Merge branch 'x86-alternatives-for-linus' of git://git.kernel.org/pub/scm/linux/kerne...
[sfrench/cifs-2.6.git] / arch / arm64 / crypto / ghash-ce-glue.c
1 /*
2  * Accelerated GHASH implementation with ARMv8 PMULL instructions.
3  *
4  * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  */
10
11 #include <asm/neon.h>
12 #include <asm/simd.h>
13 #include <asm/unaligned.h>
14 #include <crypto/aes.h>
15 #include <crypto/algapi.h>
16 #include <crypto/b128ops.h>
17 #include <crypto/gf128mul.h>
18 #include <crypto/internal/aead.h>
19 #include <crypto/internal/hash.h>
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/cpufeature.h>
23 #include <linux/crypto.h>
24 #include <linux/module.h>
25
26 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
27 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
28 MODULE_LICENSE("GPL v2");
29 MODULE_ALIAS_CRYPTO("ghash");
30
31 #define GHASH_BLOCK_SIZE        16
32 #define GHASH_DIGEST_SIZE       16
33 #define GCM_IV_SIZE             12
34
35 struct ghash_key {
36         u64                     h[2];
37         u64                     h2[2];
38         u64                     h3[2];
39         u64                     h4[2];
40
41         be128                   k;
42 };
43
44 struct ghash_desc_ctx {
45         u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
46         u8 buf[GHASH_BLOCK_SIZE];
47         u32 count;
48 };
49
50 struct gcm_aes_ctx {
51         struct crypto_aes_ctx   aes_key;
52         struct ghash_key        ghash_key;
53 };
54
55 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
56                                        struct ghash_key const *k,
57                                        const char *head);
58
59 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
60                                       struct ghash_key const *k,
61                                       const char *head);
62
63 asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
64                                   const u8 src[], struct ghash_key const *k,
65                                   u8 ctr[], u32 const rk[], int rounds,
66                                   u8 ks[]);
67
68 asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[],
69                                   const u8 src[], struct ghash_key const *k,
70                                   u8 ctr[], u32 const rk[], int rounds);
71
72 asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[],
73                                         u32 const rk[], int rounds);
74
75 asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
76
77 static int ghash_init(struct shash_desc *desc)
78 {
79         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
80
81         *ctx = (struct ghash_desc_ctx){};
82         return 0;
83 }
84
85 static void ghash_do_update(int blocks, u64 dg[], const char *src,
86                             struct ghash_key *key, const char *head,
87                             void (*simd_update)(int blocks, u64 dg[],
88                                                 const char *src,
89                                                 struct ghash_key const *k,
90                                                 const char *head))
91 {
92         if (likely(may_use_simd())) {
93                 kernel_neon_begin();
94                 simd_update(blocks, dg, src, key, head);
95                 kernel_neon_end();
96         } else {
97                 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
98
99                 do {
100                         const u8 *in = src;
101
102                         if (head) {
103                                 in = head;
104                                 blocks++;
105                                 head = NULL;
106                         } else {
107                                 src += GHASH_BLOCK_SIZE;
108                         }
109
110                         crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
111                         gf128mul_lle(&dst, &key->k);
112                 } while (--blocks);
113
114                 dg[0] = be64_to_cpu(dst.b);
115                 dg[1] = be64_to_cpu(dst.a);
116         }
117 }
118
119 /* avoid hogging the CPU for too long */
120 #define MAX_BLOCKS      (SZ_64K / GHASH_BLOCK_SIZE)
121
122 static int __ghash_update(struct shash_desc *desc, const u8 *src,
123                           unsigned int len,
124                           void (*simd_update)(int blocks, u64 dg[],
125                                               const char *src,
126                                               struct ghash_key const *k,
127                                               const char *head))
128 {
129         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
