Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[sfrench/cifs-2.6.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/sort.h>
18
19 #include <asm/cputype.h>
20 #include <asm/mach-types.h>
21 #include <asm/sections.h>
22 #include <asm/cachetype.h>
23 #include <asm/setup.h>
24 #include <asm/sizes.h>
25 #include <asm/smp_plat.h>
26 #include <asm/tlb.h>
27 #include <asm/highmem.h>
28
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
31
32 #include "mm.h"
33
34 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35
36 /*
37  * empty_zero_page is a special page that is used for
38  * zero-initialized data and COW.
39  */
40 struct page *empty_zero_page;
41 EXPORT_SYMBOL(empty_zero_page);
42
43 /*
44  * The pmd table for the upper-most set of pages.
45  */
46 pmd_t *top_pmd;
47
48 #define CPOLICY_UNCACHED        0
49 #define CPOLICY_BUFFERED        1
50 #define CPOLICY_WRITETHROUGH    2
51 #define CPOLICY_WRITEBACK       3
52 #define CPOLICY_WRITEALLOC      4
53
54 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
55 static unsigned int ecc_mask __initdata = 0;
56 pgprot_t pgprot_user;
57 pgprot_t pgprot_kernel;
58
59 EXPORT_SYMBOL(pgprot_user);
60 EXPORT_SYMBOL(pgprot_kernel);
61
62 struct cachepolicy {
63         const char      policy[16];
64         unsigned int    cr_mask;
65         unsigned int    pmd;
66         unsigned int    pte;
67 };
68
69 static struct cachepolicy cache_policies[] __initdata = {
70         {
71                 .policy         = "uncached",
72                 .cr_mask        = CR_W|CR_C,
73                 .pmd            = PMD_SECT_UNCACHED,
74                 .pte            = L_PTE_MT_UNCACHED,
75         }, {
76                 .policy         = "buffered",
77                 .cr_mask        = CR_C,
78                 .pmd            = PMD_SECT_BUFFERED,
79                 .pte            = L_PTE_MT_BUFFERABLE,
80         }, {
81                 .policy         = "writethrough",
82                 .cr_mask        = 0,
83                 .pmd            = PMD_SECT_WT,
84                 .pte            = L_PTE_MT_WRITETHROUGH,
85         }, {
86                 .policy         = "writeback",
87                 .cr_mask        = 0,
88                 .pmd            = PMD_SECT_WB,
89                 .pte            = L_PTE_MT_WRITEBACK,
90         }, {
91                 .policy         = "writealloc",
92                 .cr_mask        = 0,
93                 .pmd            = PMD_SECT_WBWA,
94                 .pte            = L_PTE_MT_WRITEALLOC,
95         }
96 };
97
98 /*
99  * These are useful for identifying cache coherency
100  * problems by allowing the cache or the cache and
101  * writebuffer to be turned off.  (Note: the write
102  * buffer should not be on and the cache off).
103  */
104 static int __init early_cachepolicy(char *p)
105 {
106         int i;
107
108         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
109                 int len = strlen(cache_policies[i].policy);
110
111                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
112                         cachepolicy = i;
113                         cr_alignment &= ~cache_policies[i].cr_mask;
114                         cr_no_alignment &= ~cache_policies[i].cr_mask;
115                         break;
116                 }
117         }
118         if (i == ARRAY_SIZE(cache_policies))
119                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120         /*
121          * This restriction is partly to do with the way we boot; it is
122          * unpredictable to have memory mapped using two different sets of
123          * memory attributes (shared, type, and cache attribs).  We can not
124          * change these attributes once the initial assembly has setup the
125          * page tables.
