Merge tag 'gcc-plugins-v4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / arm64 / crypto / ghash-ce-glue.c
1 /*
2  * Accelerated GHASH implementation with ARMv8 PMULL instructions.
3  *
4  * Copyright (C) 2014 - 2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  */
10
11 #include <asm/neon.h>
12 #include <asm/simd.h>
13 #include <asm/unaligned.h>
14 #include <crypto/aes.h>
15 #include <crypto/algapi.h>
16 #include <crypto/b128ops.h>
17 #include <crypto/gf128mul.h>
18 #include <crypto/internal/aead.h>
19 #include <crypto/internal/hash.h>
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/cpufeature.h>
23 #include <linux/crypto.h>
24 #include <linux/module.h>
25
26 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
27 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
28 MODULE_LICENSE("GPL v2");
29 MODULE_ALIAS_CRYPTO("ghash");
30
31 #define GHASH_BLOCK_SIZE        16
32 #define GHASH_DIGEST_SIZE       16
33 #define GCM_IV_SIZE             12
34
35 struct ghash_key {
36         u64 a;
37         u64 b;
38         be128 k;
39 };
40
41 struct ghash_desc_ctx {
42         u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
43         u8 buf[GHASH_BLOCK_SIZE];
44         u32 count;
45 };
46
47 struct gcm_aes_ctx {
48         struct crypto_aes_ctx   aes_key;
49         struct ghash_key        ghash_key;
50 };
51
52 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
53                                        struct ghash_key const *k,
54                                        const char *head);
55
56 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
57                                       struct ghash_key const *k,
58                                       const char *head);
59
60 static void (*pmull_ghash_update)(int blocks, u64 dg[], const char *src,
61                                   struct ghash_key const *k,
62                                   const char *head);
63
64 asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
65                                   const u8 src[], struct ghash_key const *k,
66                                   u8 ctr[], int rounds, u8 ks[]);
67
68 asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[],
69                                   const u8 src[], struct ghash_key const *k,
70                                   u8 ctr[], int rounds);
71
72 asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[],
73                                         u32 const rk[], int rounds);
74
75 asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
76
77 static int ghash_init(struct shash_desc *desc)
78 {
79         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
80
81         *ctx = (struct ghash_desc_ctx){};
82         return 0;
83 }
84
85 static void ghash_do_update(int blocks, u64 dg[], const char *src,
86                             struct ghash_key *key, const char *head)
87 {
88         if (likely(may_use_simd())) {
89                 kernel_neon_begin();
90                 pmull_ghash_update(blocks, dg, src, key, head);
91                 kernel_neon_end();
92         } else {
93                 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
94
95                 do {
96                         const u8 *in = src;
97
98                         if (head) {
99                                 in = head;
100                                 blocks++;
101                                 head = NULL;
102                         } else {
103                                 src += GHASH_BLOCK_SIZE;
104                         }
105
106                         crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
107                         gf128mul_lle(&dst, &key->k);
108                 } while (--blocks);
109
110                 dg[0] = be64_to_cpu(dst.b);
111                 dg[1] = be64_to_cpu(dst.a);
112         }
113 }
114
115 static int ghash_update(struct shash_desc *desc, const u8 *src,
116                         unsigned int len)
117 {
118         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
119         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
120
121         ctx->count += len;
122
123         if ((partial + len) >= GHASH_BLOCK_SIZE) {
124                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
125                 int blocks;
126
127                 if (partial) {
128                         int p = GHASH_BLOCK_SIZE - partial;
129
130                         memcpy(ctx->buf + partial, src, p);
131                         src += p;
132                         len -= p;
133                 }
134
135                 blocks = len / GHASH_BLOCK_SIZE;
136                 len %= GHASH_BLOCK_SIZE;
137
138                 ghash_do_update(blocks, ctx->digest, src, key,
139                                 partial ? ctx->buf : NULL);
140
141                 src += blocks * GHASH_BLOCK_SIZE;
142                 partial = 0;
143         }
144         if (len)
145                 memcpy(ctx->buf + partial, src, len);
146         return 0;
147 }
148
149 static int ghash_final(struct shash_desc *desc, u8 *dst)
150 {
151         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
152         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
153
154         if (partial) {
155                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
156
157                 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
158
159                 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL);
160         }
161         put_unaligned_be64(ctx->digest[1], dst);
162         put_unaligned_be64(ctx->digest[0], dst + 8);
