abcd,$ABCD,$ABCD
435         sha256h         $ABCD,$EFGH,$W1
436         sha256h2        $EFGH,$abcd,$W1
437
438         add.i32         $ABCD,$ABCD,$ABCD_SAVE
439         add.i32         $EFGH,$EFGH,$EFGH_SAVE
440
441         cbnz            $num,.Loop_hw
442
443         st1.32          {$ABCD,$EFGH},[$ctx]
444
445         ldr             x29,[sp],#16
446         ret
447 .size   sha256_block_armv8,.-sha256_block_armv8
448 #endif
449 ___
450 }
451
452 if ($SZ==4) {   ######################################### NEON stuff #
453 # You'll surely note a lot of similarities with sha256-armv4 module,
454 # and of course it's not a coincidence. sha256-armv4 was used as
455 # initial template, but was adapted for ARMv8 instruction set and
456 # extensively re-tuned for all-round performance.
457
458 my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
459 my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
460 my $Ktbl="x16";
461 my $Xfer="x17";
462 my @X = map("q$_",(0..3));
463 my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
464 my $j=0;
465
466 sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
467 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
468   my $arg = pop;
469     $arg = "#$arg" if ($arg*1 eq $arg);
470     $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
471 }
472
473 sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
474 sub Dlo     { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
475 sub Dhi     { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
476
477 sub Xupdate()
478 { use integer;
479   my $body = shift;
480   my @insns = (&$body,&$body,&$body,&$body);
481   my ($a,$b,$c,$d,$e,$f,$g,$h);
482
483         &ext_8          ($T0,@X[0],@X[1],4);    # X[1..4]
484          eval(shift(@insns));
485          eval(shift(@insns));
486          eval(shift(@insns));
487         &ext_8          ($T3,@X[2],@X[3],4);    # X[9..12]
488          eval(shift(@insns));
489          eval(shift(@insns));
490         &mov            (&Dscalar($T7),&Dhi(@X[3]));    # X[14..15]
491          eval(shift(@insns));
492          eval(shift(@insns));
493         &ushr_32        ($T2,$T0,$sigma0[0]);
494          eval(shift(@insns));
495         &ushr_32        ($T1,$T0,$sigma0[2]);
496          eval(shift(@insns));
497         &add_32         (@X[0],@X[0],$T3);      # X[0..3] += X[9..12]
498          eval(shift(@insns));
499         &sli_32         ($T2,$T0,32-$sigma0[0]);
500          eval(shift(@insns));
501          eval(shift(@insns));
502         &ushr_32        ($T3,$T0,$sigma0[1]);
503          eval(shift(@insns));
504          eval(shift(@insns));
505         &eor_8          ($T1,$T1,$T2);
506          eval(shift(@insns));
507          eval(shift(@insns));
508         &sli_32         ($T3,$T0,32-$sigma0[1]);
509          eval(shift(@insns));
510          eval(shift(@insns));
511           &ushr_32      ($T4,$T7,$sigma1[0]);
512          eval(shift(@insns));
513          eval(shift(@insns));
514         &eor_8          ($T1,$T1,$T3);          # sigma0(X[1..4])
515          eval(shift(@insns));
516          eval(shift(@insns));
517           &sli_32       ($T4,$T7,32-$sigma1[0]);
518          eval(shift(@insns));
519          eval(shift(@insns));
520           &ushr_32      ($T5,$T7,$sigma1[2]);
521          eval(shift(@insns));
522          eval(shift(@insns));
523           &ushr_32      ($T3,$T7,$sigma1[1]);
524          eval(shift(@insns));
525          eval(shift(@insns));
526         &add_32         (@X[0],@X[0],$T1);      # X[0..3] += sigma0(X[1..4])
527          eval(shift(@insns));
528          eval(shift(@insns));
529           &sli_u32      ($T3,$T7,32-$sigma1[1]);
530          eval(shift(@insns));
531          eval(shift(@insns));
532           &eor_8        ($T5,$T5,$T4);
533          eval(shift(@insns));
534          eval(shift(@insns));
535          eval(shift(@insns));
536           &eor_8        ($T5,$T5,$T3);          # sigma1(X[14..15])
537          eval(shift(@insns));
538          eval(shift(@insns));
539          eval(shift(@insns));
540         &add_32         (@X[0],@X[0],$T5);      # X[0..1] += sigma1(X[14..15])
541          eval(shift(@insns));
542          eval(shift(@insns));
543          eval(shift(@insns));
544           &ushr_32      ($T6,@X[0],$sigma1[0]);