126          */
127         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129                 cachepolicy = CPOLICY_WRITEBACK;
130         }
131         flush_cache_all();
132         set_cr(cr_alignment);
133         return 0;
134 }
135 early_param("cachepolicy", early_cachepolicy);
136
137 static int __init early_nocache(char *__unused)
138 {
139         char *p = "buffered";
140         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
141         early_cachepolicy(p);
142         return 0;
143 }
144 early_param("nocache", early_nocache);
145
146 static int __init early_nowrite(char *__unused)
147 {
148         char *p = "uncached";
149         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
150         early_cachepolicy(p);
151         return 0;
152 }
153 early_param("nowb", early_nowrite);
154
155 static int __init early_ecc(char *p)
156 {
157         if (memcmp(p, "on", 2) == 0)
158                 ecc_mask = PMD_PROTECTION;
159         else if (memcmp(p, "off", 3) == 0)
160                 ecc_mask = 0;
161         return 0;
162 }
163 early_param("ecc", early_ecc);
164
165 static int __init noalign_setup(char *__unused)
166 {
167         cr_alignment &= ~CR_A;
168         cr_no_alignment &= ~CR_A;
169         set_cr(cr_alignment);
170         return 1;
171 }
172 __setup("noalign", noalign_setup);
173
174 #ifndef CONFIG_SMP
175 void adjust_cr(unsigned long mask, unsigned long set)
176 {
177         unsigned long flags;
178
179         mask &= ~CR_A;
180
181         set &= mask;
182
183         local_irq_save(flags);
184
185         cr_no_alignment = (cr_no_alignment & ~mask) | set;
186         cr_alignment = (cr_alignment & ~mask) | set;
187
188         set_cr((get_cr() & ~mask) | set);
189
190         local_irq_restore(flags);
191 }
192 #endif
193
194 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
195 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
196
197 static struct mem_type mem_types[] = {
198         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
199                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
200                                   L_PTE_SHARED,
201                 .prot_l1        = PMD_TYPE_TABLE,
202                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
203                 .domain         = DOMAIN_IO,
204         },
205         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
206                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
207                 .prot_l1        = PMD_TYPE_TABLE,
208                 .prot_sect      = PROT_SECT_DEVICE,
209                 .domain         = DOMAIN_IO,
210         },
211         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
212                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
213                 .prot_l1        = PMD_TYPE_TABLE,
214                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
215                 .domain         = DOMAIN_IO,
216         },      
217         [MT_DEVICE_WC] = {      /* ioremap_wc */
218                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
219                 .prot_l1        = PMD_TYPE_TABLE,
220                 .prot_sect      = PROT_SECT_DEVICE,
221                 .domain         = DOMAIN_IO,
222         },
223         [MT_UNCACHED] = {
224                 .prot_pte       = PROT_PTE_DEVICE,
225                 .prot_l1        = PMD_TYPE_TABLE,
226                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
227                 .domain         = DOMAIN_IO,
228         },
229         [MT_CACHECLEAN] = {
230                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
231                 .domain    = DOMAIN_KERNEL,
232         },
233         [MT_MINICLEAN] = {
234                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
235                 .domain    = DOMAIN_KERNEL,
236         },
237         [MT_LOW_VECTORS] = {
238                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
239                                 L_PTE_EXEC,
240                 .prot_l1   = PMD_TYPE_TABLE,
241                 .domain    = DOMAIN_USER,
242         },
243         [MT_HIGH_VECTORS] = {
244                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245                                 L_PTE_USER | L_PTE_EXEC,
246                 .prot_l1   = PMD_TYPE_TABLE,
247                 .domain    = DOMAIN_USER,
248         },
249         [MT_MEMORY] = {
250                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
251                 .domain    = DOMAIN_KERNEL,
252         },
253         [MT_ROM] = {
254                 .prot_sect = PMD_TYPE_SECT,
255                 .domain    = DOMAIN_KERNEL,
256         },
257         [MT_MEMORY_NONCACHED] = {
258                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
259                 .domain    = DOMAIN_KERNEL,
260         },
261 };
262
263 const struct mem_type *get_mem_type(unsigned int type)
264 {
265         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
266 }
267 EXPORT_SYMBOL(get_mem_type);
268
269 /*
270  * Adjust the PMD section entries according to the CPU in use.