163
164         *ctx = (struct ghash_desc_ctx){};
165         return 0;
166 }
167
168 static int __ghash_setkey(struct ghash_key *key,
169                           const u8 *inkey, unsigned int keylen)
170 {
171         u64 a, b;
172
173         /* needed for the fallback */
174         memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
175
176         /* perform multiplication by 'x' in GF(2^128) */
177         b = get_unaligned_be64(inkey);
178         a = get_unaligned_be64(inkey + 8);
179
180         key->a = (a << 1) | (b >> 63);
181         key->b = (b << 1) | (a >> 63);
182
183         if (b >> 63)
184                 key->b ^= 0xc200000000000000UL;
185
186         return 0;
187 }
188
189 static int ghash_setkey(struct crypto_shash *tfm,
190                         const u8 *inkey, unsigned int keylen)
191 {
192         struct ghash_key *key = crypto_shash_ctx(tfm);
193
194         if (keylen != GHASH_BLOCK_SIZE) {
195                 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
196                 return -EINVAL;
197         }
198
199         return __ghash_setkey(key, inkey, keylen);
200 }
201
202 static struct shash_alg ghash_alg = {
203         .base.cra_name          = "ghash",
204         .base.cra_driver_name   = "ghash-ce",
205         .base.cra_priority      = 200,
206         .base.cra_flags         = CRYPTO_ALG_TYPE_SHASH,
207         .base.cra_blocksize     = GHASH_BLOCK_SIZE,
208         .base.cra_ctxsize       = sizeof(struct ghash_key),
209         .base.cra_module        = THIS_MODULE,
210
211         .digestsize             = GHASH_DIGEST_SIZE,
212         .init                   = ghash_init,
213         .update                 = ghash_update,
214         .final                  = ghash_final,
215         .setkey                 = ghash_setkey,
216         .descsize               = sizeof(struct ghash_desc_ctx),
217 };
218
219 static int num_rounds(struct crypto_aes_ctx *ctx)
220 {
221         /*
222          * # of rounds specified by AES:
223          * 128 bit key          10 rounds
224          * 192 bit key          12 rounds
225          * 256 bit key          14 rounds
226          * => n byte key        => 6 + (n/4) rounds
227          */
228         return 6 + ctx->key_length / 4;
229 }
230
231 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
232                       unsigned int keylen)
233 {
234         struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
235         u8 key[GHASH_BLOCK_SIZE];
236         int ret;
237
238         ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen);
239         if (ret) {
240                 tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
241                 return -EINVAL;
242         }
243
244         __aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){},
245                             num_rounds(&ctx->aes_key));
246
247         return __ghash_setkey(&ctx->ghash_key, key, sizeof(key));
248 }
249
250 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
251 {
252         switch (authsize) {
253         case 4:
254         case 8:
255         case 12 ... 16:
256                 break;
257         default:
258                 return -EINVAL;
259         }
260         return 0;
261 }
262
263 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
264                            int *buf_count, struct gcm_aes_ctx *ctx)
265 {
266         if (*buf_count > 0) {
267                 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
268
269                 memcpy(&buf[*buf_count], src, buf_added);
270
271                 *buf_count += buf_added;
272                 src += buf_added;
273                 count -= buf_added;
274         }
275
276         if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
277                 int blocks = count / GHASH_BLOCK_SIZE;
278
279                 ghash_do_update(blocks, dg, src, &ctx->ghash_key,
280                                 *buf_count ? buf : NULL);
281
282                 src += blocks * GHASH_BLOCK_SIZE;
283                 count %= GHASH_BLOCK_SIZE;
284                 *buf_count = 0;
285         }
286
287         if (count > 0) {
288                 memcpy(buf, src, count);
289                 *buf_count = count;
290         }
291 }
292
293 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
294 {
295         struct crypto_aead *aead = crypto_aead_reqtfm(req);
296         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
297         u8 buf[GHASH_BLOCK_SIZE];
298         struct scatter_walk walk;
299         u32 len = req->assoclen;
300         int buf_count = 0;
301
302         scatterwalk_start(&walk, req->src);
303
304         do {
305                 u32 n = scatterwalk_clamp(&walk, len);
306                 u8 *p;
307
308                 if (!n) {
309                         scatterwalk_start(&walk, sg_next(walk.sg));
310                         n = scatterwalk_clamp(&walk, len);
311                 }
312                 p = scatterwalk_map(&walk);
313
314                 gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
315                 len -= n;
316
317                 scatterwalk_unmap(p);
318                 scatterwalk_advance(&walk, n);
319                 scatterwalk_done(&walk, 0, len);
320         } while (len);
321
322         if (buf_count) {
323                 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
324                 ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL);
325         }
326 }
327
328 static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx,
