Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / arm64 / crypto / ghash-ce-glue.c
1 /*
2  * Accelerated GHASH implementation with ARMv8 PMULL instructions.
3  *
4  * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  */
10
11 #include <asm/neon.h>
12 #include <asm/simd.h>
13 #include <asm/unaligned.h>
14 #include <crypto/aes.h>
15 #include <crypto/algapi.h>
16 #include <crypto/b128ops.h>
17 #include <crypto/gf128mul.h>
18 #include <crypto/internal/aead.h>
19 #include <crypto/internal/hash.h>
20 #include <crypto/internal/simd.h>
21 #include <crypto/internal/skcipher.h>
22 #include <crypto/scatterwalk.h>
23 #include <linux/cpufeature.h>
24 #include <linux/crypto.h>
25 #include <linux/module.h>
26
27 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
28 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
29 MODULE_LICENSE("GPL v2");
30 MODULE_ALIAS_CRYPTO("ghash");
31
32 #define GHASH_BLOCK_SIZE        16
33 #define GHASH_DIGEST_SIZE       16
34 #define GCM_IV_SIZE             12
35
36 struct ghash_key {
37         u64                     h[2];
38         u64                     h2[2];
39         u64                     h3[2];
40         u64                     h4[2];
41
42         be128                   k;
43 };
44
45 struct ghash_desc_ctx {
46         u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
47         u8 buf[GHASH_BLOCK_SIZE];
48         u32 count;
49 };
50
51 struct gcm_aes_ctx {
52         struct crypto_aes_ctx   aes_key;
53         struct ghash_key        ghash_key;
54 };
55
56 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
57                                        struct ghash_key const *k,
58                                        const char *head);
59
60 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
61                                       struct ghash_key const *k,
62                                       const char *head);
63
64 asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
65                                   const u8 src[], struct ghash_key const *k,
66                                   u8 ctr[], u32 const rk[], int rounds,
67                                   u8 ks[]);
68
69 asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[],
70                                   const u8 src[], struct ghash_key const *k,
71                                   u8 ctr[], u32 const rk[], int rounds);
72
73 asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[],
74                                         u32 const rk[], int rounds);
75
76 asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
77
78 static int ghash_init(struct shash_desc *desc)
79 {
80         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
81
82         *ctx = (struct ghash_desc_ctx){};
83         return 0;
84 }
85
86 static void ghash_do_update(int blocks, u64 dg[], const char *src,
87                             struct ghash_key *key, const char *head,
88                             void (*simd_update)(int blocks, u64 dg[],
89                                                 const char *src,
90                                                 struct ghash_key const *k,
91                                                 const char *head))
92 {
93         if (likely(crypto_simd_usable())) {
94                 kernel_neon_begin();
95                 simd_update(blocks, dg, src, key, head);
96                 kernel_neon_end();
97         } else {
98                 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
99
100                 do {
101                         const u8 *in = src;
102
103                         if (head) {
104                                 in = head;
105                                 blocks++;
106                                 head = NULL;
107                         } else {
108                                 src += GHASH_BLOCK_SIZE;
109                         }
110
111                         crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
112                         gf128mul_lle(&dst, &key->k);
113                 } while (--blocks);
114
115                 dg[0] = be64_to_cpu(dst.b);
116                 dg[1] = be64_to_cpu(dst.a);
117         }
118 }
119
120 /* avoid hogging the CPU for too long */
121 #define MAX_BLOCKS      (SZ_64K / GHASH_BLOCK_SIZE)
122
123 static int __ghash_update(struct shash_desc *desc, const u8 *src,
124                           unsigned int len,
125                           void (*simd_update)(int blocks, u64 dg[],
126                                               const char *src,
127                                               struct ghash_key const *k,
128                                               const char *head))
129 {
130         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