271  */
272 static void __init build_mem_type_table(void)
273 {
274         struct cachepolicy *cp;
275         unsigned int cr = get_cr();
276         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
277         int cpu_arch = cpu_architecture();
278         int i;
279
280         if (cpu_arch < CPU_ARCH_ARMv6) {
281 #if defined(CONFIG_CPU_DCACHE_DISABLE)
282                 if (cachepolicy > CPOLICY_BUFFERED)
283                         cachepolicy = CPOLICY_BUFFERED;
284 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
285                 if (cachepolicy > CPOLICY_WRITETHROUGH)
286                         cachepolicy = CPOLICY_WRITETHROUGH;
287 #endif
288         }
289         if (cpu_arch < CPU_ARCH_ARMv5) {
290                 if (cachepolicy >= CPOLICY_WRITEALLOC)
291                         cachepolicy = CPOLICY_WRITEBACK;
292                 ecc_mask = 0;
293         }
294 #ifdef CONFIG_SMP
295         cachepolicy = CPOLICY_WRITEALLOC;
296 #endif
297
298         /*
299          * Strip out features not present on earlier architectures.
300          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
301          * without extended page tables don't have the 'Shared' bit.
302          */
303         if (cpu_arch < CPU_ARCH_ARMv5)
304                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
305                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
306         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
307                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
308                         mem_types[i].prot_sect &= ~PMD_SECT_S;
309
310         /*
311          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
312          * "update-able on write" bit on ARM610).  However, Xscale and
313          * Xscale3 require this bit to be cleared.
314          */
315         if (cpu_is_xscale() || cpu_is_xsc3()) {
316                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
317                         mem_types[i].prot_sect &= ~PMD_BIT4;
318                         mem_types[i].prot_l1 &= ~PMD_BIT4;
319                 }
320         } else if (cpu_arch < CPU_ARCH_ARMv6) {
321                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
322                         if (mem_types[i].prot_l1)
323                                 mem_types[i].prot_l1 |= PMD_BIT4;
324                         if (mem_types[i].prot_sect)
325                                 mem_types[i].prot_sect |= PMD_BIT4;
326                 }
327         }
328
329         /*
330          * Mark the device areas according to the CPU/architecture.
331          */
332         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
333                 if (!cpu_is_xsc3()) {
334                         /*
335                          * Mark device regions on ARMv6+ as execute-never
336                          * to prevent speculative instruction fetches.
337                          */
338                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
339                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
340                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
341                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
342                 }
343                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
344                         /*
345                          * For ARMv7 with TEX remapping,
346                          * - shared device is SXCB=1100
347                          * - nonshared device is SXCB=0100
348                          * - write combine device mem is SXCB=0001
349                          * (Uncached Normal memory)
350                          */
351                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
352                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
353                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
354                 } else if (cpu_is_xsc3()) {
355                         /*
356                          * For Xscale3,
357                          * - shared device is TEXCB=00101
358                          * - nonshared device is TEXCB=01000
359                          * - write combine device mem is TEXCB=00100
360                          * (Inner/Outer Uncacheable in xsc3 parlance)
361                          */
362                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
363                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
364                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
365                 } else {
366                         /*
367                          * For ARMv6 and ARMv7 without TEX remapping,
368                          * - shared device is TEXCB=00001
369                          * - nonshared device is TEXCB=01000
370                          * - write combine device mem is TEXCB=00100
371                          * (Uncached Normal in ARMv6 parlance).
372                          */
373                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
374                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
375                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
376                 }
377         } else {
378                 /*
379                  * On others, write combining is "Uncached/Buffered"
380                  */
381                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
382         }
383
384         /*
385          * Now deal with the memory-type mappings
386          */
387         cp = &cache_policies[cachepolicy];
388         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
389
390 #ifndef CONFIG_SMP
391         /*
392          * Only use write-through for non-SMP systems
393          */
394         if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
395                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
396 #endif
397
398         /*
399          * Enable CPU-specific coherency if supported.
400          * (Only available on XSC3 at the moment.)
401          */
402         if (arch_is_coherent() && cpu_is_xsc3())
403                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
404
405         /*
406          * ARMv6 and above have extended page tables.
407          */
408         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
409                 /*
410                  * Mark cache clean areas and XIP ROM read only
411                  * from SVC mode and no access from userspace.