545          eval(shift(@insns));
546           &ushr_32      ($T7,@X[0],$sigma1[2]);
547          eval(shift(@insns));
548          eval(shift(@insns));
549           &sli_32       ($T6,@X[0],32-$sigma1[0]);
550          eval(shift(@insns));
551           &ushr_32      ($T5,@X[0],$sigma1[1]);
552          eval(shift(@insns));
553          eval(shift(@insns));
554           &eor_8        ($T7,$T7,$T6);
555          eval(shift(@insns));
556          eval(shift(@insns));
557           &sli_32       ($T5,@X[0],32-$sigma1[1]);
558          eval(shift(@insns));
559          eval(shift(@insns));
560         &ld1_32         ("{$T0}","[$Ktbl], #16");
561          eval(shift(@insns));
562           &eor_8        ($T7,$T7,$T5);          # sigma1(X[16..17])
563          eval(shift(@insns));
564          eval(shift(@insns));
565         &eor_8          ($T5,$T5,$T5);
566          eval(shift(@insns));
567          eval(shift(@insns));
568         &mov            (&Dhi($T5), &Dlo($T7));
569          eval(shift(@insns));
570          eval(shift(@insns));
571          eval(shift(@insns));
572         &add_32         (@X[0],@X[0],$T5);      # X[2..3] += sigma1(X[16..17])
573          eval(shift(@insns));
574          eval(shift(@insns));
575          eval(shift(@insns));
576         &add_32         ($T0,$T0,@X[0]);
577          while($#insns>=1) { eval(shift(@insns)); }
578         &st1_32         ("{$T0}","[$Xfer], #16");
579          eval(shift(@insns));
580
581         push(@X,shift(@X));             # "rotate" X[]
582 }
583
584 sub Xpreload()
585 { use integer;
586   my $body = shift;
587   my @insns = (&$body,&$body,&$body,&$body);
588   my ($a,$b,$c,$d,$e,$f,$g,$h);
589
590          eval(shift(@insns));
591          eval(shift(@insns));
592         &ld1_8          ("{@X[0]}","[$inp],#16");
593          eval(shift(@insns));
594          eval(shift(@insns));
595         &ld1_32         ("{$T0}","[$Ktbl],#16");
596          eval(shift(@insns));
597          eval(shift(@insns));
598          eval(shift(@insns));
599          eval(shift(@insns));
600         &rev32          (@X[0],@X[0]);
601          eval(shift(@insns));
602          eval(shift(@insns));
603          eval(shift(@insns));
604          eval(shift(@insns));
605         &add_32         ($T0,$T0,@X[0]);
606          foreach (@insns) { eval; }     # remaining instructions
607         &st1_32         ("{$T0}","[$Xfer], #16");
608
609         push(@X,shift(@X));             # "rotate" X[]
610 }
611
612 sub body_00_15 () {
613         (
614         '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
615         '&add   ($h,$h,$t1)',                   # h+=X[i]+K[i]
616         '&add   ($a,$a,$t4);'.                  # h+=Sigma0(a) from the past
617         '&and   ($t1,$f,$e)',
618         '&bic   ($t4,$g,$e)',
619         '&eor   ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
620         '&add   ($a,$a,$t2)',                   # h+=Maj(a,b,c) from the past
621         '&orr   ($t1,$t1,$t4)',                 # Ch(e,f,g)
622         '&eor   ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))',   # Sigma1(e)
623         '&eor   ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
624         '&add   ($h,$h,$t1)',                   # h+=Ch(e,f,g)
625         '&ror   ($t0,$t0,"#$Sigma1[0]")',
626         '&eor   ($t2,$a,$b)',                   # a^b, b^c in next round
627         '&eor   ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))',   # Sigma0(a)
628         '&add   ($h,$h,$t0)',                   # h+=Sigma1(e)
629         '&ldr   ($t1,sprintf "[sp,#%d]",4*(($j+1)&15))  if (($j&15)!=15);'.
630         '&ldr   ($t1,"[$Ktbl]")                         if ($j==15);'.
631         '&and   ($t3,$t3,$t2)',                 # (b^c)&=(a^b)
632         '&ror   ($t4,$t4,"#$Sigma0[0]")',
633         '&add   ($d,$d,$h)',                    # d+=h
634         '&eor   ($t3,$t3,$b)',                  # Maj(a,b,c)
635         '$j++;  unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
636         )
637 }
638
639 $code.=<<___;
640 #ifdef  __KERNEL__
641 .globl  sha256_block_neon
642 #endif
643 .type   sha256_block_neon,%function
644 .align  4
645 sha256_block_neon:
646 .Lneon_entry:
647         stp     x29, x30, [sp, #-16]!