131         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
132
133         ctx->count += len;
134
135         if ((partial + len) >= GHASH_BLOCK_SIZE) {
136                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
137                 int blocks;
138
139                 if (partial) {
140                         int p = GHASH_BLOCK_SIZE - partial;
141
142                         memcpy(ctx->buf + partial, src, p);
143                         src += p;
144                         len -= p;
145                 }
146
147                 blocks = len / GHASH_BLOCK_SIZE;
148                 len %= GHASH_BLOCK_SIZE;
149
150                 do {
151                         int chunk = min(blocks, MAX_BLOCKS);
152
153                         ghash_do_update(chunk, ctx->digest, src, key,
154                                         partial ? ctx->buf : NULL,
155                                         simd_update);
156
157                         blocks -= chunk;
158                         src += chunk * GHASH_BLOCK_SIZE;
159                         partial = 0;
160                 } while (unlikely(blocks > 0));
161         }
162         if (len)
163                 memcpy(ctx->buf + partial, src, len);
164         return 0;
165 }
166
167 static int ghash_update_p8(struct shash_desc *desc, const u8 *src,
168                            unsigned int len)
169 {
170         return __ghash_update(desc, src, len, pmull_ghash_update_p8);
171 }
172
173 static int ghash_update_p64(struct shash_desc *desc, const u8 *src,
174                             unsigned int len)
175 {
176         return __ghash_update(desc, src, len, pmull_ghash_update_p64);
177 }
178
179 static int ghash_final_p8(struct shash_desc *desc, u8 *dst)
180 {
181         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
182         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
183
184         if (partial) {
185                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
186
187                 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
188
189                 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
190                                 pmull_ghash_update_p8);
191         }
192         put_unaligned_be64(ctx->digest[1], dst);
193         put_unaligned_be64(ctx->digest[0], dst + 8);
194
195         *ctx = (struct ghash_desc_ctx){};
196         return 0;
197 }
198
199 static int ghash_final_p64(struct shash_desc *desc, u8 *dst)
200 {
201         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
202         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
203
204         if (partial) {
205                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
206
207                 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
208
209                 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
210                                 pmull_ghash_update_p64);
211         }
212         put_unaligned_be64(ctx->digest[1], dst);
213         put_unaligned_be64(ctx->digest[0], dst + 8);
214
215         *ctx = (struct ghash_desc_ctx){};
216         return 0;
217 }
218
219 static void ghash_reflect(u64 h[], const be128 *k)
220 {
221         u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
222
223         h[0] = (be64_to_cpu(k->b) << 1) | carry;
224         h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
225
226         if (carry)
227                 h[1] ^= 0xc200000000000000UL;
228 }
229
230 static int __ghash_setkey(struct ghash_key *key,
231                           const u8 *inkey, unsigned int keylen)
232 {
233         be128 h;
234
235         /* needed for the fallback */
236         memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
237
238         ghash_reflect(key->h, &key->k);
239
240         h = key->k;
241         gf128mul_lle(&h, &key->k);
242         ghash_reflect(key->h2, &h);
243
244         gf128mul_lle(&h, &key->k);
245         ghash_reflect(key->h3, &h);
246
247         gf128mul_lle(&h, &key->k);
248         ghash_reflect(key->h4, &h);
249
250         return 0;
251 }
252
253 static int ghash_setkey(struct crypto_shash *tfm,
254                         const u8 *inkey, unsigned int keylen)
255 {
256         struct ghash_key *key = crypto_shash_ctx(tfm);
257
258         if (keylen != GHASH_BLOCK_SIZE) {
259                 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
260                 return -EINVAL;
261         }
262
263         return __ghash_setkey(key, inkey, keylen);
264 }
265
266 static struct shash_alg ghash_alg[] = {{
267         .base.cra_name          = "ghash",
268         .base.cra_driver_name   = "ghash-neon",
269         .base.cra_priority      = 100,
270         .base.cra_blocksize     = GHASH_BLOCK_SIZE,
271         .base.cra_ctxsize       = sizeof(struct ghash_key),