412                  */
413                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
415                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
416
417 #ifdef CONFIG_SMP
418                 /*
419                  * Mark memory with the "shared" attribute for SMP systems
420                  */
421                 user_pgprot |= L_PTE_SHARED;
422                 kern_pgprot |= L_PTE_SHARED;
423                 vecs_pgprot |= L_PTE_SHARED;
424                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
425                 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
426                 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
427                 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
428                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
429                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
430 #endif
431         }
432
433         /*
434          * Non-cacheable Normal - intended for memory areas that must
435          * not cause dirty cache line writebacks when used
436          */
437         if (cpu_arch >= CPU_ARCH_ARMv6) {
438                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
439                         /* Non-cacheable Normal is XCB = 001 */
440                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
441                                 PMD_SECT_BUFFERED;
442                 } else {
443                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
444                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
445                                 PMD_SECT_TEX(1);
446                 }
447         } else {
448                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
449         }
450
451         for (i = 0; i < 16; i++) {
452                 unsigned long v = pgprot_val(protection_map[i]);
453                 protection_map[i] = __pgprot(v | user_pgprot);
454         }
455
456         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
457         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
458
459         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
460         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
461                                  L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
462
463         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
464         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
465         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
466         mem_types[MT_ROM].prot_sect |= cp->pmd;
467
468         switch (cp->pmd) {
469         case PMD_SECT_WT:
470                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
471                 break;
472         case PMD_SECT_WB:
473         case PMD_SECT_WBWA:
474                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
475                 break;
476         }
477         printk("Memory policy: ECC %sabled, Data cache %s\n",
478                 ecc_mask ? "en" : "dis", cp->policy);
479
480         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
481                 struct mem_type *t = &mem_types[i];
482                 if (t->prot_l1)
483                         t->prot_l1 |= PMD_DOMAIN(t->domain);
484                 if (t->prot_sect)
485                         t->prot_sect |= PMD_DOMAIN(t->domain);
486         }
487 }
488
489 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
490
491 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
492                                   unsigned long end, unsigned long pfn,
493                                   const struct mem_type *type)
494 {
495         pte_t *pte;
496
497         if (pmd_none(*pmd)) {
498                 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
499                 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
500         }
501
502         pte = pte_offset_kernel(pmd, addr);
503         do {
504                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
505                 pfn++;
506         } while (pte++, addr += PAGE_SIZE, addr != end);
507 }
508
509 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
510                                       unsigned long end, unsigned long phys,
511                                       const struct mem_type *type)
512 {
513         pmd_t *pmd = pmd_offset(pgd, addr);
514
515         /*
516          * Try a section mapping - end, addr and phys must all be aligned
517          * to a section boundary.  Note that PMDs refer to the individual
518          * L1 entries, whereas PGDs refer to a group of L1 entries making
519          * up one logical pointer to an L2 table.
520          */
521         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
522                 pmd_t *p = pmd;
523
524                 if (addr & SECTION_SIZE)
525                         pmd++;
526
527                 do {
528                         *pmd = __pmd(phys | type->prot_sect);
529                         phys += SECTION_SIZE;
530                 } while (pmd++, addr += SECTION_SIZE, addr != end);
531
532                 flush_pmd_entry(p);
533         } else {
534                 /*
535                  * No need to loop; pte's aren't interested in the
536                  * individual L1 entries.
537                  */
538                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
539         }
540 }
541
542 static void __init create_36bit_mapping(struct map_desc *md,
543                                         const struct mem_type *type)
544 {
545         unsigned long phys, addr, length, end;
546         pgd_t *pgd;
547
548         addr = md->virtual;
549         phys = (unsigned long)__pfn_to_phys(md->pfn);
550         length = PAGE_ALIGN(md->length);
551
552         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
553                 printk(KERN_ERR "MM: CPU does not support supersection "
554                        "mapping for 0x%08llx at 0x%08lx\n",
555                        __pfn_to_phys((u64)md->pfn), addr);
556                 return;
557         }
558
559         /* N.B. ARMv6 supersections are only defined to work with domain 0.
560          *      Since domain assignments can in fact be arbitrary, the
561          *      'domain == 0' check below is required to insure that ARMv6
562          *      supersections are only allocated for domain 0 regardless
563          *      of the actual domain assignments in use.