329                       u64 dg[], u8 tag[], int cryptlen)
330 {
331         u8 mac[AES_BLOCK_SIZE];
332         u128 lengths;
333
334         lengths.a = cpu_to_be64(req->assoclen * 8);
335         lengths.b = cpu_to_be64(cryptlen * 8);
336
337         ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL);
338
339         put_unaligned_be64(dg[1], mac);
340         put_unaligned_be64(dg[0], mac + 8);
341
342         crypto_xor(tag, mac, AES_BLOCK_SIZE);
343 }
344
345 static int gcm_encrypt(struct aead_request *req)
346 {
347         struct crypto_aead *aead = crypto_aead_reqtfm(req);
348         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
349         struct skcipher_walk walk;
350         u8 iv[AES_BLOCK_SIZE];
351         u8 ks[AES_BLOCK_SIZE];
352         u8 tag[AES_BLOCK_SIZE];
353         u64 dg[2] = {};
354         int err;
355
356         if (req->assoclen)
357                 gcm_calculate_auth_mac(req, dg);
358
359         memcpy(iv, req->iv, GCM_IV_SIZE);
360         put_unaligned_be32(1, iv + GCM_IV_SIZE);
361
362         if (likely(may_use_simd())) {
363                 kernel_neon_begin();
364
365                 pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc,
366                                         num_rounds(&ctx->aes_key));
367                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
368                 pmull_gcm_encrypt_block(ks, iv, NULL,
369                                         num_rounds(&ctx->aes_key));
370                 put_unaligned_be32(3, iv + GCM_IV_SIZE);
371
372                 err = skcipher_walk_aead_encrypt(&walk, req, true);
373
374                 while (walk.nbytes >= AES_BLOCK_SIZE) {
375                         int blocks = walk.nbytes / AES_BLOCK_SIZE;
376
377                         pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr,
378                                           walk.src.virt.addr, &ctx->ghash_key,
379                                           iv, num_rounds(&ctx->aes_key), ks);
380
381                         err = skcipher_walk_done(&walk,
382                                                  walk.nbytes % AES_BLOCK_SIZE);
383                 }
384                 kernel_neon_end();
385         } else {
386                 __aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv,
387                                     num_rounds(&ctx->aes_key));
388                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
389
390                 err = skcipher_walk_aead_encrypt(&walk, req, true);
391
392                 while (walk.nbytes >= AES_BLOCK_SIZE) {
393                         int blocks = walk.nbytes / AES_BLOCK_SIZE;
394                         u8 *dst = walk.dst.virt.addr;
395                         u8 *src = walk.src.virt.addr;
396
397                         do {
398                                 __aes_arm64_encrypt(ctx->aes_key.key_enc,
399                                                     ks, iv,
400                                                     num_rounds(&ctx->aes_key));
401                                 crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE);
402                                 crypto_inc(iv, AES_BLOCK_SIZE);
403
404                                 dst += AES_BLOCK_SIZE;
405                                 src += AES_BLOCK_SIZE;
406                         } while (--blocks > 0);
407
408                         ghash_do_update(walk.nbytes / AES_BLOCK_SIZE, dg,
409                                         walk.dst.virt.addr, &ctx->ghash_key,
410                                         NULL);
411
412                         err = skcipher_walk_done(&walk,
413                                                  walk.nbytes % AES_BLOCK_SIZE);
414                 }
415                 if (walk.nbytes)
416                         __aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv,
417                                             num_rounds(&ctx->aes_key));
418         }
419
420         /* handle the tail */
421         if (walk.nbytes) {
422                 u8 buf[GHASH_BLOCK_SIZE];
423
424                 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks,
425                                walk.nbytes);
426
427                 memcpy(buf, walk.dst.virt.addr, walk.nbytes);
428                 memset(buf + walk.nbytes, 0, GHASH_BLOCK_SIZE - walk.nbytes);
429                 ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL);
430
431                 err = skcipher_walk_done(&walk, 0);
432         }
433
434         if (err)
435                 return err;
436
437         gcm_final(req, ctx, dg, tag, req->cryptlen);
438
439         /* copy authtag to end of dst */
440         scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
441                                  crypto_aead_authsize(aead), 1);
442
443         return 0;
444 }
445
446 static int gcm_decrypt(struct aead_request *req)
447 {
448         struct crypto_aead *aead = crypto_aead_reqtfm(req);
449         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
450         unsigned int authsize = crypto_aead_authsize(aead);
451         struct skcipher_walk walk;
452         u8 iv[AES_BLOCK_SIZE];
453         u8 tag[AES_BLOCK_SIZE];
454         u8 buf[GHASH_BLOCK_SIZE];
455         u64 dg[2] = {};
456         int err;
457
458         if (req->assoclen)
459                 gcm_calculate_auth_mac(req, dg);
460
461         memcpy(iv, req->iv, GCM_IV_SIZE);
462         put_unaligned_be32(1, iv + GCM_IV_SIZE);
463
464         if (likely(may_use_simd())) {
465                 kernel_neon_begin();
466