272         .base.cra_module        = THIS_MODULE,
273
274         .digestsize             = GHASH_DIGEST_SIZE,
275         .init                   = ghash_init,
276         .update                 = ghash_update_p8,
277         .final                  = ghash_final_p8,
278         .setkey                 = ghash_setkey,
279         .descsize               = sizeof(struct ghash_desc_ctx),
280 }, {
281         .base.cra_name          = "ghash",
282         .base.cra_driver_name   = "ghash-ce",
283         .base.cra_priority      = 200,
284         .base.cra_blocksize     = GHASH_BLOCK_SIZE,
285         .base.cra_ctxsize       = sizeof(struct ghash_key),
286         .base.cra_module        = THIS_MODULE,
287
288         .digestsize             = GHASH_DIGEST_SIZE,
289         .init                   = ghash_init,
290         .update                 = ghash_update_p64,
291         .final                  = ghash_final_p64,
292         .setkey                 = ghash_setkey,
293         .descsize               = sizeof(struct ghash_desc_ctx),
294 }};
295
296 static int num_rounds(struct crypto_aes_ctx *ctx)
297 {
298         /*
299          * # of rounds specified by AES:
300          * 128 bit key          10 rounds
301          * 192 bit key          12 rounds
302          * 256 bit key          14 rounds
303          * => n byte key        => 6 + (n/4) rounds
304          */
305         return 6 + ctx->key_length / 4;
306 }
307
308 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
309                       unsigned int keylen)
310 {
311         struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
312         u8 key[GHASH_BLOCK_SIZE];
313         int ret;
314
315         ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen);
316         if (ret) {
317                 tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
318                 return -EINVAL;
319         }
320
321         __aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){},
322                             num_rounds(&ctx->aes_key));
323
324         return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128));
325 }
326
327 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
328 {
329         switch (authsize) {
330         case 4:
331         case 8:
332         case 12 ... 16:
333                 break;
334         default:
335                 return -EINVAL;
336         }
337         return 0;
338 }
339
340 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
341                            int *buf_count, struct gcm_aes_ctx *ctx)
342 {
343         if (*buf_count > 0) {
344                 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
345
346                 memcpy(&buf[*buf_count], src, buf_added);
347
348                 *buf_count += buf_added;
349                 src += buf_added;
350                 count -= buf_added;
351         }
352
353         if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
354                 int blocks = count / GHASH_BLOCK_SIZE;
355
356                 ghash_do_update(blocks, dg, src, &ctx->ghash_key,
357                                 *buf_count ? buf : NULL,
358                                 pmull_ghash_update_p64);
359
360                 src += blocks * GHASH_BLOCK_SIZE;
361                 count %= GHASH_BLOCK_SIZE;
362                 *buf_count = 0;
363         }
364
365         if (count > 0) {
366                 memcpy(buf, src, count);
367                 *buf_count = count;
368         }
369 }
370
371 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
372 {
373         struct crypto_aead *aead = crypto_aead_reqtfm(req);
374         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
375         u8 buf[GHASH_BLOCK_SIZE];
376         struct scatter_walk walk;
377         u32 len = req->assoclen;
378         int buf_count = 0;
379
380         scatterwalk_start(&walk, req->src);
381
382         do {
383                 u32 n = scatterwalk_clamp(&walk, len);
384                 u8 *p;
385
386                 if (!n) {
387                         scatterwalk_start(&walk, sg_next(walk.sg));
388                         n = scatterwalk_clamp(&walk, len);
389                 }
390                 p = scatterwalk_map(&walk);
391
392                 gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
393                 len -= n;
394
395                 scatterwalk_unmap(p);
396                 scatterwalk_advance(&walk, n);
397                 scatterwalk_done(&walk, 0, len);
398         } while (len);
399
400         if (buf_count) {
401                 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
402                 ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL,
403                                 pmull_ghash_update_p64);
404         }
405 }
406