564          */
565         if (type->domain) {
566                 printk(KERN_ERR "MM: invalid domain in supersection "
567                        "mapping for 0x%08llx at 0x%08lx\n",
568                        __pfn_to_phys((u64)md->pfn), addr);
569                 return;
570         }
571
572         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
573                 printk(KERN_ERR "MM: cannot create mapping for "
574                        "0x%08llx at 0x%08lx invalid alignment\n",
575                        __pfn_to_phys((u64)md->pfn), addr);
576                 return;
577         }
578
579         /*
580          * Shift bits [35:32] of address into bits [23:20] of PMD
581          * (See ARMv6 spec).
582          */
583         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
584
585         pgd = pgd_offset_k(addr);
586         end = addr + length;
587         do {
588                 pmd_t *pmd = pmd_offset(pgd, addr);
589                 int i;
590
591                 for (i = 0; i < 16; i++)
592                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
593
594                 addr += SUPERSECTION_SIZE;
595                 phys += SUPERSECTION_SIZE;
596                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
597         } while (addr != end);
598 }
599
600 /*
601  * Create the page directory entries and any necessary
602  * page tables for the mapping specified by `md'.  We
603  * are able to cope here with varying sizes and address
604  * offsets, and we take full advantage of sections and
605  * supersections.
606  */
607 static void __init create_mapping(struct map_desc *md)
608 {
609         unsigned long phys, addr, length, end;
610         const struct mem_type *type;
611         pgd_t *pgd;
612
613         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
614                 printk(KERN_WARNING "BUG: not creating mapping for "
615                        "0x%08llx at 0x%08lx in user region\n",
616                        __pfn_to_phys((u64)md->pfn), md->virtual);
617                 return;
618         }
619
620         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
621             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
622                 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
623                        "overlaps vmalloc space\n",
624                        __pfn_to_phys((u64)md->pfn), md->virtual);
625         }
626
627         type = &mem_types[md->type];
628
629         /*
630          * Catch 36-bit addresses
631          */
632         if (md->pfn >= 0x100000) {
633                 create_36bit_mapping(md, type);
634                 return;
635         }
636
637         addr = md->virtual & PAGE_MASK;
638         phys = (unsigned long)__pfn_to_phys(md->pfn);
639         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
640
641         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
642                 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
643                        "be mapped using pages, ignoring.\n",
644                        __pfn_to_phys(md->pfn), addr);
645                 return;
646         }
647
648         pgd = pgd_offset_k(addr);
649         end = addr + length;
650         do {
651                 unsigned long next = pgd_addr_end(addr, end);
652
653                 alloc_init_section(pgd, addr, next, phys, type);
654
655                 phys += next - addr;
656                 addr = next;
657         } while (pgd++, addr != end);
658 }
659
660 /*
661  * Create the architecture specific mappings
662  */
663 void __init iotable_init(struct map_desc *io_desc, int nr)
664 {
665         int i;
666
667         for (i = 0; i < nr; i++)
668                 create_mapping(io_desc + i);
669 }
670
671 static unsigned long __initdata vmalloc_reserve = SZ_128M;
672
673 /*
674  * vmalloc=size forces the vmalloc area to be exactly 'size'
675  * bytes. This can be used to increase (or decrease) the vmalloc
676  * area - the default is 128m.
677  */
678 static int __init early_vmalloc(char *arg)
679 {
680         vmalloc_reserve = memparse(arg, NULL);
681
682         if (vmalloc_reserve < SZ_16M) {
683                 vmalloc_reserve = SZ_16M;
684                 printk(KERN_WARNING
685                         "vmalloc area too small, limiting to %luMB\n",
686                         vmalloc_reserve >> 20);
687         }
688
689         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
690                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
691                 printk(KERN_WARNING
692                         "vmalloc area is too big, limiting to %luMB\n",
693                         vmalloc_reserve >> 20);
694         }
695         return 0;
696 }
697 early_param("vmalloc", early_vmalloc);
698
699 #define VMALLOC_MIN     (void *)(VMALLOC_END - vmalloc_reserve)
700
701 static void __init sanity_check_meminfo(void)
702 {
703         int i, j, highmem = 0;
704
705         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
706                 struct membank *bank = &meminfo.bank[j];
707                 *bank = meminfo.bank[i];
708
709 #ifdef CONFIG_HIGHMEM
710                 if (__va(bank->start) > VMALLOC_MIN ||
711                     __va(bank->start) < (void *)PAGE_OFFSET)
712                         highmem = 1;
713
714                 bank->highmem = highmem;
715
716                 /*
717                  * Split those memory banks which are partially overlapping
718                  * the vmalloc area greatly simplifying things later.