130         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
131
132         ctx->count += len;
133
134         if ((partial + len) >= GHASH_BLOCK_SIZE) {
135                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
136                 int blocks;
137
138                 if (partial) {
139                         int p = GHASH_BLOCK_SIZE - partial;
140
141                         memcpy(ctx->buf + partial, src, p);
142                         src += p;
143                         len -= p;
144                 }
145
146                 blocks = len / GHASH_BLOCK_SIZE;
147                 len %= GHASH_BLOCK_SIZE;
148
149                 do {
150                         int chunk = min(blocks, MAX_BLOCKS);
151
152                         ghash_do_update(chunk, ctx->digest, src, key,
153                                         partial ? ctx->buf : NULL,
154                                         simd_update);
155
156                         blocks -= chunk;
157                         src += chunk * GHASH_BLOCK_SIZE;
158                         partial = 0;
159                 } while (unlikely(blocks > 0));
160         }
161         if (len)
162                 memcpy(ctx->buf + partial, src, len);
163         return 0;
164 }
165
166 static int ghash_update_p8(struct shash_desc *desc, const u8 *src,
167                            unsigned int len)
168 {
169         return __ghash_update(desc, src, len, pmull_ghash_update_p8);
170 }
171
172 static int ghash_update_p64(struct shash_desc *desc, const u8 *src,
173                             unsigned int len)
174 {
175         return __ghash_update(desc, src, len, pmull_ghash_update_p64);
176 }
177
178 static int ghash_final_p8(struct shash_desc *desc, u8 *dst)
179 {
180         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
181         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
182
183         if (partial) {
184                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
185
186                 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
187
188                 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
189                                 pmull_ghash_update_p8);
190         }
191         put_unaligned_be64(ctx->digest[1], dst);
192         put_unaligned_be64(ctx->digest[0], dst + 8);
193
194         *ctx = (struct ghash_desc_ctx){};
195         return 0;
196 }
197
198 static int ghash_final_p64(struct shash_desc *desc, u8 *dst)
199 {
200         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
201         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
202
203         if (partial) {
204                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
205
206                 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
207
208                 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
209                                 pmull_ghash_update_p64);
210         }
211         put_unaligned_be64(ctx->digest[1], dst);
212         put_unaligned_be64(ctx->digest[0], dst + 8);
213
214         *ctx = (struct ghash_desc_ctx){};
215         return 0;
216 }
217
218 static void ghash_reflect(u64 h[], const be128 *k)
219 {
220         u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
221
222         h[0] = (be64_to_cpu(k->b) << 1) | carry;
223         h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
224
225         if (carry)
226                 h[1] ^= 0xc200000000000000UL;
227 }
228
229 static int __ghash_setkey(struct ghash_key *key,
230                           const u8 *inkey, unsigned int keylen)
231 {
232         be128 h;
233
234         /* needed for the fallback */
235         memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
236
237         ghash_reflect(key->h, &key->k);
238
239         h = key->k;
240         gf128mul_lle(&h, &key->k);
241         ghash_reflect(key->h2, &h);
242
243         gf128mul_lle(&h, &key->k);
244         ghash_reflect(key->h3, &h);
245
246         gf128mul_lle(&h, &key->k);
247         ghash_reflect(key->h4, &h);
248
249         return 0;
250 }
251
252 static int ghash_setkey(struct crypto_shash *tfm,
253                         const u8 *inkey, unsigned int keylen)
254 {
255         struct ghash_key *key = crypto_shash_ctx(tfm);
256
257         if (keylen != GHASH_BLOCK_SIZE) {
258                 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
259                 return -EINVAL;
260         }
261
262         return __ghash_setkey(key, inkey, keylen);
263 }
264
265 static struct shash_alg ghash_alg[] = {{
266         .base.cra_name          = "ghash",
267         .base.cra_driver_name   = "ghash-neon",
268         .base.cra_priority      = 100,
269         .base.cra_blocksize     = GHASH_BLOCK_SIZE,
270         .base.cra_ctxsize       = sizeof(struct ghash_key),