407 static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx,
408                       u64 dg[], u8 tag[], int cryptlen)
409 {
410         u8 mac[AES_BLOCK_SIZE];
411         u128 lengths;
412
413         lengths.a = cpu_to_be64(req->assoclen * 8);
414         lengths.b = cpu_to_be64(cryptlen * 8);
415
416         ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL,
417                         pmull_ghash_update_p64);
418
419         put_unaligned_be64(dg[1], mac);
420         put_unaligned_be64(dg[0], mac + 8);
421
422         crypto_xor(tag, mac, AES_BLOCK_SIZE);
423 }
424
425 static int gcm_encrypt(struct aead_request *req)
426 {
427         struct crypto_aead *aead = crypto_aead_reqtfm(req);
428         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
429         struct skcipher_walk walk;
430         u8 iv[AES_BLOCK_SIZE];
431         u8 ks[2 * AES_BLOCK_SIZE];
432         u8 tag[AES_BLOCK_SIZE];
433         u64 dg[2] = {};
434         int nrounds = num_rounds(&ctx->aes_key);
435         int err;
436
437         if (req->assoclen)
438                 gcm_calculate_auth_mac(req, dg);
439
440         memcpy(iv, req->iv, GCM_IV_SIZE);
441         put_unaligned_be32(1, iv + GCM_IV_SIZE);
442
443         err = skcipher_walk_aead_encrypt(&walk, req, false);
444
445         if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) {
446                 u32 const *rk = NULL;
447
448                 kernel_neon_begin();
449                 pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
450                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
451                 pmull_gcm_encrypt_block(ks, iv, NULL, nrounds);
452                 put_unaligned_be32(3, iv + GCM_IV_SIZE);
453                 pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds);
454                 put_unaligned_be32(4, iv + GCM_IV_SIZE);
455
456                 do {
457                         int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
458
459                         if (rk)
460                                 kernel_neon_begin();
461
462                         pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr,
463                                           walk.src.virt.addr, &ctx->ghash_key,
464                                           iv, rk, nrounds, ks);
465                         kernel_neon_end();
466
467                         err = skcipher_walk_done(&walk,
468                                         walk.nbytes % (2 * AES_BLOCK_SIZE));
469
470                         rk = ctx->aes_key.key_enc;
471                 } while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
472         } else {
473                 __aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
474                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
475
476                 while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
477                         const int blocks =
478                                 walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
479                         u8 *dst = walk.dst.virt.addr;
480                         u8 *src = walk.src.virt.addr;
481                         int remaining = blocks;
482
483                         do {
484                                 __aes_arm64_encrypt(ctx->aes_key.key_enc,
485                                                     ks, iv, nrounds);
486                                 crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE);
487                                 crypto_inc(iv, AES_BLOCK_SIZE);
488
489                                 dst += AES_BLOCK_SIZE;
490                                 src += AES_BLOCK_SIZE;
491                         } while (--remaining > 0);
492
493                         ghash_do_update(blocks, dg,
494                                         walk.dst.virt.addr, &ctx->ghash_key,
495                                         NULL, pmull_ghash_update_p64);
496
497                         err = skcipher_walk_done(&walk,
498                                                  walk.nbytes % (2 * AES_BLOCK_SIZE));
499                 }
500                 if (walk.nbytes) {
501                         __aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv,
502                                             nrounds);
503                         if (walk.nbytes > AES_BLOCK_SIZE) {
504                                 crypto_inc(iv, AES_BLOCK_SIZE);
505                                 __aes_arm64_encrypt(ctx->aes_key.key_enc,
506                                                     ks + AES_BLOCK_SIZE, iv,
507                                                     nrounds);
508                         }
509                 }
510         }
511
512         /* handle the tail */
513         if (walk.nbytes) {