719                  */
720                 if (__va(bank->start) < VMALLOC_MIN &&
721                     bank->size > VMALLOC_MIN - __va(bank->start)) {
722                         if (meminfo.nr_banks >= NR_BANKS) {
723                                 printk(KERN_CRIT "NR_BANKS too low, "
724                                                  "ignoring high memory\n");
725                         } else {
726                                 memmove(bank + 1, bank,
727                                         (meminfo.nr_banks - i) * sizeof(*bank));
728                                 meminfo.nr_banks++;
729                                 i++;
730                                 bank[1].size -= VMALLOC_MIN - __va(bank->start);
731                                 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
732                                 bank[1].highmem = highmem = 1;
733                                 j++;
734                         }
735                         bank->size = VMALLOC_MIN - __va(bank->start);
736                 }
737 #else
738                 bank->highmem = highmem;
739
740                 /*
741                  * Check whether this memory bank would entirely overlap
742                  * the vmalloc area.
743                  */
744                 if (__va(bank->start) >= VMALLOC_MIN ||
745                     __va(bank->start) < (void *)PAGE_OFFSET) {
746                         printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
747                                "(vmalloc region overlap).\n",
748                                bank->start, bank->start + bank->size - 1);
749                         continue;
750                 }
751
752                 /*
753                  * Check whether this memory bank would partially overlap
754                  * the vmalloc area.
755                  */
756                 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
757                     __va(bank->start + bank->size) < __va(bank->start)) {
758                         unsigned long newsize = VMALLOC_MIN - __va(bank->start);
759                         printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
760                                "to -%.8lx (vmalloc region overlap).\n",
761                                bank->start, bank->start + bank->size - 1,
762                                bank->start + newsize - 1);
763                         bank->size = newsize;
764                 }
765 #endif
766                 j++;
767         }
768 #ifdef CONFIG_HIGHMEM
769         if (highmem) {
770                 const char *reason = NULL;
771
772                 if (cache_is_vipt_aliasing()) {
773                         /*
774                          * Interactions between kmap and other mappings
775                          * make highmem support with aliasing VIPT caches
776                          * rather difficult.
777                          */
778                         reason = "with VIPT aliasing cache";
779 #ifdef CONFIG_SMP
780                 } else if (tlb_ops_need_broadcast()) {
781                         /*
782                          * kmap_high needs to occasionally flush TLB entries,
783                          * however, if the TLB entries need to be broadcast
784                          * we may deadlock:
785                          *  kmap_high(irqs off)->flush_all_zero_pkmaps->
786                          *  flush_tlb_kernel_range->smp_call_function_many
787                          *   (must not be called with irqs off)
788                          */
789                         reason = "without hardware TLB ops broadcasting";
790 #endif
791                 }
792                 if (reason) {
793                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
794                                 reason);
795                         while (j > 0 && meminfo.bank[j - 1].highmem)
796                                 j--;
797                 }
798         }
799 #endif
800         meminfo.nr_banks = j;
801 }
802
803 static inline void prepare_page_table(void)
804 {
805         unsigned long addr;
806
807         /*
808          * Clear out all the mappings below the kernel image.
809          */
810         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
811                 pmd_clear(pmd_off_k(addr));
812
813 #ifdef CONFIG_XIP_KERNEL
814         /* The XIP kernel is mapped in the module area -- skip over it */
815         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
816 #endif
817         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
818                 pmd_clear(pmd_off_k(addr));
819
820         /*
821          * Clear out all the kernel space mappings, except for the first
822          * memory bank, up to the end of the vmalloc region.
823          */
824         for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
825              addr < VMALLOC_END; addr += PGDIR_SIZE)
826                 pmd_clear(pmd_off_k(addr));
827 }
828
829 /*
830  * Reserve the various regions of node 0
831  */
832 void __init reserve_node_zero(pg_data_t *pgdat)
833 {
834         unsigned long res_size = 0;
835
836         /*
837          * Register the kernel text and data with bootmem.
838          * Note that this can only be in node 0.