271         .base.cra_module        = THIS_MODULE,
272
273         .digestsize             = GHASH_DIGEST_SIZE,
274         .init                   = ghash_init,
275         .update                 = ghash_update_p8,
276         .final                  = ghash_final_p8,
277         .setkey                 = ghash_setkey,
278         .descsize               = sizeof(struct ghash_desc_ctx),
279 }, {
280         .base.cra_name          = "ghash",
281         .base.cra_driver_name   = "ghash-ce",
282         .base.cra_priority      = 200,
283         .base.cra_blocksize     = GHASH_BLOCK_SIZE,
284         .base.cra_ctxsize       = sizeof(struct ghash_key),
285         .base.cra_module        = THIS_MODULE,
286
287         .digestsize             = GHASH_DIGEST_SIZE,
288         .init                   = ghash_init,
289         .update                 = ghash_update_p64,
290         .final                  = ghash_final_p64,
291         .setkey                 = ghash_setkey,
292         .descsize               = sizeof(struct ghash_desc_ctx),
293 }};
294
295 static int num_rounds(struct crypto_aes_ctx *ctx)
296 {
297         /*
298          * # of rounds specified by AES:
299          * 128 bit key          10 rounds
300          * 192 bit key          12 rounds
301          * 256 bit key          14 rounds
302          * => n byte key        => 6 + (n/4) rounds
303          */
304         return 6 + ctx->key_length / 4;
305 }
306
307 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
308                       unsigned int keylen)
309 {
310         struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
311         u8 key[GHASH_BLOCK_SIZE];
312         int ret;
313
314         ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen);
315         if (ret) {
316                 tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
317                 return -EINVAL;
318         }
319
320         __aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){},
321                             num_rounds(&ctx->aes_key));
322
323         return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128));
324 }
325
326 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
327 {
328         switch (authsize) {
329         case 4:
330         case 8:
331         case 12 ... 16:
332                 break;
333         default:
334                 return -EINVAL;
335         }
336         return 0;
337 }
338
339 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
340                            int *buf_count, struct gcm_aes_ctx *ctx)
341 {
342         if (*buf_count > 0) {
343                 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
344
345                 memcpy(&buf[*buf_count], src, buf_added);
346
347                 *buf_count += buf_added;
348                 src += buf_added;
349                 count -= buf_added;
350         }
351
352         if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
353                 int blocks = count / GHASH_BLOCK_SIZE;
354
355                 ghash_do_update(blocks, dg, src, &ctx->ghash_key,
356                                 *buf_count ? buf : NULL,
357                                 pmull_ghash_update_p64);
358
359                 src += blocks * GHASH_BLOCK_SIZE;
360                 count %= GHASH_BLOCK_SIZE;
361                 *buf_count = 0;
362         }
363
364         if (count > 0) {
365                 memcpy(buf, src, count);
366                 *buf_count = count;
367         }
368 }
369
370 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
371 {
372         struct crypto_aead *aead = crypto_aead_reqtfm(req);
373         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
374         u8 buf[GHASH_BLOCK_SIZE];
375         struct scatter_walk walk;
376         u32 len = req->assoclen;
377         int buf_count = 0;
378
379         scatterwalk_start(&walk, req->src);
380
381         do {
382                 u32 n = scatterwalk_clamp(&walk, len);
383                 u8 *p;
384
385                 if (!n) {
386                         scatterwalk_start(&walk, sg_next(walk.sg));
387                         n = scatterwalk_clamp(&walk, len);
388                 }
389                 p = scatterwalk_map(&walk);
390
391                 gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
392                 len -= n;
393
394                 scatterwalk_unmap(p);
395                 scatterwalk_advance(&walk, n);
396                 scatterwalk_done(&walk, 0, len);
397         } while (len);
398
399         if (buf_count) {
400                 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
401                 ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL,
402                                 pmull_ghash_update_p64);