467                 pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc,
468                                         num_rounds(&ctx->aes_key));
469                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
470
471                 err = skcipher_walk_aead_decrypt(&walk, req, true);
472
473                 while (walk.nbytes >= AES_BLOCK_SIZE) {
474                         int blocks = walk.nbytes / AES_BLOCK_SIZE;
475
476                         pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr,
477                                           walk.src.virt.addr, &ctx->ghash_key,
478                                           iv, num_rounds(&ctx->aes_key));
479
480                         err = skcipher_walk_done(&walk,
481                                                  walk.nbytes % AES_BLOCK_SIZE);
482                 }
483                 if (walk.nbytes)
484                         pmull_gcm_encrypt_block(iv, iv, NULL,
485                                                 num_rounds(&ctx->aes_key));
486
487                 kernel_neon_end();
488         } else {
489                 __aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv,
490                                     num_rounds(&ctx->aes_key));
491                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
492
493                 err = skcipher_walk_aead_decrypt(&walk, req, true);
494
495                 while (walk.nbytes >= AES_BLOCK_SIZE) {
496                         int blocks = walk.nbytes / AES_BLOCK_SIZE;
497                         u8 *dst = walk.dst.virt.addr;
498                         u8 *src = walk.src.virt.addr;
499
500                         ghash_do_update(blocks, dg, walk.src.virt.addr,
501                                         &ctx->ghash_key, NULL);
502
503                         do {
504                                 __aes_arm64_encrypt(ctx->aes_key.key_enc,
505                                                     buf, iv,
506                                                     num_rounds(&ctx->aes_key));
507                                 crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
508                                 crypto_inc(iv, AES_BLOCK_SIZE);
509
510                                 dst += AES_BLOCK_SIZE;
511                                 src += AES_BLOCK_SIZE;
512                         } while (--blocks > 0);
513
514                         err = skcipher_walk_done(&walk,
515                                                  walk.nbytes % AES_BLOCK_SIZE);
516                 }
517                 if (walk.nbytes)
518                         __aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv,
519                                             num_rounds(&ctx->aes_key));
520         }
521
522         /* handle the tail */
523         if (walk.nbytes) {
524                 memcpy(buf, walk.src.virt.addr, walk.nbytes);
525                 memset(buf + walk.nbytes, 0, GHASH_BLOCK_SIZE - walk.nbytes);
526                 ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL);
527
528                 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv,
529                                walk.nbytes);
530
531                 err = skcipher_walk_done(&walk, 0);
532         }
533
534         if (err)
535                 return err;
536
537         gcm_final(req, ctx, dg, tag, req->cryptlen - authsize);
538
539         /* compare calculated auth tag with the stored one */
540         scatterwalk_map_and_copy(buf, req->src,
541                                  req->assoclen + req->cryptlen - authsize,
542                                  authsize, 0);
543
544         if (crypto_memneq(tag, buf, authsize))
545                 return -EBADMSG;
546         return 0;
547 }
548
549 static struct aead_alg gcm_aes_alg = {
550         .ivsize                 = GCM_IV_SIZE,
551         .chunksize              = AES_BLOCK_SIZE,
552         .maxauthsize            = AES_BLOCK_SIZE,
553         .setkey                 = gcm_setkey,
554         .setauthsize            = gcm_setauthsize,
555         .encrypt                = gcm_encrypt,
556         .decrypt                = gcm_decrypt,
557
558         .base.cra_name          = "gcm(aes)",
559         .base.cra_driver_name   = "gcm-aes-ce",
560         .base.cra_priority      = 300,
561         .base.cra_blocksize     = 1,
562         .base.cra_ctxsize       = sizeof(struct gcm_aes_ctx),
563         .base.cra_module        = THIS_MODULE,
564 };
565
566 static int __init ghash_ce_mod_init(void)
567 {
568         int ret;
569
570         if (!(elf_hwcap & HWCAP_ASIMD))
571                 return -ENODEV;
572
573         if (elf_hwcap & HWCAP_PMULL)
574                 pmull_ghash_update = pmull_ghash_update_p64;
575
576         else
577                 pmull_ghash_update = pmull_ghash_update_p8;
578
579         ret = crypto_register_shash(&ghash_alg);
580         if (ret)
581                 return ret;
582
583         if (elf_hwcap & HWCAP_PMULL) {
584                 ret = crypto_register_aead(&gcm_aes_alg);
585                 if (ret)
586                         crypto_unregister_shash(&ghash_alg);
587         }
588         return ret;
589 }
590
591 static void __exit ghash_ce_mod_exit(void)
592 {
593         crypto_unregister_shash(&ghash_alg);
594         crypto_unregister_aead(&gcm_aes_alg);
595 }
596
597 static const struct cpu_feature ghash_cpu_feature[] = {
598         { cpu_feature(PMULL) }, { }
599 };
600 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
601
602 module_init(ghash_ce_mod_init);
603 module_exit(ghash_ce_mod_exit);