839          */
840 #ifdef CONFIG_XIP_KERNEL
841         reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
842                         BOOTMEM_DEFAULT);
843 #else
844         reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
845                         BOOTMEM_DEFAULT);
846 #endif
847
848         /*
849          * Reserve the page tables.  These are already in use,
850          * and can only be in node 0.
851          */
852         reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
853                              PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
854
855         /*
856          * Hmm... This should go elsewhere, but we really really need to
857          * stop things allocating the low memory; ideally we need a better
858          * implementation of GFP_DMA which does not assume that DMA-able
859          * memory starts at zero.
860          */
861         if (machine_is_integrator() || machine_is_cintegrator())
862                 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
863
864         /*
865          * These should likewise go elsewhere.  They pre-reserve the
866          * screen memory region at the start of main system memory.
867          */
868         if (machine_is_edb7211())
869                 res_size = 0x00020000;
870         if (machine_is_p720t())
871                 res_size = 0x00014000;
872
873         /* H1940, RX3715 and RX1950 need to reserve this for suspend */
874
875         if (machine_is_h1940() || machine_is_rx3715()
876                 || machine_is_rx1950()) {
877                 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
878                                 BOOTMEM_DEFAULT);
879                 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
880                                 BOOTMEM_DEFAULT);
881         }
882
883         if (machine_is_palmld() || machine_is_palmtx()) {
884                 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
885                                 BOOTMEM_EXCLUSIVE);
886                 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
887                                 BOOTMEM_EXCLUSIVE);
888         }
889
890         if (machine_is_treo680() || machine_is_centro()) {
891                 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
892                                 BOOTMEM_EXCLUSIVE);
893                 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
894                                 BOOTMEM_EXCLUSIVE);
895         }
896
897         if (machine_is_palmt5())
898                 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
899                                 BOOTMEM_EXCLUSIVE);
900
901         /*
902          * U300 - This platform family can share physical memory
903          * between two ARM cpus, one running Linux and the other
904          * running another OS.
905          */
906         if (machine_is_u300()) {
907 #ifdef CONFIG_MACH_U300_SINGLE_RAM
908 #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) &&    \
909         CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
910                 res_size = 0x00100000;
911 #endif
912 #endif
913         }
914
915 #ifdef CONFIG_SA1111
916         /*
917          * Because of the SA1111 DMA bug, we want to preserve our
918          * precious DMA-able memory...
919          */
920         res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
921 #endif
922         if (res_size)
923                 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
924                                 BOOTMEM_DEFAULT);
925 }
926
927 /*
928  * Set up device the mappings.  Since we clear out the page tables for all
929  * mappings above VMALLOC_END, we will remove any debug device mappings.
930  * This means you have to be careful how you debug this function, or any
931  * called function.  This means you can't use any function or debugging
932  * method which may touch any device, otherwise the kernel _will_ crash.
933  */
934 static void __init devicemaps_init(struct machine_desc *mdesc)
935 {
936         struct map_desc map;
937         unsigned long addr;
938         void *vectors;
939
940         /*
941          * Allocate the vector page early.
942          */
943         vectors = alloc_bootmem_low_pages(PAGE_SIZE);
944
945         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
946                 pmd_clear(pmd_off_k(addr));
947
948         /*
949          * Map the kernel if it is XIP.
950          * It is always first in the modulearea.
951          */
952 #ifdef CONFIG_XIP_KERNEL
953         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
954         map.virtual = MODULES_VADDR;
955         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
956         map.type = MT_ROM;
957         create_mapping(&map);
958 #endif
959
960         /*
961          * Map the cache flushing regions.
962          */
963 #ifdef FLUSH_BASE
964         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
965         map.virtual = FLUSH_BASE;
966         map.length = SZ_1M;
967         map.type = MT_CACHECLEAN;
968         create_mapping(&map);
969 #endif
970 #ifdef FLUSH_BASE_MINICACHE
971         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
972         map.virtual = FLUSH_BASE_MINICACHE;
973         map.length = SZ_1M;
974         map.type = MT_MINICLEAN;
975         create_mapping(&map);
976 #endif
977
978         /*
979          * Create a mapping for the machine vectors at the high-vectors
980          * location (0xffff0000).  If we aren't using high-vectors, also
981          * create a mapping at the low-vectors virtual address.