403         }
404 }
405
406 static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx,
407                       u64 dg[], u8 tag[], int cryptlen)
408 {
409         u8 mac[AES_BLOCK_SIZE];
410         u128 lengths;
411
412         lengths.a = cpu_to_be64(req->assoclen * 8);
413         lengths.b = cpu_to_be64(cryptlen * 8);
414
415         ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL,
416                         pmull_ghash_update_p64);
417
418         put_unaligned_be64(dg[1], mac);
419         put_unaligned_be64(dg[0], mac + 8);
420
421         crypto_xor(tag, mac, AES_BLOCK_SIZE);
422 }
423
424 static int gcm_encrypt(struct aead_request *req)
425 {
426         struct crypto_aead *aead = crypto_aead_reqtfm(req);
427         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
428         struct skcipher_walk walk;
429         u8 iv[AES_BLOCK_SIZE];
430         u8 ks[2 * AES_BLOCK_SIZE];
431         u8 tag[AES_BLOCK_SIZE];
432         u64 dg[2] = {};
433         int nrounds = num_rounds(&ctx->aes_key);
434         int err;
435
436         if (req->assoclen)
437                 gcm_calculate_auth_mac(req, dg);
438
439         memcpy(iv, req->iv, GCM_IV_SIZE);
440         put_unaligned_be32(1, iv + GCM_IV_SIZE);
441
442         err = skcipher_walk_aead_encrypt(&walk, req, false);
443
444         if (likely(may_use_simd() && walk.total >= 2 * AES_BLOCK_SIZE)) {
445                 u32 const *rk = NULL;
446
447                 kernel_neon_begin();
448                 pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
449                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
450                 pmull_gcm_encrypt_block(ks, iv, NULL, nrounds);
451                 put_unaligned_be32(3, iv + GCM_IV_SIZE);
452                 pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds);
453                 put_unaligned_be32(4, iv + GCM_IV_SIZE);
454
455                 do {
456                         int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
457
458                         if (rk)
459                                 kernel_neon_begin();
460
461                         pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr,
462                                           walk.src.virt.addr, &ctx->ghash_key,
463                                           iv, rk, nrounds, ks);
464                         kernel_neon_end();
465
466                         err = skcipher_walk_done(&walk,
467                                         walk.nbytes % (2 * AES_BLOCK_SIZE));
468
469                         rk = ctx->aes_key.key_enc;
470                 } while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
471         } else {
472                 __aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
473                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
474
475                 while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
476                         int blocks = walk.nbytes / AES_BLOCK_SIZE;
477                         u8 *dst = walk.dst.virt.addr;
478                         u8 *src = walk.src.virt.addr;
479
480                         do {
481                                 __aes_arm64_encrypt(ctx->aes_key.key_enc,
482                                                     ks, iv, nrounds);
483                                 crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE);
484                                 crypto_inc(iv, AES_BLOCK_SIZE);
485
486                                 dst += AES_BLOCK_SIZE;
487                                 src += AES_BLOCK_SIZE;
488                         } while (--blocks > 0);
489
490                         ghash_do_update(walk.nbytes / AES_BLOCK_SIZE, dg,
491                                         walk.dst.virt.addr, &ctx->ghash_key,
492                                         NULL, pmull_ghash_update_p64);
493
494                         err = skcipher_walk_done(&walk,
495                                                  walk.nbytes % (2 * AES_BLOCK_SIZE));
496                 }
497                 if (walk.nbytes) {
498                         __aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv,
499                                             nrounds);
500                         if (walk.nbytes > AES_BLOCK_SIZE) {
501                                 crypto_inc(iv, AES_BLOCK_SIZE);
502                                 __aes_arm64_encrypt(ctx->aes_key.key_enc,
503                                                     ks + AES_BLOCK_SIZE, iv,
504                                                     nrounds);
505                         }
506                 }
507         }
508
509         /* handle the tail */
510         if (walk.nbytes) {
511                 u8 buf[GHASH_BLOCK_SIZE];