514                 u8 buf[GHASH_BLOCK_SIZE];
515                 unsigned int nbytes = walk.nbytes;
516                 u8 *dst = walk.dst.virt.addr;
517                 u8 *head = NULL;
518
519                 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks,
520                                walk.nbytes);
521
522                 if (walk.nbytes > GHASH_BLOCK_SIZE) {
523                         head = dst;
524                         dst += GHASH_BLOCK_SIZE;
525                         nbytes %= GHASH_BLOCK_SIZE;
526                 }
527
528                 memcpy(buf, dst, nbytes);
529                 memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
530                 ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head,
531                                 pmull_ghash_update_p64);
532
533                 err = skcipher_walk_done(&walk, 0);
534         }
535
536         if (err)
537                 return err;
538
539         gcm_final(req, ctx, dg, tag, req->cryptlen);
540
541         /* copy authtag to end of dst */
542         scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
543                                  crypto_aead_authsize(aead), 1);
544
545         return 0;
546 }
547
548 static int gcm_decrypt(struct aead_request *req)
549 {
550         struct crypto_aead *aead = crypto_aead_reqtfm(req);
551         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
552         unsigned int authsize = crypto_aead_authsize(aead);
553         struct skcipher_walk walk;
554         u8 iv[2 * AES_BLOCK_SIZE];
555         u8 tag[AES_BLOCK_SIZE];
556         u8 buf[2 * GHASH_BLOCK_SIZE];
557         u64 dg[2] = {};
558         int nrounds = num_rounds(&ctx->aes_key);
559         int err;
560
561         if (req->assoclen)
562                 gcm_calculate_auth_mac(req, dg);
563
564         memcpy(iv, req->iv, GCM_IV_SIZE);
565         put_unaligned_be32(1, iv + GCM_IV_SIZE);
566
567         err = skcipher_walk_aead_decrypt(&walk, req, false);
568
569         if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) {
570                 u32 const *rk = NULL;
571
572                 kernel_neon_begin();
573                 pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
574                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
575
576                 do {
577                         int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
578                         int rem = walk.total - blocks * AES_BLOCK_SIZE;
579
580                         if (rk)
581                                 kernel_neon_begin();
582
583                         pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr,
584                                           walk.src.virt.addr, &ctx->ghash_key,
585                                           iv, rk, nrounds);
586
587                         /* check if this is the final iteration of the loop */
588                         if (rem < (2 * AES_BLOCK_SIZE)) {
589                                 u8 *iv2 = iv + AES_BLOCK_SIZE;
590
591                                 if (rem > AES_BLOCK_SIZE) {
592                                         memcpy(iv2, iv, AES_BLOCK_SIZE);
593                                         crypto_inc(iv2, AES_BLOCK_SIZE);
594                                 }
595
596                                 pmull_gcm_encrypt_block(iv, iv, NULL, nrounds);
597
598                                 if (rem > AES_BLOCK_SIZE)
599                                         pmull_gcm_encrypt_block(iv2, iv2, NULL,
600                                                                 nrounds);
601                         }
602
603                         kernel_neon_end();
604
605                         err = skcipher_walk_done(&walk,
606                                         walk.nbytes % (2 * AES_BLOCK_SIZE));
607
608                         rk = ctx->aes_key.key_enc;
609                 } while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
610         } else {
611                 __aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
612                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
613
614                 while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
615                         int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
616                         u8 *dst = walk.dst.virt.addr;
617                         u8 *src = walk.src.virt.addr;
618
619                         ghash_do_update(blocks, dg, walk.src.virt.addr,
620                                         &ctx->ghash_key, NULL,
621                                         pmull_ghash_update_p64);
622
623                         do {
624                                 __aes_arm64_encrypt(ctx->aes_key.key_enc,
625                                                     buf, iv, nrounds);