982          */
983         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
984         map.virtual = 0xffff0000;
985         map.length = PAGE_SIZE;
986         map.type = MT_HIGH_VECTORS;
987         create_mapping(&map);
988
989         if (!vectors_high()) {
990                 map.virtual = 0;
991                 map.type = MT_LOW_VECTORS;
992                 create_mapping(&map);
993         }
994
995         /*
996          * Ask the machine support to map in the statically mapped devices.
997          */
998         if (mdesc->map_io)
999                 mdesc->map_io();
1000
1001         /*
1002          * Finally flush the caches and tlb to ensure that we're in a
1003          * consistent state wrt the writebuffer.  This also ensures that
1004          * any write-allocated cache lines in the vector page are written
1005          * back.  After this point, we can start to touch devices again.
1006          */
1007         local_flush_tlb_all();
1008         flush_cache_all();
1009 }
1010
1011 static void __init kmap_init(void)
1012 {
1013 #ifdef CONFIG_HIGHMEM
1014         pmd_t *pmd = pmd_off_k(PKMAP_BASE);
1015         pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
1016         BUG_ON(!pmd_none(*pmd) || !pte);
1017         __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
1018         pkmap_page_table = pte + PTRS_PER_PTE;
1019 #endif
1020 }
1021
1022 static inline void map_memory_bank(struct membank *bank)
1023 {
1024         struct map_desc map;
1025
1026         map.pfn = bank_pfn_start(bank);
1027         map.virtual = __phys_to_virt(bank_phys_start(bank));
1028         map.length = bank_phys_size(bank);
1029         map.type = MT_MEMORY;
1030
1031         create_mapping(&map);
1032 }
1033
1034 static void __init map_lowmem(void)
1035 {
1036         struct meminfo *mi = &meminfo;
1037         int i;
1038
1039         /* Map all the lowmem memory banks. */
1040         for (i = 0; i < mi->nr_banks; i++) {
1041                 struct membank *bank = &mi->bank[i];
1042
1043                 if (!bank->highmem)
1044                         map_memory_bank(bank);
1045         }
1046 }
1047
1048 static int __init meminfo_cmp(const void *_a, const void *_b)
1049 {
1050         const struct membank *a = _a, *b = _b;
1051         long cmp = bank_pfn_start(a) - bank_pfn_start(b);
1052         return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
1053 }
1054
1055 /*
1056  * paging_init() sets up the page tables, initialises the zone memory
1057  * maps, and sets up the zero page, bad page and bad page tables.
1058  */
1059 void __init paging_init(struct machine_desc *mdesc)
1060 {
1061         void *zero_page;
1062
1063         sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
1064
1065         build_mem_type_table();
1066         sanity_check_meminfo();
1067         prepare_page_table();
1068         map_lowmem();
1069         bootmem_init();
1070         devicemaps_init(mdesc);
1071         kmap_init();
1072
1073         top_pmd = pmd_off_k(0xffff0000);
1074
1075         /*
1076          * allocate the zero page.  Note that this always succeeds and
1077          * returns a zeroed result.
1078          */
1079         zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
1080         empty_zero_page = virt_to_page(zero_page);
1081         __flush_dcache_page(NULL, empty_zero_page);
1082 }
1083
1084 /*
1085  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1086  * the user-mode pages.  This will then ensure that we have predictable
1087  * results when turning the mmu off
1088  */
1089 void setup_mm_for_reboot(char mode)
1090 {
1091         unsigned long base_pmdval;
1092         pgd_t *pgd;
1093         int i;
1094
1095         /*
1096          * We need to access to user-mode page tables here. For kernel threads
1097          * we don't have any user-mode mappings so we use the context that we
1098          * "borrowed".
1099          */
1100         pgd = current->active_mm->pgd;
1101
1102         base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1103         if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1104                 base_pmdval |= PMD_BIT4;
1105
1106         for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1107                 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1108                 pmd_t *pmd;
1109
1110                 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1111                 pmd[0] = __pmd(pmdval);
1112                 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1113                 flush_pmd_entry(pmd);
1114         }
1115
1116         local_flush_tlb_all();
1117 }