512                 unsigned int nbytes = walk.nbytes;
513                 u8 *dst = walk.dst.virt.addr;
514                 u8 *head = NULL;
515
516                 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks,
517                                walk.nbytes);
518
519                 if (walk.nbytes > GHASH_BLOCK_SIZE) {
520                         head = dst;
521                         dst += GHASH_BLOCK_SIZE;
522                         nbytes %= GHASH_BLOCK_SIZE;
523                 }
524
525                 memcpy(buf, dst, nbytes);
526                 memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
527                 ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head,
528                                 pmull_ghash_update_p64);
529
530                 err = skcipher_walk_done(&walk, 0);
531         }
532
533         if (err)
534                 return err;
535
536         gcm_final(req, ctx, dg, tag, req->cryptlen);
537
538         /* copy authtag to end of dst */
539         scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
540                                  crypto_aead_authsize(aead), 1);
541
542         return 0;
543 }
544
545 static int gcm_decrypt(struct aead_request *req)
546 {
547         struct crypto_aead *aead = crypto_aead_reqtfm(req);
548         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
549         unsigned int authsize = crypto_aead_authsize(aead);
550         struct skcipher_walk walk;
551         u8 iv[2 * AES_BLOCK_SIZE];
552         u8 tag[AES_BLOCK_SIZE];
553         u8 buf[2 * GHASH_BLOCK_SIZE];
554         u64 dg[2] = {};
555         int nrounds = num_rounds(&ctx->aes_key);
556         int err;
557
558         if (req->assoclen)
559                 gcm_calculate_auth_mac(req, dg);
560
561         memcpy(iv, req->iv, GCM_IV_SIZE);
562         put_unaligned_be32(1, iv + GCM_IV_SIZE);
563
564         err = skcipher_walk_aead_decrypt(&walk, req, false);
565
566         if (likely(may_use_simd() && walk.total >= 2 * AES_BLOCK_SIZE)) {
567                 u32 const *rk = NULL;
568
569                 kernel_neon_begin();
570                 pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
571                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
572
573                 do {
574                         int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
575                         int rem = walk.total - blocks * AES_BLOCK_SIZE;
576
577                         if (rk)
578                                 kernel_neon_begin();
579
580                         pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr,
581                                           walk.src.virt.addr, &ctx->ghash_key,
582                                           iv, rk, nrounds);
583
584                         /* check if this is the final iteration of the loop */
585                         if (rem < (2 * AES_BLOCK_SIZE)) {
586                                 u8 *iv2 = iv + AES_BLOCK_SIZE;
587
588                                 if (rem > AES_BLOCK_SIZE) {
589                                         memcpy(iv2, iv, AES_BLOCK_SIZE);
590                                         crypto_inc(iv2, AES_BLOCK_SIZE);
591                                 }
592
593                                 pmull_gcm_encrypt_block(iv, iv, NULL, nrounds);
594
595                                 if (rem > AES_BLOCK_SIZE)
596                                         pmull_gcm_encrypt_block(iv2, iv2, NULL,
597                                                                 nrounds);
598                         }
599
600                         kernel_neon_end();
601
602                         err = skcipher_walk_done(&walk,
603                                         walk.nbytes % (2 * AES_BLOCK_SIZE));
604
605                         rk = ctx->aes_key.key_enc;
606                 } while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
607         } else {
608                 __aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
609                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
610
611                 while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
612                         int blocks = walk.nbytes / AES_BLOCK_SIZE;
613                         u8 *dst = walk.dst.virt.addr;
614                         u8 *src = walk.src.virt.addr;
615
616                         ghash_do_update(blocks, dg, walk.src.virt.addr,
617                                         &ctx->ghash_key, NULL,
618                                         pmull_ghash_update_p64);
619
620                         do {
621                                 __aes_arm64_encrypt(ctx->aes_key.key_enc,
622                                                     buf, iv, nrounds);