648         mov     x29, sp
649         sub     sp,sp,#16*4
650
651         adr     $Ktbl,.LK256
652         add     $num,$inp,$num,lsl#6    // len to point at the end of inp
653
654         ld1.8   {@X[0]},[$inp], #16
655         ld1.8   {@X[1]},[$inp], #16
656         ld1.8   {@X[2]},[$inp], #16
657         ld1.8   {@X[3]},[$inp], #16
658         ld1.32  {$T0},[$Ktbl], #16
659         ld1.32  {$T1},[$Ktbl], #16
660         ld1.32  {$T2},[$Ktbl], #16
661         ld1.32  {$T3},[$Ktbl], #16
662         rev32   @X[0],@X[0]             // yes, even on
663         rev32   @X[1],@X[1]             // big-endian
664         rev32   @X[2],@X[2]
665         rev32   @X[3],@X[3]
666         mov     $Xfer,sp
667         add.32  $T0,$T0,@X[0]
668         add.32  $T1,$T1,@X[1]
669         add.32  $T2,$T2,@X[2]
670         st1.32  {$T0-$T1},[$Xfer], #32
671         add.32  $T3,$T3,@X[3]
672         st1.32  {$T2-$T3},[$Xfer]
673         sub     $Xfer,$Xfer,#32
674
675         ldp     $A,$B,[$ctx]
676         ldp     $C,$D,[$ctx,#8]
677         ldp     $E,$F,[$ctx,#16]
678         ldp     $G,$H,[$ctx,#24]
679         ldr     $t1,[sp,#0]
680         mov     $t2,wzr
681         eor     $t3,$B,$C
682         mov     $t4,wzr
683         b       .L_00_48
684
685 .align  4
686 .L_00_48:
687 ___
688         &Xupdate(\&body_00_15);
689         &Xupdate(\&body_00_15);
690         &Xupdate(\&body_00_15);
691         &Xupdate(\&body_00_15);
692 $code.=<<___;
693         cmp     $t1,#0                          // check for K256 terminator
694         ldr     $t1,[sp,#0]
695         sub     $Xfer,$Xfer,#64
696         bne     .L_00_48
697
698         sub     $Ktbl,$Ktbl,#256                // rewind $Ktbl
699         cmp     $inp,$num
700         mov     $Xfer, #64
701         csel    $Xfer, $Xfer, xzr, eq
702         sub     $inp,$inp,$Xfer                 // avoid SEGV
703         mov     $Xfer,sp
704 ___
705         &Xpreload(\&body_00_15);
706         &Xpreload(\&body_00_15);
707         &Xpreload(\&body_00_15);
708         &Xpreload(\&body_00_15);
709 $code.=<<___;
710         add     $A,$A,$t4                       // h+=Sigma0(a) from the past
711         ldp     $t0,$t1,[$ctx,#0]
712         add     $A,$A,$t2                       // h+=Maj(a,b,c) from the past
713         ldp     $t2,$t3,[$ctx,#8]
714         add     $A,$A,$t0                       // accumulate
715         add     $B,$B,$t1
716         ldp     $t0,$t1,[$ctx,#16]
717         add     $C,$C,$t2
718         add     $D,$D,$t3
719         ldp     $t2,$t3,[$ctx,#24]
720         add     $E,$E,$t0
721         add     $F,$F,$t1
722          ldr    $t1,[sp,#0]
723         stp     $A,$B,[$ctx,#0]
724         add     $G,$G,$t2
725          mov    $t2,wzr
726         stp     $C,$D,[$ctx,#8]
727         add     $H,$H,$t3
728         stp     $E,$F,[$ctx,#16]
729          eor    $t3,$B,$C
730         stp     $G,$H,[$ctx,#24]
731          mov    $t4,wzr
732          mov    $Xfer,sp
733         b.ne    .L_00_48
734
735         ldr     x29,[x29]
736         add     sp,sp,#16*4+16
737         ret
738 .size   sha256_block_neon,.-sha256_block_neon
739 ___
740 }
741
742 $code.=<<___;
743 #ifndef __KERNEL__
744 .comm   OPENSSL_armcap_P,4,4
745 #endif
746 ___
747
748 {   my  %opcode = (
749         "sha256h"       => 0x5e004000,  "sha256h2"      => 0x5e005000,
750         "sha256su0"     => 0x5e282800,  "sha256su1"     => 0x5e006000   );
751
752     sub unsha256 {
753         my ($mnemonic,$arg)=@_;
754
755         $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
756         &&
757         sprintf ".inst\t0x%08x\t//%s %s",
758                         $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
759                         $mnemonic,$arg;
760     }
761 }
762
763 open SELF,$0;
764 while(<SELF>) {
765         next if (/^#!/);
766         last if (!s/^#/\/\// and !/^$/);
767         print;
768 }
769 close SELF;
770
771 foreach(split("\n",$code)) {
772
773         s/\`([^\`]*)\`/eval($1)/ge;
774
775         s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
776
777         s/\bq([0-9]+)\b/v$1.16b/g;              # old->new registers
778
779         s/\.[ui]?8(\s)/$1/;
780         s/\.\w?32\b//           and s/\.16b/\.4s/g;
781         m/(ld|st)1[^\[]+\[0\]/  and s/\.4s/\.s/g;
782
783         print $_,"\n";
784 }
785
786 close STDOUT;