626                                 crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
627                                 crypto_inc(iv, AES_BLOCK_SIZE);
628
629                                 dst += AES_BLOCK_SIZE;
630                                 src += AES_BLOCK_SIZE;
631                         } while (--blocks > 0);
632
633                         err = skcipher_walk_done(&walk,
634                                                  walk.nbytes % (2 * AES_BLOCK_SIZE));
635                 }
636                 if (walk.nbytes) {
637                         if (walk.nbytes > AES_BLOCK_SIZE) {
638                                 u8 *iv2 = iv + AES_BLOCK_SIZE;
639
640                                 memcpy(iv2, iv, AES_BLOCK_SIZE);
641                                 crypto_inc(iv2, AES_BLOCK_SIZE);
642
643                                 __aes_arm64_encrypt(ctx->aes_key.key_enc, iv2,
644                                                     iv2, nrounds);
645                         }
646                         __aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv,
647                                             nrounds);
648                 }
649         }
650
651         /* handle the tail */
652         if (walk.nbytes) {
653                 const u8 *src = walk.src.virt.addr;
654                 const u8 *head = NULL;
655                 unsigned int nbytes = walk.nbytes;
656
657                 if (walk.nbytes > GHASH_BLOCK_SIZE) {
658                         head = src;
659                         src += GHASH_BLOCK_SIZE;
660                         nbytes %= GHASH_BLOCK_SIZE;
661                 }
662
663                 memcpy(buf, src, nbytes);
664                 memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
665                 ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head,
666                                 pmull_ghash_update_p64);
667
668                 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv,
669                                walk.nbytes);
670
671                 err = skcipher_walk_done(&walk, 0);
672         }
673
674         if (err)
675                 return err;
676
677         gcm_final(req, ctx, dg, tag, req->cryptlen - authsize);
678
679         /* compare calculated auth tag with the stored one */
680         scatterwalk_map_and_copy(buf, req->src,
681                                  req->assoclen + req->cryptlen - authsize,
682                                  authsize, 0);
683
684         if (crypto_memneq(tag, buf, authsize))
685                 return -EBADMSG;
686         return 0;
687 }
688
689 static struct aead_alg gcm_aes_alg = {
690         .ivsize                 = GCM_IV_SIZE,
691         .chunksize              = 2 * AES_BLOCK_SIZE,
692         .maxauthsize            = AES_BLOCK_SIZE,
693         .setkey                 = gcm_setkey,
694         .setauthsize            = gcm_setauthsize,
695         .encrypt                = gcm_encrypt,
696         .decrypt                = gcm_decrypt,
697
698         .base.cra_name          = "gcm(aes)",
699         .base.cra_driver_name   = "gcm-aes-ce",
700         .base.cra_priority      = 300,
701         .base.cra_blocksize     = 1,
702         .base.cra_ctxsize       = sizeof(struct gcm_aes_ctx),
703         .base.cra_module        = THIS_MODULE,
704 };
705
706 static int __init ghash_ce_mod_init(void)
707 {
708         int ret;
709
710         if (!cpu_have_named_feature(ASIMD))
711                 return -ENODEV;
712
713         if (cpu_have_named_feature(PMULL))
714                 ret = crypto_register_shashes(ghash_alg,
715                                               ARRAY_SIZE(ghash_alg));
716         else
717                 /* only register the first array element */
718                 ret = crypto_register_shash(ghash_alg);
719
720         if (ret)
721                 return ret;
722
723         if (cpu_have_named_feature(PMULL)) {
724                 ret = crypto_register_aead(&gcm_aes_alg);
725                 if (ret)
726                         crypto_unregister_shashes(ghash_alg,
727                                                   ARRAY_SIZE(ghash_alg));
728         }
729         return ret;
730 }
731
732 static void __exit ghash_ce_mod_exit(void)
733 {
734         if (cpu_have_named_feature(PMULL))
735                 crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg));
736         else
737                 crypto_unregister_shash(ghash_alg);
738         crypto_unregister_aead(&gcm_aes_alg);
739 }
740
741 static const struct cpu_feature ghash_cpu_feature[] = {
742         { cpu_feature(PMULL) }, { }
743 };
744 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
745
746 module_init(ghash_ce_mod_init);
747 module_exit(ghash_ce_mod_exit);