623                                 crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
624                                 crypto_inc(iv, AES_BLOCK_SIZE);
625
626                                 dst += AES_BLOCK_SIZE;
627                                 src += AES_BLOCK_SIZE;
628                         } while (--blocks > 0);
629
630                         err = skcipher_walk_done(&walk,
631                                                  walk.nbytes % (2 * AES_BLOCK_SIZE));
632                 }
633                 if (walk.nbytes) {
634                         if (walk.nbytes > AES_BLOCK_SIZE) {
635                                 u8 *iv2 = iv + AES_BLOCK_SIZE;
636
637                                 memcpy(iv2, iv, AES_BLOCK_SIZE);
638                                 crypto_inc(iv2, AES_BLOCK_SIZE);
639
640                                 __aes_arm64_encrypt(ctx->aes_key.key_enc, iv2,
641                                                     iv2, nrounds);
642                         }
643                         __aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv,
644                                             nrounds);
645                 }
646         }
647
648         /* handle the tail */
649         if (walk.nbytes) {
650                 const u8 *src = walk.src.virt.addr;
651                 const u8 *head = NULL;
652                 unsigned int nbytes = walk.nbytes;
653
654                 if (walk.nbytes > GHASH_BLOCK_SIZE) {
655                         head = src;
656                         src += GHASH_BLOCK_SIZE;
657                         nbytes %= GHASH_BLOCK_SIZE;
658                 }
659
660                 memcpy(buf, src, nbytes);
661                 memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
662                 ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head,
663                                 pmull_ghash_update_p64);
664
665                 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv,
666                                walk.nbytes);
667
668                 err = skcipher_walk_done(&walk, 0);
669         }
670
671         if (err)
672                 return err;
673
674         gcm_final(req, ctx, dg, tag, req->cryptlen - authsize);
675
676         /* compare calculated auth tag with the stored one */
677         scatterwalk_map_and_copy(buf, req->src,
678                                  req->assoclen + req->cryptlen - authsize,
679                                  authsize, 0);
680
681         if (crypto_memneq(tag, buf, authsize))
682                 return -EBADMSG;
683         return 0;
684 }
685
686 static struct aead_alg gcm_aes_alg = {
687         .ivsize                 = GCM_IV_SIZE,
688         .chunksize              = 2 * AES_BLOCK_SIZE,
689         .maxauthsize            = AES_BLOCK_SIZE,
690         .setkey                 = gcm_setkey,
691         .setauthsize            = gcm_setauthsize,
692         .encrypt                = gcm_encrypt,
693         .decrypt                = gcm_decrypt,
694
695         .base.cra_name          = "gcm(aes)",
696         .base.cra_driver_name   = "gcm-aes-ce",
697         .base.cra_priority      = 300,
698         .base.cra_blocksize     = 1,
699         .base.cra_ctxsize       = sizeof(struct gcm_aes_ctx),
700         .base.cra_module        = THIS_MODULE,
701 };
702
703 static int __init ghash_ce_mod_init(void)
704 {
705         int ret;
706
707         if (!(elf_hwcap & HWCAP_ASIMD))
708                 return -ENODEV;
709
710         if (elf_hwcap & HWCAP_PMULL)
711                 ret = crypto_register_shashes(ghash_alg,
712                                               ARRAY_SIZE(ghash_alg));
713         else
714                 /* only register the first array element */
715                 ret = crypto_register_shash(ghash_alg);
716
717         if (ret)
718                 return ret;
719
720         if (elf_hwcap & HWCAP_PMULL) {
721                 ret = crypto_register_aead(&gcm_aes_alg);
722                 if (ret)
723                         crypto_unregister_shashes(ghash_alg,
724                                                   ARRAY_SIZE(ghash_alg));
725         }
726         return ret;
727 }
728
729 static void __exit ghash_ce_mod_exit(void)
730 {
731         if (elf_hwcap & HWCAP_PMULL)
732                 crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg));
733         else
734                 crypto_unregister_shash(ghash_alg);
735         crypto_unregister_aead(&gcm_aes_alg);
736 }
737
738 static const struct cpu_feature ghash_cpu_feature[] = {
739         { cpu_feature(PMULL) }, { }
740 };
741 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
742
743 module_init(ghash_ce_mod_init);
744 module_exit(ghash_ce_mod_exit);